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Abstract—Due to its fast convergence rate, the recursive least-
squares (RLS) algorithm is very popular in many applications of
adaptive filtering. However, the computational complexity of this
algorithm represents a major limitation in some applications that
involve long filters, like echo cancellation. Moreover, the specific
features of this application require good tracking capabilities
and double-talk robustness for the adaptive algorithm, which
further imply an optimization process on its parameters. In the
case of most RLS-based algorithms, the performance can be
controlled in terms of two main parameters, i.e., the forgetting
factor and the regularization term. In this paper, we outline
the influence of these parameters on the overall performance
of the RLS algorithm and present several solutions to control
their behavior, taking into account the specific requirements of
echo cancellation application. The resulting variable forgetting
factor RLS (VFF-RLS) and variable-regularized RLS (VR-RLS)
algorithms could represent appealing solutions for real-world
scenarios, as indicated by simulations performed in the context
of both network and acoustic echo cancellation.

Keywords–Adaptive filters; Echo cancellation; Recursive least-
squares (RLS) algorithm; Variable forgetting factor RLS (VFF-
RLS); Variable regularized RLS (VR-RLS).

I. INTRODUCTION

The recursive least-squares (RLS) algorithm [1], [2], [3] is
one of the most popular adaptive filters. As compared to the
normalized least-mean-square (NLMS) algorithm [2], [3], the
RLS offers a superior convergence rate especially for highly
correlated input signals. Of course, there is a price to pay
for this advantage, which is an increase in the computational
complexity. For this reason, it is not very often involved in
echo cancellation [4], [5], where long filters are required.

In both network and acoustic echo cancellation contexts
[4], [5], the basic principle is to build a model of the echo
path impulse response that needs to be identified with an
adaptive filter, which provides at its output a replica of the echo
(that is further subtracted from the reference signal). The main
difference between these two applications is the way in which
the echo arises. In the network (or electrical) echo problem,
there is an unbalanced coupling between the 2-wire and 4-
wire circuits which results in echo, while the acoustic echo
is due to the acoustic coupling between the microphone and
the loudspeaker (e.g., as in speakerphones). However, in both
cases, the adaptive filter has to model an unknown system,
i.e., the echo path. The system model for echo cancellation is
summarized in Section II.

Even if the formulation of the echo cancellation problem
is straightforward, its specific features represent a challenge
for any adaptive algorithm. There are several issues associated

with this application, and they are as follows. First, the echo
paths can have excessive lengths in time, e.g., up to hundreds
of milliseconds. Consequently, long length adaptive filters
are required (hundreds or even thousands of coefficients),
influencing the convergence rate of the algorithm. Besides, the
echo paths are time-variant systems, requiring good tracking
capabilities for the echo canceller. Second, the echo signal
is combined with the near-end signal; ideally, the adaptive
filter should separate this mixture and provide an estimate
of the echo at its output as well as an estimate of the near-
end from the error signal. This is not an easy task since the
near-end signal can contain both the background noise and the
near-end speech; the background noise can be non-stationary
and strong while the near-end speech acts like a large level
disturbance. Last but not least, the input of the adaptive filter
(i.e., the far-end signal) is mainly speech, which is a non-
stationary and highly correlated signal that can influence the
overall performance of adaptive algorithms.

Different types of adaptive filters have been involved in the
context of echo cancellation. The RLS-based algorithms would
represent a very appealing choice (especially in terms of the
convergence rate), if the computational complexity issue could
be overcome. In this paper, we provide a practical overview
on several RLS-based algorithms that could be used for echo
cancellation, focusing on their key parameters.

It is well known that the performance of the RLS algorithm
is mainly controlled by two important parameters, i.e., the
forgetting factor and the regularization term. Similar to the
attributes of the step-size from the NLMS-based algorithms,
the performance of RLS-type algorithms in terms of conver-
gence rate, tracking, misadjustment, and stability depends on
the forgetting factor [2], [3]. The classical RLS algorithm
uses a constant forgetting factor (between 0 and 1) and needs
to compromise between the previous performance criteria.
When the forgetting factor is very close to one, the algorithm
achieves low misadjustment and good stability, but its tracking
capabilities are reduced [6]. A small value of the forgetting
factor improves the tracking but increases the misadjustment,
and could affect the stability of the algorithm [7]. Motivated
by these aspects, a number of variable forgetting factor RLS
(VFF-RLS) algorithms have been developed, e.g., [8]–[11]
(and references therein).

It should be mentioned that in the context of system
identification (like in echo cancellation), where the output of
the unknown system is corrupted by another signal (which is
usually an additive noise), the goal of the adaptive filter is
not to make the error signal goes to zero, because this will
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introduce noise in the adaptive filter. The objective instead is
to recover the “corrupting signal” from the error signal of the
adaptive filter after this one converges to the true solution. This
was the approach behind the VFF-RLS algorithm proposed in
[10], which is analyzed in Section III.

As compared to the forgetting factor, the regularization
parameter has been less addressed in the literature. Apparently,
it is required in matrix inversion when this matrix is ill con-
ditioned, especially in the initialization stage of the algorithm.
However, its role is of great importance in practice, since reg-
ularization is a must in all ill-posed problems (like in adaptive
filtering), especially in the presence of additive noise [12]–[15].
Consequently, in Section IV, we focus on the regularized RLS
algorithm [3]. Following the development from [13], a method
to select an optimal regularization parameter is presented, so
that the algorithm could behave well in all noisy conditions.
Since the value of this parameter is related to the echo-to-noise
ratio (ENR), a simple and practical way to estimate the ENR in
practice is also presented, which leads to a variable regularized
RLS (VR-RLS) algorithm. Also, a low-complexity version of
the proposed VR-RLS algorithm is developed, based on the
dichotomous coordinate descent (DCD) method [16], [17].

The simulation results (presented in Section V) are per-
formed in the context of both network and acoustic echo
cancellation. The results support the theoretical findings and
indicate the good performance of these algorithms. Finally, the
conclusions are provided in Section VI.

II. SYSTEM MODEL FOR ECHO CANCELLATION

In the context of echo cancellation (Figure 1), the micro-
phone or desired signal at the discrete-time index n is

d(n) = xT (n)h+ v(n) = y(n) + v(n), (1)

where

x(n) = [ x(n) x(n− 1) · · · x(n− L+ 1) ]
T (2)

is a vector containing the L most recent time samples of
the zero-mean input (loudspeaker) signal x(n), superscript T

denotes transpose of a vector or a matrix,

h = [ h0 h1 · · · hL−1 ]
T (3)

is the impulse response (of length L) of the system (from the
loudspeaker to the microphone) that we need to identify, and
v(n) the zero-mean near-end signal. In case of single-talk (i.e.,
the near-end speech is absent), v(n) can usually be considered
a zero-mean stationary white Gaussian noise signal with the
variance σ2

v = E
[
v2(n)

]
, where E[·] denotes mathematical

expectation. The signal y(n) is called the echo in the context
of echo cancellation that we want to cancel with an adaptive
filter [4], [5].

Then, our objective is to estimate or identify h with an
adaptive filter:

ĥ(n) =
[
ĥ0(n) ĥ1(n) · · · ĥL−1(n)

]T
, (4)

in such a way that for a reasonable value of n, we have for
the (normalized) misalignment:∥∥∥h− ĥ(n)

∥∥∥2
2

∥h∥22
≤ ι, (5)

x(n)

far-end 

h ( )nh

 ( ) y(n)y n
+– near-end 

+ +

e(n) d(n) v(n)

Figure 1. General configuration for echo cancellation.

where ι is a predetermined small positive number and ∥·∥2 is
the ℓ2 norm. In this context, the a priori error signal is defined
as

e(n) = d(n)− xT (n)ĥ(n− 1) = d(n)− ŷ(n), (6)

where the vector ĥ(n − 1) contains the adaptive filter coeffi-
cients at time n − 1 and ŷ(n) is the output of the adaptive
filter.

III. VARIABLE FORGETTING FACTOR RLS ALGORITHM

The classical RLS algorithm can be immediately deduced
from the normal equations, which are

R̂x(n)ĥ(n) = r̂dx(n), (7)

where

R̂x(n) =

n∑
i=1

λn−ix(i)xT (i)

= λR̂x(n− 1) + x(n)xT (n), (8)

r̂xd(n) =
n∑

i=1

λn−ix(i)d(i)

= λr̂xd(n− 1) + x(n)d(n), (9)

and the parameter λ is the forgetting factor. According to (1),
the normal equations become

n∑
i=1

λn−ix(i)xT (i)ĥ(n)

=

n∑
i=1

λn−ix(i)y(i) +

n∑
i=1

λn−ix(i)v(i). (10)

For a value of λ very close to 1 and for a large value of n, it
may be assumed that

1

n

n∑
i=1

λn−ix(i)v(i) ≈ E [x(n)v(n)] = 0. (11)

Consequently, taking (10) into account,
n∑

i=1

λn−ix(i)xT (i)ĥ(n) ≈
n∑

i=1

λn−ix(i)y(i)

=
n∑

i=1

λn−ix(i)xT (i)h, (12)
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thus ĥ(n) ≈ h and e(n) ≈ v(n). Now, for a small value of
the forgetting factor, so that λk ≪ 1 for k ≥ n0, it can be
assumed that

n∑
i=1

λn−i(•) ≈
n∑

i=n−n0+1

λn−i(•).

According to the orthogonality theorem [2], [3], the normal
equations become

n∑
i=n−n0+1

λn−ix(i)e(i) = 0L×1,

where 0L×1 denotes a vector with all its L elements equal
to zero. This is a homogeneous set of L equations with n0

unknown parameters, e(i). When n0 < L, this set of equations
has the unique solution e(i) = 0, for i = n − n0 + 1, . . . , n,
leading to ŷ(n) = y(n) + v(n). Consequently, there is a
“leakage” of v(n) into the output of the adaptive filter. In this
situation, the signal v(n) is cancelled; even if the error signal
is e(n) = 0, this does not lead to a correct solution from the
system identification point of view. A small value of λ or a
high value of L intensifies this phenomenon.

Summarizing, for a low value of λ the output of the
adaptive system is ŷ(n) ≈ y(n) + v(n), while λ ≈ 1
leads to ŷ(n) ≈ y(n). Apparently, for a system identification
application, a value of λ very close to 1 is desired; but in this
case, even if the initial convergence rate of the algorithm is
satisfactory, the tracking capabilities suffer a lot. In order to
provide fast tracking, a lower value of λ is desired. On the
other hand, taking into account the previous aspects, a low
value of λ is not good in the steady-state. Consequently, a
VFF-RLS algorithm (which could provide both fast tracking
and low misadjustment) can be a more appropriate solution,
in order to deal with these aspects.

Let us start the development by writing the relations that
define the classical RLS algorithm:

k(n) =
P(n− 1)x(n)

λ+ xT (n)P(n− 1)x(n)
, (13)

ĥ(n) = ĥ(n− 1) + k(n)e(n), (14)

P(n) =
1

λ

[
P(n− 1)− k(n)xT (n)P(n− 1)

]
, (15)

where k(n) is the Kalman gain vector, P(n) is the inverse of
the input correlation matrix, and e(n) is the a priori error signal
defined in (6). The a posteriori error signal can be defined using
the adaptive filter coefficients at time n, i.e.,

ε(n) = d(n)− xT (n)ĥ(n) (16)

Using (6) and (14) in (16), it results

ε(n) = e(n)
[
1− xT (n)k(n)

]
. (17)

According to the problem statement, it is desirable to recover
the system noise from the error signal. Consequently, it can
be imposed the condition:

E
[
ε2(n)

]
= σ2

v . (18)

Using (18) in (17) and taking (13) into account, it finally results

E

{[
1− θ(n)

λ(n) + θ(n)

]2}
=

σ2
v

σ2
e(n)

, (19)

where θ(n) = xT (n)P(n− 1)x(n). In (19), we assumed that
the input and error signals are uncorrelated, which is true when
the adaptive filter has started to converge to the true solution.
We also assumed that the forgetting factor is deterministic
and time dependent. By solving the quadratic equation (19), it
results a variable forgetting factor

λ(n) =
σθ(n)σv

σe(n)− σv
, (20)

where E
[
θ2(n)

]
= σ2

θ(n). In practice, the variance of the
error signal is estimated based on

σ̂2
e(n) = ασ̂2

e(n− 1) + (1− α)e2(n), (21)

where α = 1 − 1/(KL), with K ≥ 1. Also, the variance of
θ(n) is evaluated in a similar manner, i.e.,

σ̂2
θ(n) = ασ̂2

θ(n− 1) + (1− α)θ2(n). (22)

The estimate of the noise power, σ̂2
v [which should be used

in (20) from practical reasons], can be evaluated in different
ways, e.g., [10], [19], [20].

Theoretically, σe(n) ≥ σv in (20). Compared to the least-
mean-square algorithms [where there is the gradient noise, so
that σe(n) > σv], the RLS algorithm with λ(n) ≈ 1 leads
to σe(n) ≈ σv. In practice (since power estimates are used),
several situations have to be prevented in (20). Apparently,
when σ̂e(n) ≤ σ̂v, it could be set λ(n) = λmax, where λmax is
very close or equal to 1. But this could be a limitation, because
in the steady-state of the algorithm σ̂e(n) varies around σ̂v . A
more reasonable solution is to impose that λ(n) = λmax when

σ̂e(n) ≤ ρσ̂v, (23)

with 1 < ρ ≤ 2. Otherwise, the forgetting factor of the
proposed VFF-RLS algorithm is evaluated as

λ(n) = min

[
σ̂θ(n)σ̂v

ζ + |σ̂e(n)− σ̂v|
, λmax

]
, (24)

where the small positive constant ζ prevents a division by zero.
Before the algorithm converges or when there is an abrupt
change of the system, σ̂e(n) is large as compared to σ̂v; thus,
the parameter λ(n) from (24) takes low values, providing fast
convergence and good tracking. When the algorithm converges
to the steady-state solution, σ̂e(n) ≈ σ̂v [so that the condition
(23) is fulfilled] and λ(n) is equal to λmax, providing low mis-
adjustment. The resulted VFF-RLS algorithm is summarized
in Table I. It can be noticed that the mechanism that controls
the forgetting factor is very simple and not expensive in terms
of multiplications and additions.

IV. VARIABLE REGULARIZED RLS ALGORITHM

In this section, a different version of the RLS algorithm
is presented, which allows us to outline the importance of the
regularization parameter. Let us consider the regularized least-
squares criterion:

J(n) =
n∑

i=0

λn−i
[
d(i)− ĥT (n)x(i)

]2
+ δ

∥∥∥ĥ(n)∥∥∥
2
, (25)

where λ is the same exponential forgetting factor and δ is
the regularization parameter. From (25), the update of the
regularized RLS algorithm [3] results in

ĥ(n) = ĥ(n− 1) +
[
R̂x(n) + δIL

]−1

x(n)e(n), (26)
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TABLE I. VFF-RLS algorithm.

Initialization:

P(0) = γIL (γ > 0)

ĥ(0) = 0L×1

σ̂
2
e(0) = σ̂

2
θ(0) = 0

Parameters:

α = 1 −
1

KL
(with K > 1) weighting factor

λmax, upper bound of the forgetting factor (very close or equal to 1)

ζ > 0, very small number to avoid division by zero

σ̂
2
v, system noise power (estimated)

For time index n = 1, 2, ...:

e(n) = d(n) − x
T
(n)ĥ(n − 1)

θ(n) = x
T
(n)P(n − 1)x(n)

σ̂
2
e(n) = ασ̂

2
e(n − 1) + (1 − α)e

2
(n)

σ̂
2
θ(n) = ασ̂

2
θ(n − 1) + (1 − α)θ

2
(n)

λ(n) =


λmax, if σ̂e(n) ≤ ρσ̂v (where 1 < ρ ≤ 2)

min
[

σ̂θ(n)σ̂v
ζ+|σ̂e(n)−σ̂v| , λmax

]
, otherwise

k(n) =
P(n − 1)x(n)

λ(n) + θ(n)

ĥ(n) = ĥ(n − 1) + k(n)e(n)

P(n) =
1

λ(n)

[
P(n − 1) − k(n)x

T
(n)P(n − 1)

]

where the matrix R̂x(n) from (8) is an estimate of the
correlation matrix of x(n) at time n, IL is the identity matrix
of size L × L, and e(n) is the a priori error signal defined
in (6). We will assume that the matrix R̂x(n) has full rank,
although it can be very ill conditioned. As a result, if there
is no noise, regularization is not really required; however, the
more the noise, the larger should be the value of δ.

Summarizing, the regularized RLS algorithm is defined by
the relations (6), (8), and (26). In the following, we present
one reasonable way to find the regularization parameter δ. It
can be noticed that the update equation of the regularized RLS
can be rewritten as [13]

ĥ(n) = Q(n)ĥ(n− 1) + h̃(n), (27)

where

Q(n) = IL −
[
R̂x(n) + δIL

]−1

x(n)xT (n) (28)

and

h̃(n) =
[
R̂x(n) + δIL

]−1

x(n)d(n) (29)

is the correctiveness component of the algorithm, which de-
pends on the new observation d(n). In this context, we can
notice that Q(n) does not depend on the noise signal and
Q(n)ĥ(n− 1) in (27) can be seen as a good initialization of
the adaptive filter. In fact, (29) is the solution of the noisy
linear system of L equations:[

R̂x(n) + δIL

]
h̃(n) = x(n)d(n). (30)

Let us define

ẽ(n) = d(n)− h̃T (n)x(n), (31)

the error signal between the desired signal and the estimated
signal obtained from the filter optimized in (29). Consequently,
we could find δ in such a way that the expected value of ẽ2(n)
is equal to the variance of the noise, i.e.,

E
[
ẽ2(n)

]
= σ2

v . (32)

This is reasonable if we want to attenuate the effects of the
noise in the estimator h̃(n).

For the sake of simplicity, let us assume that x(n) is
stationary and white. Apparently, this assumption is quite
restrictive, even if it was widely used in many developments in
the context of adaptive filtering [2], [3]. However, the resulting
VR-RLS algorithm will still use the full matrix R̂x(n) and,
consequently, it will inherit the good performance feature of
the RLS family in case of correlated inputs. In this case and
for n large enough (also considering that the forgetting factor
λ is on the order of 1− 1/L), we have[

R̂x(n) + δIL

]
≈

[
σ2
x

1− λ
+ δ

]
IL

≈
[
Lσ2

x + δ
]
IL (33)

and xT (n)x(n) ≈ Lσ2
x, where σ2

x = E
[
x2(n)

]
is the variance

of the input signal. Next, from (1), we can define the echo-to-
noise ratio (ENR) as

ENR =
σ2
y

σ2
v

, (34)

where σ2
y = E

[
y2(n)

]
is the variance of y(n). Developing

(32) and based on the previous approximations, we obtain the
quadratic equation:

δ2 − 2
Lσ2

x

ENR
δ −

(
Lσ2

x

)2
ENR

= 0, (35)

with the obvious solution:

δ =
L
(
1 +

√
1 + ENR

)
ENR

σ2
x

= βσ2
x, (36)

where

β =
L
(
1 +

√
1 + ENR

)
ENR

(37)

is the normalized regularization parameter of the RLS algo-
rithm.

As we can notice from (36), the regularization parameter
δ depends on three elements, i.e., the length of the adaptive
filter, the variance of the input signal, and the ENR. In most
applications, the first two elements (L and σ2

x) are known,
while the ENR can be estimated. Using a proper evaluation of
the ENR, the algorithm should own good robustness features
against the additive noise.

Let us assume that the adaptive filter has converged to a
certain degree, so that we can use the approximation

y(n) ≈ ŷ(n). (38)
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Hence,

σ2
y ≈ σ2

ŷ, (39)

where σ2
ŷ = E

[
ŷ2(n)

]
. Since the output of the unknown

system and the noise can be considered uncorrelated, (1) can
be expressed in terms of power estimates as

σ2
d = σ2

y + σ2
v , (40)

where σ2
d = E

[
d2(n)

]
. Using (39) in (40), we obtain

σ2
v ≈ σ2

d − σ2
ŷ. (41)

The power estimates can be evaluated in a recursive manner
[similar to (21) and (22)] as

σ̂2
d(n) = ασ̂2

d(n− 1) + (1− α)d2(n), (42)
σ̂2
ŷ(n) = ασ̂2

ŷ(n− 1) + (1− α)ŷ2(n). (43)

Therefore, based on (39) and (41), an estimation of the ENR
is obtained as

ÊNR(n) =
σ̂2
ŷ(n)

|σ̂2
d(n)− σ̂2

ŷ(n)|
, (44)

so that the variable regularization parameter results in

δ(n) =

L

[
1 +

√
1 + ÊNR(n)

]
ÊNR(n)

σ2
x

= β(n)σ2
x, (45)

where

β(n) =

L

[
1 +

√
1 + ÊNR(n)

]
ÊNR(n)

(46)

is the variable normalized regularization parameter. Conse-
quently, based on (45), we obtain a variable-regularized RLS
(VR-RLS) algorithm, with the update:

ĥ(n) = ĥ(n− 1) +
[
R̂x(n) + δ(n)IL

]−1

x(n)e(n), (47)

where R̂x(n) is recursively evaluated according to (8) and
δ(n) is computed based on (42)–(45).

At this point, some practical issues should be outlined.
The absolute values in (44) prevent any minor deviations
(due to the use of power estimates) from the true values,
which can make the denominator negative. The VR-RLS is
a non-parametric algorithm, since all the parameters in (44)
are available. Also, good robustness against the additive noise
variations is expected. The main drawback is due to the
approximation in (39). This assumption will be biased in the
initial convergence phase or when there is a change of the
unknown system. Concerning the initial convergence, we can
use a constant regularization parameter δ in the first steps of
the algorithm (e.g., in the first L iterations).

However, the VR-RLS algorithm faces two main challenges
in terms of computational complexity. The first one is the
update of the matrix R̂x(n) from (8), while the second issue
is related to the evaluation of the last term from the right-hand
side of (47), which contains both the matrix inversion and the
product with the input vector.

The complexity of (8) can be greatly reduced taking into
account that the vector x(n) has the time shift property [see
(2)] and the matrix R̂x(n) is symmetric. Thus, only the first
column of this matrix has to be computed, i.e.,

R̂(1)
x (n) = λR̂(1)

x (n− 1) + x(n)x(n), (48)

since the lower-right (L − 1) × (L − 1) block of R̂x(n) can
be obtained by copying the (L− 1)× (L− 1) upper-left block
of the matrix R̂x(n− 1).

The evaluation of the last term from the right-hand side
of (47) is more challenging. In fact, the basic problem can be
interpreted in terms of solving the normal equations [3]:

R(n)ĥ(n) = r̂xd(n), (49)

where

R(n) = R̂x(n) + δ(n)IL (50)

and r̂xd(n) is defined in (9). As an alternative to the classical
approaches [2], [3], the normal equations (49) can be recur-
sively solved using the dichotomous coordinate descent (DCD)
method [16]. The basic idea is to express the problem in terms
of auxiliary normal equations with respect to increments of the
filter weights [17]. In our case, we need to solve

R(n)△ĥ(n) = p(n), (51)

where △ĥ(n) is the increment of the filter weights and

p(n) = λr(n− 1) + x(n)e(n), (52)

with r(n) representing the so-called residual vector associated
to the solution [17]. Consequently, following the previous de-
velopment and the steps presented in [17], the low-complexity
version of the proposed VR-RLS algorithm, namely VR-RLS-
DCD, is summarized in Table II, where step 6 involves the
DCD iterations.

The DCD algorithm [16] is based on coordinate descent
iterations with a power of two variable step-size, q. It does not
need multiplications or divisions (these operations are simply
replaced by bit-shifts), but only additions, so that it is well
suited for hardware implementation. In our case, the auxiliary
normal equations from step 6 are solved by using the DCD
with a leading element [17]. An insightful analysis of this
algorithm can be found in [17]. Also, detailed implementation
aspects are discussed in [18].

Here, we briefly outline some of the important parameters
of the DCD algorithm (using the notation from [17]). First,
the parameters H and Mb represent the maximum amplitude
expected for the values of △ĥ(n), respectively the number
of bits used for their representation. If the value of H is
chosen accordingly, the values of the step-size q correspond
to the powers of 2 and are associated with the bits comprising
the binary representation of each computed value in the
solution vector. In this case, any multiplication with q can be
replaced by a bit-shift. Second, the parameter Nu represents the
maximum number of allowed (or “successful”) iterations per-
formed for △ĥ(n) [17]; in practice Nu ≪ L. The arithmetic
complexity of the DCD algorithm is proportional to LNu but
using only additions. Consequently, the complexity associated
to the matrix inversion is greatly reduced as compared to
the classical method [which requires O(L3) operations] and
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TABLE II. VR-RLS-DCD algorithm.

Initialization: ĥ(0) = 0, r(0) = 0, R̂x(0) = 0L

For n = 1, 2, . . .

Step 1: R̂x(n) = λR̂x(n − 1) + x(n)x
T
(n)

[using (48)]

Step 2: Compute δ(n) based on (42)–(45)

Step 3: R(n) = R̂x(n) + δ(n)IL

Step 4: e(n) = d(n) − ĥ
T
(n − 1)x(n)

Step 5: p(n) = λr(n − 1) + x(n)e(n)

Step 6: R(n)△ĥ(n) = p(n) ⇒ △ĥ(n), r(n)

(to be solved with DCD iterations [17])

Step 7: ĥ(n) = ĥ(n − 1) + △ĥ(n)
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Figure 2. Impulse responses used in simulations.

even to the regular RLS algorithm [2], [3] [which is based
on the matrix inversion lemma and needs O(L2) operations].
Therefore, the DCD-based algorithms are very appealing for
real-world applications.

Nevertheless, the RLS-DCD algorithm proposed in [17]
uses a constant regularization for R̂x(0), but the influence
of this parameter is negligible due to the forgetting factor in
the update of the matrix R̂x(n). On the other hand, using
a proper estimation of the regularization parameter within the
algorithm (i.e., steps 2 and 3 in Table II), the robustness against
additive noise can be improved. Thus, the proposed VR-RLS-
DCD algorithm owns this robustness feature, but also the low-
complexity advantage inherited from the DCD method.

V. SIMULATION RESULTS

First, let us consider a network echo cancellation scenario,
in the framework of G168 Recommendation [21]. The echo
path is depicted in Figure 2(a); it is the fourth impulse
response (of length L = 128) from the above recommendation.
The sampling rate is 8 kHz. All adaptive filters used in the
experiments have the same length as the echo path. The far-
end signal (i.e., the input signal) is a speech signal. The output
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Figure 3. Misalignment of the RLS algorithm (using different constant values
of the forgetting factor) and the VFF-RLS algorithm. The input signal is

speech, L = 128, and ENR = 20 dB. Echo path changes at time 5 seconds.

of the echo path is corrupted by an independent white Gaussian
noise with 20 dB ENR. An echo path change scenario is some
experiments (in order to evaluate the tracking capabilities of
the algorithms), by shifting the impulse response to the right
by 8 samples in the middle of simulation. The performance
measure is the normalized misalignment (in dB) evaluated as

Mis(n) = 20log10

∥∥∥h(n)− ĥ(n)
∥∥∥
2

∥h(n)∥2
. (53)

In the first experiment, the performance of the VFF-RLS
algorithm (presented in Section III) is evaluated, as compared
to the classical RLS algorithm defined in (13)–(15), which uses
different constant values of the forgetting factor. A single-talk
case is considered and the echo path changes in the middle
of simulation. It can be noticed in Figure 3 that the VFF-RLS
algorithm achieves the same initial misalignment as the RLS
with its maximum forgetting factor, but it tracks as fast as
the RLS with the smaller forgetting factor. As expected, the
classical RLS algorithm using constant forgetting factors has
to compromise between these performance criteria, i.e., the
larger the value of λ, the better the misalignment level but
worse the tracking capability.

Next, the performance of the VR-RLS algorithm (from
Section IV) is investigated, as compared to the regularized
RLS algorithm defined by the update (26), using different
constant values of the regularization parameter. Based on
(37), we can determine the values of the optimal normalized
regularization parameter of the RLS algorithm for different
cases; for example, let us consider two values of the ENR, i.e.,
20 dB (the true one) and 0 dB. Using appropriate notation, we
obtain β20 = 14.14 and β0 = 309.01, respectively. Next, we
compare the regularized RLS algorithm using these constant
regularization parameters with the VR-RLS algorithm. The
constant forgetting factor is set to λ = 1 − 1/(3L) for all
the algorithms.
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The input signal is speech, L = 128, and ENR = 20 dB. Near-end speech

appears between time 2.5 and 5 seconds (double-talk scenario).

In Figure 4, a single-talk scenario is considered and an echo
path change is introduced in the middle of the simulation. It
can be noticed that the VR-RLS algorithm behaves similarly to
the RLS algorithm using the constant parameter β20, which is
associated to the value of the true ENR. Also, it can be noticed
that a larger value of the normalized regularization parameter
(β0) improves the misalignment but affects the convergence
rate and tracking.

In Figure 5, a double-talk scenario [4], [5] is considered.
The near-end speech appears between time 2.5 and 5 seconds,
so that the signal v(n) is now non-stationary, since it contains
both noise and speech. It is clear that the VR-RLS algorithm
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Figure 6. Misalignment of the regularized RLS (using β20), RLS-DCD,
VR-RLS, and VR-RLS-DCD algorithms. The input signal is speech,
L = 512, and ENR = 20 dB. Echo path changes at time 30 seconds.

is more robust in this case as compared to the regularized RLS
using constant values of β. It should be outlined that we do
not use any double-talk detector (DTD) [4], [5] with the VR-
RLS algorithm. Therefore, the VR-RLS algorithm owns good
robustness features against double-talk, which is an important
gain in practice.

The second set of simulations is performed in the context
of acoustic echo cancellation [4], [5]. The unknown system,
i.e., the echo path, is a measured acoustic impulse response
depicted in Figure 2(b). It has 512 coefficients and the same
length is used for the adaptive filter (L = 512). The output
of the echo path is corrupted by a white Gaussian noise with
different ENRs, i.e., 20 dB, 10 dB, and 0 dB. Based on (37),
we can determine the values of the optimal normalized regular-
ization parameter in these cases. Using appropriate notation,
we obtain β20 = 56.57, β10 = 221.01, and β0 = 1236.07,
respectively. In simulations, we compare the regularized RLS
algorithm using these constant regularization parameters with
the proposed VR-RLS and VR-RLS-DCD algorithms. Also,
the RLS-DCD algorithm [17] is included for comparison, using
Nu = 8, Mb = 16, and H = 1 (the same parameters are used
in the VR-RLS-DCD algorithm). The forgetting factor is set
to λ = 1− 1/(16L) for all the algorithms.

In the first set of experiments, the value of the ENR is
set to 20 dB. In Figure 6, an echo path change scenario is
simulated in the middle of the experiment, by shifting the
impulse response to the right by 25 samples. First, it can
be noticed that the VR-RLS and VR-RLS-DCD algorithms
behave very similarly and are close to the regularized RLS
algorithm using the constant (optimal) parameter β20, which
is associated to the value of the ENR. As expected, there is
an inherent delay in the initial convergence rate and tracking
reaction of the variable-regularized algorithms (as compared to
the RLS-DCD algorithm), due to the approximation in (39).
In Figure 7, a double-talk scenario is considered; the near-end
speech appears between time 27 and 30 seconds. It is clear that
the VR-RLS and VR-RLS-DCD algorithms are more robust in
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Figure 8. Misalignment of the regularized RLS (using β10), RLS-DCD,
VR-RLS, and VR-RLS-DCD algorithms. The input signal is speech,
L = 512, and ENR = 10 dB. Echo path changes at time 30 seconds.

this case, since the estimated ENR from (44) also includes the
contribution of the near-end signal.

In the second set of experiments, we select a lower ENR
value, i.e., 10 dB. In this case, the importance of regularization
becomes more apparent. As we can see from Figure 8, the
VR-RLS and VR-RLS-DCD algorithms behave similarly to
the regularized RLS using the constant (optimal) parameter
β10, and outperform the RLS-DCD algorithm (in terms of
misalignment). Also, as we can notice in Figure 9, the variable-
regularized algorithms are much more robust to double-talk, as
compared to their counterparts.

Finally, in the last set of experiments, we consider ENR =
0 dB. As expected, according to the results in Figure 10, the
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Figure 9. Misalignment of the regularized RLS (using β10), RLS-DCD,
VR-RLS, and VR-RLS-DCD algorithms. The input signal is speech,

L = 512, and ENR = 10 dB. Near-end speech appears between time 27 and
30 seconds (double-talk scenario).
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Figure 10. Misalignment of the regularized RLS (using β0), RLS-DCD,
VR-RLS, and VR-RLS-DCD algorithms. The input signal is speech,
L = 512, and ENR = 0 dB. Echo path changes at time 30 seconds.

VR-RLS and VR-RLS-DCD algorithms behave now similarly
to the regularized RLS using the constant (optimal) parameter
β0, and are much better as compared to the RLS-DCD algo-
rithm. Besides, according to Figure 11, the variable-regularized
algorithms outperform by far their counterparts in terms of
double-talk robustness.

VI. CONCLUSIONS

The RLS algorithms are very appealing due to their fast
convergence rate. In this paper, we have focused on the main
parameters that control the performance of these algorithms,
i.e., the forgetting factor and the regularization term. In order
to achieve a better compromise between the performance
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Figure 11. Misalignment of the regularized RLS (using β0), RLS-DCD,
VR-RLS, and VR-RLS-DCD algorithms. The input signal is speech,

L = 512, and ENR = 0 dB. Near-end speech appears between time 27 and
30 seconds (double-talk scenario).

criteria (i.e., convergence and tracking versus misadjustment
and robustness), these parameters could be controlled. In
this context, the solutions presented in Sections III and IV
led to the VFF-RLS and VR-RLS algorithms, respectively.
Also, in Section IV, a low-complexity version of the VR-RLS
algorithm was derived, based on the DCD method, namely the
VR-RLS-DCD.

The first set of experiments was performed in the context of
network echo cancellation. According to the simulation results,
the VFF-RLS and VR-RLS algorithms perform very well as
compared to their classical counterparts (which use constant
values of the key parameters).

The second set of simulations was performed in an acoustic
echo cancellation scenario. The results indicate that the VR-
RLS and VR-RLS-DCD algorithms own good robustness fea-
tures against the near-end signal. In other words, the robustness
of the algorithm against ENR variations (e.g., like double-talk)
can be controlled in terms of the regularization parameter.
Moreover, due to its low-complexity feature, the VR-RLS-
DCD algorithm could be a reliable candidates for real-world
echo cancellation applications.
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