International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

175

Topologies and Coding Considerations for the
Provision of Network-Coded Services via Shared
Satellite Channels

Ulrich Speidel, Lei Qian
The University of Auckland
Auckland, New Zealand
ulrich@cs.auckland.ac.nz
1qia012 @aucklanduni.ac.nz

’Etuate Cocker
Spark Digital NZ Ltd.
Auckland, New Zealand
Etuate.Cocker @spark.co.nz

Abstract—Network traffic across shared bottleneck satellite chan-
nels using the Transmission Control Protocol (TCP) can suffer
significant impairment due to TCP queue oscillation. In TCP
queue oscillation, the input queue to the satellite uplink alternates
between overflow and packet loss and subsequent exponential
back-off. During back-off, the queue can drain completely and
leave the link capacity idle and underused. Coding of such
network traffic across multiple Internet Protocol (IP) packets
allows packet loss to be masked from the senders to a certain
degree. This lets TCP senders maintain larger congestion windows
for longer, resulting in higher goodput rates. We argue that the
concept of tunneling coded traffic across a satellite link is a
flexible one and does not necessarily rely on a one-size-fits-all
solution. This paper discusses a number of network topologies
for the deployment of coding, from the perspective of satellite
providers, Internet service providers (ISPs), end users and third-
party entities, and looks at considerations surrounding code
design, timing, and experiment methodology.

Keywords—TCP; network coding; satellite Internet; queue oscil-
lation

I. INTRODUCTION

The present paper is an extended version of [1], which
investigates possible deployment scenarios for network-coded
tunnel solutions to bridge the bottleneck given by the following
scenario: An Internet Service Provider (ISP) on a small Pacific
island receives its international connectivity via a geostationary
(GEO) or medium earth orbit (MEQO) satellite service. The
capacity provisioned is in the range of several Mbps to several
hundred Mbps, but always well below that of the networks
connected at either end (assumed to be 1 Gbps or faster). The
ISP services users on the island. The number of concurrently
active client devices could be anywhere from a few dozen
to a couple of thousand, and the ISP might observe up to a
few thousand simultaneous TCP [2] flows. For the purposes
of this paper, a TCP flow is a set of TCP packets travelling
in one direction and is characterised by a unique combination
of source and destination IP addresses and ports. Each flow
belongs to a single TCP connection (i.e., a connection typically
consists of two flows in opposite directions).

The flows across the link will typically be a heavily
skewed mix: Most flows on the link will contain at most a
few hundred bytes and will be too small and short to have

Muriel Médard
RLE, MIT
Cambridge, MA, USA
medard @mit.edu

Péter Vingelmann, Janus Heide
Steinwurf ApS
Aalborg, Denmark
{peter|janus} @steinwurf.com

their rate controlled by TCP flow control (also known as
congestion control). Long flows, which are subject to flow
control, contribute the majority of bytes on the link, however.

Satellite links of this type present a significant challenge
to TCP: The long latency bottleneck makes it difficult for
the TCP senders of sufficiently long flows to determine the
correct congestion window [3], [4], [5], [6]. The root cause of
this effect is the ACK-based feedback mechanism in TCP: A
TCP sender interprets arriving / lost ACK packets as absence
/ evidence of congestion. However, in satellites, this feedback
typically arrives with delays of over 500 ms on GEO and over
120 ms on current MEO links (at the time of writing, only a
single MEO vendor existed, O3b, now part of SES [7], with
orbital altitudes of around 8,000 km).

This delay gives each sender a rather outdated view of the
current situation at the entrance to the bottleneck — the input
queue at the satellite gateway for the uplink. In consequence,
a sender may be encouraged by returning ACKs to increase
its congestion window even though the input queue has since
filled and is overflowing, and will now drop most additional
packet arrivals from the sender. Similarly, a sender may be
waiting for ACKSs corresponding to data packets that were lost
to a queue overflow event that has since resolved, and may
needlessly reduce its congestion window. As the reduction
in congestion window is an exponential back-off, multiple
missing ACKs can quite radically reduce the goodput a sender
is able to deliver.

Moreover, in our scenario, the link in question is shared,
which means that a large number of simultaneous connections
face exactly the same congestion situation and their packet
round-trip-times (RTT) are dominated by the same latency.
This causes all participating TCP senders to act more or less
in unison when adjusting their congestion windows. Note that
this is quite different from the situation at a “typical” Internet
router, which sees connections with a wide mix of RTT values
and senders that adjust their windows in either direction at any
one time.

This effect on satellite links is known as global synchro-
nisation [8], [9], [10] and can lead to TCP queue oscillation,
where the input queue to the satellite link oscillates frequently
between empty and overflow, causing link underutilisation
when the queue is empty. Fig. 1 shows the effect of TCP

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

queue oscillation on the queue sojourn time of ping [11]
packets sent at 100 ms intervals into a 120 kB input byte
queue of a simulated 16 Mbps GEO link. The queue sojourn
time is a measure of queue length and reflects the fast filling
and draining of the queue. A well-dimensioned queue drains
completely at regular intervals but does not remain empty
for extended period of time. Similarly, the queue should not
overflow for extended periods of time. The 120 kB queue
deployed here meets this requirement reasonably well.

60 60

50 50
40 40
30 30
20 20
A
0 0
4] 5

10 15 20

Queue sojourn time [ms]

Experiment time [s]

Figure 1. Queue sojourn time experienced by ICMP ping packets transmitted
in 100 ms intervals across a simulated 16 Mbps GEO link experiencing TCP
queue oscillation. Note the rapid rise and fall in queue sojourn time at
regular intervals, which corresponds to the filling and draining of the link’s
input queue.

In addition to the work presented in [1], the present paper
considers how tunnel solutions are constrained from a coding
perspective, and how they may be evaluated experimentally.
Section II provides a brief overview of related work. Section III
explains the basic workings of the tunnel in a scenario where
the ISP on the island provides the tunnel endpoint and where
the coded traffic between the tunnel endpoints travels in the
payload of UDP packets. On this basis, Section IV discusses
the question as to where the off-island endpoint could be
located and presents a case for having multiple endpoints.
Section V describes a scenario in which a third-party entity
operates the tunnel endpoint on the island. In Section VI, we
look at the advantages and drawbacks of offering coding-as-a-
service tunnels to individual end users on an island. Section VII
then looks at various options for non-UDP communication
between the tunnel endpoints. In extension of [1], Section VIII
uses observations from real and simulated satellite links to
explore criteria that the code design must meet. Section IX then
looks at experimental approaches and introduces the Auckland
Satellite Simulator facility, followed by our conclusion.

II. RELATED WORK

The performance problem resulting from TCP queue os-
cillation has been studied in the context of satellite links for
over two decades (see, e.g., [12], [13]) and remains essentially
unsolved, despite the emergence of active queue management
(AQM) techniques and improvements in the TCP congestion
control algorithm itself [14], [15], [16].

In large parts, this is due to the fact that in our scenario,
the senders overload the queue based on feedback from the
receivers that is already enroute by the time that the queue
shows signs of filling. Any feedback from explicit congestion
notification (and even more so from random early drops)
simply arrives too late to be useful. It is worth noting in
this context that island ISPs do not normally control the TCP
version used by the hosts on the island, and have no control

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

176

whatsoever over versions used by senders on the rest of the
Internet.

Network coding [17] offers a potential part-remedy here:
By error-correcting packet losses that occur at the input queue,
it is possible to prevent premature back-off by the TCP senders,
allowing some of the lost capacity to be reclaimed. In order
to do so, the packets that one wishes to protect by error
correction coding must be encoded before the input queue: The
conventional forward error correction that is a standard feature
in many satellite terminals happens at the time of transmission
to the satellite and can only code packets that have already
made it into the queue — its function is to protect against errors
from noise and fading. TCP performance under network coding
has been investigated by other authors before [18], [19], but
not in the context of satellite links. Similarly, network coding
has been studied experimentally on satellite links, but not in
the context of TCP [20].

The basic topology investigated in this paper is a tun-
nel [21], which operates across the link and both satellite
input queues at either end. It accepts and delivers IP packets
regardless of transport layer protocol involved, such that the
end-to-end principle always remains intact. We have already
demonstrated [21], [22] that such a tunnel solution can improve
goodput for individual TCP connections, even in the presence
of a majority of legacy TCP traffic on the same link.

III. CoODED TUNNELS

We begin our tour of the basic tunnel model (Fig. 2) by
introducing our players and our components and following
what happens during a TCP connection from an island end
user client to a server off-island that the user wants to access:

=== Conventional TCP
s TCP / NC

" UDP tunnel
End user
machines

~
(e.g., web
server or
other host)

Internet

TCP/NC
Encoder/
Decoder G,

Off island

Figure 2. TCP/NC network topology in a scenario where the on-island ISP
operates the local encoder/decoder. The off-island encoder/decoder may be
at an arbitrary off-island location on the Internet.

The connection begins at an end user machine on the
island. In most scenarios, we will assume that we have no
control over this machine, i.e., that we cannot assume anything
beyond the existence of a TCP/IP stack and some TCP client
program on the machine. It means in particular that we cannot
install software on the machine and that we cannot get the
user to change settings on the machine. It is this machine
that initiates the connection by sending a TCP packet to the
off-island server, with the SYN flag set. The TCP/IP stack
encapsulates this packet inside an IP packet whose source

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

address is that of the client machine. Its destination address
is that of the off-island server.

On its way to the world, IP initially forwards the packet to
a local gateway router on the island, and from there possibly
along further gateway routers in the direction of the on-island
satellite gateway. In our case, we replace one of these gateway
routers by our on-island encoder/decoder ;. Since our packet
is heading off-island, we use its encoder functionality here.

The encoding works as follows: G captures the original
IP packet and prevents it from travelling further. Instead,
Gy forms sets of n successive IP packets it has captured.
Each such set is called a generation and n is the generation
size. In random linear network coding (RLNC), G; now
creates n + w byte-wise linear combinations of all packets
P1,P2, - - -, Pn in the generation, using randomly chosen coef-
ficients ¢;1, ¢;2, - . ., Cin. That is, the ¢’th linear combination 7;
that G'; produces is given by:

Ci1p1 + CioP2 + ... F CinPn = Ty (D

The n + w combinations thus produced form an overde-
termined system of linear equations whose solution is the set
of original packets p1,ps,...,p,. In doing so, G codes all
bytes of the incoming packets, including the headers with the
IP addresses of the island and off-island end hosts involved.
Note that in pure RLNC, the length of r; is that of the largest
of the packets p1,p2,...,Dn.

G1 now communicates this system, one equation at a time,
to the decoder Gy, located somewhere on the Internet on the
off-island side of the satellite link. For this purpose, G; sends
n + w UDP packets to G, with its own IP address as source
address and the IP address of Gy as destination address. Each
UDP packet contains the equation for a particular ¢ in the
form of the ¢;1, ¢;o,. . ., ¢y and ;. In pure RLNC, this makes
each UDP packet a little larger than the largest of the original
packets — one of the reasons to use systematic coding, which
we will discuss in Section VIII-E.

These UDP packets now travel via the satellite link and
the off-island Internet to Gys, which solves the system of
linear equations. The solution consists of the original packets
P1,P2, - - -, Pn, Of course, which Gy, then forwards to their off-
island destinations. Note that Gy generally only needs any n
of the n+w UDP packets in order to decode the py,pa, ..., pn-
The remaining w UDP packets are not required and can safely
be dropped along the way — for example, at the input queue
to the satellite gateway. The important point here is that we
can leave it up to the input queue to decide which packets to
drop.

Our SYN packet has now arrived at its off-island server
destination, and the server wishes to send a SYN+ACK in
response. At this point, the network topology becomes critical:
In most island scenarios, all island hosts including the satellite
gateways at either end of the link belong to a single IP subnet.
From the world’s perspective, the off-island satellite gateway
is also the IP gateway to this subnet. In this scenario, the
SYN+ACK response from the server (and any subsequent
packets from the server) are routed straight to the off-island
satellite gateway, entirely bypassing Gy . This is unacceptable,

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

177

of course, since most data flows in the direction to the island
and it is important that we encode this direction in particular.

The solution is to split the subnet: End hosts in the islands
become part of a new subnet A (this could also be several
subnets), whereas the on-island satellite gateway is placed in a
disjoint subnet B. One then configures routing such that traffic
to A is routed to Gy as gateway, whereas traffic to B is routed
to the off-island satellite gateway.

In this scenario, the off-island server receives the SYN
packet with a source address from network A, and thus
responds by forwarding the SYN+ACK to Gyy. There, Gy
encodes the packet in the same way (G; encodes packets in the
opposite direction. It then forwards the coded packets inside
UDP to G for decoding and release to the island end user
machine, which completes the round-trip handshake. Further
packets between the hosts follow the same path. That is, the
packets travel trough a coded UDP tunnel between G; and
Gw and vice versa.

This scenario requires the ISP on the island to either
operate Gy off the island, or contract an off-island entity to
operate Gy on their behalf. In many cases, it will also be
desirable to make at least network A an autonomous system
(AS) for routing purposes, in which case Gy needs to be
duplicated for redundancy. The current experimental software
that we have been working with is capable of supporting two
instances of Gy .

In the next sections, we will consider variations of this base
scenario.

IV. TUNNEL ENDPOINTS AND THEIR LOCATIONS

Our basic tunnel scenario above assumes that Gy is
located at an arbitrary location on the Internet. As long as
the tunnel that it spans with G covers the satellite link, it
can fulfill its purpose of masking packet loss at the satellite
gateway input queues. There are however good reasons to
consider the placement of Gy, carefully. The following options
may deserve consideration:

e (yy could be placed in the path between the Internet
at the off-island satellite gateway (Fig. 3), or even be
a part of the satellite gateway hardware itself. In this
case, network B could use private IP addresses, and
Gw simply acts as a gateway for network A as in
the previous scenario. That is, all machines on the
island could be in the same subnet of an upstream
provider’s network, save the off-island facing interface
of the on-island satellite gateway. For the ISP and/or
their upstream provider, this removes the cost of
maintaining a separate block of public IP addresses
or even a separate AS.

However, a placement at the satellite gateway requires
the competent cooperation of whichever party controls
the off-island satellite gateway: They need to install
and assist in commissioning Gy or permit VSAT
terminals with equivalent built-in functionality to be
installed. In practice, one encounters a variety of
scenarios, however: One ISP owns and controls both
satellite gateways, another ISP owns and operates the
island side only and contracts to a satellite provider

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and upstream ISP off-island, and yet another buys a
turnkey solution from a satellite provider who also
controls and services the on-island satellite gateway.
We note in this context that especially in the latter
case, satellite providers often provide WAN accelera-
tors with network memory, parity packets and various
other optimisation functions — inserting Gy as part of
such a solution would thus not be without precedent.

m Conventional TCP
e TCP / NC

——— UDP tunnel
End user
machines

server or
other host)

Internet

TCP/NC

Encoder/
Decoder
GW

TCP/NC
Encoder/
Decoder G,

Off island

Figure 3. TCP/NC network topology in a scenario where the on-island ISP
operates the local encoder/decoder, and the off-island encoder/decoder is
inserted in the path between off-island satellite gateway and the Internet.

e Gy (or several instances thereof, labelled Gy 1, Gwa,
etc.) could be placed close to the known primary
sources of bulk data content sought by island clients
(Fig. 4). The advantage of such a placement would
be that it would protect a longer portion of the paths
between servers and clients by coding and bridge
other potential sources of loss. However, there is an
obvious drawback: Gy is no ordinary server — it needs
a significant amount of network configuration in its
environment to work. For example, the network that
Gy is placed in has to advertise a route to network
A in order to draw traffic for subnet A from the bulk
data content sources. Hence, placing Gy in such a
site potentially far away from both ISP and satellite
provider premises requires the cooperation of a third
party that is not only able to host Gy, but also able
to arrange for its routing needs. Such partners could
potentially be difficult to recruit for an ISP based on
a remote island.

e Gy could be placed at the premises of a specialised
off-island provider, who could also own and operate
the device and sell its encoding/decoding services to
the ISP on the island. An obvious advantage of this
model is that it allows a provider to specialise in this
type of service and host the Gy for multiple island
installations, achieving some economies of scale. A
potential disadvantage is added latency: The latency
between off-island satellite gateway, Gy and off-
island data sources may be much higher than that
between data sources and satellite gateway alone.
N.B.: This problem can be exacerbated by a failure to
peer near the off-island satellite gateway. The authors
are aware of a Pacific Island ISP whose off-island
gateway is located in Hawaii. While the island has
close cultural and economic links to New Zealand,

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

m— Conventional TCP .
e TCP / NC TCP/NC | (major
" UDP tunnel Encoder/t L content
4 Internet
End user =l TCP/NC
machines Encoder/
TCP/NC Decoder
Encoder/ Gy

Decoder G,

Off island

Figure 4. TCP/NC network topology in a scenario where the on-island ISP
operates the local encoder/decoder, and off-island encoders/decoders are
placed close to the servers on the Internet from which most of the download
content originates.

lack of peering in Hawaii at the time of writing
meant that all traffic between the island and New
Zealand also has to travel between Hawaii and the
U.S. mainland and back.

V. TUNNELS NOT INVOLVING ISPs

In all our scenarios so far, the island ISP has played a core
role as the operator of Gy, if not Gy,. However, in principle
there is no reason why G; cannot be operated by another
party on the island. Assuming for the moment that the ISP
and satellite provider will pass UDP in both directions, any
of the ISP customers within the island network can operate a
G to tunnel to some Gy located off-island. This customer
can then spawn their own network (Fig. 5) or — in the case of
individual rather than institutional customers — simply run G
on their own host or local NAT box.

== Conventional TCP
e TCP / NC

" UDP tunnel

server or
other host)

Internet TCP/NC
Encoder/
TCP/NC Decoder
Encoder/ __ Gy
Operated
for/by 31
party

3" party network machines Off island

Figure 5. TCP/NC network topology in a scenario where an on-island
encoder/decoder and the off-island encoder/decoder on the Internet are
operated by third parties.

In the case of institutional customers, the corresponding
Gw could be located at an organisation’s off-island data
centre or at the premises of a specialised third party off-
island provider as discussed in the previous section. In the
case of individuals, there could also be the option of Gy
being provided on a subscription or pay-as-you-go basis by an
off-island entity — an option that the next section explores.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Any such arrangement has a number of drawbacks, how-
ever. Firstly, it almost inevitably means that only some of the
traffic on the link will be coded traffic, with the remainder
being (mostly) conventional TCP. This residual uncoded traffic
may still cause queue oscillation. While the coded traffic would
be — at least to an extent — be protected from the associated
packet loss and slow-down, the coding scheme involved would
nevertheless have to provision sufficient overhead in order
to cope with the potentially lengthy burst errors that queue
oscillation causes. This would further increase to the load on
the link.

Secondly, any overhead transmitted or received by a Gy
under customer control increases that customer’s data usage.
In cases where the ISP on the island applies volume charges (a
very common scenario in the Pacific), this results in additional
cost for the customer. This may however be outweighed by
data volume savings at the application layer as customers have
to repeat fewer unsuccessful downloads.

VI. CODING-AS-A-SERVICE TUNNELS

Another possible scenario is to absorb G into a virtual
network interface on the end user machine and provision
Gyw off-island on a subscription or pay-per-coded-volume
basis (Fig. 6). In this case, the end user would download
an application which implements the client-side solution with
G and interfaces with Gy off-island. The end user machine
would then use two IP addresses: that assigned by the ISP,
which appears in the header of the UDP packets between the
machine and Gyy, and an IP address assigned by the off-island
provider of Gy, which belongs to the off-island provider’s
network and is not visible on the island to any host except G
(which of course operates on the machine itself). This address
is the source of IP packets departing Gy in the direction of
off-island servers on behalf of the end user machine, and the
destination of any packets that these servers send in response.
In this respect, the service operates in a very similar fashion
to a tunnelled VPN connection, except that the traffic across
the tunnel is encoded rather than encrypted (it may of course
also be encrypted in addition to the encoding).

mm— Conventional TCP
s TCP / NC

UDP tunnel

(e.g., web
server or
other host)

Internet

TCP/NC

Encoder/

Decoder

i Gw
Operated by

|_L} 39party

End user

machines Off island

Figure 6. TCP/NC network topology in a scenario where an on-island
encoder/decoder is integrated into an end user machine on the island, and
the off-island encoder/decoder is provided by a third party on the Internet as
a service, e.g., for a fee.

An obvious advantage of this approach is that there is
no need for dedicated on-island infrastructure, the ISP does
not have to expend or upskill personnel resources (or even

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

179

be aware of the tunnel operation), and there is no need for
equipment or personnel to be sent to the island to install
or support the system. These are significant factors as many
Pacific islands with satellite connection are difficult to reach
— air services may be infrequent or non-existent, and intervals
between ship visits may be lengthy and freight is expensive.
Similarly, many island ISPs struggle to hire and retain qualified
personnel.

Naturally, there are also a number of drawbacks, which
start with those discussed in the previous section. In addition,
there is now an additional challenge from the location perspec-
tive: As discussed in Section IV, the latency between satellite
gateway, Gy and data sources may be significantly higher
than the latency between satellite gateway and data sources
alone. If the specialised off-island provider of Gy implements
a coding-as-a-service scenario at scale, it will inevitably find its
client software used in multiple island locations, with satellite
gateways in geographically dispersed locations: An island in
the western Pacific can have its off-island GEO gateway in
Canada, whereas an island in French Polynesia might opt for
space segment terminating in Australia.

A further challenge is the diversity in consumer operating
systems. To be able to serve a large majority of users, the
off-island provider would need to supply the application im-
plementing GG; on multiple popular operating systems such as
Windows, MacOS, I0S and Android. This represents signif-
icant additional effort compared to a tunnel application on a
single operating system of the implementor’s choice. It also
carries the risk of leaving the end user machine disconnected:
The software needs to modify the network configuration of the
machine. There could be unintended consequences if, in doing
so, the software interferes with any of the myriad of network
configuration managers, tools and utilities which commonly
inhabit these ecosystems. Given that the off-island provider
has no control over what else may be installed on the end
user’s machine, this risk could be substantial. Another question
that arises in this context is how an island user would pay the
off-island provider: Not every islander has access to a credit
card.

VII. CONNECTING THE TUNNEL ENDPOINTS

On many islands, ISPs and/or satellite providers block
UDP to keep traffic off their satellite link that does not back
off under congestion. This can backfire, however, as many
applications that have higher bandwidth efficiency using UDP
do sense congestion and will switch to less efficient TCP when
UDP is blocked. It is worth noting in this context that the UDP
carrying our coded packets will back off as well: If too many
packets of a generation are lost, the generation as a whole will
become undecodable and the TCP packets it contains are lost
as well, causing the contributing TCP senders to back off, too.

However, the communication between G; and Gy need
not rely on UDP. There are several options for this, two of
which are discussed below:

A. Spoofing TCP

One option is to pass the coded combinations as TCP
packets without actually running TCP at G; or Gy . The only
differences to the UDP variant are as follows:

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

e The packets carry a TCP header instead of a UDP
header, with nominal sequence and acknowledgment
numbers

e (G and Gy acknowledge any packet received but do
not attempt to retransmit any packets not received (and
in fact ignore any ACK received)

e The first and second packet from G; to Gy have
their SYN and SYN+ACK flags set, respectively,
and the first packet Gy to G correspondingly has
SYN+ACK set.

e FEither end ignores flags and ACK numbers upon
receipt and concentrates on the packet payload instead.

To an outside observer, such flows are almost indistinguishable
from genuine TCP and practically impossible to detect or block
on a firewall with stateful inspection. Even in a real TCP
connection, an observer somewhere along the path may not
get to see all packets of the connection due to load balancing
and asymmetric paths. The disadvantage of this approach is
that it is a hack and, from the ISP’s perspective, could be
considered improper use.

B. Multiple TCP Connections

Another option would be to open multiple TCP connections
between G; and Gy at the outset and communicate only a
small number of linear combinations (or even just one) per
generation as data across each connection.

In scenarios where GG; and Gy are the only significant
users on the satellite link, this has the advantage of replacing
what would otherwise be a mix of TCP flows of varying
lengths by a fixed number of TCP flows with infinite length
and more or less equal data rate. Since the arrival of each
combination is now ensured by TCP, one could also set w = 0
and thus reduce overhead to zero. However, TCP also adds its
own overhead. It is also possible to use TCP variants optimised
for long latency networks, such as Hybla [14] or H-TCP [15].

One potentially significant problem occurs at Gy (and
possibly G, too), however: In the UDP or spoofed TCP
scenarios, data arrives at Gy at full Gbps network rates and
leaves in the direction of the sat gate at the same high rate
in encoded form. So Gy, does not need to buffer or concern
itself with keeping any form of state once the coded packets of
a generation have left. If we connect Gy and G via TCP, we
transfer at least a significant part of the sat link bottleneck and
its associated queue to Gy. Since TCP sockets cannot queue
drop, Gw would need to implement this functionality before
the linear combinations are written to the TCP connections
with G;.

VIII. CODING CONSIDERATIONS

The scenarios presented thus far do not consider under
which circumstances one might achieve a goodput gain from
coding. This section discusses a number of basic constraints
that a scenario needs to satisfy in order to result in a gain.

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

180
A. Shared high latency bottlenecks

For TCP queue oscillation to occur at the satellite link,
the link must represent a high latency bottleneck. If the link
bandwidth does not represent a bottleneck, no queue can form
at the input. Similarly, the fact that the satellite latency is
shared between all flows is an essential ingredient for queue
oscillation: It ensures that all senders respond with a significant
minimum delay. Note that queues and queue drops also occur
as part of normal TCP operation in terrestrial networks with
links of varying latencies and bandwidths. However, where
there are bottlenecks, there is often no significant latency that
all flows share, and TCP senders accelerate and back off with
a distribution of response times governed by network latency
away from the bottleneck. Where there is significant latency,
such as on transoceanic submarine fibre cables, there is often
no bottleneck.

B. Flow size distribution

Real Internet traffic is highly heterogeneous. As a rule of
thumb, most flows carry only a few packets’ worth of bytes,
as shown in Fig. 7, but most bytes in transit are found in
large flows that contain many packets, as shown in Fig. 8.
The beneficial effect from coding mostly accrues to TCP flows
whose congestion windows can remain open wider for longer.
This means that such flows must be long enough in order to
see ACKs from the receiver arrive before their last packets
have left the sender. Large TCP flows already slow down
significantly at packet loss level of around 0.1% — a level
at which only a fraction of small flows would be affected at
all. Expending coding overhead on very small flows takes up
capacity but yields no tangible benefit at all.

25 237

% of observed flows
=
1S5)
3
@

6.4 628
363
5 2.83 258 5 44
'I ‘I | 1.16.0.66 0.42 0.28 0.1 0.07 0.08
P oo = -

PN N S e S S S S S St S RN
Y & %ﬁo & b(q,\ RN SN bg’kﬂ@' O S RO
Sl AT e 8

Observed flow size in bytes

Figure 7. Percentage of flows of certain size classes in TCP traffic, observed
on a real MEO link to Rarotonga, Cook Islands.

A typical default congestion window size in Linux is 10.
At a maximum transmission unit (MTU) of 1500 bytes, this
lets the sender transmit up to 15,000 bytes without having to
wait for a first ACK. This rules out between 86 and 90% of all
flows, but less than 3% of bytes on the link shown in Fig. 7
and Fig. 8.

One would thus expect coding to work best in situations
where the share of large flows in the flow size distribution is
high. Alternatively, it would be desirable to aim coding exclu-
sively at large flows. However, this would require identifying
such flows in advance, e.g., based on IP address and TCP port
combinations known to produce large flows.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

51.62

62 835511819

% of total bytes on link

0 1090341342463'9”'26473
0.02 0.02 0.04 0.09 0.11 0.18 0.35 1. 8 -) ll
f = — = = = = - > - oS58 . ll ll
P I SN IR 0 I - e, i R I I
By b\)} {OW & &N W & \b’ﬁ’ A RN P R

WAVl 2 2)
B (X L
SF S

Observed flow size in bytes

Figure 8. Distribution of bytes across flows of certain size classes in TCP
traffic, observed on a real MEO link to Rarotonga, Cook Islands.

C. Demand considerations

A less obvious ingredient in TCP queue oscillation is the
demand that is placed on the link. A TCP sender increases its
congestion window when it receives ACKs from the receiver.
The latencies involved on a satellite link make for a rather slow
growth in congestion window. Consider a link whose queue is
currently empty. If the number of flows simultaneously trying
to increase their congestion windows across this link is small,
the queue grows slowly as well: Each flow’s contribution to
the increase in arrival rate is small; their number limits the
compound effect on the arrival rate. A slowly growing queue
overflows more slowly, allowing for a more graceful back-off
by the senders. Coding makes little sense in this context as
most of the link underutilisation is a result of lack of demand
rather than unreasonably harsh back-off.

As the number of competing large flows increases, their
compound effect even under slow window growth results in
fast queue fill. Similarly, the concerted back-off response of
these flows results in a drastic drop in queue arrival rate.
This is the demand region in which we expect coding to yield
benefits, and where we have been able to observe significantly
better goodput in practice. Fig. 9 shows a comparison between
the goodput rate of coded and uncoded 20 MB TCP transfers
via the otherwise uncoded MEO link above over a 24 hour
period in 2015. The comparison shows that low TCP goodput
and coding gain correlate with packet loss, which in turn has
a strong diurnal pattern governed by demand. Even at peak
demand times, the average link utilisation was only around
50% — a typical symptom of TCP queue oscillation. On this
occasion, packet loss was determined by sending a sequence
of large UDP packets, followed by a standard TCP transfer
and then the coded TCP transfer, with whichever background
traffic happened to be present.

At even higher demand, the rate at which new flows appear
that have yet to engage with flow control can grow so large
that packets from such flows alone can maintain a full queue.
Large flows thus experience packet loss, no matter how much
they back off, and consequently slow to a crawl. Fig. 10
shows this effect on a simulated 16 Mbps link using the flow
size distribution above: As load grows, the link saturates with
goodput from small flows. However, the long transfer cannot
exploit the spare capacity; its goodput rate drops to about
2 Mbps at a load of 60 simultaneously active client sockets,
even though the link still has over 6 Mbps of spare capacity.
The fact that the transfer is able to achieve 8 Mbps at a low

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

181

+ Packet loss [%] + 0.01%

m .ﬂ I ,‘l“ ! m!

[ittt s o AR g1 0.01
16:00 20:00 00:00 04:00 08:00 12:00

!

Bt

Goodput [Mbit/s]
N
o

Packet loss [%]

l
l‘h
\ﬁ;\

Local time Rarotonga

Figure 9. Goodput of uncoded (blue) and coded (red) TCP transfers between
Auckland (New Zealand) and Rarotonga (Cook Islands) via a real MEO
satellite link. Note that the goodput is quite comparable during the low
demand hours (late night and early morning) with low packet loss from

queue oscillation. During peak times, coded goodput significantly exceeds
uncoded goodput. Peak link utilisation on this link was around 50%.

demand level shows that this is not a TCP slow start effect.

16 16

14 14
2 12 12
= 10 10
= 8 8
£ 6 6
g 4 4
(U]

2 2

0 0

20 40 60 80 100 120

Load (simultaneously active client sockets)

Figure 10. Goodput of uncoded TCP at different demand levels on a
simulated 16 Mbps GEO link. The red curve shows the average goodput rate
achieved by all flows on the link combined (red), the blue curve shows the
goodput rate achieved by a single 40 MB transfer.

In the high demand regime, coding can at best displace
some of the new flows but has no spare capacity on the link
that could accommodate overhead and coding gains for all
flows on the link. The authors of this study observed such
a scenario on an (at the time) 8 Mbps GEO link into Niue,
where high link utilisation simply saw coded TCP flows eat
into the capacity taken up by conventional TCP traffic. The
only benefit that coding yields at this demand level is that it
can prevent individual large coded transfers from stalling — at
a price.

D. Accommodating the overhead and gains

In principle, the more overhead w we add, the larger the
packet loss that we can tolerate. However, any overhead that
makes it into an otherwise unmanaged input queue not only
contributes to filling the queue, but subsequently makes it onto
the link, and thus reduces spare capacity there. Compared to
the uncoded case, the link’s spare capacity must be able to
accommodate both this overhead and the goodput gain we hope
to achieve from coding [23]. There is thus a limit on how
much overhead can be deployed before it starts to displace
any goodput gains made. Quite where this point lies is a
matter of ongoing research, especially as the question is further
complicated by the timing issues discussed below, as well as
by the type of tunnel.

Consider coding only a (small) subset of the (sufficiently
large) TCP flows across a satellite link, as is the case for

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

satellite links with tunnels that do not involve ISPs or do
not aim at coding all such flows, e.g., in the coding-as-a-
service scenario. Then this subset of flows has, in principle,
the link’s entire spare capacity to expand into. In such cases,
one can use comparatively large amounts of overhead and
still accommodate potentially substantial gain over the base
performance of these flows. In fact, this is what we have been
able to observe in our actual island experiments, which coded
only a small part of the traffic.

On the other hand, if the tunnel handles all (suitable) flows
on the link, the link’s spare capacity must be shared between
the flows. All else being equal, we are now dealing with more
flows, so the total capacity occupied by the associated overhead
is larger, and the spare capacity available for gain per flow is
smaller. However, because coded flows are less prone to rapid
TCP queue oscillation, a scenario that codes all flows may
require less overhead per protected flow volume.

E. Timing issues

In our scenarios, we can still expect the vast majority of
packets to make it into the queue and subsequently reach the
receiver. Using entirely random c¢;; means that we need to
collect all n incoming IP packets at the encoder before we
can send our first coded UDP packet to the decoder, i.e., we
have a decoding delay that is more or less proportional to
n. Therefore, our coding approach does not choose all c¢;;
randomly. Rather, it uses systematic coding, which for i,j < n
sets ¢;; = 1 if i = j and ¢;; = 0 if 7 # j. This allows the first
UDP packet to be sent immediately after the first IP packet
arrives at the encoder. Only the ¢;; for ¢ > n are randomly
chosen.

One may thus think of the first n UDP packets (systematic
packets) as being merely encapsulated original packets, while
the remaining w UDP packets (coded packets) carry coded
“spares” in case any of the first n packets are lost.

1) Coding and decoding delay: In this context, we need to
remember that TCP itself also provisions such “spares” in the
form of retransmissions after ACK timeouts. Coding gain is
only possible if the spares from coding arrive at the receiver
before any retransmissions. As retransmissions will not arrive
for at least one RTT, any coded packet that arrives within about
one RTT after the original packet(s) represents an improvement
over TCP’s own mechanism.

We also generally want the coded packets to contain
redundancy for all of our n packets, i.e., we want only non-
zero c;; for ¢ > n. This prevents us from sending coded
packets until all n incoming packets of the generation have
been received. This means that the first systematic packet and
the first coded packet are at least n packets apart, and the
associated delay is the time between the arrival of the first and
the last packet of the generation at the encoder. As we need
this delay to be below one RTT, this imposes a limit on n.

Similarly, we also have a limit on w arising from the
fact that the last coded packet would be useless if it took
longer to arrive than any TCP retransmission for the last of
the systematic packets.

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

182

2) Overhead timing: While the coded packets must be
delivered within a certain maximum time limit, it is also
important that they are not delivered too quickly. The only
occasion when the decoder needs the coded packets is when
systematic packets are lost during a queue overflow event.
If we transmit the coded packets immediately after the last
systematic packet, we risk losing them to the queue overflow
as well.

Another consideration in this context applies to links with
particularly low transmission rates, especially in the scenario
where the encoder Gy sits between the Internet and the off-
island satellite gateway and has a Gigabit Ethernet (GbE)
connection to the latter. Here, we need to consider that IP
traffic headed to the gateway will generally have data rates in
the same order of magnitude as the transmission rate of the
link. However, this may still be one or two orders of magnitude
below the GbE rate at which Gy, can send overhead. A well-
dimensioned queue at the satellite gateway will be designed
to buffer at arrival rates in the order of the link rate. If we let
Gw fire its overhead at the satellite gateway at GbE rates, we
risk almost instantaneous queue overflow.

The following “all-of-island coding” experiment illustrates
this: Consider sending a 32 Mbps UDP data stream into an
encoder with n = 60 and w = 10. The encoder thus outputs
around 37 Mbps, which is fed into a simulated 16 Mbps satel-
lite link with 120 kB input queue capacity, i.e., overloading
the link by a factor of at least 2.3. Note that this implies
a permanently full queue at the satellite gateway. The ratio
between systematically coded packets and overhead packets
as they leave the encoder is n/w, i.e., 6:1 in this case, and
all overhead follows the systematically coded packets without
delay on a Gigabit Ethernet link. On the other side of the link,
the statistics collected by the decoder record the number of
packets received of each of the two types.

One may now naively assume that the decoder should also
see six times as many systematically coded packets as overhead
packets. However, in the actual experiment, this was not so:
The ratio between the packet types observed at the decoder was
approximately 56:1. This demonstrates that overhead packets
hitting the queue at a 1000 Mbps rate were largely dropped,
with only a few getting the chance to fill whatever occasional
spare capacity there may have been in the queue. When the
experiment was repeated at rates below the link rate instead
of at 37 Mbps, it did not overload the queue and all packets
arrived.

F. Sizing n and w — and choosing what to code

Beyond the timing considerations above, the choice of n
and w has other implications. For the same fraction w/n of
overhead, larger n provide higher robustness against the burst
losses from queue overflow events. However, this carries a
cost in terms of decoding complexity and decoding delay,
as solving an n x n system of linear equations is O(n?).
Systematic coding mitigates somewhat against this but still
leaves an O(w?) residual complexity.

Larger w add robustness but also contribute towards the
development of standing queues at the input to the satellite
link. Last but not least, it pays to remember that one should
not attempt to correct for all packet losses at the input queue.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This would simply lead large flows to open their congestion
windows to the point where the average data rate of the flow
becomes unsustainable given the link capacity. Packet loss at
queues is a necessary feature of TCP. The only goal of coding
can be to delay the onset of packet losses at the receiver and
to aid in the recovery from loss events where a large RTT
prevents this from occurring in a more timely fashion.

The topologies presented in this paper open up several
choices when it comes to deciding what to code. The choice
in principle is between coding individual flows and coding all
flows together. In the first case, all n packets of each generation
belong to the same TCP flow. In the second case, a generation
usually contains packets from multiple flows.

Coding individual flows requires the encoder and decoder
to maintain state, i.e., they must be able to detect when a TCP
flow starts (SYN or SYN+ACK packet) and when it ends (FIN,
FIN+ACK, or as a result of a variety of timeouts), which adds
complexity. It also implies that a generation of n packets will
typically cover a larger time interval. With traffic naturally
interleaved, it requires the encoder and decoder to maintain as
many active generations as there are active flows. However, as
all flows contribute to the packet loss during a queue overflow
event, this limits the number of packets an individual flow
loses — and this number determines sensible values for w. Our
observations in Rarotonga (shown above) and Tuvalu confirm
that this approach can work even if all other flows on the link
remain uncoded.

Coding all flows together means that the encoder and
decoder only need to maintain one active generation at a
given time, at least in principle, and do not need to maintain
flow state. Generations fill faster, but burst losses from queue
overflow now generally require more overhead per generation
to correct, because the losses now no longer spread across
multiple generations for multiple flows. Note however that a
lost generation in this scenario generally still only translates
into a small number of lost packets per flow, so the damage
done to the flow’s congestion window remains limited. Sys-
tematic coding further reduces this problem as systematically
coded packets received do not require the presence of a whole
generation of n coded packets to decode.

IX. EXPERIMENTAL OPTIONS

When investigating coding techniques over satellite links,
one has the choice between four approaches:

1) Physical on-site experiments with a real production
link. The authors of this paper used this approach in
four Pacific Island locations [21], [22], and were able
to obtain very encouraging results when coding small
numbers of mostly large flows. The advantage of this
approach is that the link uses real equipment, carries
real traffic, and is subject to all phenomena a real link
encounters. There are a number of disadvantages, too:
Working on site is expensive, time-consuming, and
logistically complex. Some of this can be addressed
by only deploying equipment and working remotely,
but this depends on the cooperation of locals who
may need to assist in troubleshooting. Another chal-
lenge is that most islands of interest will only have
one satellite link, which is often their only real-time

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

183

link to the outside world. Loading this link with
measurement traffic (e.g., TCP transfers for timing
purposes or UDP streams for determination of packet
loss) comes at an expense to the locals. Similarly,
inserting an encoder/decoder into the path on either
side of all-of-island coding requires reconfiguration
and a (brief) service disruption, an operation with
considerable commercial and health & safety risk:
Typically, at a minimum, the local hospital, bank(s),
airline(s) and government rely on the link.

2) Laboratory experiments using dedicated actual space
segment. This option is the most costly, especially if
one wants to be able to investigate all types of satellite
links one encounters in practice. Another challenge
here is to generate appropriate load.

3) Software-based simulation. The authors of this paper
used this approach in [22], but it became apparent
pretty quickly that it had serious drawbacks. Both
TCP queue oscillation and coding are time-sensitive
processes. Software network simulators can generally
not simulate the networks of interest here in real time,
so questions arise as to how the simulators handle the
parallel generation of traffic, the chaotic interleaving
of traffic before it arrives at the satellite gateway
queue, TCP timeouts etc. Another question is how
to integrate coding software written for a real TCP
stack into a simulator. Even if this is all taken care of,
simulating many hundreds of TCP clients and a large
number of servers simply takes a very long time.

4) Hardware-based simulation/emulation: This is the ap-
proach we currently take.

Figure 11. The Auckland Satellite TCP/IP Traffic Simulator at the University
of Auckland. The two racks on the left contain the “island” machines, the
next rack to the right accommodates (from bottom) capture servers, copper

taps, the satellite chain, and “world” servers on the top. The rack on the right
holds the remaining “world” servers, a spare, and a special purpose server.

Fig. 11 shows the current setup of our simula-
tor [24]. It uses 96 Raspberry Pis and 10 Intel
NUCs to simulate up to several thousand “island
clients”, which are served with data from 22 “off-
island” Super Micro servers operating with a variety

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of “terrestrial” latencies. A dedicated Super Micro
server emulates the satellite link itself with its input
queues, delays and bandwidth constraints. Two fur-
ther servers operate as encoders/decoders; two more
can run performance-enhancing proxies such as PEP-
sal [25] or TCPEP [19], and two standalone capture
servers give passive listening access to any part of
the network. Two further Raspberry Pis and another
server are used for signaling and active measurements
during experiments, and a central command, control
and storage server orchestrates the other machines,
wherever possible via an external, independent har-
ness network. This approach has several advantages:
It is real-time, uses real components (except for the
satellite link itself), and by serving TCP data that
follows a real size distribution, it is possible to control
the load via the number of simultaneously active
client sockets. The simulations shown in this paper in
Fig. 1 and Fig. 10 were produced with the previous
version of this simulator.

X. CONCLUSION

Network-coded tunnels carrying TCP/IP traffic in coded
form across lossy bottlenecks in satellite networks have been
shown to be able to improve goodput under TCP queue
oscillation conditions even in the presence of a majority of
flows using legacy TCP. The core insight that underpins the
tunnel concept is that packet losses occur by queue drop at the
input queue to the satellite link. As long as one can protect
traffic against data loss at this location, the remaining system
topology is a question of who will or can provide the tunnel
service, how cooperative the local ISP and satellite provider
are, and how much gain one requires from the coding to make
the effort worthwhile.

As a general rule, topologies in which these two players
are not involved (or even actively oppose the use of coded
tunnels) should be less effective: The presence of legacy TCP
connections forces coded traffic to use more overhead, so any
parties on the island with coded traffic consume more data and
bandwidth than necessary. Those not using coding are also put
at a potential disadvantage as this may eat into their bandwidth
as well. Active involvement of satellite providers and/or local
ISPs thus seems advantageous.

On the other hand, coding all traffic for an ISP poses a
number of additional challenges: One needs a more careful
code design, goodput gains distribute over a larger number of
flows, and timing of overhead is more critical. Avoiding the
coding of small and inflexible flows becomes more important.

At the time of writing, only experimental implementations
of coded tunnels are available. These are based on a De-
bian/Ubuntu Linux kernel module. While they do not cater for
the subscription model discussed in Section VI at this point
in time, they nevertheless represent a proof of concept for the
remaining scenarios.

Current work aims to demonstrate that the technology
scales to whole-of-island coding. For this purpose, we have
built the hardware-based Auckland Satellite TCP/IP Traffic
Simulator, which is capable of running island scenarios with
up to around 4000 simultaneously active client sockets.

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

184
ACKNOWLEDGMENT

The research reported on in this paper would not have
been possible without the generous support of many parties:
APNIC/ISIF Asia and Internet NZ supported our work with
multiple grants, and Brian Carpenter kindly donated a large
residual balance in his research account to us. The Pacific
Chapter of the Internet Society have been strong supporters
throughout, and none of the practical work in the islands
would have been possible without Telecom Cook Islands (now
Bluesky Cook Islands), Internet Niue, and Tuvalu Telecom
opening their doors and equipment racks to us. Meitaki ma’ata,
fakaue lahi, fakafetai, thank you!

REFERENCES

[1] U. Speidel, "E. Cocker, M. Médard, Janus Heide, and Péter Vingelmann,
“Topologies for the Provision of Network-Coded Services via Shared
Satellite Channels”, Ninth International Conference on Advances in
Satellite and Space Communications (SPACOMM?2017), Venice, Italy,
2017.

[2] J. Postel, “Transmission Control Protocol”, RFC793, 1981, https://tools.
ietf.org/html/rfc793 (accessed 24 November 2017).

[3] V. Jacobson and R. Braden, “TCP Extensions for Long-Delay
Paths”, RFC1072, 1988, https://tools.ietf.org/html/rfc1072 (accessed 24
November 2017).

[4] V. Jacobson, R. Braden and D. Borman, “TCP Extensions for High
Performance”, RFC1323, 1992, https://tools.ietf.org/html/rfc1323 (ac-
cessed 24 November 2017).

[5] D. Borman, R. Braden, V. Jacobson, and R. Scheffenegger, “TCP
Extensions for High Performance”, RFC7323, 2014, https://tools.ietf.
org/html/rfc7323 (accessed 24 November 2017).

[6] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options”, RFC2018, 1996, https://tools.ietf.org/html/
rfc2018 (accessed 24 November 2017).

[71 -, SES web site, https://www.ses.com (accessed 24 November 2017).

[8] B. Braden et al, “Recommendations on Queue Management and
Congestion Avoidance in the Internet”, RFC2309, 1998, https://tools.
ietf.org/html/rfc2309 (accessed 24 November 2017).

[9] B. Briscoe and J. Manner, “Byte and Packet Congestion Notifica-
tion”, RFC7147, 2014, https://tools.ietf.org/html/rfc7147 (accessed 24
November 2017).

[10] F Baker and G. Fairhurst, “IETF Recommendations Regarding Ac-
tive Queue Management”, RFC7567, 2015, https://tools.ietf.org/html/
rfc7567 (accessed 24 November 2017).

[11] J. Postel, “Internet Control Message Protocol”, RFC792, 1981, https:
/ltools.ietf.org/html/rfc792 (accessed 24 November 2017).

[12] J.-M Jouanigot et al., “CHEOPS dataset protocol: an efficient proto-
col for large disk-based dataset transfer on the Olympus satellite”,
International Conference on the Results of the Olympus Utilisation
Programme, Sevilla, CERN CN/93/6, 1993.

[13] J. Kim and I. Yeom, “Reducing Queue Oscillation at a Congested Link”,
IEEE Transactions on Parallel and Distributed Systems, 19(3), 394-407,
2008.

[14] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for hetero-
geneous networks”, Int. J. of Satellite Communications and Networks,
22, 547-566, 2004.

[15] D. Leith, “H-TCP: TCP Congestion Control for High Bandwidth-Delay
Product Paths”, Internet Draft, IETF, April 7, 2008. https://tools.ietf.org/
html/draft-leith-tcp-htep-06 (accessed 24 November 2017).

[16] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant”, ACM SIGOPS Operating System Review, 42(5), 64-74,
2008.

[17] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network Coding Meets TCP: Theory and
Implementation”, Proc. IEEE, 99(3), 490-512, 2011.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Telecommunications, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/telecommunications/

[18]

[19]

[20]

[21]

[22]

J. Hansen, J. Krigslund, D.E. Lucani, and F.H.P. Fitzek, “Sub-Transport
Layer Coding: A Simple Network Coding Shim for IP Traffic”, IEEE
VTS Vehicular Technology Conference (VTC), 1-5, 2014.

G. Delannoy, “Design and Implementation of a Performance-Enhancing
Proxy for connections over 3G networks”, Dublin City Univer-
sity, May 27, 2013, https://github.com/GregoireDelannoy/TCPeP/blob/
master/Final_Report.pdf (accessed 24 November 2017).

H. Bischl, H. Brandt, and F. Rossetto, “An experimental demonstration
of Network Coding for satellite networks”, CEAS Space Journal 2.1-4,
75-83, 2011.

U. Speidel, ’E. Cocker, P. Vingelmann, J. Heide, and M. Médard, “Can
network coding bridge the digital divide in the Pacific?”, International
Symposium on Network Coding (NetCod), Sydney, Australia, 86-90,
2015

U. Speidel, L. Qian, ’E. Cocker, P. Vingelmann, J. Heide, and M.

[23]

[24]

[25]

185

Meédard, “Can Network Coding Mitigate TCP-induced Queue Oscil-
lation on Narrowband Satellite Links?”, International Conference on
Wireless and Satellite Systems, Springer International Publishing, 301—
314, 2015.

U. Speidel, S. Puchinger, and M. Bossert, “Constraints for coded tunnels
across long latency bottlenecks with ARQ-based congestion control”,
IEEE International Symposium on Information Theory, Aachen, Ger-
many, 271-275, 2017.

Auckland Satellite TCP/IP Traffic Simulator, The University of Auck-
land, https://sde.blogs.auckland.ac.nz/ (accessed 24 November 2017).

C. Caini, R. Firrincieli, and D. Lacamera, “PEPsal: a Performance
Enhancing Proxy designed for TCP satellite connections”, IEEE 63"
Vehicular Technology Conference, pp. 2607-2611, 2006.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

