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Abstract—With our world witnessing critical systemic changes, 
we argue for a deeper understanding of what fundamentally 
constitutes and leads to critical system changes, and how the 
system can be resilient, i.e., persist in, adapt to, or transform 
from dramatically changing circumstances. We position our 
argument with long-standing theories on complexity, self-
organization, criticality, chaos, and transformation, which are 
emergent properties shared by natural and physical complex 
systems for evolution and collapse. We further argue that there 
are system regimes that, although normally denote impending 
peril or eventual collapse, could actually push the system 
positively to be poised for resilience. In light of resilient 
systems, criticality and chaos can actually be leveraged by the 
system to promote adaptation or transformation that can lead 
to sustainability. Furthermore, our extensive simulation of 
complex adaptive system behaviors suggests that advantageous 
and deleterious system regimes can be predicted through 
architectural and empirical indicators. We framed our 
arguments in a two-fold complex systems resilience framework, 
i.e., with a meta-theory that integrates theories on complex 
system changes, and a machine-intelligent modeling task to 
infer from data the contextual behaviors of a resilient system.  

Keywords- complex adaptive systems; intelligent systems; 
systems resilience. 

I.  INTRODUCTION 
We argued in [1] that we need to deepen our analysis and 

understanding of what makes a system resilient through a 
deeper understanding of what constitutes and leads to 
systemic changes, and how the system can be resilient 
through changes that are undesirable. Our world has been 
experiencing both slow and fast critical systemic changes on 
multiple levels and scales. On a global scale, for instance, 
Rockström and his colleagues [2] have argued that there are 
significant shifts happening in extremely important earth 
biophysical processes (e.g., climate change, freshwater and 
land uses, ozone depletion, and biodiversity loss), but all 
towards criticality. Some environmental scientists have been 
pointing at human activities as expediting what are 
supposedly naturally slow processes; hence, the debate on 
whether we have arrived at the Anthropocene [3]. Systemic 
changes also happen in the social realm when the existence 
of communities is significantly altered due to unprecedented 
massive devastations in terms of human lives, livelihoods 
and infrastructures brought about by natural hazards, such as 

Katrina of 2005, the Haiti earthquake of 2010, the triple 
disaster of 2011 in Tōhoku, and Haiyan of 2013, all of which 
brought significant human and economic losses [1]. 
Communities are not only evacuated, even worse, uprooted 
permanently as the natural environment and physical 
infrastructures that once supported their existence are 
completely destroyed. But make no mistake; it is not that our 
reality consists mostly of forgettable events marked by only 
a handful of massive devastations, but rather we hear daily 
the occurrence of accidents in land, air or sea, oil, chemical 
and radiation spills and leaks, terrorist attacks, spread of 
viruses, and most recently, the migration of millions of 
escapees and refugees crossing international borders to avoid 
wars, but only to find themselves enclosed by humanitarian 
crises. Such events can only compel our systems to carry out 
dramatic and novel adaptations in order for humanity to 
survive and sustain its existence. In the midst of critical 
systemic changes, our world and life systems should be 
resilient, i.e., they are able to withstand even large 
perturbations and dramatically changing circumstances and 
preserve their core purpose and integrity [4], and embrace 
change once transformation due to extreme perturbation is 
inevitable [5]. Otherwise, our systems would fail to provide 
the expected conditions for life to persist. 

In [1], we positioned our arguments to further understand 
systemic changes with long-standing theories on complexity, 
self-organization, criticality, chaos, and transformation, all of 
which are interesting emergent properties shared by complex 
systems, and have been used to explain the evolution of 
complex adaptive systems (e.g., biological, natural, and 
socio-ecological [6]-[11]), computation by physical systems 
[12]-[14], and the collapse of social systems [15]-[18]. We 
discussed in detail our framework, supporting concepts, 
simulation results, and analyses. What is significantly 
missing, however, is further elucidation as to which aspects 
of systemic changes can actually push the system positively 
to be poised for resilience. We also need to explain further 
how these advantageous systemic changes can manifest 
themselves through architectural and empirical indicators. 
We extend our discussions in [1] to address these two issues. 

Our paper is structured as follows. We discuss in Section 
II the Campbellian realistic basis, as well as the real-world 
application, of our complex systems resilience framework. 
Our framework is two-fold, i.e., with a meta-theory that 
integrates long-standing foundational theories of systemic 
change, and a two-part machine-intelligent computational 
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modeling, specifically, using network analysis and machine 
learning algorithms, to realize our meta-theory. We detail our 
meta-theory in Section III and highlight in Section IV how 
the different aspects of the meta-theory relate to how the 
system is poised for resilience. We then discuss in length our 
machine-intelligent modeling approach and simulation 
results in Section V, and end that section with the seemingly 
insurmountable challenges that our approach would face in 
the future. We then conclude in Section VI. 

II. OUR COMPLEX SYSTEMS RESILIENCE FRAMEWORK 

A. Campbellian Realism – Theoretical Basis 
Donald Campbell, together with scientific realists, allied 

with the semantic conception theorists to replace the 
syntactic or axiomatic basis of theory, in Figure 1a, with its 
semantic conception using a theory-model link, in Figure 1b, 
wherein the axiom may or may not be necessary (indicated 
by the broken arrow from the axiomatic base in Figure 1b) 
[19]. This important aspect of Campbellian realism (other 
aspects are elucidated in [20]) urges scientists to coevolve 
the development of theory and model (as indicated by the 
blue bidirectional arrows in Figure 1b). Figure 1c shows our 
framework that conforms to Campbellian realism and the 
thrust of the semantic conception. 
 

 
Figure 1.  Conceptions of Axiom-Theory-Model-Phenomena relationship 
from the (a) axiomatic and (b) semantic bases [19], and (c) our linking that 
conforms to the thrust of the semantic conception. 

We started with the Campbellian realism concept to point 
out that, following Campbellian realism, although the 
component theories of our meta-theory may have axiomatic 
bases, our meta-theory has no accompanying axiom. What 
will propel our meta-theory to becoming realistically 
grounded, however, is the intelligent modeling constantly 
updating it. Secondly, we also point out that our elucidation 
in Section III of the meta-theory, and the references that 
accompany our elucidation, would attest to the fact that the 
individual theories that comprise our meta-theory are neither 
from a vacuum nor just mere speculations as they are evident 
in physics, ecology, biology, or system dynamics. What we 

are putting for consideration, however, is a theory of how 
these theories are related that characterizes the resilience of a 
complex system. We integrated essential concepts of these 
theories in varying grains of analyses and view this 
integration as a meta-theory. Lastly, while the idea of 
Campbellian realism is to derive models manually, our 
modeling hinges on automatic and incremental knowledge 
inference using machine learning, hence the machine-
intelligent modeling. 

By starting with a meta-theory as background knowledge 
to guide our modeling, we avoid scattered and loosely 
knitted paradigms. Complementary, any truth present in the 
inferred models that is not accommodated in the meta-theory 
shall correct the flaw in the meta-theory. Our meta-theory 
and machine-intelligent models can therefore evolve together 
with increasing “predictive isomorphism” [19, p.7] to 
accurately represent the phenomena that are endogenous and 
exogenous to the system. We believe that this mutual 
reinforcing of meta-theory and intelligent modeling to 
automatically characterize the contextual interaction 
behaviors of a resilient system is novel and is not found in 
the more established frameworks, such as the Adaptive 
Cycle [9], Self-organized Criticality [8], and Dual-Phase 
Evolution [11]. 

Our machine-intelligent modeling consists of two parts, 
namely, network analysis and machine learning. Network 
theory concerns itself with the order and patterns that emerge 
from the self-organization of complex systems than with 
elucidating the underlying mechanisms by finding simplified 
mathematical engines [21]. The intractable nature of 
complex adaptive system behavior significantly prohibits the 
application of mathematical formulation since it would only 
result to futility, e.g., several researchers have addressed the 
fact that the formal models used to study the resilience of 
socio-ecological systems do not explicitly include the 
internal structural characteristics of these systems that are in 
constant interaction [22]-[24]. The tendency of formal 
models is to abstract many of the system’s internal workings 
[25]. Furthermore, network theory concerns itself with 
system phase transitions wherein the processes of adaptation 
and transformation are possible [21].  

We employ machine learning to automatically discover 
hidden relational rules that can describe the emergent system 
behaviors that are indicative of resilience. Machine learning 
algorithms can detect hidden behavior patterns in the data, 
which the system can use to understand its resilience 
capability and adjust its behavior accordingly. Our 
framework is data-centric as opposed to using formal 
verifications. Again, we can argue that formal or 
mathematical verification does not always guarantee reality 
and is not absolutely reliable. It can even fall short given the 
computational intractability of complex systems. The 
intractability of a complex system state space leads to issues 
of big data, which is where machine-learning inference 
becomes viable. Furthermore, and again as above, formal 
models tend to abstract much of the realistic nonlinear and 
stochastic intricacies of the system’s internal workings [25]. 
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Figure 2.  Our entire complex systems resilience modeling architecture, which includes our two-fold framework. 

B. Application of the Framework 
When we speak of complex system properties, we speak 

of system-wide behaviors emerging from the interaction and 
interdependencies of diverse system components. To be 
more concrete, our long-term objective is to model the 
complex hyper-connections of our social, infrastructure, 
environmental and technological systems, as shown at the 
right side of Figure 2, where system components, which can 
be composite systems in themselves [26][27], are intricately 
connected and may display extreme dependencies. This 
complex system-of-systems contains continuous flow of 
information, energy, capital, and people, among other 
resources. The resilience of any component will critically 
depend on its place in the system and how it, and the entire 
complex system, can withstand perturbations. 

The meta-theory can be viewed as by-product of 
integrated transdisciplinary perceptions of what characterizes 
complex systems resilience. Carpenter et al. [28] suggest that 
to account for uncertainties in complex systems, we must 
consider a wide variety of sources of knowledge and 
stimulate a diversity of models. They also suggest that the 
tendency to ignore the non-computable aspects of complex 
systems can be countered by considering a wide range of 
viewpoints and encouraging transparency with regard to 
conflicting perspectives. They emphasized that there are 
instances where expert knowledge may not suffice since they 
can demonstrate narrow and domain-dependent practices. 
They went on to provide evidences where the perceptions of 
local people, who are experience-filled individuals, led to 
breakthroughs. Knowledge engineering approaches can be 
used to build and maintain knowledge-based systems that 
capture relevant contributions based on expertise and 
experience. We can also develop knowledge representation, 
extraction, inference and integration technologies that can 
infer relationships that exist among knowledge from largely 
varying domains and can synthesize individualized, micro-
level, and domain-dependent knowledge towards contextual 

systemic knowledge that can lead to actionable information 
for resilience. Such actionable information, for example, can 
be in the form of a repository of evidences of what works 
(predictive) and may work (innovative) in a given situation 
(e.g., disaster management). 

To gather large amount of data to model the complex 
system-of-systems, ubiquitous smart and interacting daily-
living objects can offer a wide range of possibilities [26][29]. 
The World Wide Web is an open world and quintessential 
platform for us to share and receive information of various 
kinds. Web contents are created and duplicated rapidly and 
continuously. Crawlers or scrapers can be written to extract 
data stored deep in the Web. Our mobile devices have 
become ubiquitous in our lives that we rely on them for 
communication and information, keeping them within reach 
so that we can check them, at times unconsciously, every 
few minutes. But our mobile devices also have powerful 
sensing, computing and communication capabilities that 
allow us to log our daily activities, do web searches and 
online transactions, and interact on social media platforms 
and micro-blogging sites, among others. Ubiquitous and 
interacting ambient sensors [26][29] can gather large 
volumes of human- (e.g., individual mobility, physiology 
and emotion signals, crowd or mass movements, traffic 
patterns) and environment-related (e.g., climate and weather 
changes, changing landscapes and topographies, light and 
CO2 emissions) data. Tiny interacting embedded systems 
could also play a valuable role in protecting the environment 
from hazards, e.g., sensors so minute, as the size of dust 
particles, but can detect the dispersion of oil spills or forest 
fires [26]. There are also the massively multiplayer online 
games (MMOGs) that have become unprecedented tools to 
create theories and models of individual and group social and 
behavioral dynamics [30], which might shed some light on 
human resilience behavior. There are data that the public 
sector produces, which include geographical information, 
statistics, environmental data, power and energy grids, health 
and education, water and sanitation, and transport. There are 
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the systematically acquired and recorded census data about 
households and the services made available to them (e.g., 
health and medical, education, water, garbage or waste 
disposal, electricity, evacuation, and daily living-related 
programs). Enterprises (corporations, small businesses, non-
profit institutions, government bodies, and possibly all kinds 
of organizations) may collect billions of real-time data points 
about products, resources, services, and their stakeholders, 
which can provide insights on collective perceptions and 
behaviors, as well as resource and service utilizations. And 
lastly, there is the Internet of Things (IoT) that extends the 
reach of the Internet beyond our desktops, mobile phones 
and tablets to a plethora of devices and everyday things (e.g., 
wearable and ambient sensors, CCTVs, thermostats, electric 
power and water usage monitors, etc.). Data can be made 
available online and publicly through the IoT, and therefore 
democratized, i.e., accessed freely for the common good. 
Hence, our digital universe is ever expanding as millions of 
data points are continuously created by and acquired from 
heterogeneous sources. Machine intelligence can be used to 
infer from these massive data points accurate informative 
models for situation analysis and awareness, decision-
making and response, and component feedback. All these to 
aid the complex system sense and shape the contexts in 
which it is embedded. 

Heterogeneous data related to humans, infrastructures, 
environments, and technologies, and their interactions will 
often be reported or obtained from a multiplicity of sources, 
each varying in representation, granularity, objective, and 
scope. Preprocessing techniques can be used to organize, 
align, and associate input data with context elements. With 
feature selection, it can also reveal which features can 
improve concept recognition, generalization and analysis. 
Lastly, data fusion can address the challenges that arise when 
heterogeneous data from independent sources are combined.  

All the pertinent features, contexts and interactions 
inferred in the preprocessing stage will be used in our two-
part machine-intelligent modeling. First, information will be 
organized, represented and analyzed as a network. Paperin et 
al. [11] provide an excellent survey of previous works that 
demonstrated how complex systems are isomorphic to 
networks and how many complex properties emerge from 
network structure rather than from individual constituents. 
One may think of the human body and brain, local 
community, virtual community of socially related digital 
natives, banking systems, electric power grid, and cyber-
physical systems as networks. Furthermore, the science of 
complexity is concerned with the dynamical properties of 
composite, nonlinear and network feedback systems 
(citations in [31]). Second, using as inputs the network and 
resilience properties of the system, machine learning will be 
used to infer the relational rules of system contextual 
interaction behaviors that define its adaptive and 
transformative walks and therefore define its resilience. Our 
modeling will capture how the complex system’s ability to 
vary, adjust or modify the connectivity, dynamism, topology, 
and linkage of its components (endogenous features), and its 
capacity to withstand perturbations (exogenous feature), can 
dictate its resilience. 

III. OUR META-THEORY  
Figure 3 shows our meta-theory that cohesively puts 

together complexity, self-organization, critical transition, 
chaos, resilience, and network theories. While we adopt the 
terms order, critical, and chaos from dynamical systems 
theory [32], to persist, adapt, and transform is resilience 
thinking [33]-[35]. Scheffer et al. [36] proposed integrating 
the architectural, i.e., the underlying network configuration, 
and empirical indicators of system phase transition. They 
suggested that since these two approaches have been largely 
segregated, a framework that can smartly unify them could 
greatly enhance the capacity to anticipate critical transitions. 
Although Scheffer’s primary concern in [36] is the critical 
transition, we adapt these two approaches to observe 
complex system behaviors. While the top layer of our meta-
theory specifies the empirical indicators, the bottom layer 
specifies the network configuration-based indicators. 

A complex system can be highly composite, i.e., it can 
consist of very large numbers of diverse components, which 
can also be composites in themselves, and these components 
are mutually interacting with each other. Their repeated 
interactions over time eventually leads to a rich, collective 
behavior, which in turn, becomes a feedback to the 
individual components [37]. Self-organization holds that 
structures, functions, and associations emerge from the 
interactions between system components and their contexts. 
For Levy [21], the most appealing and persuading aspect of 
complexity theory is its promise to elucidate how a system 
can learn more effectively and spontaneously to self-
organize into well structured, sophisticated forms to better fit 
the constraints of its environment. 

The complex system evolution cycle in our meta-theory 
involves three regimes, namely, order, critical, and chaos. 
The second ordered regime, however, could be novel in the 
sense that it required the system to transform when 
adaptation back to the previous state was no longer 
attainable. The moving line at the top layer indicates system 
“fitness”, i.e., the changing state of the system in terms of its 
capacity to satisfy constraints, efficiency and effectiveness in 
performing tasks, response rate (time to respond after 
experiencing the stimuli), returns on its invested resources or 
capital, and/or its level of control. The fitness curve may 
indicate growth (e.g., exponential, i.e., an initial quantity of 
something starts to grow and the rate of growth increases, or 
s-shaped, i.e., an initial exponential growth is followed by a 
leveling off), degression (gradual) or quick descent, or 
oscillation where the fitness fluctuates around some level. 

This section discusses in detail the various aspects of our 
meta-theory. We want to believe that through our meta-
theory we can view a complex system as open, i.e., always in 
the process of change and actively integrating from, and 
disseminating new information to, changing contexts, as well 
as open-ended, i.e., it has the potential to continuously 
evolve, and evolve ways of understanding and manipulating 
the contexts (endogenous and exogenous) that embed it [38]. 
Both characteristics are vital for the resilience of the 
complex system. 
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Figure 3.  We integrate in varying grains of analyses how the different theories are plausibly related – hence,  a meta-theory. 

A. Order 
It is in the ordered regime that dependencies and 

correlations begin to emerge in the structural and logical 
connections of the system components. The components 
become coupled and coordinated. Eventually, the system will 
settle into a regular behavior, i.e., a state of equilibrium. It is 
also possible for a system to have multiple feasible 
equilibriums wherein it shifts between equilibriums. Its 
components have high degrees of freedom to interact with 
each other that it can have many possible trajectories [39].  

The system will always attempt to establish equilibrium 
each time it is perturbed (as illustrated by the dents along the 
fitness line at the top layer) in order to persist in its ordered 
state. Perturbations are assumed to be largely, albeit not 
totally, identifiable and unambiguous. When it encounters a 
perturbation, it will aim to resume normal operations as soon 
as possible. The system will always control and manage 
change, with its agent components acting in accordance to an 
accepted set of rules. The system will act in predictable ways, 
either executing once again previous behaviors or selecting 
from its known limited range of behaviors with anticipated 
or foreseeable results [31]. The system will operate in a 
negative feedback manner, with the appropriate rules, to 
reduce fluctuations and maintain its regular predictable 
behaviors [31]. Hence, its success is measured in terms of 
stability, regularity and predictability [40].  

The ordered regime is also characterized by increasing 
system efficiency and optimization of processes. The system 
will carry out its tasks efficiently as possible according to the 
well-defined structural and logical connections of its 
components and policies and procedures it strictly adheres to. 
The system’s self-regulation becomes optimized specifically 

to the set of perturbations and responses it already became 
familiar with. 

B. Critical 
In highly coupled systems, the iterative recovery from 

small-scale perturbations give the illusion of resilience when 
in fact the system is transitioning to a critical change and 
setting itself up for an unwanted collapse [36]. The coupling 
among components has become tight to the point where the 
order of the system becomes highly dependent to the strong 
coordination of its parts. All this build-up, however, is like 
an accident in the wings waiting to happen. This rigid tight 
coupling makes the impact of any perturbation to also 
increase, regardless of whether its magnitude is small or 
large. One situation, even though stirred by a small 
perturbation, can easily become critical and can trigger other 
events in a cascading fashion such that the different 
situations within the propagation enhance themselves to 
criticality. As one of the bedrocks of complexity science, 
complex adaptive systems have the tendency to move 
towards criticality when provoked with complexity [40]. 

As a real world example, Lewis [41] cited several 
reasons why the electrical power grid can self-organize to 
criticality due to heightened complexity. These include the 
increase of components’ reliability that consequently 
increases the cascade of failures and its consequences, 
optimization of the grid by power stations and centralizing 
substations, tight coupling of hubs in telecommunications 
networks, and the simultaneous occurrence of stable load 
increase as more people consume more electricity, electricity 
providers maximize profit, and maintenance procedures 
become more efficient. Also, when Levinthal [42] applied 
random Boolean networks to simulate the adaptation of 
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business organizations to their environment, he found that 
tightly coupled firms find it hard to adjust to changes. 

It is also the case, however, that one of the profound 
insights from the science of complexity is that this regime – 
that is poised between stasis, where there is no or regular 
changes, and chaos, where changes are irregular – holds 
significant paradoxes. It is neither stable nor unstable, but 
both at the same time [31]. It is both optimal and fragile [39]. 
It may herald an unwanted collapse and become a harbinger 
of positive change [36]. Furthermore, while it may signal 
hidden fragilities [43], it is also theorized to facilitate 
complex computations, maximize information storage and 
flow, and be a natural target for selection because of its 
hidden characteristics to adapt [13][6][14].  

C. Chaos 
Comes a point when complexity can no longer be 

sustained, persistence is no longer possible, and predictive 
adaptations are not anymore sufficient. Eventually, the 
system converges to a state that makes itself less adaptive to 
perturbations and moves to chaos. The building up of 
complexity becomes a constraint to adaptation and 
eventually leads to chaos.  

Chaos denotes a state of non-equilibrium, thus, instability, 
and turbulent, aperiodic changes that lead to crisis, disorder, 
unpredictable outcomes, or, if on a large scale, to collapse. 
The notion of chaos has been used interchangeably, or in 
association with, several other concepts, such as non-linear 
systems models and theories on disorder, dynamical 
complexity, catastrophe, bifurcation, discontinuity, and 
dialectical dynamic, among others (refer to [44]). 

When in chaos, the system would need larger adaptations 
if only to survive. The system must learn how to minimize 
the negative effect of chaos and maximize its positive 
properties, which is a compelling and yet to be fully 
addressed key problem of social and natural scientists [44]. 

D. New Ordered Regime through Transformation 
When chaos happens, the once tight connections and 

rigid coordination are broken. This then becomes an 
opportunity for the system to try other, perhaps novel, 
connections that can lead to positive transformation. Systems 
may undergo a transformational process, as it is provoked by 
instabilities, potentially leading to an emergent order that is 
different from its previous ordered state [31]. Systems that 
demonstrate a transformative capacity can generate novel 
ways of operating or novel systemic associations and can 
recover from extreme perturbations [5]. Such systems learn 
to embrace change [5], and instead of bouncing back to 
specification that has been proved vulnerable and led to 
chaos, they bounce forward to a new form [45]. 

IV. META-THEORIZING A COMPLEX SYSTEM THAT IS 
POISED FOR RESILIENCE 

We posit in this section that in the critical and chaotic 
regimes the system can be poised for resilience. We also 
discuss here the different architectural and empirical 
indicators of system changes. 

A. Critical Transition that is Poised for Resilience 
1) Intituition Behind the Concept 

The intuition is both appealing and intriguing: systems 
that are highly stable are static and those that are chaotic are 
too unstable to coalesce, and thus it is only at the border 
between these two behaviors that the system can perform 
productive activities [46][40]. Another bedrock principle of 
complexity science is that complex adaptive systems are at 
risk when in equilibrium, and that this stasis is a precursor to 
the system’s death [40]. In cybernetics lingua, competing 
pressures must perturb the system far away from its normal 
arrangements before it can significantly evolve to a new 
form. This state of being far away from equilibrium but not 
in chaos has been called by several names, including the 
edge of chaos [46] or instability [31]. This edge is not sharp 
and unambiguous, but rather, it is like overlapped coatings 
with bidirectional gradation between order and chaos. 

According to Miller and Page, “In its most grand 
incarnation, the edge of chaos captures the essence of all 
interesting adaptive systems as they evolve to this boundary 
between stable order and unstable chaos.” [46, p. 129] The 
proponents of this condition think of it as holding “the secret 
of everything from learning in the brain to the evolution of 
life” [21, p. 73]. Similarly, Pascale stated that as systems 
continue to self-organize, they “all flourish in a boundary 
between rigidity and randomness and all occasionally 
forming large structures through the clash of natural 
accommodation and competition.” [40, p. 3] For instance, 
Krotov et al. [47] hold evidence to suggest morphogenesis at 
criticality in the genetic network of early Drosophila embryo. 

Stacey proposed that at the critical transition the 
outcomes can be indeterminate, or what he calls bounded 
instability [31]. His notion is that although the system 
behavior cannot be predicted over the long-term, hence the 
presence of instability, there is qualitative structure in the 
system’s behavior that is recognizable and that short-term 
outcomes can be predicted, hence bounded. He stated that it 
is in the bounded instability that the complex system 
becomes changeable and its behavior patterns are in 
unpredictable variety. Stacey also stated that the agents are 
not constrained by their rules, schemas and scripts, but by 
the freedom they have to choose their actions within these 
constraints that will have major consequences for the system. 
Similar to the edge of chaos, in bounded instability, a system 
is far easier to adapt because small actions by any of the 
agents can escalate into major system outcomes [31]. 

2) Indicators of Critical Transition 
A broad range of research has looked at connectivity and 

variation (from homogeneous to heterogeneous) of network 
components as what constitute the architecture of fragility 
[36]. Variation refers to the actually existing differences 
among individual system components in terms of type, 
structure or function [48]. According to Rickels et al. [37], a 
system is at critical point when the degree of connectivity 
and dependence among the components is extremely high. 
For instance, in the investigation of Krotov and his 
colleagues, criticality manifested itself as patterns of 
correlations in gene activity in remote locations [47][49]. 
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The system enters criticality as its components become more 
and more coupled. As a consequence, a small perturbation in 
the system can lead to massive systemic changes. Scheffer et 
al. [36] stated that a network with low connectivity and 
heterogeneous components has greater adaptive capacity that 
enables it to change gradually, as opposed to abruptly, in 
response to perturbations. At the same time, a network with 
tightening couplings and heightening homogeneity of its 
components can only manage to resist change up until a 
certain threshold where critical transition is reached. 
According to Page [10], the amount of variation is low at 
stasis and high when the system is in flux. Page pointed out 
both the obvious and deep insight to this: it is obvious that 
there is more variation when the system has yet to settle 
down; however, it also means that there is more variation in 
a system that is about to transition since the used to be stable 
configurations found difficulty holding together. 

Scheffer et al. [36] explained the various empirical 
indicators of critical transition. One is critical slowing down, 
i.e., the rate at which the system bounces back from small 
perturbations becomes very slow, which makes it more 
vulnerable to be tipped more easily to another state. Critical 
slowing down can be inferred indirectly from rising variance 
and correlation (e.g., higher lag-1 autocorrelation). Another 
is flickering wherein a highly stochastic system flips to an 
alternative basin of attraction when exposed to strong 
perturbations. Rising variance is also indicative of such a 
change, as well as the multimodality of system state 
frequency distribution over a parameter range. Scheffer et al. 
also stated that while critical slowing down may point to an 
increased probability of an abrupt transition to a new 
unknown state, flickering suggests an opposite regime to 
which the system may transition into if conditions change. 

Page [10] elaborated in his book why diminishing return 
is an empirical indicator of criticality. He described 
diminishing returns as the decrease in some system 
performance measure such as efficiency, accuracy or 
robustness. For example, as Lewis pointed out, lessening of 
reactive power, transmission capacity, and information in the 
grid indicates that the grid is in a critical phase [41]. 
Furthermore, according to Dixit, the tension between 
increasing and diminishing returns would likely result to the 
self-organized criticality of economic systems [78]. 

Lastly, there is also variability as empirical indicator. 
Variability describes the potential or propensity to change 
(e.g., variability of a phenotypic trait in response to 
environmental and genetic influences) [48]. It implies rules 
that can lead to periodic or aperiodic dynamics. While 
connectivity and variation can be directly observed, 
according to Wagner and Altenberg, variability is harder to 
measure due to its “dispositional nature” [48]. They used the 
concept of solubility as akin to variability being dispositional, 
i.e., it does not describe the current state the substance is in, 
but rather the behavior that results when a substance gets in 
contact with enough solvent. In Paperin et al.’s Dual-Phase 
Evolution [11], order is described as a well-connected phase 
that is characterized by highly dense link distributions, short 
path lengths and wide-scale interactions between most 
system components – hence tight coupling, with little local 

variation and high large-scale variability. The poorly 
connected phase that is akin to chaos is quite the opposite, 
i.e., the link density is low, path lengths are long, with 
mostly within sub-network (local) interactions, and strong 
local variation but little large-scale variability.   

3) Critical Transition To Resilience 
Although there is still a lot to be done in terms of 

anticipating critical transitions, even though methods and 
approaches are already emerging, there are works that 
suggest leveraging critical transitions for the resilient walks 
of the system. For one, critical systems by nature will move 
toward, rather than away from, the precipice of collapse [41]. 
Bak et al. [8] asserted that a system collapse is inevitable 
mainly because of the internal dynamics rather than from any 
exerted exogenous force. This is in line with the classical 
approaches within evolutionary biology that view organisms 
as simply passive objects that can be controlled by internal or 
external forces, and that these forces are beyond the ability 
of the organisms to influence, let alone surmount [50]. 
Dialectics argue, however, that organisms can also be 
subjects of their own evolution [50]. Page [10] posited that 
this critical transition is not a system state, but rather, this 
border is in the space of system behaviors, i.e., the set of the 
agent’s decision rules and interaction scripts [46]. Hence, at 
the critical transition, a complex adaptive system can have 
the ability to tune its rules and scripts towards resilience (or 
vulnerability). The notion of “edge” of chaos or instability 
can be that narrow but sufficient space where the adaptive 
system has the ability to see qualitative structures and 
relations, and can predict sufficiently, even if for a bounded 
distance, and change its course for the better. The system can 
utilize both amplifying and dampening feedbacks to flip 
itself autonomously from one equilibrium to the next and not 
be pinned down to just one.  

In [36], Scheffer et al. discussed how the different 
architectural features and empirical indicators that enhance 
criticality could actually offer provisions for diagnosis and 
potential intervention. For instance, since it can be predicted 
that a network with low diversity and high connectivity is 
positioned for critical transition, the potential response could 
be to redesign the system for more gradual adaptive response 
or further strengthen the preferred state. Furthermore, as it 
can be predicted that critical slowing down can elevate 
chances of critical transition and that flickering can increase 
the probability of tipping to alternative states, in both cases, 
the system can get ready for the anticipated change, lessen 
the risk of unwanted transition, or leverage the opportunity 
to promote the desired transition since the system is more 
open to change. Again, on the upside, a tightly coupled 
system makes it possible for tiny interventions, perhaps 
undetectable and hard to quantify, to escalate into major 
qualitative interventions that can alter the course of the 
system’s life [31]. For instance, in a biological perspective, 
this is akin to a protein or a neuron firing so as not to self-
organize to criticality [49]. 

Lewis [41] provided real-world suggestions on how the 
system can “un-SOC” itself – since self-organizing criticality 
(SOC) will eventually lead to collapse, the system can 
extend its life by undoing the SOC process. In other words, 
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allow the system to loosen the connections and modularized 
or decentralized its components, and make its processes less 
efficient and suboptimal. He suggested the policy of link 
depercolation to keep SOC under control, i.e., prevent a node 
from having too many connections or thin out current links, 
or reduce the links of hubs. As Casti [18] also pointed out, 
the only realistic alternative is to loosen up the tight coupling 
of the components. Since the decoupled dynamics constrain 
stimuli locally, the entire system becomes more robust in the 
face of perturbations [11]. In the wake of a pandemic, for 
example, if a vaccine has been proved to kill the virus, high 
connectivity and interdependencies among agents will 
greatly aid the inoculation process. However, if the 
population is too massive to inoculate, or no vaccine has yet 
been discovered to cure the population, depercolation, e.g., 
by quarantine or limiting the contact of people, will be the 
next best solution [41]. Lewis also suggested reducing 
operational efficiency in different sectors, e.g., energy, 
transportation, and telecommunication, since these work 
better when they are less efficient and more decentralized. 

To end this section, we echo what Casti stated in his 
book, specifically, “sustainability is a delicate balancing act 
calling upon us to remain on the narrow path between 
organization and chaos” [18, p. 46]. The idea, therefore, is 
for the system to stay away from the steady state to remain 
flexible [21] and be close to chaos while retaining some 
degree of order. 

B. Creative Chaos that is Poised for Resilience 
1) Intituition Behind the Concept 

In an article written by M. Fisher for The Atlantic [51] is 
an articulate description of how the pre-war Japanese 
ideology transited from rigidity, to collapse, and to the 
emergence of a totally new ideology that brought about the 
reorganization of a country – a transformation that has 
affected the world even today: For many years prior to the 
end of the World War II, the then Japanese citizenry had 
been embedded in an ideology of imperialism, ultra-
nationalism, radical militarism, and international primacy. 
Such rigid ideology drove the country to a quest of imperial 
expansion, which at the beginning marked Japan’s military 
strength and dominance in the region. Towards the end, 
however, when Japan’s defeat in the international scene 
became inevitable and the devastation brought upon it was 
immeasurable, the people feared that with the rigid ideology, 
where surrender was not an option, they would be forced to 
choose death over imperial ideology. What the Emperor 
spoke in those critical moments when their survival as a 
nation hanged in the balance, however, was different. They 
were asked instead to choose the radical alternative – 
embrace the surrender towards a noble change, i.e., one of 
moral integrity, nobility of spirit, peace and international 
progress. This marked the collapse of the ideology that was 
once held unbreakable.  The accompanying suffering was 
indeed enormous (in [79]), but the result after a generation 
was a nation of renewed identity that emerged to become one 
of the great leaders of our modern economic and 
technological progress. 

When allowed to progress in complexity and rigidity, a 
system would eventually collapse. However, in an inevitable 
collapse, the system can open itself up to possibilities to 
become a new and better system, if only adaptive and not to 
maladapt in the midst of chaos. Holling describes the chaotic 
phase in ecological systems, which he refers to as the 
backloop of his Adaptive Cycle [52][9], as the sudden 
release of complexity, characterized by significant decrease 
in capital and loss of connection among parts. When this 
happens, however, the system begins to open itself up to 
novel forms, functionalities, and systemic associations [56]. 
For example, an essential part of the forest ecosystem is the 
occurrence of natural fire since it replenishes soil nutrients, 
allows new plant species to grow, and reduce pathogens and 
infestations, among others [56]. In evolution, although 
deleterious mutation is assumed to inject harm and impede 
adaptive evolution, it also has the potential to evolve 
complex new functions (refer to [53]). One example in the 
technology sector, albeit not with a happy ending, is Kodak, 
as recounted in [54]: From being a worldwide market leader 
in film photography in the 80s, Kodak collapsed to 
bankruptcy in 2012. The notion that Kodak collapsed 
because it missed the rise of digital technology is untrue – 
the engineers at Kodak have already developed the 
technology in the 70s. Rather, the management was deceived 
by its very comfortable position and large profit margins in 
the film market that it did not want to take the risk of 
investing in the new products despite the various internal red 
flags. When Kodak eventually turned to digital photography, 
it was not anymore an open space for innovation since 
competitors had already filled the space. Hence, when chaos 
ensued, there was no room for Kodak to transform; 
consequently, its total collapse. Kodak failed to rise beyond 
the innovator’s dilemma [41][80] – it stubbornly followed its 
star technology to its peak (and eventual demise) instead of 
risking everything for the next big thing. 

2) From Chaos to Resilience 
Schumpeter’s creative destruction theory [55] states that 

a continuous uninterrupted unpleasant transformation from 
within that destroys the old one also incessantly creates a 
new one. If progress means turmoil, then why not accelerate 
the turmoil if only to also accelerate getting to the new and 
better progress. Similarly, in [56] we suggested the strategy 
of deliberately injecting or inducing regulated and controlled 
shocks into the system as complexity and rigidity among its 
components begin to build up: This is in a way forcing the 
system to transition itself to chaos in order for novelty to 
emerge. The motivating principle behind this strategy is to 
let the system embrace the fact of an inevitable failure and 
learn how to deal with it swiftly once it happens. It is more 
effective to create situations that can force latent systemic 
problems to surface and become visible, rather than design 
the system not to fail, which, paradoxically, only makes it 
less resilient. This strategy will certainly cause disorder and 
crisis in the system, to say the least, but such will last 
relatively shorter than if chaos was actually not staged. 
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Figure 4.  For a complex system to be poised for resilience, it must be able to promote its own desired transition. 

C. System Being Self-Poised for Resilience 
Merriam-Webster dictionary defines “poised” as “in a 

state, place, or situation that is between two different or 
opposite things”, as well as being “ready or prepared for 
something”. The critical regime is poised between order and 
chaos marked with complexity and decreased fitness.  And 
yet, this complexity does not destroy the ability of the system 
to self-organize. With optimal connectivity and coordination 
they have enough stability to store and propagate 
information, as well as the fluidity to productively adapt 
based on the received information. At the same time, a 
system in the state of chaos has lost most much of its stored 
information and connectivity, and yet, has become ready to 
create new associations and transmit improvised information. 

Given the above, a system that has the ability to detect 
through architectural and empirical indicators the critical 
state can promote the desired transition by (a) extending the 
edge of productivity through necessary adaptations that 
involve regulated self-induced perturbations (e.g., 
manageable reorganization or reconfigurations), or (b) 
reducing the risk of unwanted transition by imposing upon 
itself the self-induced creative destruction that can lead to 
shorter chaos and groundbreaking innovation. Figure 4 
shows our meta-theory for a complex adaptive system’s self-
imposed transitions to achieve resilience. Notice how 
criticality is extended while chaos is shortened. 

V. MACHINE-INTELLIGENT MODELING  

A. Simulation of a Complex System  and its Properties 
Although our aim is to model a real-world complex 

adaptive system and its intricate properties, as per Figure 2, 
our major concern at this time, however, is that we have yet 
to embark on this endeavor. In order to demonstrate our 
concepts, we used random Boolean networks (RBNs) to 
simulate the properties of a complex adaptive system. RBNs 
have been used as models of large-scale complex systems 
[57][58]. These are idealizations of complex systems where 

systemic elements evolve [59]. RBNs are general models 
that can be used to explore theories of evolution or even alter 
rugged adaptive landscapes [60]. Furthermore, although 
RBNs were originally introduced as simplified models of 
gene regulation networks [61][6][7], they gained 
multidisciplinary interests since they contribute to the 
understanding of underlying mechanisms of complex 
systems even though their dynamic rules are simple [62], and 
because their generality surpassed the purpose for which 
they were originally designed [20][62]-[64]. By using RBNs, 
we were able to analyze complex system behaviors and 
describe the viability of our framework. 

A RBN consists of N Boolean (1 being on/active and 0 as 
off/inactive) nodes, each linked randomly by K connections. 
A RBN can be viewed as consisting of N automata with only 
two states available per automaton [65]. N represents the 
number of significant components comprising an adapting 
entity, generally, the number of agents attempting to achieve 
higher fitness [20]. We can view K conceptually as affecting 
the mutual influence among nodes in an information network 
[62] since a directed edge <x, y> means that agent y can 
obtain information from, and can be influenced by, agent x. 
In this way, K is proportional to the quantity of information 
available to the agent [62]. The Boolean values may 
represent, for example, contrasting views, beliefs and 
opinions, or alternatives in decision-making (e.g., buying or 
selling a stock [7], cooperating with the community or not).  
The state of any node at time t+1 depends on the states of its 
K inputs at time t by means of a Boolean function that maps 
each of the 2K possible input combinations to binary output 
states. The randomly generated Boolean functions can be 
represented as lookup tables that represent all possible 2K 
combinations of input states.  

Given N and K, there can be 2N network states, (N!/(N-
K)!)N possible connectivity arrangements, (22K

)N possible N 
Boolean function combinations, and ((22KN!)/(N-K)!)N RBNs 
[66]. This is not counting the many possible updating 
schemes [60], and possibly extending to have nodes with 
multiple states [67]. With this huge number of possibilities, it 
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is therefore possible to explore with RBNs the various 
properties of even large-scale complex systems and their 
many possible contexts [58].  

As RBNs are systems with information flowing across 
parts, network theory can be used to define the properties 
that characterize the configuration of a RBN. These 
properties can be viewed as the controlling variables that the 
system can modify or adjust to demonstrate its resilient 
capabilities. In a plausible sense, these can also be viewed as 
the simulated outputs of the pre-processing stage of our 
framework (as per Figure 2) that led to the configuration of 
the network. The parameters are as follows: 
• Connectivity (K). This refers to the maximum or average 

number of nodes in the input transition function of a 
network component. As we increase K, nodes in the 
network become more connected or tightly coupled, and 
more inputs affect the transition of a node.  

• Dynamism (p). A Boolean function computes the next 
state of a node depending on the current state of its K 
inputs subject to a probability p of producing 1, and a 
probability of 1-p of producing 0, in the last column of the 
lookup table [81][60]. If p=1 or p=0, then there is no 
actual dynamics, hence low activity, in the network. 
However, p close to 0.5 gives a high dynamical activity 
since there is no bias as to how the outputs should be [60].  

• Topology (or link distribution). A RBN may have a fixed 
topology, i.e., all transition functions of the network 
depend on exactly K inputs, or a homogeneous topology, 
i.e., there is an average K inputs per node. Another type of 
topology is scale-free, where the probability distribution 
of node degree obeys a power law. In an information 
network, a scale-free property means that there is a huge 
heterogeneity of information existing [62], hence, there is 
more variation in the network. Following [68], the number 
of inputs for the scale-free topology is drawn from a Zeta 
distribution where most nodes will have few inputs, while 
few nodes will have high number of inputs. The shape of 
the distribution can be adjusted using the parameter γ (we 
set initially to 2.5) – when γ is small/large, the number of 
inputs potentially increases/decreases. 

• Linkage (or link regularity). The linkage of a RBN can be 
uniform or lattice. If the linkage is uniform, then the 
actual input nodes are drawn uniformly at random from 
the total input nodes. Following [38], if the linkage is 
lattice, only input nodes from the neighborhood (i-
latticei*ki):(i+latticei*ki) are taken, where i is the position 
of the node in the RBN and latticei is its lattice dimension 
whereby nodes are dependent to those in the direct 
neighborhood. A wider lattice dimension can lead to a 
RBN with highly interdependent nodes. 
While the above properties indicate the architecture that 

underlies system regimes, we add another property that 
serves as empirical indicator of upcoming transition. We 
measured the robustness of the system when faced with 
perturbations. Note as well that the difference in the number 
of Boolean functions not only contributes to the variation in 
variable transitions, but also influences the variability of 
information flow in the network. Hence, we combined both 
architectural and empirical indicators of system regimes. 

Using the BoolNet package [82] for the R programming 
language for statistical computing, we applied the program 
of Müssel et al. as outlined in their BoolNet vignette [68] as 
follows. A perturbation is achieved through random 
permutation of the output values of the transition functions, 
which although preserved the numbers of 0s and 1s, might 
have completely altered the transition functions. For each 
simulation, a total of 1,000 perturbed copies of the network 
were created, and the occurrences of the original attractors in 
the perturbed copies were counted. Attractors are the stable 
states to which transitions from all states in a RBN 
eventually lead. The robustness, R, is then computed as the 
percentage of occurrences of the original attractors. 

It is very important to realize that robustness here is not 
resilience per se, since resilience refers to what enables a 
system, i.e., change in connectivity, dynamism, topology, 
and linkage, to preserve its core identity when faced with 
perturbations [4]. We used R to quantify the amount of RBN 
core identity that was preserved. Hence, R is an indicator or 
measure of systems resilience. 

B. Identifying the System Regimes 
We started by identifying the system regimes given the 

RBN properties we specified above. To achieve this, we 
began our simulations with a base case. Our base case is a 
“conventional” RBN, i.e., the topology is fixed and the nodes 
are updated at the same time by the individual transition 
functions assigned to each, i.e., synchronous update. With 
several conditions to check, we used for now a single value 
for N, which is 20. We computed for the robustness of 
various RBNs in a dynamism-connectivity plane, i.e., how a 
RBN with specific dynamism and connectivity values is 
robust after 1,000 different perturbations. Figure 5 shows our 
base case R-matrix in a dynamism-connectivity space where 
each component is R-value.  

 

 
Figure 5.  R-matrix that summarizes the sensitivity of various conventional 
RBNs in a dynamism-connectivity space to different perturbations. 

However, the question is where are the system regimes 
located? It is fundamental for us to know where and when 
the system is poised for resilience. To determine the 
separation of regimes, we applied two methods that are 
known for this purpose, namely, state space trajectories and 
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sensitivity to initial conditions. To implement these two 
approaches, we used the RBNLab software [83]. 

Figure 6a shows the matrix of trajectories through space 
of RBNs with different dynamism-connectivity values. Each 
cell in the matrix represents the state transitions of network 
nodes, as shown in Figure 6b, with oscillating (enclosed in 
red rectangle) and stable states. Oscillation indicates change 
in system behavior with the stable condition yet to be 
reached. A column in the cell represents the states of the 
network nodes at time t. Initial states are at the left and time 
(until 60 steps) flows to the right. Some nodes exhibit 
oscillations that quickly died out after a few steps, at times 
after only a single step, e.g., in Figure 6c, and were 
immediately followed by stable states. While other nodes 
continued to oscillate longer before reaching a stable state, 
others never reached stability, e.g., in Figure 6d, even as we 
continued the simulation for 4,500 time steps. 

 

 
Figure 6.  Trajectories of RBNs through the dynamism-connectivity space. 
Black and white colors indicate active and inactive states, respectively, 
while light blue colors indicate changing states. 

It can be observed from Figure 6a that networks can 
become overly stable at lower K values and p close to 0 or 1. 
These sparsely connected networks had very short state 
cycles and the system froze up (stable to 0 or 1) very quickly. 
It can be said that they are rigid and uninteresting [21]. At 
K=2, however, we can see that not all nodes were frozen, 
unlike those at K=1. At (p=0.7, K=2), for example, the 

network nodes continued to fluctuate between 0 and 1 and 
never reached a stable state.  

To further define this separation between regimes, we 
applied sensitivity to initial conditions as a measure of chaos 
[60][10] – if we change the initial point even by a little bit, 
the network ends up on a different path. We followed the 
approach of Gershenson [60] to measure this condition. 
Using again the RBNLab, we created an initial state I1, and 
flipped one node (changed the bit value) to have another 
state I2. We ran each initial state in the network for 4,500 
time steps to obtain the final states F1 and F2, respectively. 
We then computed separately the normalized Hamming 
distance of the initial states, as in (1), and the final states to 
obtain parameter λ, as in (2): 

H I1, I2( ) = 1
N

i1 j − i2 j
j=1

N

∑                         (1) 

λ = H F1,F2( )−H I1, I2( )                       (2) 

While a negative λ means that both initial states moved to 
the same attractor, which is indicative of a stable or ordered 
state, a positive λ, on the other hand, indicates that the 
dynamics of similar initial states diverge, which is common 
to chaotic regimes.  

Figure 7 shows the different λ values we obtained for the 
dynamism-connectivity matrix, and we can observe where 
order (in blue) and chaos (in red) are. We can also observe 
from the table of average λ per K where the critical regime is 
– the positive average λ started at K=2 (in purple), where 
there is a balanced mix of order and chaos. 

 

 
Figure 7.  Map of the different regimes based on the sensitivity of 
conventional RBNs to initial conditions. 

After applying the above two methods, we observed that 
it is at K=2 that the networks began to show signs of 
criticality. In other words, the critical regime lies mostly, 
although not entirely, at K=2. This gave us a hint as to where 
the regimes could be in our base case R-matrix in Figure 5.  

We need to emphasize that the fundamental difference of 
the method by which we derived the R-matrix in Figure 5, as 
compared to the previous two, is that each R-value is a 
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synthesis of 1,000 network perturbations, which statistically 
tells more than the cells in the previous two matrices (in 
Figures 6a and 7) that were derived using at most only two 
network variations and a single-bit perturbation. This implies 
that the separation between regimes in the R-matrix in Figure 
5 may be more pronounced. Looking at the R-matrix once 
again, we can observe how the range of R-values differed 
significantly per column, i.e., [48.0, 53.8], [24.4, 34.1], [12.3, 
17.2], and [0.0, 6.3] for K equals to 1, 2, 3, and >3, 
respectively. Also, when we computed the average R per K, 
as shown in Figure 8, we can see how the average R 
significantly deteriorated by almost half per increase in 
connectivity starting with K=2 until K=6, and then stayed 
low until K=10. It is at K=1 that the RBNs were most robust. 
The RBNs losing robustness at K=2 may be indicative of 
critical slowing down or diminishing returns, and the system 
may therefore be tipped more easily into an alternative state, 
i.e., from order to chaos, which therefore reflects criticality. 
With these analyses, we hypothesize that the separation of 
regimes in our base case matrix is the one shown in Figure 9. 
We can therefore observe from the R-matrix the regimes that 
are present in our meta-theory. 

 

 
Figure 8.  Each value corresponds to the averaged R-values across all p-
values per K. 

With the base case, we were able to empirically identify 
the initial range of values that would separate the regimes. 
After performing and analyzing all our simulations, we 
further observed that the range of values for each regime 
could be refined as follows – order: [43,100] (in blue), 
critical: [22, 43) (in purple), and chaos: [0, 22) (in red).  

 

 
Figure 9.  Map of the different regimes based on the sensitivity of 
conventional RBNs to perturbations. The colors of the cells correspond to 
that of our meta-theory: blue is order, purple is critical, and red is chaos. 

C. Tracking System Regimes and Transitions 
We now discuss the results of the different simulation 

models we ran while we varied the network and perturbation 
configurations. We begin with the one in Figure 10. Each 
rectangle in the 3×5 topology-linkage space is a R-matrix 
with p-K dimensions. For example, R2,3 matrix corresponds 
to the robustness matrix of the RBNs with homogeneous 
topology and lattice linkage of size 2.5. The R1,1 matrix is the 
same R-matrix in Figure 9. 

We can see from the different R-matrices the interesting 
properties that emerged. We can observe the critical regime 
broadening to K=3 (in R1,2, R2,2, R2,3, R2,4, and R2,5) or re-
occurring at K>2 (in R1,3 and R1,5) between chaotic regimes 
in the fixed and homogeneous RBNs with wider lattice. 
These extensions and re-occurrences of the critical regime 
mean alternative opportunities for the system to take 
advantage of the benefits of the critical regime and the 
balance of stability and chaos [64]. The wider lattice led to 
more interdependencies among nearest neighbors, which 
formed small world networks that brought about such 
behaviors of the critical regime. This is consistent with the 
findings of Lizier et al. [69] that a small world topology 
leads to critical regime dynamics. 

 

 
Figure 10.  Map of the different regimes based on the sensitivity of RBNs to perturbations when dynamism, connectivity, topology, and linkage were varied 
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Figure 11.  Mean robustness behaviors of the different RBNs in Figure 10 

 
Figure 12.  Map of the different regimes based on the sensitivity of RBNs to greater perturbations 

Furthermore, the ordered regime expands with 
homogeneous RBNs. Since the number of input nodes is 
drawn independently at random, there is more variation in 
the way components influence each other. This also means 
that with less tighter connections among components (i.e., as 
the couplings in the network are loosened), the system 
becomes less vulnerable to perturbations. R2,1, for example, 
shows how the system could transform to the next ordered 
state from a critical phase instead of deteriorating to a 
chaotic regime. With the scale-free topology, however, we 
can see highly robust RBNs. Since few nodes have more 
connections, and most nodes have few connections, changes 
can propagate through the RBN only in a constrained fashion.  

Figure 11 shows the mean (µ) R-values (the colored lines 
indicate the linkage type), with each value computed as: 

 µRi =

Rtopology,linkage p,Ki[ ]
p=0.1

p=0.9

∑

p steps
                     (3) 

We can see the different µR-values continuously decreasing 
towards zero for the fixed and homogeneous topology. We 
interpret this as critical slowing down or diminishing returns 
that began at K=2 before transitioning to the chaotic regime. 
The µR-values for the scale-free RBNs, however, remained 
satisfactory throughout. Hence, a complex adaptive system 
may demonstrate [self-imposed] resilience by broadening 

(extending) the critical regime, making the critical regime 
reoccur, or transforming to a scale-free topology. 

Lastly, by applying again the method of Müssel et al. 
[68], we tested next the sensitivity of the RBNs to greater 
perturbations. To simulate greater perturbation impacts, for 
each network transition, the transition function of one of the 
components is randomly selected, and then five bits of that 
function is flipped. Figure 12 shows the results we obtained. 
The first interesting phenomenon is the multiple occurrences 
of the ordered (in R2,1 and R2,4) and critical regimes (e.g., in 
R1,4, R2,3, R2,4, R3,1, etc.), even after the chaotic regimes, 
which are all indicative of resilience. The second is that we 
can obviously see how the behavior of the scale-free RBNs 
changed drastically, i.e., we could not find any ordered 
regime and their µR-values, as shown in Figure 13, dropped 
significantly. This is consistent with the findings of Barabási 
and Bonabeau [70] that scale-free networks are very robust 
against random failures but vulnerable to elaborate attacks. 
In our case, five flipping bits in every transition of the 
network was too much perturbation for the scale-free RBN.  

This does not mean, however, that the resilience of the 
scale-free network is entirely lost. When we varied the 
parameter γ of the Zeta distribution from γ=2.5 to other 
values, another interesting phenomenon emerged, as shown 
in Figure 14 – we see more expansions and reoccurrences of 
the critical regime given other γ values. This means that 
varying the scale-free network configuration is another 
alternative to prolong or increase the number of critical 
regime occurrences, which is indicative of resilience. 
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Figure 13.  Mean robustness behaviors of the different RBNs in Figure 12. 

 
Figure 14.  We simulated what will happen with changing γ values. The tables show that with other γ comes more expansions of the critical regime.

D. Machine-Intelligent Modeling 
It is clear from our simulations that the combinations of 

the parameter values can characterize system states and 
regimes. The question now is how to infer these parameter 
relations as rules of contextual interaction behaviors that can 
define the complex system’s adaptive and transformative 
walks and therefore define its resilience. Our solution is to 
use machine learning (ML) to discover the hidden relations.  

The ML algorithm should infer a model that is predictive 
– given the states of the system and the perturbation, which 
regime in the space of possible regimes is the system in? We 
illustrate this viability of the predictive model in Figure 15. 
More importantly, the predictive model should help steer the 
system to a desirable regime – from the current states of the 
system and the perturbation, wherein the regime may be 
undesirable, which system parameters can or should be 
modified to achieve a desirable regime? This capacity to 

modify the system parameters and predict the resulting 
regime can make the system resilient. 

We represent together the endogenous parameters of the 
system and the impact of the exogenous perturbation in a 
feature vector, which is a tuple of attribute values, i.e., 
<connectivity, dynamism, topology, linkage, lattice, gamma, 
perturbation>, where the possible values are as follows: 
• connectivity = [1..10] 
• dynamism = (0.10, 0.15, 0.20, ..., 0.80, 0.85, 0.90) 
• topology = (fixed, homogenous, scale-free) 
• linkage = (uniform, lattice) 
• lattice = (1.5, 2.5, 3.0, 3.5) 
• gamma = (1.5, 2.0, 2.5, 3.0, 3.5) 
• perturbation = (minor, major) 

We labeled each feature vector with the corresponding R-
value that is indicative of the system regime. 
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Figure 15.  Viability of the predictive model 

Our dataset consisted of 7,120 feature vectors, which 
corresponds to the various simulation scenarios we ran 
using our different RBN models. It is important to note that 
even though our data can still be considered minimal 
(considering for example that we only used one value for N, 
limited value ranges for the parameters, and only 
synchronous updates), the advantage of using a data-centric 
approach is that as the volume and dimensions of the data 
further increases, ML can be used to automatically handle 
the growing intricacies and complexities, as well as 
automatically infer the new relations emerging in the data. 

To obtain the model with the best predictive capacity, we 
ran several well-known ML algorithms using the WEKA 
open-source software. Due to space constraints, it is best that 
we refer the reader to the documentation [71] of these 
algorithms. The ML algorithms are (a) function-based: linear 
regression models (LRM), multi-layer perceptrons (MLP), 
radial basis function networks (RBFN), and support vector 
machines for regression (SMOR), (b) instance-based or lazy: 
K* and k-nearest neighbor (Ibk), and (c) tree-based: fast 
decision tree (REPTree) and MP5 model tree (MP5Tree). 
We used %-split validation where x% of the data was used 
for training and the rest for testing the accuracy of the model. 
We measured the performance of the regression analysis in 
terms of correlation coefficient and root mean squared error 

to show the strength of prediction or forecast of future 
outcomes through a model or an estimator on the basis of 
observed related information. The correlation coefficient is 
also indicative of how good the approximation function 
might be constructed from the target model. We constructed 
several models by increasing the size of the training set from 
10% to 90% of the total data, with increments of 10% 
(horizontal axis of the graphs in Figure 16), which allowed 
us to see the performance of the inferred models with few or 
even large amount of data, and also gave us the feel of an 
incremental learning capacity. 

Figure 16 shows the accuracy of the predictive models. 
We can see that the models inferred by the decision tree-
based (REPTree and MP5Tree) and instance-based k-nearest 
neighbor (Ibk) algorithms outperformed the others. These 
models can accurately predict in more than satisfactory 
levels the contextual interaction behaviors of the system 
even with only 10% of the data. We note that our goal at this 
time is not to improve the algorithms or discover a new one, 
but to prove the viability of our framework. We anticipate, 
however, that as the complexity of the system and the data 
grows, our algorithms would need to significantly improve. 

The other advantage of the tree-based models is that the 
relation rules can be explicitly observed from the tree. Model 
trees are structured trees that depict graphical if-then-else 
rules of the hidden or implicit knowledge inferred from the 
dataset [72][73]. Model trees used for numeric prediction are 
similar to the conventional decision trees except that at the 
leaf is a linear regression model that predicts the numeric 
class value of the instances reaching it [73]. Figure 17 shows 
the upper portion (we could not show the entire tree of size 
807 due to space constraints) of the REPTree we obtained 
using 10%-split validation with the elliptical nodes 
representing the features (colored so as to distinguish each 
feature), the edges specifying the path of the if-then-else 
rules, and the square leaf nodes specifying the corresponding 
R-values depending on which paths along the tree were 
selected. We can see how the rules delineated in a fine- 
grained manner the attribute values that eventually led to 
satisfactory predictions. We can also see how certain features 
are more significant to the classification task even early in 
the tree. The connectivity feature, for example, is prominent 
in both sides of the tree, and that the dynamism feature is not 
as significant in the upper levels compared to the lattice. 

 

 
Figure 16.  Prediction accuracy of the various models using %-split validation with increasing x% values 

282

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 17.  REPTree generated using Weka with a 10%-split validation. The size of the tree is 807, but only parts of it can be shown here due to space 
constraints. The nodes specify the features (colored so as to distinguish each) with the edges as attribute values, and the leaf nodes as R-values. 

 
Figure 18.  Illustration of how the strength of the predicitve models can be used to find the desirable regime states. For the top illustration, the regime states 
(colored blocks) and their contextual features (in angle brackets) were taken from the robustness maps, i.e., R2,3, R1,3, and R3,3, in  Figure 10. 

All these mean that by observing the tree, we can determine 
which features are significant not only to the classification 
task, but more importantly to a more relevant sense, which 
features are actually influential to the resilient (as well as 
vulnerable) walks of the system. 

Lastly, we illustrate in Figure 18 how our predictive 
model can be used to help steer the system to a desirable 
regime. The regime states shown in the figure, which were 
taken from the regime maps in Figure 10 (specifically, from 
R2,3, R1,3, and R3,3), are obviously only a tiny portion of the 
possible entire regime space since each cell in every R-
matrix in Figures 10, 12 and 14 is a regime state. Let us say 
that the system landed in the chaotic regime St, hence 
undesirable, as a result of the situational context (indicated 
by the feature vector shown below) it found itself into. The 

predictive model can be used to predict the resulting regime 
when one or more of the St contextual features are changed. 
Hence, from the current regime St, depending on which 
features the system change, the system may enter in one of 
the many possible St+1 regime states. Although it seems 
elementary for the system to follow the prediction that 
suggests changing to scale-free topology with γ=2.5 in order 
to immediately reach a new ordered state, what should be 
considered is the high cost of changing to a topology that 
will necessitate breaking many of the current ties (e.g., 
geophysical, relational, monetary, etc.). Hence, it may be 
more advantageous for the system for the long haul to seek 
alternative paths with longer chaos, but less painful and 
costly. Again, this capacity to modify contextual features and 
predict the resulting regime demonstrates systems resilience. 
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E. Challenges Ahead for the Machine-Intelligent Modeling 
We touched briefly in [1] the huge challenges we may 

need to address in our future work for a truly strong 
machine-intelligent predictive modeling capacity. We see the 
need to further elaborate here our points. 

1) Finding the Optimal Path to the Desirable Regime 
One formidable challenge in determining the optimal 

path to the desirable regime is the possibly huge number of 
potential paths, each with its own set of multiple candidate 
divergence. This is depicted in Figure 19, which is only a 
small portion of what could possibly be a huge set of system 
trajectories. Without special algorithms to find the correct 
paths efficiently, the required computing resources might be 
prohibitive. Equally challenging is the notion that the 
shortest path is not necessarily the optimal one. A myopic 
behavior by the system may find the immediate next step as 
optimal only to realize that the few poor or sub-optimal steps 
forward can eventually lead to better long-term outcomes. 
This also begs the question of how we can make our 
system’s foresight to be as far reaching as possible. 
 

 
Figure 19.  Depiction of possible trajectories of the model’s prediction   

2) Cost of Being Resilient 
What is significantly missing in our modeling is the cost 

associated to every adaptation and transformation. Although 
we can account for the actual cost accurately only in 
retrospect, the challenge is for us to find the function that can 
meaningfully approximate the cost of system adaptation and 
transformation. Again is the notion that the shortest path is 
not necessarily the optimal one. The longer path may in fact 
possess the more bearable cost compared to that of an 
immediate, but extreme and radical, change. A similar but 
real-world insight was drawn after Katrina and Sandy that 
was shared by Goodman [74], which is “looking not at 
current losses and rebuilding what was destroyed, but rather 
at the costs – over time… in the long aftermath of the event.” 
She further stated that it is “looking at any current 
destruction less as loss but rather as opportunity to create 

something completely different, perhaps elsewhere, with 
more wisdom, foresight and technological know-how.” 

3) Unknown-unknowns in Complexity 
As pointed out in the report of the International Risk 

Governance Council, it is not always that we have 
knowledge of the multiple plausible alternate futures of our 
system’s behavior [54]. Indeed, the nature of our systems is 
complex – nonlinear, spanning multiple simultaneous 
temporal and spatial scales, and with large interrelations and 
interdependencies among parts. Their evolving nature can 
affect physical, ecological, economic, and social dimensions 
simultaneously [28]. Our models can continue to exhibit 
incomplete and segregated knowledge for several reasons.  

First, our predictions will be inaccurate or uncertain since 
our statistical extrapolations are based on a handful of 
analogous past experiences or mechanistic models that 
mislead to dire situations [28]. What we may have is dearth 
of historical data for predictive analysis [75]. We are 
therefore made to erroneously believe that certain situations 
are outside our expected possibilities and will never happen. 

Second, our models may not demonstrate the critical 
links and interdependencies that mesh our systems into a 
cohesive and coherent whole. Our approaches are 
intimidated by the task of disentangling and elucidating a 
messy linked system-of-systems. This leads to a shallow and 
fragmented understanding of the evolving nature of our 
complex systems. 

Lastly, even if perfect knowledge of costs and 
probabilities could be assigned to each and every alternative 
junction in the system phase trajectories, it is still highly 
possible that our calculations of the aggregate of all costs and 
probabilities over several junctions are inaccurate.  

VI. CONCLUSION 
With our world witnessing critical systemic changes [76], 

we are concerned with how our systems can be resilient, i.e., 
able to persist in, adapt to, or transform from dramatically 
changing circumstances. We believe that a deeper 
understanding of what fundamentally constitutes and leads to 
critical system changes sheds light to our understanding of 
the resilience of our systems. We discussed in length in this 
paper our contribution towards this understanding of 
resilience, which is a two-fold complex systems resilience 
framework that consists of a meta-theory that integrates 
long-standing theories on system-level changes and a 
machine-intelligent modeling task to infer from data the 
contextual behaviors of a resilient system. 

Our framework of mutual reinforcing between theoretic 
and data-centric models allows for less perfect theory and 
inferred models to begin with, but with both components 
learning mutually and incrementally towards improved 
accuracy. Through our meta-theory we are able to have a 
strong basis of what will constitute our machine intelligent 
modeling. What the meta-theory can take from the inferred 
models, however, is to improve its knowledge by 
incorporating the fine-grained features, e.g., changing lattice 
and γ values, as well as the magnitude of the perturbations, 
which can have specific influences towards specific regimes. 
The knowledge exhibited by the meta-theory has to 
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incrementally improve based on what has been inferred by 
the intelligent modeling component. Our theoretic and data-
centric models will surely need to co-evolve as we collect 
more data with increased range of network parameter values, 
other ways of introducing perturbations, using different 
transition schemes [60], and with agents having multiple 
states [67], among others. Furthermore, as nonlinear and 
unpredictable system intricacies become more detailed and 
pronounced, our machine-intelligent modeling should 
account for emerging algorithmic and data complexities.  

Due to the absence of our intended real-world complex 
system data, we simulated the viability of our framework 
using random Boolean networks (RBNs). If RBNs were in 
fact sound models of complex systems, then our simulations 
would have sound basis – which is actually the case. RBNs 
are models of self-organization in which both structure and 
function emerge without explicit instructions [77]. Secondly, 
it is by the random nature of RBNs, albeit the transition 
functions are fixed, that systemic behaviors that emerge from 
known individual component behaviors cannot be 
determined a priori (e.g., exact number and characteristics of 
possible basins of attractions). All these and that a RBN’s 
“infusion of historical happenstance is to simulate reality” 
[59, p.88] may attest to the fact that our meta-theory being 
demonstrated by RBNs is not at all forced. Our network-
centric analyses show that the ability by which the system 
can vary, adjust or modify its controlling variables, 
specifically those that pertain to the connectivity, dynamism, 
topology, and sphere of influence of its components (all 
endogenous), and its capacity to withstand the disturbances 
(exogenous) that perturb it, will dictate the rules of its 
adaptation and transformation. 

It would be a mistake, however, for us to conclude that 
since we find evidence of our meta-theory in RBNs, our 
meta-theory shall hold true for all kinds of complex adaptive 
systems. First, since we claim that our meta-theory should 
evolve together with the machine-intelligent modeling task 
to genuinely represent real phenomena that are endogenous 
and exogenous to the system means that our meta-theory (as 
well as our machine-intelligent modeling) is not one size fits 
all. However, as per the Campbellian realism, the meta-
theory may be updated according to the specific contextual 
realities of the environment in which the system is embedded. 
Second, although it would also be inaccurate to say that “all” 
complex system realities can be approximated with RBNs, 
RBNs can indeed mimic certain complex system behaviors. 
However, by the fact that we intend to use real word data 
means that we believe that there are more realities to be 
discovered beyond what RBNs present. However, our 
conclusion is that the positive results we obtained with RBNs 
(which are sound models of complex systems) only 
demonstrate (proof of concept) the viability of our entire 
framework. If there is any added knowledge we may have 
derived regarding RBNs, this is only consequential to our 
primary objective of further elucidating the concept of 
complex systems resilience through our framework. 

The major addition of this paper to our earlier work [1], 
which one would be remiss to overlook, is that we expanded 
our notion of systemic changes to what can actually push the 

system positively and be poised for resilience. The terms 
critical and chaos normally denote negative outcomes or 
impending perils. However, in light of resilient systems, such 
regimes may even be leveraged by the system to promote 
novel adaptations that can lead to desired sustainability. We 
also emphasized in this paper how architectural and 
empirical indicators of systemic changes, in combination, 
can help steer the system to desirable regimes. We have 
expanded our experiment results and analyses to further 
demonstrate this. 

We believe that we have barely scratched the surface of 
our research problem. Our immediate next concern is to find 
and collect real world data on hyper-connected composite 
systems in order for us to further ground our meta-theory and 
machine-intelligent modeling approaches. 
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