
131

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Analysis of a MAC Layer Covert Channel in 802.11 Networks 

 

Ricardo Gonçalves 

Department of Electrical and 

Computer Engineering, Naval 

Postgraduate School 

Monterey, California 

santana.goncalves@marinha.pt 

 

Murali Tummala 

Department of Electrical and 

Computer Engineering, Naval 

Postgraduate School 

Monterey, California 

mtummala@nps.edu 
 

John C. McEachen 

Department of Electrical and 

Computer Engineering, Naval 

Postgraduate School 

Monterey, California 

mceachen@nps.edu

 
Abstract—In this work, we present a proof of concept on a new 

covert channel in IEEE 802.11 networks, making use of the 

Protocol Version field in the MAC header. This is achieved by 

forging modified CTS and ACK frames. Forward error 

correction mechanisms and interleaving were implemented to 

increase the proposed channel's robustness to error. A 

laboratory implementation of the proposed channel and the 

results of tests conducted on the proposed channel, including 

measurements of channel errors, available data rate for 

transmission and channel detectability, are presented. The 

results validate the viability of the proposed covert channel 

and demonstrate that robustness of the channel to frame 

errors can be improved by using well known forward error 

correction and interleaving techniques.  

Keywords - IEEE802.11 MAC frame; frame forging; covert 

channel; protocol version 

I.  INTRODUCTION 

In this paper, it is our intention to analyze and further 
extend on the proof of concept presented at the Third 
International Conference on Emerging Network Intelligence 
(EMERGING 2011) [1]. Additional tests were conducted, in 
order to evaluate the usability of the proposed covert 
channel. At EMERGING 2011, we proposed a covert 
channel that uses the MAC header of control frames to hide 
the covert information. This is achieved by forging frames 
that use the Protocol Version (PV) bits in a way that was not 
intended by the designers of the IEEE 802.11 standard [2]. 
Specifically, the PV field and selected control bits in the 
MAC header field are used to accomplish this. Our work also 
investigates the error robustness and throughput of the 
channel, supported by experimental results. 

As wireless networks become more ubiquitous, so do our 
dependencies on them. According to an industry report, in 
2012 over a billion devices will be shipped with technology 
based on this standard onboard and the number is projected 
to be over two billion in 2014 [3]. Mobility and ease of 
access of wireless networks are very attractive characteristics 
to the end users, but along with them come additional 
security concerns [4], [5].  

In order to protect wireless networks from being 
exploited, we need to constantly evaluate their vulnerabilities 
and devise techniques to mitigate them. Finding possible 
covert channels presents an ongoing challenge, and the 
potential uses for such channels range from well-intentioned 

authentication mechanisms [6] to malware propagation [7], 
exfiltration [8] or command and control of botnets [9].  

The importance of investigating as many covert channels 
as possible should be obvious, since each networking 
standard has its own unique characteristics to exploit. For 
this reason, it is generally accepted that covert channels 
cannot be completely eliminated due to numerous variations 
in their implementation [10], [11]. 

Many covert channels have been documented over the 
years and reflect the technological stage of the networks at 
which they were documented. The idea of network covert 
channels was documented 25 years ago by Girling [12], 
although the concept of a system-based covert channel was 
initially presented by Lampson in 1973 [13]. The vast 
majority of academic research has focused on documenting 
covert channels in layer 3 (network layer) or above 
(transport, session, presentation and application layers) of the 
OSI model [14]. These types of covert channels based on 
higher layer protocols span a wider variety of networks, 
since they are not limited by the physical or medium access 
mechanisms. The two most explored protocols above layer 2 
(data link layer) are IP and TCP [11], [15], [16]. Even higher 
layer protocols, such as ICMP, HTTP or DNS, have several 
documented covert channels [17], [18], [19].  

Recently, researchers began investigating wireless 
networks, specifically identifying covert channels in the 
MAC layer [20], [21], [22], [23]. Frame forging plays a key 
role in this type of covert channel. Creating fake frames with 
modified header bits is a recurring theme to implement such 
channels. MAC header fields such as the sequence number 
[22], initialization vector [22] or destination address [23], 
have been used to hide the covert information. 

The rest of the paper is organized as follows. Section II 
presents an overview of the IEEE802.11 MAC frame fields 
and an analysis of network frame traffic. The proposed 
covert channel is described in Section III. Section IV 
presents the results of new experiments. Section V closes this 
work with a brief conclusion and future work. 

 

II. IEEE802.11 NETWORKS AND FRAME TRAFFIC 

IEEE 802.11 based wireless nodes share a common 
medium for communication. The fundamental building block 
of the 802.11 architecture is called the Basic Service Set 
(BSS). One BSS may be connected to other BSSs via a 
Distribution System (DS). Within this framework, stations 



132

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can connect in ad-hoc mode or infrastructure mode. The 
simpler case is ad-hoc mode, where two stations can connect 
directly, point to point, without a DS and an Access Point 
(AP). If we have the stations connecting via an AP and 
making use of a DS, then we say they are setup in 
infrastructure mode.  

A. 802.11 MAC frame format 

A generic MAC format for an 802.11 MAC frame can be 
seen in Figure 1. The frame consists of the MAC header, the 
frame body and the Frame Check Sequence (FCS). 

 

 
Figure 1. MAC frame format (from [2]). 

The first field in the MAC header is the Frame Control 
(FC), consisting of two octets, and its contents are shown in 
Figure 2, with the PV field highlighted. This field consists of 
two bits that represent the version number of the 802.11 
protocol being used. As of this writing, PV is expected to be 
set to zero [2]. This value may change in the future if a 
newer version of the standard is released.  

 

 
Figure 2. Frame control field (from [2]). 

In the proposed covert channel, we utilize the remaining 
three possible combinations of the PV field to hide the covert 
information. 

B. Frame Types of Interest 

Four different types of frames exist in the 802.11 
protocol: management, data, reserved and control frames. 

Control type frames facilitate the exchange of data 
frames between stations. Within the existing control 
subtypes, we are interested in the smaller sized frames, the 
Acknowledgement (ACK) and the Clear To Send (CTS).  
These frames also tend to be present in large volume. 

The IEEE 802.11 MAC layer makes use of the 
CSMA/CA scheme, in order to minimize the number of 
collisions and subsequent frame loss. To address the hidden 
node problem [24], a RTS/CTS handshake mechanism is 
used. The CTS is a 14-byte long frame whereas the RTS is 
20 bytes long. 

The ACK frame is generated when a station correctly 
receives a packet, and it is intended to signal the source 
station that the reception was successful. For such reason, 
this type of frame also tends to be very common in an 

operational wireless network. The length of this frame is the 
same as the CTS, 14 bytes. 

Both frames share the same format and they only differ 
in one bit in the subtype field within the frame control. The 
ACK frame has the subtype value set to "1101"; the CTS sets 
it to "1100". 

C. Network Analysis 

A heavily used 802.11 network on campus is monitored 
to collect frame traffic on multiple channels. From the MAC 
frame traffic collected, channel 1 is found to be the one with 
most traffic volume and number of users. We collected over 
22 million packets to analyze the following frame basic 
characteristics. 

Ideally, we want a frame that is short in length, common 
in occurrence, and still valid if some bits are changed. 
Additionally, its presence in bursts should not be a rare 
event. These features are desirable for achieving a reasonable 
throughput while providing covertness.  

The results of our analysis are shown in Figure 3 as a pie 
chart, which represents the frequency of occurrence of 
different types of frames. The data frames are dominant, 
followed by CTS, ACK and beacons. The "others" refers to 
the sum of all other frames that represent less than 1% 
individually. From this plot we can clearly see that two types 
of control frames matching our needs stand out, the ACK 
and the CTS. 

 
Figure 3. Frequency of occurrence of the monitored frame types. 

D. Choosing the Frame Type 

In the process of choosing a frame for the covert channel, 
several frames were considered, such as RTS and ACK. 
These frames could serve as well as the CTS, but they were 
found to be less frequent than CTS. In addition, among these 
three frames, RTS is the longest one with 20 bytes, and the 
CTS and ACK have only 14 bytes. For this reason, we 
narrowed the options to ACK and CTS.  

From monitoring of frame traffic on the campus wireless 
network and empirical analysis, we found that the CTSs 
occur with a frequency two times higher than that of the 
ACKs. Different traffic scenarios were monitored, ranging 
from low traffic periods to high levels of utilization of the 
network. We chose to use CTS for building the proposed 
covert channel as the CTS traffic volume is large and is of 



133

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

same frame size as ACK. By choosing CTS,  
we can minimize the chance of causing a traffic anomaly 
based on the type and frequency of packets flowing through 
the network.  

Since CTS and ACK have a similar frame structure, it is 
easier to switch from one to the other, according to our 
objectives. The main concept of the proposed covert channel 
applies equally to both frames. It is even possible to have one 
end of the channel transmitting ACK frames, and the other 
transmitting CTS frames, without any loss or degradation of 
performance. Alternating frame types, such as transmitting a 
forged ACK followed by a forged CTS is also viable. Many 
other variations are also feasible. 

The fact that both CTS and ACK frames do not contain a 
source address also contributes to a higher level of 
stealthiness, since it is not possible to immediately identify 
the source of the transmission. 

III. PROPOSED COVERT CHANNEL 

This section describes the proposed covert channel and 

the use of forward error correction and bit interleaving 

mechanisms to improve its performance.  

A. MAC Header Manipulation 

In the proposed covert channel we use two bits in the PV 
field of the MAC header of an 802.11 CTS packet to carry 
covert information. The proposed covert channel uses the PV 
bits in a variety of ways to signal the beginning and end of 
the transmission as well as to carry the information, one bit 
at a time. A graphical representation of the manipulated bits 
is shown in Figure 4. 

 

 
Figure 4. Manipulated bits in Frame Control field (blue squares). 

In order to facilitate communication in the proposed 
covert channel, we divide the transmission into three 

segments: start message delimiter, message, and end 
message delimiter. Marking the beginning and end of the 
covert communication allows us to establish the channel 
with the covert receiver station, while non-covert receivers 
will still see the forged frames as non-expected, thus 
dropping them. The start and end delimiters are realized by 
transmitting a sequence of five frames with "01" in the PV 
field. The message bits are transmitted using combinations of 
"10" as binary "zero" and "11" as binary "one" in the PV 
field. The message is organized into 8-bit ASCII characters. 
Figure 5 shows a capture of Wireshark [25] in which we can 
see the transmission of the ASCII character “A” converted 
into the binary string "01000001". A total of 18 frames were 
transmitted.  Looking at the first column (Protocol) we see 
the identification of a valid CTS format, it is only when 
looking to the second column (Protocol Version) that our 
frame manipulation becomes noticeable. There we can see 
the changes in the PV number, from 1 to 3. 
 

B. Forward Error Correction 

Since we are operating in a shared media, collisions will 
eventually occur. This will be interpreted as an error, since a 
frame carrying covert payload will be lost. To mitigate the 
effect of frame losses, and thus reduce the number of errors 
in the covert channel, the use Forward Error Correction 
(FEC) was considered. 

There are several options for implementing FEC: block 
codes such as Hamming and Reed-Solomon, convolutional 
codes, turbo codes, or low density parity check codes [26]. In 
this work, however, a convolutional code was used for error 
correction. 

A convolutional coder takes an - bit message and 

encodes it into an - bit symbol. The ratio  is known as 

the code rate. In our case a code rate of  was used, 

meaning the encoded message will be one and a half times as 
long as the original message. This will increase the time 
needed to transmit the same message as before, since a 
higher number of bits is being sent. 

Another important parameter in convolutional coding is 
the constraint length. This parameter, k, represents the 
number of bits in the encoder memory that affect the 

m

n m
n

2
3

Figure 5. Wireshark capture of an “A” being transmitted using the proposed covert channel. 

 



134

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generation of the  output bits [26]. A constraint length of 4 
is used in our experiments. 

Forward error correction is typically applied to the 
transmission of a stream of bits sent and received 
sequentially. In our case, however, the bits are embedded 
into independent frames, which are prone to loss. As a result, 
when a frame is lost, the receiver has no indication that a bit 
is missing. Consequently, we now need to know exactly 
which frames were lost in order to apply the FEC correctly.  

One option is to use the eight flag bits in the frame 
control field of the MAC header to index a longer sequence 
number, which makes determining the location of lost frames 
an easier task. These flag bits will not carry any covert 
information but serve only the error correction function. 
However, it is important to state that applying this use of the 
flag bits will increase the probability of detection of the 
covert channel, since unexpected flag attributions will be 
present. In this situation, we move from a minimum 
deviation, from a legitimate CTS, of two bits (as in Figure 4) 
to a maximum of 10 bits (as in Figure 6).  This presents a 
tradeoff between detectability and error performance, and the 
user must exercise the option to choose one over the other as 
dictated by the application.  In order not to use the flag bits 
one could use the type and subtype fields of the MAC 
header. The IEEE802.11 standard defines some bit 
combinations of the subtype field as “Reserved” [2]. 
Exploring these combinations could be an option, although 
we did not test it. 

Figure 6 is a representation of how we accommodated the 
information and sequence bits within the MAC header.  

 

 
Figure 6.  Representation of the frame structure using the flag bits for 

sequencing (red circles). 

The blue squares represent our covert channel bits. These 
bits are used in the same way as before: the first bit (B0) 
signals the presence of the channel and the second is payload 
(B1). The red circles refer to the sequence bits, which are 
placed in the flag bits of the frame control field.  

Given that we have eight flags, this gives us a total of 2
8
 

possible sequence numbers. This alone provides a reasonable 
amount of protection against a long burst of frame losses, 
when compared to the previous approach.  

C. Forward Error Correction and Interleaving 

We now consider sending more than one bit of 
information per forged frame.  

Since each frame now carries more than one information 
bit, the loss of one or more frames has a larger impact on the 
total number of errors in the channel. In order to mitigate this 
effect, we interleave the bit string resulting from the 
convolutional coder. This consists of breaking the coded 
message in blocks of 8 bits, building a matrix with each 

block in a different row. By reading the matrix out by 
column, from top to bottom, we generate a new string of bits, 
effectively interleaving all the 8 bit blocks [27], [28].  The 
number of rows depends on the length of the message we are 
transmitting.  

At the output of the convolutional coder we interleave the 
bits in groups of 8 bits. This results in a new string of zeros 
and ones, which goes into the covert channel processing 
block. Here the string is separated in groups of  bits, and 
each group will become the payload of the forged frames. 
Figure 7 is a schematic representation of this idea. 

Notice that only information bits are encoded and 
interleaved; in this implementation the convolutional coder is 
applied after we gather the complete message we want to 
transmit.  

 

 
Figure 7.  FEC and interleaving block diagram. 

One possible implementation is to use six bits for 
payload. The frame is forged as follows: six information bits 
are placed in the selected flag bits, three other bits are used 
for sequence numbers, and the first PV bit is set to one, 
indicating the use of the covert channel.  Figure 8 illustrates 
the proposed structure. The blue squares indicate payload 
bits, and the red circles are sequence numbers. The green 
diamond (B0) indicates the presence of the covert channel. 
Bits B1, B8 and B9 form the sequence number yielding a 
sequence length of eight. Bits B10-B15 form the payload, 
using six bits to carry the message. 

 
 

 
Figure 8.  Representation of the frame structure  using three bits for 

sequencing (red squares) and six bits for payload (blue squares). 

IV. EXPERIMENTS AND RESULTS 

In order to implement the proposed covert channel, we 
developed the necessary code to forge, transmit, and receive 
frames. Python [29] was the chosen programming language, 

n

n



135

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

due to its simplicity, available libraries and extension 
modules that facilitated our task. The elected OS was Linux, 
for being more flexible, open source and GNU licensed.  

The code is divided into three threads running 
simultaneously, as presented in Figure 9. One thread runs as 
the receiver, counting the initialing sequence that marks the 
opening of the covert channel, buffering the received 
message and identifying the closing sequence. At that point, 
it starts the recovery part of the process, corresponding to the 
right half of Figure 7. Thread2 acts as the transmitter, 
executing all the tasks shown on the left half of Figure 7. 

  

 
Figure 9.  Flow chart of the covert channel code implementation. 

Finally, the third thread contains a control mechanism to 
filter possible discrepancies in the identification of the 
beginning and end of the covert communication. During our 
monitoring of real working wireless networks, other version 
1 frames (with bad checksums) were found circulating in the 
network, thus becoming noise to our version 1 frames. 
Thread3 is responsible for filtering out these unwanted 
frames.  

A. Test bed 

Tests were conducted in a laboratorial environment, with 
controlled levels of interference. All measurements were 
made using the same stations in the same relative positions 
inside a closed room. The levels of interference ranged from 
0 to 1000 frames per second. ARP frames were used as the 
interfering frames, at a fixed transmission rate, due to its 
simplicity to generate with common exploit tools, such as 
aireplay-ng [30]. In order to have a considerable level of 
interference, all ARP frames were made to be 72 bytes long. 

The tested scenario consisted of transmitting the same 
covert message, while varying the number of payload bits 
and applying different levels of interfering traffic in each 
trial. The standard sentence used in our tests has an original 
length of 1408 bits, which translates to a total of 2112 bits 
after applying FEC and interleaving, with the intention of 
improving the error robustness of the channel. In order to 
collect a statistically relevant sample, each sentence was 
repeatedly transmitted between 500 to 1500 times for each 
payload size (from 1 to 6 payload bits) and interference level 
(from 0 to 1000 in steps of 125 ARP frames per second). 
This brings the number of analyzed bits close to 60 million 
for each trial. The different number of sentence 
transmissions is due to the need of balancing the number of 
transmitted frames in order to make a fare comparison 
between trials, since different payload sizes impact on the 
total number of frames to be forged in order to send the 
entire message. 

Three laptops with the same hardware configuration were 
used, utilizing a PCM 3COM 3CRPAG175 with an Atheros 
chip AR5212 as the wireless network adapter. One laptop 
was setup as transmitter (Station A), another as noise source 
(Station B), and the third one as passive monitor (Station C). 
Stations A and B were running Backtrack4 as OS, and 
Station C ran Windows XP SP2. The monitoring program 
used was Airopeek NX, version 3.0.1 [31]. 

 It is important to notice that stations A (source of 
messages) and B (source of interference) are operating in ad-
hoc mode, outside any infrastructure wireless network. The 
stations transmit without coordination from access points.  
Our intention is to cause collisions, and thus frame losses, 
which are interpreted as errors for analysis purposes.  

Experimental data is then collected by station, C, set to 
collect all frames in promiscuous mode. 

All active communications during the tests are 
unidirectional, being broadcasted from one unique station. 
This setting rules out any tests to the receiving part of the 
covert channel code, since station C is collecting all the 
traffic for later analysis, not decoding the message in real 
time.  

The expected error performance is displayed in Figure 
10, showing the number of errors, in a log scale on the Y-
axis, versus the interference level on the X-axis. We expect 
to see an increase in the number of errors as the interference 
level rises. At some point, the use of FEC will introduce 
more errors than the ones originally received, becoming 
disadvantageous. The blue solid line represents the number 
of errors after the use of FEC, where the red dotted line 



136

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

represents the number of error at the reception, before going 
through FEC. We assume this last condition to be equivalent 
to having the exact same message without FEC, since we do 
not process that algorithm, and measure errors in raw as they 
are received. 

 

 
Figure 10.  Expected evolution of the number of errors without FEC (red 

dashed line) and using FEC (blue solid line). 

B. Results 

1) Fixed payload size of 2 bits 

 
For a payload size of 2 bits and 7 bits for sequencing, the 

collected data is displayed in Figure 11. In this case we are 
able to resist some bursts of errors, since the addressing 
space is still fairly large (2

7
), enabling us to pinpoint the 

missing bits. We can see all the errors being corrected for an 
interference level up to 125 frames per second.  

 

 
Figure 11.  Number of errors for a fixed payload size of 2 bits at different 

interference levels. Blue solid line is the result after FEC, red dashed line 

before FEC. 

 
 
 

Above that interference level, the number of errors after 
FEC tends to increase and at approximately 675 frames per 
second of interference it crosses over and surpasses the 
number of errors when no FEC is in place. With such 
payload per frame, it was necessary to generate 1056 frames 
for the complete message, plus the 10 marking frames. This 
adds to a total of 119392 bits for each sequence. In this trial 
the sequence was transmitted 500 times, so the total number 
of transmitted bits approaches the 60x10

6
.  

The benefits of this configuration are present in low to 
medium levels of interference. This result is consistent with 
our expectations. 

 

2) Fixed payload size 4 bits 
 
For a payload size of 4 bits and 5 bits for sequencing, the 

collected data is displayed in Figure 12. Here we can see 
how the number of errors increases at low interference 
levels, when compared to the previous results, confirming an 
expected degradation in the channel quality. The crossover 
point happens at around 475 frames per second.  

By increasing the payload we reduced the number of 
forged frames to send the covert message. In this case, the 
number of repetitions of each sentence was 1000, as opposed 
to the 500 of the previous setting. 

 

 
Figure 12.  Number of errors for a fixed payload size of 4 bits at different 

interference levels. Blue solid line is the result after FEC, red dashed line 

before FEC. 

3) Fixed payload size 6 bits 
 
 For a payload size of 6 bits and only 3 bits for 

sequencing, the collected data is displayed in Figure 13.  
With these settings, the level of interference needed to 

induce a large number of errors does not have to be very 
high. The crossover point happens at a lower level of 
interference, around 200 frames per second. 

For this payload size we had to increase the number of 
repetitions up to 1500 for each trial.  
 
 



137

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 13.  Number of errors for a fixed payload size of 6 bits at different 

interference levels. Blue solid line is the result after FEC, red dashed line 

before FEC. 

4) Fixed interference rate 

 
Taking a different approach to the collected data, we 

analyzed the effect of a fixed interference level (500 frames 
per second) given different payload sizes, ranging from 1 to 
6 payload bits. Here we can observe how the crossover point 
sits between a 3 and 4 payload size. Before that point FEC is 
an important technique to enhance the channel resilience. 
From that point on, we can clearly see the effect FEC has in 
generating more errors than the ones received. 

 

 
Figure 14.  Percentage of errors for a fixed interference rate and payloads 

between 1 and 6. Blue solidline is the result after FEC, red dashed  line 

before FEC. 

A relevant aspect taken from these experiments is the 
motion of the cross over point, as we change the interference 
level. This can be used as a reference for changing the 
payload size as the level of interference changes. To find the 
level of interference, and since we intend to operate inside a 
structured network, we can use the data rate information 
embedded in each packet. This would allow an adaptive 
covert channel to be created, responding to different levels of 
interference with different payload sizes. 

C. Throughput Analysis 

In order to evaluate the throughput offered by the 
proposed channel, the rate at which the frames are 
transmitted is measured. Being a proof of concept, code 
efficiency was not a major concern, and the results are 
presented for analysis purpose only, meaning significant 
improvements may be easily achieved. This was done using 
Airopeek [31] and by averaging the rate of the forged frames 
on a per second basis.  Depending on the network usage at 
the time, the frame rate varies significantly. Another factor 
responsible for this variation is the continuous adjustment of 
the maximum data rate of the network as dictated by the 
channel conditions. For IEEE 802.11b networks the 
maximum network data rate possible values are 1, 2, 5.5, and 
11 Mbps [2].  

To obtain a benchmark for performance comparison, we 
first determine the maximum data rate possible for the covert 
channel under optimal conditions. The following conditions 
are assumed:  

(i) The channel is ideal with no errors;  
(ii) there is only one station with frames to transmit;  
(iii) we use a data rate of 2 Mbps, the highest possible for 

802.11b control frames (basic rate set) [2]. 
 
The medium access scheme has to obey some 

predetermined timing constraints, set by the standard. Figure 
15 is a graphical representation of the timing requirements 
for transmitting a frame. 

 
Figure 15.  Timing constraints in an 802.11 frame transmission [After 32]. 

Applying the work of Xiao and Rosdhal [33] and Jun et 
al. [34] to the proposed covert channel, the minimum amount 

of time necessary to transmit a forged CTS is min
t  376 µs, 

corresponding to a maximum of 2659 forged frames per 
second. At one bit per frame the maximum bit rate is 2659 
bps; at six bits per frame we get 15.954 kbps. The measured 
throughput values, however, will be significantly smaller. 

When we transmit one bit of information in each forged 
frame, we have an overhead of the start and end delimiters 
for a total of 10 signaling frames. The measured average 
frame rate is 61 frames per second. Since each frame 
represents a bit, and considering our message payload of 
1408 bits, we transmit a total of 1418 bits. At 61 frames per 
second this corresponds to a total transmission time of 23.25 
sec, and a useful bit rate or throughput of 60.5 bps.  

On the other hand, when we transmit 6 bits per forged 
frame and introduce the use of interleaving, the measured 
average transmission rate is 32 frames per second. By 
transmitting a total of 2122 bits, we obtain a transmission 



138

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

time of 11 seconds. The resulting throughput value is 127.4 
bps, considerable improvement over the previous case. 

D. Covertness Analysis 

By evaluating the impact our proposed channel has in an 
operating wireless network, we can work to reduce its 
detectability by making use of traffic profile analysis. Figure 
16 is a partial magnification of the traffic profile of a busy 
channel during a normal working day at campus, where the 
black (lower) line represents the normal network traffic, and 
the red (upper) line shows the normal traffic plus the traffic 
due to covert (forged) frames. As we can see in Figure 16, 
the difference between the red line and the black line 
corresponds to the amount of traffic added by the use of the 
covert channel. Since the network traffic is fairly heavy, the 
presence of the covert channel is not obvious; our traffic just 
blends in with the overall traffic.  

Selected portion of network traffic profile showing the 
additional traffic generated by the use of the proposed covert 
channel (red top line). 

Applying the same reasoning to a low traffic channel, in 
the same campus area, during a normal working day, we can 
notice a substantial difference. Figure 17 shows the traffic 
profile of an available but modestly used channel, and 
without any covert traffic. 

 

 
Figure 17. Traffic profile of a low usage WiFi channel on campus. 

Figure 18 clearly shows the impact our covert 
transmissions have in the traffic profile of such channel. The 
traffic peaks are the result of injecting forged frames. In this 
case, our covert message being transmitted was a random 
sequence of 3500 bits. Zooming in and splitting the two 
types of traffic, as seen in Figure18, reveals the presence of 
an abnormal amount of traffic. In this case, there is a 
significant difference between the two types of traffic, with 
or without covert transmissions.  

 

 

 
 

Figure 18. Selected portion of network traffic profile showing the 
additional traffic generated by the use of the proposed covert channel (red 

top line). 
 
Figure 19 displays the traffic profile when using different 

rates of transmission and their impact. The stealthiness of the 
channel can be improved by spacing the transmission of 
forged frames. How the covert traffic can be made less 
visible by introducing spacing between frames is illustrated 
below. One of the down sides of this manipulation is the 
obvious reduction of throughput. Segment (a) in Figure 19 
corresponds to normal frame transmission with no additional 

Figure 16. Traffic profile of a low usage WiFi channel on campus 



139

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

spacing between the frames, i.e., no delay was introduced 
between transmitted frames. For this segment, the total 
transmission time is approximately two minutes at a 
measured average of 30 frames per second. 

In segment (b), frames are sent once every two seconds, 
resulting in a total transmission time of 2 hours and 12 
minutes. Finally, segment (c) is shown only partially; we 
sent one frame every four seconds for a total transmission 
time of 4.5 hours.  

The important aspect is that the difference between the 
legitimate and covert traffic becomes smaller and smaller as 
the spacing increases; at some point, it is possible to make it 
almost invisible as we extend the spacing. On the other hand, 
the throughput is degrading proportionally.  

Another technique to camouflage our use of the covert 
channel is to space the forged frames transmission in a non-
uniform way instead of sending the frames at regular time 
intervals. Although considered, this variation was not tested. 

V. CONCLUSIONS  

This work presented, implemented, and tested a MAC 
layer 802.11 covert channel. We used the PV field in the 
MAC header to hide and transfer the covert information. 
Within the MAC header we used the PV field, as well as the 
flag bits, to hide our message. 

The proposed covert channel was implemented by 
developing the necessary code in Python. A GUI chat 
console is used for message transmission. In our approach, 
users only have to run a single Python script in order to 
access the chat console. The test bed used for experiments 
operated in a Linux environment. 

Robustness to errors in the covert channel is improved by 
the use of forward error correction and bit interleaving. 
Results indicate significant improvement in the error 
performance of the channel for low interference rates. 

Detectability of the use of the proposed covert channel 
was also investigated, demonstrating a method of 
minimizing our exposure to such type of analysis. 
Throughput is severely affected once we try to reduce our 
traffic profile footprint. 

The achieved throughput of the covert channel was 
measured under two different scenarios, in which we 
changed the size of the payload. The maximum channel data 
rate was also determined. The case of 6-bit payload along 
with convolutional coding and interleaving yielded the 
highest measured throughput. 

This proof of concept can benefit considerably from 
future work. This may include code optimization in order to 
increase the frame rate, testing other error correction 
algorithms, and embedding this covert channel into 
legitimate traffic, directly at a firmware level, instead of 
relying on the injection of forged frames. 

 
REFERENCES 

[1] R. Gonçalves, M. Tummala, and J. McEachen, "A MAC 
Layer Covert Channel in 802.11 Networks", The Third 
International Conference on Emerging Network Intelligence 
EMERGING 2011, November 20-25, 2011 - Lisbon, Portugal  

[2] Institute of Electrical and Electronics Engineers, 802.11, 
Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications (accessed January 17, 2011). 

http://ieeexplore.ieee.org 

[3] D. McGrath, "WLAN chip set shipments projected to 
double," in EE Times, 2/17/2011. (accessed March 17, 2011) 

http://www.eetimes.com/electronics-news/4213260/WLAN-
chip-set-shipments-projected-to-double 

[4] H. Yang, F. Ricciato, S. Lu, and L. Zhang, "Securing a 
wireless world," in Proceedings of the IEEE, vo1.94, Issue 2, 
pp. 442-454, February 2006. 

[5] Y. Xiao, C. Bandela, and Y. Pan, "Vulnerabilities and security 
enhancements for the IEEE 802.11 WLANs," in Proceedings 
of the IEEE Global Telecommunications Conference 
(GLOBECOM) 2005, pp. 1655-1659, 2005. 

[6] T.E. Calhoun, R. Newman, and R. Beyah, "Authentication in 
802.11 LANs Using a Covert Side Channel," in 
Communications, 2009. ICC '09. IEEE International 
Conference, pp. 1-6, 14-18 June 2009. 

[7] E. Couture, "Covert Channels," SANS Institute InfoSec 
Reading Room (accessed January 17, 2011). 

http://www.sans.org/reading_room/whitepapers/detection/cov
ert-channels_33413 

[8] A. Giani, V. H. Berk, and G. V. Cybenko, "Data Exfiltration 
and Covert Channels," Process Query Systems, Thayer 
School of Engineering at Dartmouth (accessed February 02, 
2011). 

http://www.pqsnet.net/~vince/papers/SPIE06_exfil.ps.gz  

[9] D.T. Ha, G. Yan, S. Eidenbenz, and H.Q. Ngo, "On the 
effectiveness of structural detection and defense against P2P-
based botnets," in Dependable Systems & Networks, 2009. 
DSN '09. IEEE/IFIP International Conference, pp. 297-306, 
June 29 2009-July 2 2009. 

[10] S. Hammouda, L. Maalej, and Z. Trabelsi, "Towards 
Optimized TCP/IP Covert Channels Detection, IDS and 
Firewall Integration," in New Technologies, Mobility and 
Security, 2008. NTMS '08., pp.1-5, 5-7 Nov. 2008. 

(a) 

(b) 

(c) 

Figure 19. Selected portion of network traffic profile showing the effect of different transmition rates. 



140

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] C. H. Rowland, "Covert channels in the TCP/IP protocol 
suite," in Tech. Rep. 5, First Monday, Peer Reviewed Journal 
on the Internet, July 1997. 

[12] C.G. Girling, "Covert Channels in LAN's," in Software 
Engineering, IEEE Transactions, vol. SE-13, no. 2, pp. 292-
296, Feb. 1987. 

[13] B. Lampson, "A note on the confinement problem," in 
Communications of the ACM, vol. 16, pp. 613-615, October 
1973. 

[14] U.S. Department of Defense, Trusted Computer System 
Evaluation Criteria, pp. 80, DoD 5200.28-STD, July 1985. 

[15] S. Cabuk, C.E. Brodley, and C. Shields, "IP Covert Timing 
Channels: Design and Detection," in Proc. 11th ACM Conf. 
Computer and Communications Security (CCS), pp. 178–87, 
October 25–29 2004. 

[16] S. J. Murdoch and S. Lewis, "Embedding Covert Channels 
into TCP/IP," in Proc. 7th Information Hiding Workshop, 
June 2005. 

[17] M. Bauer, "New Covert Channels in HTTP: Adding 
Unwitting Web Browsers to Anonymity Sets," in Proceedings 
of the 2003 ACM Workshop on Privacy in Electronic Society, 
pp. 72–78, October 2003.  

[18] A. Galatenko, A. Grusho, A. Kniazev, and E. Timonina, 
"Statistical Covert Channels Through PROXY Server," 
Proceedings 3rd International Workshop - Mathematical 
Methods, Models, and Architectures for Computer Network 
Security, pp. 424–29, September 2005. 

[19] M. Smeets and M. Koot, "Research report: covert channels," 
Master’s thesis, University of Amsterdam, February 2006. 

[20] S. Li and A. Ephremides, "A network layer covert channel in 
ad-hoc wireless networks," Sensor and Ad Hoc 
Communications and Networks, 2004. IEEE SECON 2004. 
2004 First Annual IEEE Communications Society 
Conference, pp. 88-96, 4-7 October 2004. 

[21] T. Calhoun, X. Cao, Y. Li, and R. Beyah, "An  802.11 MAC  
layer  covert  channel,” in Wireless  Communications and 
Mobile Computing, Wiley InterScience (accessed January 
2011). 

http://onlinelibrary.wiley.com/doi/10.1002/wcm.969/pdf 

[22] L. Frikha, Z. Trabelsi, and W. El-Hajj, "Implementation of a 
Covert Channel in the 802.11 Header," in Wireless 
Communications and Mobile Computing Conference, 2008. 
IWCMC '08., pp. 594-599, 6-8 Aug. 2008. 

[23] L. Butti, Raw Covert (accessed September 2010) 
http://rfakeap.tuxfamily.org/#Raw_Covert 

[24] F.A. Tobagi and L. Kleinrock, "Packet switching in radio 
channels: the hidden node problem in carrier sense multiple 
access modes and the busy tone solution," in IEEE Trans. 
Commun., vol. 23, pp. 1417-1433, 1975. 

[25] Wireshark v.1.4.0 http://www.wireshark.org (accessed 
October 2010). 

[26] S. Lin and D. J. Costello., Error Control Coding: 
Fundamentals and Applications, Pearson Prentice Hall, New 
Jersey, 1983. 

[27] J. Proakis and M. Salehi, Digital Communications, Fifth 
edition, McGraw Hill, New York, 2008. 

[28] L. Chen,T. Sun, M. Y. Sanadidi, and M. Gerla, "Improving 
wireless link throughput via interleaved FEC," in Computers 
and Communications, 2004. Proceedings. ISCC 2004. Ninth 
International Symposium on , vol.1, no., pp. 539- 544 Vol.1, 
28 June-1 July 2004. 

[29] PythonTM Programming Language (accessed July 2010) 

http://www.python.org/ 

[30] Aircrack-ng / Aireplay-ng (accessed March 2012) 

 http://www.aircrack-ng.org/doku.php?id=aireplay-ng 

[31] Airopeek NX v.3.0.1 (accessed December 2010) 
http://www.wildpackets.com/ 

[32] W. Stallings, Wireless Communications and Networks, 
Second edition, Pearson Prentice Hall, New Jersey, 2005. 

[33] Y. Xiao and J. Rosdahl, "Throughput and delay limits of 
IEEE 802.11," in Communications Letters, IEEE , vol.6, no.8, 
pp. 355- 357, Aug 2002. 

[34] J. Jun, P. Peddabachagari, and M. Sichitiu, "Theoretical 
maximum throughput of IEEE 802.11 and its applications," in 
Network Computing and Applications, 2003. NCA 2003. 
Second IEEE International Symposium on, pp. 249-256, 16-
18 April 2003. 

 


