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Abstract—In-materio computation exploits physical properties of
materials as substrates for computation. Evolution-In-Materio
(EIM) uses evolutionary search algorithms to find such configu-
rations of the material for which material physics yields desired
computation. New unconventional materials have been recently
investigated as potential computational mediums. Such materials
may intrinsically possess rich physical properties, which may
allow a wide variety of dynamics. However, how to access such
properties and exploit them to carry out a wanted computation
is still an open question. This article explores the dynamics in
one particular type of nanomaterials which is used to solve
computational tasks. Nanocomposites of Single-Walled Carbon
Nanotubes (SWCNTs) and PolyButyl MethAcrylate (PBMA) are
configured so as to undergo evolutionary processes with the goal
of performing certain computational tasks. Early experiments
showed that rich dynamics may be achieved, which may yield
complex computations. Some indications of chaotic behavior
were observed so further work was carried out with the aim
of examining the dynamics achievable by such nanocomposites.
Since it is not an easy task to access the physics at the very bottom
of the material, investigation of the material dynamics is kept
within the limits imposed by our measurement equipment and
the level of observability enabled by it. Presented results show
that interesting, complex dynamics is achievable by examined
nanocomposites and that it depends on the type of signals used
for the material configuration as well as on the material intrinsic
properties such as percentage of SWCNTs in the nanocomposite.

Keywords–Computation-in-Materio; Evolution-in-Materio;
Evolvable Hardware; Carbon Nanotubes; Dynamical Systems;
Complexity.

I. INTRODUCTION

Computations result from perturbations of some dynamical
system. The observable output of the system is the result of
its dynamics. Dependent on the type of dynamics exhibited by
the system, computations of various complexity levels may be
achieved. The type of dynamics depends on the physics of the
system and on the way in which the system is manipulated.
Our work considers novel nanoscale materials [1] and was
carried out within the EU-funded NASCENCE (NAnoSCale
Engineering for Novel Computation using Evolution) project
[2]. The nanomaterials investigated within the project are
nanocomposites of Single-Walled Carbon Nanotubes (SWC-
NTs) and polymer molecules (PBMA), and networks of gold
nanoparticles. The investigation of nanocomposites is per-
formed under the Evolution-In-Materio (EIM) scenario [3], [4].

EIM is a novel approach to designing computing devices
where various materials are used as computational substrates.

It is one approach that may emerge as an answer to the chal-
lenges of today’s widely accepted semiconductor technology.
Digital computers based on silicon technology are designed
using a conventional top-down process by human engineers.
Engineering of such processors poses technological challenges
due to scaling down. Various design techniques are applied in
order to sustain scaling down of the semiconductor technology
but it is becoming increasingly difficult to fabricate transistors
at the nanoscale.

This has motivated efforts towards novel technologies that
will assume not only new computational substrates but also
novel principles of the design of computing devices and their
usage. EIM is a bottom-up approach in which the physics of
a computing substrate is used to produce computations of in-
terest. Different computational substrates have been previously
explored such as liquid crystals and Field Programmable Gate
Arrays (FPGAs) [5]–[7]. The configuration of the computing
substrate, i.e., some material, undergoes evolutionary changes
until some desired response of the material is achieved accord-
ing to the computational task at hand. The digital computer
accesses the material via a special board, which allows the
Evolutionary Algorithm (EA) to apply configuration and input
signals and read the material response which will guide the
evolutionary search.

Figure 1 illustrates an EIM system. Three main entities
can be distinguished: a digital computer, the material and
the interface between the two. The system clearly shows the
separation of an analog/physical domain in which materials
operate and a digital domain in which the computer responsible
for input/output mapping and configuration operates. In all
such systems an interface is needed for bidirectional translation
of signals between digital signals of the computer and analog
signals in the physical domain of the material. As mentioned,
the digital computer is used for running the EA, which
generates a population of genomes, and translates each genome
into suitable analog signals which can be sent to the interface
board.

Further, the response of the material for a given config-
uration and input signals is translated from analog form as
produced by the material to its corresponding digital value so
that the computer can calculate the fitness value of the genome.
The fitness value guides evolutionary search towards a solution
to the problem at hand.

In order to produce interesting behavior under the EIM
scenario, it is required that the material is able to exhibit
rich dynamics. The richness of the exhibited dynamics can
be attributed to the physical properties of the material. In a
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Figure 1. Principle of EIM illustrating the separation of an analog/physical
domain where the material operates and the digital domain of computers,

from [3].

way it can be said that EIM manipulates the material so as to
produce rich dynamics. The material blob is treated as a black
box and EAs are used to “program” the material to solve a
problem at hand.

Such a black box hybrid approach has been shown suc-
cessful for a number of computational problems [8]–[13].
At the current state of research, it is not clearly understood
what the exploited physical properties are and what the best
way of exploring them is, e.g., what number of inputs and
outputs and which types of signals - electrical (static voltages,
sinusoidal waves, square waves) or even of some other kind
such as temperature or light. The solved problems serve as
a proof of concept that an EIM approach may be used for
solving computational problems and indicates that it may be
competitive in terms of computational time, size, and energy
consumption. However, scaling-up to solve larger instances of
a problem requires a better understanding of the dynamics
exhibited by the material. In other words, the black box needs
to be opened so that the underlying physical properties of
the material are well understood. The number of used input
electrodes, configuration signals available, etc. will directly
affect the evolutionary search space.

Observing dynamics and its emergent complexity in com-
putational materials is not an easy pursuit. Observability is
limited by what output can be measured from the material
and at which scale. At some scales we are not able to directly
observe physical effects present in the materials, e.g., quantum
effects due to mechanisms of electron transmission through
carbon nanotubes. Therefore, we are limited to use signals
which can be observed and measured. Figure 2 illustrates the
taken approach to observe, exploit and gain an understanding
of the dynamics of EIM systems. At the lowest level we have
the physics of the material where computations happen, but

Figure 2. Conceptual domains of the computing system.

due to nanoscale and even quantum effects, what is captured
by our instruments will at best be just an approximation. In
other words, the lowest level is inaccessible and must be treated
as a black box. At the second level, the level of measurements
and transformations, physical properties and dynamics are
observable in the analog domain. This level can be explored to
gain insight into the electrical properties of the material. The
top level is the level of interpretations, i.e., computations as
we perceive them. So, as shown in Figure 2, the dynamics of
the analog signals are interpreted and transferred to data, i.e.,
the computational input – output mapping is performed. The
top level is the level which is explored for computation. Here,
it is important to note that the observations on the top level
emerge as a result of all underlying dynamics.

The work presented in this paper includes a specific ap-
proach, as illustrated in Figure 2, to investigate the dynamics
of the material at hand. The approach considers the complexity
of the input - output mapping performed by the material for
computation. Complexity is hard to measure even when well
defined as, for example, Kolmogorov complexity [14]. Some
approximations are needed if we want to obtain quantitative
measures. In this work, we adopt compressibility as a measure
of complexity.

This paper, which is an extended version of [1], is orga-
nized as follows: Section II provides background on EIM and
position of the NASCENCE project within the field. Section III
presents experimental platform Mecobo, which was developed
within NASCENCE project, and which is used in our EIM ex-
periments. Also, an experimental setup is explained as well as
the material which was used in the experiments. Moreover, the
section provides some background on different computational
domains which can be distinguished under EIM computing
scenario. Further, Section IV provides some initial results,
presented in [1], which demonstrate interesting behaviors
of the investigated material. Section V presents experiments
which were conducted with the aim of investigating material
dynamics in a greater detail. A measure of complexity is intro-
duced which is used as the description of material behavior,
the three sets of experiments are described followed by the
results and the discussion which relates results to theoretical
foundations. Finally, Section VI provides conclusion about the
presented experiments and exhibited material dynamics within
EIM computing.
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II. BACKGROUND – EVOLUTION-IN-MATERIO

The term Evolution-in-Materio was introduced by Julian
Miller and Keith Downing in 2002 [4]. The general concept
of EIM is that physical systems may intrinsically possess
properties which may be exploited for computation.

A. Pioneering work
Early work on manipulation of physical systems for com-

putation is related to the work of Gordon Pask [15], a classical
cyberneticist whose pioneering work dates back to the 1950s.
He tried to grow neural structures, dendritic wires, in a metal-
salt solution by electrical stimulation [7]. His goal was to
self-assemble a wiring structure within the material in order
to carry out some sort of signal processing embedded in the
material. He was able to alter the position and structure of
the wiring filaments, and thus the behavior of the system.
This was achieved by external influence, which consisted in
applying different currents on electrodes in the metal-salt
solution. This early version of material manipulation was done
without aid of computers and different electrical configurations
were tested manually. Stewart [16] later defined such a process
as manufacturing logic “by the pound, using techniques more
like those of a bakery than of an electronics factory”.

B. Analog computers, FPGAs and liquid crystal
Later, Mills constructed an analog computer which he

called Kirchhoff-Lukasiewicz Machine (KLM) [17]. The con-
struction was done by connecting a conductive polymer mate-
rial to logical units. The analog computation was carried out by
placing current sources and current sinks into the conductive
foam layer and reading the output from the logical units. One
could argue that such machines were not easy to program due
to the manual placement of connections into the material. On
the other hand, some advantages of performing computation
directly in the material substrate became obvious, e.g., a large
number of partial differential equations were solved within
nanoseconds.

In 1996, Thompson used intrinsic evolution to produce
electrical circuits in FPGAs [5]. In his well-known experiment,
he demonstrated that artificial evolution can be used to exploit
physical properties of FPGAs to build working circuits, e.g., a
frequency discriminator circuit. He found out that placing the
circuit in a different part of the chip or disconnecting some
unused modules would result in a non-working solution. More-
over, he was unable to replicate the chip behavior in simulation
because evolution had exploited underlying physical properties
of the FPGA. In fact, changing the FPGA with a similar
model from the same producer would result in slightly different
behavior. Thompson described such a process as “removing the
digital design and letting evolution do it”.

In [4], Miller and Downing suggested several materials
which may be suitable for EIM, liquid crystals being among
them. Simon Harding [18] later demonstrated that it was in-
deed possible to apply EIM on liquid crystals to evolve several
computational devices: a tone discriminator [19], logic gates
[20], and robot controllers [6]. Liquid crystal is a movable
material where voltages affect orientation of the crystals. The
movability was problematic since the material would undergo
permanent changes during evolution. This led to unstable
solutions that worked only once. Nevertheless, he showed that

it was possible to quickly reach a working solution again by re-
running the evolutionary algorithm for a couple of generations
[19].

C. The NASCENCE project and recent work
Recently, the NASCENCE project [2] addressed nanomate-

rials and nanoparticles for EIM with the long term goal to build
information processing devices exploiting such materials with-
out the need to reproduce individual components. In particular,
investigated nanomaterials included nanocomposites made of
SWCNTs and polymer molecules and nanoparticle networks,
in particular gold coated nanoparticles. Several hard-to-solve
computational problems have been solved as proof of concept,
e.g., Traveling Salesman [8], logic gates [9], bin packing [10],
machine learning classification [11], frequency classification
[12], function optimization [13] and robot controllers [21].
The SWCNT materials from the project are the subject of our
investigation in this paper.

D. Interpretation and computation
As stated, EIM has been used to solve a variety of

problems. However, these results are all limited to a specific
problem domain. To assess the potential computational power
available in a material, we need a more general measurement.
One way is to view complexity as indication of potential
computational power [22].

Kolmogorov complexity [14], [23] is well-defined but
incomputable in theory. However, it is possible to use measures
such as compressibility to approximate complexity to some
extent [24]–[27]. In fact, strings that are hardly compressible
have a presumably high Kolmogorov complexity. Complexity
is then proportional to the compression ratio.

High measurable complexity of output data or a high
complexity ratio between input and output data may not
always be a desired property. In classifier systems, such as
Thompson’s frequency discriminator [5], the output may be
a binary response to a complex input signal. In this case
the complexity ratio between output and input is very low.
However, the computation, i.e., internal state transitions in the
underlying physics of the material, is still a complex process
but the complexity is unobservable since we only observe the
input and output signals.

III. A PLATFORM FOR EXPERIMENTS AND
UNDERSTANDING OF EIM SYSTEMS

The conceptual idea of exploiting physics for computation
requires a physical device, i.e., the material. In most EIM
works, an intrinsic approach has been taken – computation
is a result of real physical processes and the evaluation is a
result of the performance of a physical system. An intrinsic
approach allows access to all inherent physical properties of
the material [3]. An analog computation [28] is a possibility,
however, in this work a hybrid approach is taken. The hybrid
approach includes the computational matter in a mixed signal
system using a digital computer to configure and communicate
with the material. Such an approach enables the computational
power of the material with the ease of programmability of
digital computers [2]. In a hybrid approach, observability is an
issue, i.e., ensuring that the data from the material is observable
and sound without using more computational power for the
observation than the actual computation [29].
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(a) Block diagram of the Mecobo hardware
interface.

(b) Picture of the Mecobo motherboard with
mixed signal daughter board.

(c) Electrode array, microscopic view.
(Source: documentation of the

NASCENCE project).

Figure 3. Overview of the Mecobo hardware interface.

A. NASCENCE’s Mecobo: an experimental platform for EIM
A hybrid approach requires an interface between the digital

world of computers and the analog world of materials. The
Mecobo experimental platform [30] from the NASCENCE
project is a hardware/software platform implementing the
conceptual Evo-Materio-system shown in Figure 1.

Figure 3 shows an overview of the hardware interface: a
Mecobo platform and microelectrode array on the material
slide. A block diagram of the Mecobo platform is shown
in Figure 3a. Configuration specification, i.e., genotypes, are
loaded from a PC to Mecobo over a USB port. A micro-
controller communicates with the USB interface and with an
FPGA via an internal bus. The FPGA can be interfaced to the
materials directly or, as shown in the figure, use a daughter
board to extend the range of possible signals.

A picture of the Mecobo hardware is presented in Figure
3b. In the picture, the Mecobo is shown with a mixed signal
daughter board and a material sample on a glass slide plugged
in. Electrical connection between the material on the slide
and the board is realized by the microelectrode array. A
microscopic view of the microelectrode array before material
disposition is shown in Figure 3c.

Mecobo is capable of controlling close to 100 individually
configurable input/output signals (pins), which can be con-
nected to the material. Each signal is described by parameters
at a given point in time. For example, a pin can be programmed
as a recording pin from time 0 to 100ms, or as an output pin
of square waves of some frequency from 0 to 1000ms, or as an
output pin of a constant voltage level, e.g., 2.7V from time 0 to
1500ms etc. Mecobo is connected to a host PC over USB and
communicates via a Thrift server [31]. Communication based
on Thrift technology also enables access to Mecobo remotely
over the Internet. The maximum analog sampling frequency
of the Mecobo board is 500kHz. Input signals may be static
voltages or periodic (e.g., square, sinusoidal) waves ranging in

Figure 4. CNT computing system within a system theory framework.

frequency between 400Hz and 25MHz. For more details on
Mecobo and an overview of the full range of programmable
properties of the platform, see [30].

B. Explaining computations within EIM
It can be said that computations are based on transforma-

tions of a system, so that the system input(s) and output(s) are
related in some functional way. This functional relation can be
expressed by a simple formula:

y = F (x) (1)

where x and y correspond to an input and output of the
system, respectively, and, in general, they are considered to
be multidimensional and represented by vectors.

One way of analysis, more formally addressed within the
system theory [32], [33] assumes that the system state is
described by a set of variables that move through a state space.
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For an EIM scenario, a better look into the state space of
the system needs clarification of what is meant by system vari-
ables [34]. According to the explanation of different domains
of computation as described in Section I, the variables of the
system belong to the domain of measurements as schematically
shown in Figure 2. The voltages and the set of properties
which define them in this domain, i.e., amplitude, frequency
and phase, can be represented with:

vi = ai · funcp(fi, φi) (2)

where vi is voltage on the i-th electrode, ai the amplitude,
funcp some periodic function, fi frequency of the function
funcp and, finally, φi the phase of the voltage, all referring to
the i-th electrode. The symbols are left lower case to remind
that all of these values can be time varying.

Let us now consider an example in which for a system
to perform functionality func 0, for the input x 0, an output
value y 0 is desired (Figure 4 a)). For simplicity, the variables
on each of the axes are assumed to be scalars. When different
configuration voltages are applied to the material, they change
the system variables so that it passes through various states in
the state space along some trajectory. Further, let us assume
that only one electrode is used for configuration voltage and
only one voltage parameter is changed, for example amplitude.
By changing the amplitude along the a 1 axis different input-
output mappings will be performed by the system. EIM would
then search through the space until func 0 point is reached. If
also the frequency of the voltage v 1 is changed, then the state
space could be searched along two axes as shown in Figure
4 b). And even further, if more than one electrode is used
for configuring the material, then, in general, the space would
look something like in Figure 4 c) and would be searchable
along high number of axes, the limitation being only the
physical number of electrodes in the system. Moreover, the
state space may grow due to the change in some parameter,
like temperature or light, as shown in Figure 4 d), which may
all increase the size of the state space to search for the solution.

IV. A DETAILED VIEW OF MATERIAL DYNAMICS

Experiments are performed on SWCNT mixed with PBMA
on a micro electrode array supplied by Durham University.
Material samples and micro electrode arrays are produced in a
process where SWCNT-PBMA mixture is dissolved in anisole
(methoxy benzene). The material samples are prepared on 4x4
grids of gold micro-electrode arrays with pads of 50µm and
pitch of 100µm, see Figure 3c. The preparation is done by
dispensing 20µL of the material onto the electrode area. The
concentration of SWCNTs varies as shown in Table I where
the material samples used in our experiments are listed. The
SWCNT mixed with PBMA material dispersed over electrode
array is baked for 30min at 90C◦. The solvent dries out
and leaves a thick film of immovable SWCNTs supported
by polymer molecules. The substrate is cooled slowly over
a period of 1h. This process leaves a variable distribution of
nanotubes across the electrodes. Typically, carbon nanotubes
are 30% metallic and 70% semi-conducting, while PBMA cre-
ates insulation areas within nanotube networks. Such electrical
properties of the material may allow non-linear current versus
voltage characteristics.

The coverage of gold microelectrodes with randomly dis-
persed nanotubes varies and some of the electrodes may even

TABLE I. Different materials used in the experiments.

Material SWCNT Concentration, wt%

B09S12 0.53%

B15S03 1.25%

B15S04 1.50%

B15S08 5.00%

Figure 5. SEM image of gold electrode array with different coverage of
nanotubes. Adopted from [9].

be left with little or no coverage, as visible in the Scanning
Electron Microscope (SEM) image in Figure 5.

Initial investigation of the material response to various
input signals showed several interesting behaviors in the
material [1]. The goal was to gain insight into the material
dynamics to identify suitable ways in which the material can
be manipulated to perform computation.

As mentioned, EIM requires an interface between a dig-
ital computer which runs the EA and the material whose
physics undergoes analog processes. This interface is typically
provided by the Mecobo board. However, in order to better
understand the underlying properties of the material and its
responses, it is necessary to use more precise instruments. In
these experiments, oscilloscopes and signal generators were
used to get a more detailed view of the material dynamics.

Figure 6. Material slide and pins connected to signal generator (IN) and
oscilloscope (OUT).
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A. Experimental Setup
In the experiments herein, we connect a material slide

to a Hewlett Packard 33120A 15MHz function / arbitrary
waveform generator (used as input) and an Agilent 54622D
100MHz mixed signal oscilloscope (used as output). Input
signals are square waves at different frequencies from the
signal generator and the output signals are recorded on the
oscilloscope.

The input / output pins were chosen so that there would
be an equal distance between microelectrode pads within the
microelectrode array (Figure 3c). The placement of input and
output signals on the material slide is shown in Figure 6, where
the input probe (from the signal generator) is placed on pin
#2 (IN) and the two output probes (to the oscilloscope) are
connected to pins #9 (OUT1) and #7 (OUT 2).

B. Results and discussion
Figure 7 presents the experimental results. In particular,

Figures 7a) show several snapshots of the material response
on two different pins at different frequencies, ranging from
1KHz (Figure a1) to 14MHz (Figure a12). At 1KHz the
signals may seem similar (a1), where the material charges-up
and subsequently discharges, but in a zoomed in snapshot, i.e.,
where a part of the response is shown at a higher resolution
(a2), a voltage spike is visible on the second probe which
is not present on the first probe. This is better visible at
5KHz (a3), 30KHz (a4) and 100KHz (a5), where it is
possible to notice that on the rising front there is a sudden
voltage increase/drop. The material behavior is capacitor-like.
Starting from 500KHz (a6), which is also zoomed in (a7),
the second probe signal is similar to a square wave (most
of the harmonic frequencies are passed) while the first probe
acts more like a filter. The difference is caused by different
concentrations of CNTs between the IN-OUT electrodes, i.e.,
different paths the current is enabled to follow between the
electrodes. In both cases, there is a resonance phase which
results in a deterministic yet semi-chaotic waveform. This may
be the effect of some conducting sub-networks in the material
that are enabled at specific frequencies and disabled at others.
At 2, 5 and 8.5MHz the measured voltage decreases while
frequency increases. At 10MHz (a11) a strange phenomenon
is observed where both signals show a voltage increase. The
effect is more prominent on the first output. We ascribe such
behavior to be due to a feedback effect where harmonics of
some frequencies are fed again into the material by some
nanotube sub-networks. At 14MHz (a12) the signal on the
second probe is sinusoidal, i.e., only one harmonic is present.
As such, it may be concluded that with a single square wave
input it is possible to observe a rich variety of behaviors while
the frequency spectrum is traversed.

As the system produces uniform, stable, and semi-chaotic
behaviors, it is of particular interest to visualize input-output
responses and output-output relations in order to better un-
derstand traversed trajectories and attractors. For this purpose,
XY plots are shown in Figure 7b), where OUT1 is plotted
against OUT2 and Figure 7c), where IN is plotted against
OUT1. In Figure 7b1), some orbits are present at 30KHz.
Similar orbits are visible at 60KHz (b2) and 100KHz (b3),
moving towards opposite corners to those where the impulse
is. After each impulse, there is a semi-chaotic orbit that relaxes
before the next impulse arrives, as the semi-chaotic behavior

is annihilated by the lack of energy in the material, until the
arrival of the next impulse. This suggests that chaotic behavior
may be present, yet particularly difficult to observe.

XY plots between input and output are shown in Figure
7c). These figures represent the phase space of the system
(input-output pin pair). Figure 7c1) is obtained at 350Khz.
Several oscillating orbits are present, which are zoomed-in
at 2MHz (c2). The same effect is observed for frequencies
up to 5MHz (c3) while for frequencies around 10MHz and
higher we observe a hysteresis loop, which indicates that some
saturation may have been reached in the material. Some sort of
non-linearity seems present, which is always a good indicator
that the system may achieve complex behavior.

To summarize this set of results, even if a single square
wave input signal is used, the resulting output shows a variety
of behaviors. Square waves [35] produce richer dynamics than
what may be achieved by a single static voltage or by a
sinusoidal wave. Such richness of the response is due to the
rich spectrum of the square waves which contains a variety of
harmonics. In particular, some of the nanotube sub-networks
may be sensitive to certain frequencies. Therefore, square
waves may be better suited to penetrate the material and exploit
the nanocomposite’s intrinsic properties.

V. A COMPLEXITY VIEW OF MATERIAL DYNAMICS

The initial experiments with the oscilloscope measurements
gave valuable insight into the different dynamics available in
the material. However, such detailed measurements only give
a very narrow view of the possible behaviors of the system. In
order to get a broad picture of the space of possible material
dynamics, one has to sacrifice some amount of detail. By using
the Mecobo hardware platform (Section III) we are able to
explore material dynamics at a higher level.

Mecobo allows us to scan a much wider range of signal
frequencies, explore a myriad of different material locations
and easily analyze the results on a PC. For these experiments
we use the digital signal generator on Mecobo to generate
square waves as input signals. The output signal is sampled as
analog voltage using the on-board AD converter (Figure 3).

Complexity of the input/output signal is used as metric
to classify different types of material dynamics. We use
compressibility as an estimate of complexity as described
in Section II-D. Since we are primarily interested in the
complexity contribution of the material (and not the complexity
of the input signal itself), we adapt the complexity ratio:

Cr =
Co

Ci

where Co is the complexity of the output signal and Ci is the
complexity of the input signal.

We present three sets of experiments where the computa-
tional complexity of the material is explored:

1) Complexity as number of input signals are increased
2) Complexity as function of one input frequency
3) Complexity as function of two input frequencies
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(a1) 1kHz (scale: 5V, 200µs) (a2) 1kHz (zoom, 2V, 5µs) (a3) 5kHz (scale: 2V, 20µs) (a4) 30kHz (scale: 2V, 10µs)

(a5) 100kHz (scale: 1V, 2µs) (a6) 500kHz (scale: 1V, 500ns) (a7) 500kHz (zoom, 500mV, 200ns) (a8) 2MHz (scale: 1V, 100ns)

(a9) 5MHz (scale: 1V, 50ns) (a10) 8.5MHz (scale: 1V, 50ns) (a11) 10MHz (scale: 1V, 50ns) (a12) 14MHz (scale: 500mV, 20ns)

(b1) 30kHz (scale: 1V, 1V ) (b2) 60kHz (scale: 500mV, 500mV ) (b3) 100kHz (scale: 500mV, 500mV )(b4) 500kHz (scale: 200mV, 200mV )

(c1) 350kHz (scale: 1V, 1V ) (c2) 2MHz (zoom, 200mV, 50mV ) (c3) 5MHz (scale: 1V, 200mV ) (c4) 10MHz (scale: 2V, 500mV )

Figure 7. Oscilloscope screenshots. The resolution is indicated in parentheses. The resolutions have been chosen so as to be able to show interesting results at
different scales.

(a) Voltage responses on 2 different pins with input square wave at different frequencies.
(b) XY plots, X (OUT1) is plotted against Y (OUT2) at different frequencies.

(c) XY plots, X (IN) is plotted against Y (OUT1) at different frequencies.
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(b) Material B15S03 (1.25 wt% SWCNT)
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(c) Material B15S04 (1.50 wt% SWCNT)
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(d) Material B15S08 (5.00 wt% SWCNT)

Figure 8. Output complexity as the number of input frequencies are increased from 1 to 15 for four different material samples. The red scatter plot shows
individual measurements while the blue line indicates the mean values for each of the 100 data points.

A. Experimental Setup

For all the experiments, a set of input signals are sent
through the material and a single output signal is recorded.
The input signals are digital square waves in the range 400Hz
to 25kHz. The amplitude of the square waves is 0 − 3.3V ,
which means that the material is exposed to a sharp rise and
fall of the signal in this range. The duty cycle is held constant
at 50%.

The output signal is recorded as analog voltage over time
and sampled at a frequency of 500kHz for 10ms resulting in
an output buffer of 5000 samples.

In order to compare the analog output signal to the digital
input signal, we digitize the output signal by using the mean
voltage as digital threshold. In other words, samples above
the mean correspond to logical 1 and samples below the mean
correspond to logical 0. To reduce sensitivity to noise, we apply
hysteresis so that transitions between logic levels happen only
if the analog voltage crosses the mean by a noise margin.

Complexity is estimated by compressing the sample buffer
with zlib (zlib is based on LZ77 [36]) and calculating the
length of the compressed string. Input complexity Ci is cal-
culated based on a set of ideal square waves sampled at the
same frequency as the output signal (500kHz).

All the experiments are repeated for the different material
samples listed in Table I.

1) Complexity as number of input signals are increased:
In the first experiment, the number of input pins are increased
from 1 to 15. Input pins are selected at random and for
each input pin a random frequency is chosen in the range
of 400Hz − 25kHz. The output signal is recorded from pin
#0. The experiment is repeated 100 times for each number of
input pins resulting in 1500 output signals.

2) Complexity as function of one input frequency: The
second set of experiments provides a more detailed view of a
subset of the first experiment by traversing the input frequency
spectrum. Frequencies are increased from 400Hz−25kHz in
steps of 1000Hz resulting in 25 different input frequencies.
The number of input pins are again increased from 1 to 15
but the same frequency is now applied to all input pins.
In addition, both input pins and output pins are selected at
random. For each number of input pins and for each frequency,
the experiment is repeated 100 times resulting in 37500 output
signals.

3) Complexity as function of two input frequencies: In the
third experiment, we again traverse the same input frequency
spectrum (400Hz − 25kHz), but this time for two input
pins. In other words, the frequency spectrum is traversed in
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(b) Material B15S03 (1.25 wt% SWCNT)
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(c) Material B15S04 (1.50 wt% SWCNT)

0 200 400 600 800 1000 1200

Input complexity

0

100

200

300

400

500

600

O
ut

pu
t

co
m

pl
ex

it
y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
in

pu
t

fr
eq

ue
nc

ie
s

(d) Material B15S08 (5.00 wt% SWCNT)

Figure 9. Input vs output complexity as number of input frequencies are increased from 1 to 15 for four different material samples. The dots are colored
according to the number of input frequencies used.
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(b) Material B15S08 (5.00 wt% SWCNT)

Figure 10. Input vs output complexity when the input signals are summed together before input complexity is estimated. Results from two material samples
with different SWCNT concentrations are shown. The dots are colored according to the number of input frequencies used.
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(b) Material B15S03 (1.25 wt% SWCNT)
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(c) Material B15S04 (1.50 wt% SWCNT)
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(d) Material B15S08 (5.00 wt% SWCNT)

Figure 11. Mean complexity ratio as function of input frequency for 1, 2, 4 and 8 input pins. The same frequency is applied to all input pins. Results from
four different material samples are shown.

two dimensions resulting in 252 pairs of input frequencies.
Both input pins and output pins are selected at random. The
experiment is repeated 10 times for each set of input/output
pins.

B. Results and discussion
1) Complexity as number of input signals are increased:

Figure 8 shows output complexity Co measured over the range
of 1-15 input frequencies. The blue line shows the mean output
complexity value for each of the 100 data points. As shown
in the plots, the output complexity increases with the number
of input signals. There appears to be a fairly sharp rise in
complexity as the number of square wave inputs are increased
from 1 to 4. After this point the output complexity appears to
saturate.

The scatter plot shows a fairly high variation in output
complexity when the number of input signals exceeds one.
This indicates that the materials exhibit a rich variety in output
depending on the frequency and/or the choice of input pins.

A more detailed view is obtained when output complexity
is plotted against input complexity (Figure 9). In these plots,
it becomes clear that the input complexity Ci increases almost
linearly with the number of input signals. Output complexity,
however, saturates quickly above 3-4 input signals. In other

words, above this level the added complexity from the input
signal is not observed at the output.

Again the richness of output complexity can be observed.
The output signal is generally less complex than the input
signal, which indicates that the material acts as a filter or stable
attractor. However, there are situations where the complexity
of the output signal exceeds that of the input signal. The input
complexity is estimated from ideal square waves, which are not
directly comparable to the signals generated by the hardware
platform. However, the estimate does give an indication that
the materials exhibit rich dynamics.

From Figures 8 and 9 it appears as if higher concentrations
of SWCNTs result in higher output complexity. Such a trend is
counter-intuitive, since as concentration increases the electrical
resistance of the material is reduced. As resistance goes
towards zero the material should act more like a wire, which
means that the input signals should pass through unaltered.
If multiple input signals are sent through a wire, the output
signal would simply be the sum of the input signals. Therefore,
it would be interesting to investigate how closely the output
signal resembles the sum of the input signals.

Figure 10 plots input vs output complexity when the input
signals are summed together before Ci is estimated. For the
material with high SWCNT concentration (B15S08, Figure
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Figure 12. Standard deviation of complexity ratio as function of input frequency for 1, 2, 4 and 8 input pins. The same frequency is applied to all input pins.
Results from four different material samples are shown.

10b) there is now a clear linear relationship between input
complexity and output complexity. In other words, this material
appears to behave much like a wire that simply sums the input
signals together in some way. Lower SWCNT concentrations,
however, display more diverse behavior as can be seen in
Figure 10a, where there is no clear linear relationship between
Ci and Co.

2) Complexity as function of one input frequency: Figure
11 shows the mean complexity ratio Cr over the range of
input frequencies applied to the four material samples. From
the plots it is evident that Cr is highly dependent on the
input frequency with spikes at certain frequencies. Complexity
appears to be fairly consistent across the four material samples,
i.e., the materials are sensitive to the same frequencies.

Applying the input frequency to more pins does not seem
to affect the mean complexity by much. However, there is a
clear reduction in complexity variation, as can be seen from
Figure 12, where standard deviation of the complexity ratio
is shown. One possible explanation is that the input signal is
effectively amplified as it is applied to more input pins.

Another trend that can be seen from the plots in Figure 12
is an inverse relationship between complexity variation and the
SWCNT concentration, i.e., more uniform output complexity
with increased SWCNT concentration. This may be due to

the fact that higher SWCNT concentration leads to a lower
electrical resistance in the material and thus more pathways
for the input signal to reach the output pin. However, one
exception can be observed for the B15S04 sample where a
higher variation is found when the frequency is applied to only
one input pin. This likely indicates that one electrode is only
partially connected to the material in this particular sample.

3) Complexity as function of two input frequencies: By
sweeping the two input frequencies applied to the material we
get a more detailed view of some of the results from the first
experiment. Figure 13 depicts complexity ratio as a heat map
where the two input frequencies are swept in the X and Y axes
and color represents complexity. The colors range from dark
purple (low complexity) to bright yellow (high complexity).
As with one input signal, the heat maps show clearly that the
complexity landscape is dependent on the selection of input
frequencies.

Figures 13a and 13b depict complexity for the same
material sample B09S12, but with different selection of input
and output pins. As can be seen, the two heat maps display
clear differences in complexity ratio, where the latter pin
configuration (13b) generally exhibits more complex output.
However, this is not always the case, as can be seen in Figures
13c and 13d, where different input locations result in quite
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(a) Material B09S12 (0.53 wt% SWCNT), input pins 3 and 8, output
pin 15
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(b) Material B09S12 (0.53 wt% SWCNT), input pins 7 and 0, output
pin 1
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(c) Material B15S08 (5.00 wt% SWCNT), input pins 12 and 11, output
pin 10

40
0

14
00

24
00

34
00

44
00

54
00

64
00

74
00

84
00

94
00

10
40

0

11
40

0

12
40

0

13
40

0

14
40

0

15
40

0

16
40

0

17
40

0

18
40

0

19
40

0

20
40

0

21
40

0

22
40

0

23
40

0

24
40

0

Frequency on input pin 10

400

1400

2400

3400

4400

5400

6400

7400

8400

9400

10400

11400

12400

13400

14400

15400

16400

17400

18400

19400

20400

21400

22400

23400

24400

F
re

qu
en

cy
on

in
pu

t
pi

n
0

Output pin 6, average over 10 runs
µ = 0.88, σ = 0.059

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

C
om

pl
ex

it
y

ra
ti

o

(d) Material B15S08 (5.00 wt% SWCNT), input pins 10 and 0, output
pin 6

Figure 13. Complexity ratio as function of two input frequencies (X and Y axes). The heat maps shows complexity ratio Cr averaged over 10 runs. Colors
range from dark purple (low complexity) to bright yellow (high complexity). Four heat maps are shown for two material samples: B09S12 (13a-13b) and

B15S08 (13c-13d). Each heat map shows complexity when input is applied to different input/output pins.
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similar complexity landscapes.

VI. CONCLUSION

The general ideas, experiments, and results presented re-
lates to dynamics performed by SWCNT and PBMA nanocom-
posites, which may be exploited by EIM. The materials and
experimental system (as presented in Section II) has shown
promising computational behavior on a variety of problems.
In this work, the behaviors are related to measurable dynamic
behavior. That is, the experiments are designed to capture dy-
namic properties of the materials as to gain an understanding of
what inherent dynamics are observable in an EIM setting. The
approach taken is to view the material, i.e., physical system,
as a hierarchical information processing device (Figure 2). At
the bottom level the physical dynamics, i.e., quantum effects
due to mechanisms of electron transmission through carbon
nanotubes, are not observable within a reasonable resource
usage. As such, the lowest level is treated only at a conceptual
level. Dynamics at the bottom level are only observed as
resulting voltages in the analogue domain. The information
available at this level is exploited to gain insight into the
electrical properties of the material when exposed to dynamic
input stimuli. At the top level the material is interpreted as a
discrete dynamical system. However, the observable dynamics
at this discrete level is a result of all the underlying physics.

As stated by Miller et al. [3]: ”...exploit the intrinsic
properties of materials, or “computational mediums”, to do
computation, where neither the structure nor computational
properties of the material needs to be known in advance”.
The statement may indicate that any material can be looked
at as a black-box. However, insight into what properties are
available for evolution provides knowledge on how to construct
a successful EIM system. Our findings show that the materials
exhibit rich dynamical properties observable at the analogue
level. Figure 7 shows the behavior at an (close to) analogue
time and voltage scale. The properties of these behaviors are
available for exploitation by evolution, even if not explicitly
controllable from the top discrete digital domain.

At the top level, the abstract measurements of complexity
shows how such a measurement can indicate what computa-
tional problems the EIM system may handle. Especially, the
experimental results from Figure 13 show that the materials
tested include behavior found in classifier systems, such as
Thompson’s frequency discriminator [5] (generally a trend of
reduced complexity as illustrated in Figure 13d). From the
same experiment, Figure 13b shows an increase in complexity
generated by the dynamics of the material. A clear indication
of a system which has more internal (observable) states than
of the input data.

Our results also reveal several specific properties of the
SWCNT materials used. In particular, as the number of input
signals grows, a saturation of output complexity is reached.
From an EIM perspective this is interesting, since it im-
plies that information is filtered when many input signals
are applied. The results also show a wide variety in output
complexity depending on input frequency and selection of
input/output pins. An indication that the materials are capable
of many different modes of operation.
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