
167

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Engineering a Generic Modular Mapping Framework

Philipp Helle and Wladimir Schamai
Airbus Group Innovations

Hamburg, Germany
Email: {philipp.helle,wladimir.schamai}@airbus.com

Abstract—This article presents a new framework for solving
different kinds of data mapping problems, the Generic Modular
Mapping Framework (GEMMA), and the engineering process
that lead to its development. GEMMA is geared towards high
flexibility for dealing with a large number of different challenges.
To this end it has an open architecture that allows the inclusion of
application-specific code and provides a generic rule-based map-
ping engine that allows users without programming knowledge to
define their own mapping rules. The paper provides the thought
processes that were involved in the engineering of the framework,
detailed description of the concepts inherent in the framework
and its current architecture. Additionally, the evaluation of the
framework in two different application cases, simulation model
composition and test bench setup, is described.

Keywords–Mapping; Framework; Simulation Model Composi-
tion.

I. INTRODUCTION

This article is a revised and extended version of the
article [1], which was originally presented at the The Seventh
International Conference on Advances in System Simulation
(SIMUL 2015).

Recently, several of our research challenges could be
reduced to a common core question: How can we match data
from one or more data sources to other data from the same
and/or different data sources in a flexible and efficient manner?
A search for an existing tool that satisfied our application
requirements did not yield any results. This sparked the idea
of a new common generic framework for data mapping. The
goal in designing this framework was to create an extensible
and user-configurable tool that would allow a user to define the
rules for mapping data without the necessity for programming
knowledge and that yet still has the possibility to include
application-specific code to adapt to the needs of a concrete
application.

Figure 1 shows an example, in which data points from
different data sources have mapping relationships. A mapping
problem can now be defined as the challenge to identify
mappings between data points from (potentially) different data
sources. This is what we want to automate.

The results of our efforts so far and a first evaluation based
on our existing research challenges are presented in this paper.

This paper is structured as follows: Section II provides
information regarding related work. Section III provides a
detailed description of the framework, its core concepts and
its architecture. Next, Section IV describes the application
cases that have been used for developing and evaluating the
framework so far. Finally, Section V concludes this article.

II. RELATED WORK

The related work can be divided into two major categories:
on the one hand, record linkage and data deduplication tools

Figure 1. Data mapping

and frameworks, and on the other hand semantic matching
frameworks for ontologies.

Record linkage as established by Dunn in his seminal
paper [2] and formalised by Felligi and Sunter [3] deals with
the challenge to identify data points that correspond with each
other in large data sets. Typically, this involves databases of
different origin and the question, which of the data on one side
essentially are the same on the other side even if their name
does not match precisely. The same approach is also called
data deduplication [4] where the goal is to identify and remove
redundancies in separate data sets. An overview of existing
tools and frameworks can be found in [5]. The research work
in that area focuses on efficient algorithms for approximate and
fuzzy string matching since the size of the data sets involved
often leads to an explosion of the run times. These tools [6]
often include phonetic similarity metrics or analysis based on
common typing errors, i.e., analysis based on the language of
the input data. They concentrate on the matching of the string
identifiers whereas our framework is more open and flexible
in that regard and also includes the possibility to base the
matching on available semantic meta-information. The goal in
record linkage is always finding data points in different sets
representing the same real-world object. Our framework was
developed with the goal to match data from different sources
that is related but not necessarily referencing the same object.

Semantic matching is a type of ontology matching tech-
nique that relies on semantic information encoded in ontologies
to identify nodes that are semantically related [7]. They are
mostly developed and used in the context of the semantic
web [8], where the challenge is to import data from different
heterogeneous sources into a common data model. The biggest
restriction to their application is that these tools and frame-
works rely on the availability of meta-information in the form
of ontologies, i.e., formal representations of concepts within a
domain and the relationships between those concepts. While
our framework can include semantic information, as shown in
Section IV-A, it is not a fixed prerequisite.

168

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In conclusion, we can say that our framework tries to fit
into a middle ground between record linkage and semantic
matching. We use methods applied in both areas but we leave
the user the flexibility to choose, which of the features are
actually needed in a mapping project.

III. GENERIC MODULAR MAPPING FRAMEWORK

The Generic Modular Mapping Framework (GEMMA) is
designed to be a flexible multi-purpose tool for any problem
that requires matching data points to each other. The following
subsections will introduce the requirements that were con-
sidered during the GEMMA development, the artifacts that
make up the core idea behind GEMMA, describe the kind
of mapping rules that can be implemented, show the generic
process for the usage of GEMMA and describe the software
architecture and the current GEMMA implementation.

A. Mapping
The basic challenge as defined in the introduction is the

mapping of data that do not necessarily match completely in
name, type, multiplicity or other details from different data
sources to each other as depicted by Figure 1.

Relations between data from different sources and possibly
in different formats need to be created. It must be possible to
output the generated relations in a user-defined format. This
leads to a first draft for a mapping tool, as depicted by Figure
2.

Figure 2. Mapping tool

The mapping tool shall be able to read data from different
sources in different formats, then a mapping engine shall be
able to create relations between the data and export these
relations in different formats.

This is the minimum functionality that such a tool shall
provide. In addition to that, there are three major requirements
regarding the characteristics of the mapping tool, being generic
in order to enable applications in different areas with similar
challenges; being modular, as well as being interactive.

B. Generic
The requirement for a generic tool stems from the fact that

different mapping problems and challenges require different
data sources and mapping rules.

This means that the tool shall allow the user to define the
rules that govern the creation of mappings. The tool will need

to read and interpret such rules in order to be able to create
mappings between different input data sets.

Additionally, it shall be possible to setup the current
configuration of the mapping tool by means of user-defined
configuration. Such a project configuration will contain infor-
mation, such as where the input data is located, what mapping
rules should be used and where the mapping export data should
be written to.

Figure 3. Generic mapping tool

The discussion above leads to an extension of the first draft
of the mapping tool which is shown in Figure 3.

C. Modular
The requirement for modular software is an extension for

the requirement that the software needs to be generic (see
Section III-B). Modular programming is a software design
technique that emphasizes separating the functionality of a
program into independent, interchangeable modules, such that
each contains necessary information for executing only one
aspect of the desired functionality if required.

We anticipate using the mapping tool in very different
contexts and applications with diverse data formats for import
and export. To support this, the architecture needs to be
modular.

Predefining the interfaces for importer and exporter mod-
ules allows creating new modules for specific applications
without affecting the rest of the tool. Which modules are used
in a specific mapping project can then be defined by the project
configuration. A further benefit of the modular architecture is a
separation of concerns and responsibilities. Different modules
can be created and maintained by different developers or even
organizations.

Figure 4. Generic modular mapping tool

169

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The requirement for a modular tool affects the internal
architecture of the mapping tool that is shown in Figure 4.

Furthermore, it should be possible to add, change or
remove modules from the mapping tool without changes to the
core application code. This allows for a packaging of the tool
according to user and application needs and enables developing
modules that must not be shared, e.g., for confidentiality
reasons.

D. Interactive
Based on the assumption that the data in different data

sources to be mapped can differ quite substantially in name,
type, multiplicity or other details, it is reasonable to assume
that a perfect mapping is not always possible. This directly
leads to the requirement that the mapping tool needs to be
interactive, i.e., allow user-involvement when needed.

An interactive tool displays information to the user and
allows user to modify the displayed data. In our setting, this
means that the mapping tool shall be able to display the
generated mappings between the input data and allow the user
to modify these mappings using a Graphical User Interface
(GUI).

In order to present the generated mapping data to the user
in a meaningful way it is necessary to consider interpretation
of the generated mapping data. This requires an additional
module: the resolver module. The resolver, as an application-
specific module, is aware of application-specific requirements
and features. Using this information, the resolver can process
the generated mapping data and provide information regarding
the application-specific validity of the generated mapping data
to users.

Figure 5. Interactive generic modular mapping tool

The requirement for an interactive tool leads to a change in
the tool concept as shown in Figure 5. To further support the
idea of a generic and flexible tool for different applications,
the GUI module will be optional, i.e., it should be possible to
run the mapping tool with or without the GUI.

E. Artefacts
GEMMA is centred around a set of core concepts that are

depicted by Figure 6. In an effort to increase the flexibility of
GEMMA, the core concepts have been defined in an abstract
fashion.

The following artefacts are used:

• Node - Something that has properties that can be
mapped to some other properties.

Figure 6. Overview of relevant artefacts

• Mappable - Something that can be mapped to some
other thing according to specified mapping rules.
Orphan mappables are mappables whose owning node
is not known or not relevant to the problem.

• Mapping - The result of the application of mapping
rules, i.e., a relation between one FROM mappable and
one or more TO mappables. Note that the semantic
interpretation of a mapping highly depends on the
application scenario.

• Mapping rule - A function that specifies how map-
pings are created, i.e., how one mappable can be
related to other mappables.

• Mappable or node detail - Additional attribute of
a mappable or a node in the form of a {detail
name:detail value} pair. Details are optional and can
be defined in the context of a specific application
scenario.

To illustrate these abstract definitions, Figure 7 provides a
simple example, where real-world objects depicted on the left
hand side are represented on the right hand side in the form
of our GEMMA concepts.

Figure 7. Simple example

In this context, the abstract concept definitions provided
above are interpreted as follows:

170

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Node - A computer with input and output ports
• Mappable - An input or output port of a computer
• Mapping - The connection between ports
• Mapping rule - Output ports must be connected to

input ports according to some specified criteria such
as having the same port name or the same data type.

• Mappable detail - Every port has a detail called
direction, which defines if the port is an input of output
port of the computer

F. Mapping rules
One goal of GEMMA is to allow a large degree of freedom

regarding the definition of the mapping rules, so that the
framework can be used flexibly for very different kind of
application scenarios. So far, the following kinds of mapping
rules have been identified and are supported by GEMMA:

• Exact matching, e.g., map a mappable to other map-
pables with the exact same name.

• Fuzzy matching, or other forms of approximate
string matching [9], e.g., map a mappable to other
mappables with a similar name (similarity can be
based on the Levenshtein distance (LD) [10], i.e.,
”map” can be matched to ”mop” if we allow an LD
of 1).

• Wildcard matching, e.g., map a mappable to map-
pables that contain a certain value.

• RegEx matching, e.g., map a mappable to mappables
based on a regular expression.

• Tokenized matching, e.g., split a mappable property
into tokens and then map to another mappable with
a property that contains each of these tokens in any
order.

• Details, e.g., map a mappable with value of detail
X=x to other mappables with values of details Y=y
and Z=z or more concretely, map a mappable with
detail direction=”output” to mappables with detail
direction=”input”.

• Structured rewriting of search term based on
name, details and additional data, e.g., construct
a new string based on the properties of a map-
pable and some given string parts and do a name
matching with the new string (e.g., new string
= ”ABCD::” + $mappable.detail(DIRECTION) +
”::TBD::” + $mappable.detail(LOCATION) would
lead to a search for other mappables with the name
”ABCD::Input::TBD::Front”).

• Semantic annotations such as user-predefined poten-
tial mappings (bindings) using mediators as described
in [11], e.g., map a mappable whose name is listed as
a client of a mediator to all mappables whose name
is listed as a provider of the same mediator.

And, of course, any combination of the above mentioned
kinds of rules can be used. For example, structured rewriting
could also be applied on the target mappables, which would
in effect mean defining aliases for every mappable in the
mappable database in the context of a rule.

In one GEMMA rule set, several rules can be defined for
the same mappable with options for defining their application,

e.g., only if the rule with the highest priority does not find any
matches then rules with a lower priority are evaluated.

G. Process
The process for the usage of GEMMA is generic for all

kinds of applications scenarios and consists of five steps:

1) Import
2) Pre-processing
3) Matching
4) Post-processing
5) Export

The mapping process is configured using an Extensible
Markup Language (XML) configuration file that defines which
parsers, rules, resolvers and exporters (see Section III-H for a
detailed explanation of the terms) will be used in the mapping
project. The open character of GEMMA allows implementing
different data parsers for importing data, resolvers for post-
processing of the mappings and data exporters for exporting
data.

Import loads data into the framework. GEMMA provides
the interfaces DataParser, MappableSource and NodeSource
to anyone who has the need to define a new data parser for an
application-specific configuration of GEMMA. All available
parsers are registered in an internal parser registry where the
Run Configuration can instantiate, configure and run those
parsers, which are required by the configuration file. The data
will then be stored in the mappable database. As our mappable
database uses the full-text search engine Lucene [12], all
relevant information from a mappable must be converted into
Strings. Each mappable is assigned a unique identifier (ID)
from its parser and other required information is stored as
detail-value pair in so-called fields as shown in Figure 8.

Figure 8. Import process

Pre-processing of data involves selection of mappables
that will require matching using whitelists and/or blacklists
and structured rewriting of, e.g., mappable names based on
mappable details. Pre-processing will be user-defined in a set
of rules in a file that can be edited with a standard text editor
and does not require programming knowledge. The set of rules
that should be applied in one mapping project will be defined
by the configuration.

Matching involves running queries on the mappable
database to find suitable matches for each mappable that
is selected for mapping. The queries are derived from the
mapping rules. A mapping is a one to (potentially) many

171

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

relation between one mappable and all the matches that were
found.

Figure 9. Matching process

As depicted by Figure 9, during the matching process, the
generic mapper requests the list of existing mappables from
the data manager. For every mappable the mapper retrieves
applicable rules from the rule manager and generates queries
that are run on the mappable database. The mapper then
creates a mapping from the original mappable to the mappables
yielded by the query result. The mappings are stored in the data
manager.

Post-processing or match resolving is an optional step that
is highly driven by the specific application as will be shown
in Section IV. It potentially requires the interaction with the
user to make a selection, e.g., a mapping rule might say that
for a mappable only a one-to-one mapping is acceptable but
if more than one match was found then the user must decide
which should be selected. Post-processing also allows the user
to apply the graphical user interface to review and validate
the generated mapping results, to check the completeness and
correctness of the defined rules, and to modify mappings
manually, e.g., remove a mappable from a mapping if the
match was not correct or create a new mapping manually.

Export is also highly application-specific. Exporting in-
volves transformation of the internal data model into an
application-specific output file. Similar to the DataParser inter-
face, a generic MappingExporter interface allows the definition
of custom exporters that are registered in an exporter registry
where they can be accessed by the run configuration as dictated
by the configuration file.

Figure 10. Export process

Each exporter can obtain the available mappables, nodes
and mappings from the data manager and the resolver provides
an exporter with the status of the elements as depicted by Fig-
ure 10. Using this information the exporter creates a mapping
export. The mapping export can take many forms, e.g., it can
be just an XML file as the standard exporter produces but it

can also be an export directly into an application using the
application’s application programming interface (API). How
the data is exported is completely encapsulated in the exporter.

H. Architecture and implementation
As already stated before, the Generic Mapping Framework

is designed as a flexible answer to all sorts of mapping
problems. This is represented in the architecture of the frame-
work, which is depicted in Figure 11 in a simplified fashion.
GEMMA modules can be categorized either as core or as
application-specific. Core components are common for all
GEMMA usage scenarios whereas the application specific
components have to be developed to implement features that
are very specific to achieve a certain goal. For example, data
parsers are application-specific as applications might need data
from different sources whereas the mappable database and
query engine is a core component that is shared. Table I
provides a brief description of the most important modules
in GEMMA and their categorization.

TABLE I. GENERIC MAPPING FRAMEWORK MODULES

Module Description Core Specific
Data Parser Reads data (nodes and/or mappables)

into the internal data model and feeds
the mappable database

x

Mapper Generates mappings between map-
pables based on rules

x x

GUI Interface for loading configuration,
displaying mappings as well as allow-
ing user-decisions and displaying of
data based on resolver as shown in
Figure 12

x

Mappable Database Stores mappable information and al-
lows searches

x

Data Manager Stores mappables, nodes and map-
pings

x

Resolver Resolves mappings based on applica-
tion specific semantics

x

Rule Manager Reads mapping rules and provides
rules information to other components

x

Run Configuration Holds the configuration that defines
which parsers, exporters, mapper and
rules are used in the current mapping
project

x

Data Exporter Exports the internal data model into a
specific file format

x

GEMMA is implemented in Java. As much as possible,
open source libraries and frameworks have been used. The
choice for the mappable database, for example, fell on Apache
Lucene [12]. Lucene is is a high-performance, full-featured
text search engine library. The choice of Lucene might seem
odd because we are not using it for its originally intended
purpose, indexing and searching of large text files, but it offers
a lot of the search capabilities like fuzzy name matching that
we need and is already in a very stable state with a strong
record of industrial applications.

GEMMA was built on top of the Eclipse Rich Client
Platform (RCP) [13], which is a collection of frameworks that
enables building modular, pluggable architectures. As shown
in Figure 13, the RCP provides some base services on top
of which it is possible to build a custom application that may
consist of a number of modules that work together in a flexible
fashion.

GEMMA is an Eclipse product and uses the Eclipse Open
Service Gateway Initiative (OSGi) extension mechanism [14]
for registering and instantiating modules. This means that, as

172

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Generic mapping framework architecture

Figure 12. GEMMA graphical user interface

depicted by Figure 14, GEMMA is in essence a collection of
Eclipse plugins, some of which can be selected by a user for
specific applications, such as the data parsers or the exporters
and some of which are fixed, such as the GUI. This architecture
allows a tailored deployment of GEMMA.

If some modules are not needed by a user of if a module
must not be given to some users, it is possible to remove the
plugin from the installation directory of GEMMA without the
need for any programming. Only the plugins that are required
by a mapping project configuration are needed and instantiated
during runtime as shown in Figure 15.

IV. EVALUATION

The evaluation so far has been done using two application
cases, simulation model composition and test bench setup.

In each of the application cases, four criteria have been
evaluated to determine the success of the application of the
mapping tool in the use case: mapping rates, adaptability,
usability, performance.

• The mapping rates criterion includes the number of
correct mappings, the number of incorrect mappings
(false positives) and the number of missed mappings.
As the difficulty of the mapping challenge depends on
the characteristics of the input data it is not possible
to define thresholds that determine a success of the

173

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Eclipse RCP

Figure 14. GEMMA as a collection of Eclipse plugins

Figure 15. Instantiation of GEMMA modules at runtime

application.
• The adaptability criterion is not a measurable crite-

rion. It is a subjective criterion to evaluate how easily
and efficiently the mapping tool could be adapted to
the needs of a new use case. This mainly focuses
on the effort for the definition and validation of the
mapping rules as well as the effort for creating or
adapting modules that are required by the use case
and their integration in the tool.

• Similar to the adaptability criterion, the usability
criterion is based on feedback from the tool users
and their subjective assessment of the effectiveness of
using the tool.

• The performance criterion mainly refers to speed in
terms of tool runtime: runtime for data parsing, map-
ping, resolving and exporting. As with the mapping
rates criterion, a threshold for performance metrics
cannot be defined a priori due to the diverse nature

of the tool.

A. Simulation model composition
The description of the application case simulation model

composition requires the introduction of the bindings concept
as presented in [11]. The purpose of bindings is to capture
the minimum set of information required to support model
composition by an automated binding or connecting mecha-
nism. For example, for the outputs of a given component, we
wish to identify the appropriate inputs of another component
to establish a connection.

Figure 16. Bindings concept

To this end [11] introduces the notions of clients and
providers. Clients require certain data; providers can provide
the required data. However, clients and providers do not know
each other a priori. Moreover, there may be multiple clients
that require the same information. On the other hand, data
from several providers may be needed in order to compute
data required by one client. This results in a many-to-many
relation between clients and providers. In order to associate the
clients and the providers to each other the mediator concept
is introduced, which is an entity that can relate a number of
clients to a number of providers, as illustrated in Figure 16.
References to clients and providers are stored in mediators
in order to avoid the need for modifying client or provider
models.

Figure 17. Assembled ice-accretion simulation based on [15]

After the bindings concept was introduced we can now turn
to the description of the application case. Generally speaking,
the application case is the automatic creation of connections
between different model components in a model. Typically in
modelling tools, to create a connection between one port of
one component to another port of another component requires
the user to draw each connection as one line from one port
to the other port. If the components’ interfaces or the model

174

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

structure change, then all of the connections have to be checked
and some of them have to be redrawn. If we consider a large set
of models that have to be changed frequently or if we want to
create the models dynamically, then the effort for creating and
maintaining the connections between the components in the
models becomes a serious issue. The goal of our application
case is the formalization of the often implicit rules which the
user applies to create the connections to automate this process.

Consider the model depicted by Figure 17, which is a
part of the model from the public aerospace use case in the
CRYSTAL project [15]. It consists of component models such
as flight scenario profile, ice accretion dynamics, and tables
for temperature or liquid water content. All of the component
models must be interconnected. For example, the temperature
profile component requires the current aircraft altitude, which
is provided by the flight scenario component; the ice accre-
tions dynamics component requires the current aircraft speed,
which is also provided by the scenario component, etc. The
individual models were built using the Modelica tool Dymola
and exported as Functional Mockup Units [16] (FMUs) in
order to be integrated, i.e., instantiated and connected, in a
co-simulation environment.

However, assume that the models were created without this
specific context in mind. They neither have agreed interfaces,
nor do the name and type of the component elements to be
connected necessarily match. In order to be able to find the
counter parts, i.e., to know that the input of the ice accretion
instance should be connected to the appropriate output of
the scenario model instance, a dedicated XML file captures
some additional information. This way we can capture such
interrelations without modifying the models. This data is used
as follows: whenever the model ”IceAccretionDynamics” is
instantiated, bind its input port ”aspeed” to the output ”port
p v”, which belongs to the instance of type ”ScenarioMis-
sionProfile1”.

Whenever there will be another model that requires the
same data, i.e., current aircraft speed, an additional client
entry is added to the same mediator. Similarly, whenever
there is another model that outputs this data, its corresponding
element is referenced in a new provider entry. This approach
in particular pays off as soon as there are several models that
require or provide the same data. Their connection is then
resolved whenever they are instantiated in a specific context
model such as the one depicted in Figure 17.

Figure 18. Mapping generator for simulation model composition

In our setting, the bindings specification XML file and the
model XML file are application specific sources that are inputs
to our generic mapping framework as depicted by Figure 18.
The information read from these sources by the application
specific parsers is put into the core module mappable database.

Two rules are used to query the mappable database to find
suitable matches for each mappable. The matching results are
then given to the resolver module. This module is aware of
the bindings concept and is able to resolve chains of matches
and generate a binding for each client and, if necessary,
involve the user when an unambiguous mapping is not possible
automatically.

In the end, the mapping framework uses a list of FMUs,
a description of the simulation model consisting of instances
of classes implemented in the FMUs and a description of the
bindings in the form of an XML file. The output is then the
complete simulation model with all the connections between
the simulation instances as sketched by Figure 19.

The evaluation of GEMMA in the simulation model com-
position application case was considered successful regarding
all four evaluation criteria.

B. Test bench setup

The test bench setup application case is driven by the needs
of test engineers. They are given a hardware System under Test
(SuT), a formal definition of the interfaces of the SuT and other
equipment and a description of the specified logic of the SuT,
which should be tested. Unfortunately, the formal interface
definition has been finalized after the specification of the logic,
which means that the signal names in the logic description
and the signal names in the formal interface definition, which
has been implemented in the SuT, do not match. Today, a
significant amount of manual effort is required to discover the
correct formal signal name for every logical signal. To ease
this, GEMMA has been configured as shown in Figure 20.

The goal of the application case is to find a mapping
between the name of a signal used in the description of the
SuT logic and the corresponding formal interface signal name
as shown in Figure 21.

Since the names of the signals could be quite different,
the test bench setup application case required the use of the
structured rewriting rule type (see Section III-F). One of the
rules for the test bench setup is depicted by Figure 22 in pseudo
code. The rule defines a new local variable called soughtName
whose content depends on some attributes of the mappable
(enclosed in $$) and instead of searching for other mappables
that have the same or a similar name as the original mappable,
GEMMA searches now for mappables whose name is equal
to the variable soughtName. If a mappable has the attributes
direction, type, BLOCKID and ID with the respective values
OUTPUT, SuT Type1, 45 and 67 then soughtName would
take the value AB BLOCK45 STATUS 67 and GEMMA will
search for and map to another mappable in the database with
that name.

The main challenge for this application case was the
amount of data. Even for a small SuT, the mappable database
contained 350000 mappables and matches had to be found for
2500 mappables. Nevertheless, the application proved to be
successful. The total run time is around 30 seconds including
the time for data import and export, and the average time per
query is 4.5 ms on a standard PC.

The evaluation of GEMMA in the test bench setup ap-
plication case was considered successful regarding all four
evaluation criteria.

175

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 19. Input and output artefacts of simulation model composition mapper)

Figure 20. Mapping generator for test bench setup

Figure 21. Input and output artifacts of test bench setup mapper

V. CONCLUSION

In this paper, we introduce a new framework for generic
mapping problems, GEMMA. It is geared towards high flexi-
bility for dealing with a number of very different challenges.
To this end it has an open architecture that allows the inclusion

of application-specific code for reading and exporting data and
the resolving of mapping results. Furthermore, it provides a
generic rule-based mapping engine that allows users without
programming knowledge to define their own mapping rules.
So far, the evaluation in the two application cases described
in this paper has been highly successful.

The modular architecture based on the Eclipse RCP proved
to be especially useful to allow using GEMMA for different
purposes. The effort for adapting GEMMA for new applica-
tions, i.e., mainly the development of custom parser, resolver
and exporter modules is low compared and usually takes a
couple of days for an experienced Java developer. This is quite
low compared to the effort required for the development of a
new application that could satisfy the user needs.

As said in Section II, as far as we know, there is currently
no other tool with the same functionality as GEMMA. This
prevents a direct comparison in terms of performance of
GEMMA with other solutions. For our future work we also
plan to compare GEMMA functionally to other solutions that
rely on more formalized semantic information in the form
of ontologies. Depending on the results of this comparison,
this might lead to an extension of GEMMA, so that in
addition to the matching based on the Lucene text database
there will be the possibility to include the results from a
semantic reasoner in the matching process. Another possible
extension of GEMMA that we are currently investigating is
the inclusion of machine learning technology into GEMMA.
Machine Learning could potentially be used to learn from
existing mappings and to create or propose to the user new
mappings based on that knowledge.

At the same time, we are actively looking for further
application cases to mature the framework.

176

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 22. One implemented rule for test bench setup (in pseudo code)

REFERENCES
[1] P. Helle and W. Schamai, “Using a generic modular mapping framework

for simulation model composition,” in SIMUL 2015, The Seventh
International Conference on Advances in System Simulation, 2015, pp.
72–78.

[2] H. L. Dunn, “Record linkage*,” American Journal of Public Health and
the Nations Health, vol. 36, no. 12, 1946, pp. 1412–1416.

[3] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,” Journal
of the American Statistical Association, vol. 64, no. 328, 1969, pp.
1183–1210.

[4] Q. He, Z. Li, and X. Zhang, “Data deduplication techniques,” in Future
Information Technology and Management Engineering (FITME), 2010
International Conference on, vol. 1. IEEE, 2010, pp. 430–433.

[5] H. Koepcke and E. Rahm, “Frameworks for entity matching: A com-
parison,” Data & Knowledge Engineering, vol. 69, no. 2, 2010, pp. 197
– 210.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 19, no. 1, 2007, pp. 1–16.

[7] F. Giunchiglia, A. Autayeu, and J. Pane, “S-match: An open source
framework for matching lightweight ontologies,” Semantic Web, vol. 3,
no. 3, 2012, pp. 307–317.

[8] Y. Hooi, M. Hassan, and A. Shariff, “A survey on ontology mapping
techniques,” in Advances in Computer Science and its Applications, ser.
Lecture Notes in Electrical Engineering, H. Y. Jeong, M. S. Obaidat,
N. Y. Yen, and J. J. J. H. Park, Eds. Springer Berlin Heidelberg, 2014,
vol. 279, pp. 829–836.

[9] P. A. Hall and G. R. Dowling, “Approximate string matching,” ACM
computing surveys (CSUR), vol. 12, no. 4, 1980, pp. 381–402.

[10] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966,
pp. 707–710.

[11] W. Schamai, P. Fritzson, C. J. Paredis, and P. Helle, “ModelicaML value
bindings for automated model composition,” in Proceedings of the 2012
Symposium on Theory of Modeling and Simulation-DEVS Integrative
M&S Symposium. Society for Computer Simulation International,
2012, p. 31.

[12] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action.
Manning Publications Co., 2010.

[13] J. McAffer, J.-M. Lemieux, and C. Aniszczyk, Eclipse Rich Client
Platform. Addison-Wesley Professional, 2010.

[14] R. Hall, K. Pauls, S. McCulloch, and D. Savage, OSGi in action:
Creating modular applications in Java. Manning Publications Co.,
2011.

[15] A. Mitschke et al., “CRYSTAL public aerospace use case Development
Report - V2,” ARTEMIS EU CRYSTAL project, Tech. Rep. D208.902,
2015.

[16] T. Blochwitz et al., “The functional mockup interface for tool inde-
pendent exchange of simulation models,” in 8th International Modelica
Conference, Dresden, 2011, pp. 20–22.

