
Ranked Particle Swarm Optimization with Lévy’s Flight

Optimization of appliance scheduling for smart residential energy grids

Ennio Grasso, Giuseppe Di Bella, and Claudio Borean

Swarm Joint Open Lab

TELECOM ITALIA

Turin, Italy

e-mail: ennio.grasso@telecomitalia.it, giuseppe.dibella@telecomitalia.it, claudio.borean@telecomitalia.it

Abstract— This paper analyzes the problem of scheduling

home appliances in the context of smart home applications.

The optimization problem is modeled and different approaches

to tackle it are presented and discussed. A new metaheuristic

algorithm named Ranked Particle Swarm with Lévy flights

(RaPSOL) is then proposed and described. The algorithm runs

on the limited computational power provided by the home

gateway device and in almost real-time as of user perception.

Simulation results of RaPSOL algorithm applied in different

use case scenarios are presented and compared with other

approaches. The simulations include validation of the method

in variable conditions considering both consumption, micro-

generation and imposed user constraints.

Keywords— scheduling; swarm intelligence; metaheuristic smart

grids; smart homes.

I. INTRODUCTION

This paper considers the minimum electricity cost

scheduling problem of smart home appliances. Functional

characteristics, such as expected duration and power

consumption of the smart appliances can be modeled through

a power profile signal. The optimal scheduling of power

profile signals minimizes cost, while satisfying technical

operation constraints and consumer preferences. Time and

power constraints, and optimization cost are modeled in this

framework using a metaheuristic algorithm based on a

variant of Particle Swarm Optimization (PSO), presented in

[1]. The algorithm runs on the limited computational power

provided by the home gateway device and in almost real-

time as of user perception. The context refers to the smart

home environment, described in the INTrEPID European

project [2], where a home environment equipped with plug-

sensors and smart appliances can be used for enhanced smart

energy management services.

The proposed framework can optimize appliance

scheduling to minimize energy cost while avoiding the

overload threshold. Very good quality solutions can be

obtained in short computation time, in the order of a few

seconds, which enables the deployment of this algorithm in

low-cost embedded platforms.

Owing to the pliable characteristics of metaheuristic

algorithms, the proposed algorithm is easily extended to

incorporate solar power production forecasting in the

presence of residential photovoltaic (PV) systems by simply

adapting the objective function and using the solar energy

forecaster as further input to the scheduler ([3][4]).

Figure 1. Example Power Profile with its phases generated by a washing

machine

The paper is structured as it follows. Section II describes

a model of the problem for the scheduling of smart

appliance. Section III highlights how this problem can be

classified as a NP-Hard Combinatorial Optimization

Problem. In Section IV, a give a broad review of

metaheuristic, while in Section V the new algorithm

proposed in the paper is described. Section VI reports the

results of the simulations of the proposed algorithm applied

to the problem of scheduling smart appliances. Finally,

Section VII contains concluding remarks and future

analysis.

II. SCHEDULING PROBLEM OF SMART HOME

APPLIANCES

Smart home applications are becoming one of the driving

force of the Internet-of-Things (IoT), since connecting smart

devices such as smart appliance to the internet envisions new

scenarios that provide added value to both the final users and

the other stakeholders. Possible applications are for instance

the remote monitoring of smart appliances, remote

activation/deactivation, automatic failure detection and alarm

notification. Likewise, applications for appliance makers

range from the remote diagnosis and assistance of

appliances, thus reducing the assistance costs, to the

collection of appliance statistics information useful to

improve strategies for marketing new products, i.e., the

appliance vendor could offer discounts in exchange for being

allowed to get access to usage patterns and uncover the

18

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

features more appealing to their customers. To foster the

pervasive adoption of these new IoT services, a common set

of features need to be shared among the connected devices,

so that “silo services” provided by each vendor are replaced

by a smart home ecosystems where the connected appliance

share value in participating.

One of the most successful application of smart home

systems is energy management, since smart energy

applications are enabled by IoT technologies and are shared

by many home devices, which are mains powered. With the

increased needs for energy sustainability, both regulatory and

nationwide organizations are urging to the adoption of

Renewable Energy Sources (RES) to reach the compelling

target of the Horizon-2020 strategy. Since RES are by their

nature variable and oftentimes difficult to predict exactly

subject to variable weather conditions (PV performance

mainly depends on cloud-cover condition, while wind

turbines depends on the wind strength and direction), the

final tariffs of electricity should match the fickle dynamics of

the effective production cost instead of current two, or at

most three tier model in most countries.

To enable a scenario with highly dynamic energy tariffs,

it is essential the introduction if intelligent systems that can

autonomously and conveniently schedule appliances to

optimize energy use in presence of RES and variable tariffs.

On top of the above considerations, new actors such as

Energy Aggregators are entering the market to collect and

manage demands in so called “energy-districts”. From the

Aggregator standpoint, the proper management of energy

demands of a set of users allows purchasing energy in the

gross market and sharing the savings with the end users.

These scenarios are explored in the INTrEPID project.

Another important requirement is also the “shaving” of peak

energy demands that cause inefficiencies in the electricity

network (e.g., over-sizing electricity network to avoid

blackouts) with additional costs and increased hazards (e.g.,

blackouts in case of power peaks not properly managed by

the electricity network).

The management of users energy demand can be

leveraged by the introduction of IoT systems, such as

connected appliances, smart-plugs, smart-meters, apps for

smartphones and tablet in order to visualize proposals to the

users. These systems can take part in an energy management

application with the aim to optimize the scheduling of

appliances in the homes of district.

Taking into account the above considerations, not only is

an automatic decision system highly desirable but even

necessary in most cases, which either directly takes control

of the appliances’ operations (depending on the availability

of smart appliances in the market), or at the very least is

capable of providing advice to the home consumers (in case

where using IoT system the appliance consumptions patterns

can be learned and used for the scheduling).

This paper considers the minimum electricity cost

scheduling problem of smart home appliances in the context

of the INTrEPID Project. Functional characteristics, such as

expected duration, mean and peak power consumption of

smart appliances can be modeled through a power profile

signal in time. Such power profiles could also be inferred by

proper disaggregation of the cumulated power of a single

smart meter with Non-Intrusive Load Monitoring (NILM)

techniques. In other more advanced scenarios, the power

profiles are notified by the smart appliances themselves.

Protocols that enable that scenario have already been

specified in several standard bodies and associations such as

Energy@home [5].

In view of the above considerations, not only is an

automatic decision system highly desirable but even

necessary in most cases, which either directly takes control

of the appliances’ operations, or at the very least is capable

of providing advice to the home consumers.

A. Smart Appliances in smart home

The smart home applications are enabled by

communication between devices (e.g., smart appliances) in

a home network typically enabled by wireless technologies.

The core element of a home network is the Home

Gateway (HG) that coordinates and manages the smart

appliances as end-devices. Among its functionalities, the

HG provides the intelligence for real-time scheduling of

residential appliances, typically in the time interval 24

hours, based on the tariff of the day, the forecasted energy

power consumption, and possibly the forecasted wind/PV

power generation.

The proposed scheduling framework borrows from the

Power Profile Cluster defined in the E@H specifications

[5], which specifies that each appliance operation cycle is

modeled as a power profile composed by a set of sequential

energy phases, as depicted in Figure 1. In some situation,

and without loss of generality, a power profile has just a

single phase, and in that simple case the power profile and

its phase simply coincide.

In the more general case in which a power profile is

composed of several energy phases, each phase represents

an atomic subtask of the appliance’s operation cycle. All

phases are ordered sequentially since a phase cannot start

until the previous phase is completed
1
, however, there may

be some degree of freedom in the time slack between one

phase and the next.

Therefore, in general, each energy phase is characterized

by a time duration and a power signal in time domain with

the chosen sampling frequency
2
, and a maximum activation

delay after the end of the previous phase. Some phases have

a maximum delay of zero, meaning that they cannot be

delayed and must start soon after the previous phase

completes. Other phases may be delayed adding extra

flexibility in the scheduling of the power profile, e.g., the

1 e.g., a washing machine agitator cannot start until the basin is

filled with water
2
 Typical sampling frequency are 1 Hz or 1/60 Hz

19

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

washing machine agitator must start within ten minutes of

the basin being filled.

Another input to the scheduler is the user’s time

constraints, demanding that certain appliances be scheduled

within some particular time intervals, e.g., the dishwasher

must run between 13:00 and 18:00.

The objective of the HG scheduler is to find the least

expensive scheduling for a set of smart appliances, each

characterized by a power profile with its energy phases,

while satisfying the necessary operational constraints.

B. Modeling the Scheduling Problem

A first step in the scheduling problem modeling is to

determine its dimension. Being N the number of appliances

considered, and denoting by 𝑛𝑝𝑖 the number of energy

phases associated with each appliance 𝑖 , the problem

dimension, corresponding to the overall number of phases,

is trivially given by

|𝑃| ≝ ∑ 𝑛𝑝𝑖
𝑁
𝑖=1 (1)

The objective of the scheduler is to minimize the total

electricity cost for operating the appliances based on the 24-

hour electricity tariff while respecting time and energy

constraints.

Denoting with 𝒙 ∈ 𝑇|𝑃| the vector of start times of the
|𝑃| phases, where 𝑇 is the scheduling time interval, the

problem can be stated as:

𝒙 = arg min𝒙(𝐶(𝒙)) (2)

being 𝐶(𝒙), the total cost, expressed as

𝐶(𝒙) = ∑ ∑ 𝐶(𝑥𝑖𝑗
𝑛𝑝𝑖
𝑗=1

𝑁
𝑖=1) (3)

and 𝐶(𝑥𝑖𝑗) the cost of starting phase 𝑗 of appliance 𝑖 at time

𝑥𝑖𝑗 . The cost of a single phase at a given time is simply the

product of the power phase signal and the tariff in the

subinterval, 𝐿𝑖𝑗 , from the start time to the end of the energy

phase.

𝐶(𝑥𝑖𝑗) = ∫ 𝑡𝑎𝑟𝑖𝑓𝑓(𝑡) 𝑝𝑜𝑤𝑒𝑟𝑖𝑗(𝑡 − 𝑥𝑖𝑗)𝑑𝑡
𝑥𝑖𝑗+𝐿𝑖𝑗

𝑥𝑖𝑗
 (4)

The integral notation assumes that the mean power is a

Lebesgue integrable function. The above formulation is the

most general possible, which assumes the power signal is a

continuous function. An approximate formulation is to

discretize the problem by choosing a reasonable sampling

frequency, i.e., a trade-off with regard to the power profile

signal variability and the desired system accuracy.

Following this idea, a reasonable approximation is to

discretize the day time interval into 1440 time slots of 1

minute each. In such formulation, the above integral reduces

to its summation approximate

𝐶(𝑥𝑖𝑗) = ∑ 𝑡𝑎𝑟𝑖𝑓𝑓(𝑡) ∙ 𝑝𝑜𝑤𝑒𝑟𝑖𝑗(𝑡 − 𝑥𝑖𝑗)
𝑥𝑖𝑗+𝐿𝑖𝑗

𝑡=𝑥𝑖𝑗
 (5)

The max power constraint imposes that at any given

time the amount of power required by all appliances’ active

phases be less than the peak power threshold specified by

the grid operator. Let us define the auxiliary allocation

function on the whole support of the scheduling interval T,

𝑎𝑙𝑙𝑜𝑐𝑃𝑜𝑤𝑒𝑟𝑖𝑗(𝑡) = {
𝑝𝑜𝑤𝑒𝑟𝑖𝑗(𝑡 − 𝑥𝑖𝑗) 𝑖𝑓 𝑡 ∈ [𝑥𝑖𝑗 , 𝑥𝑖𝑗 + 𝐿𝑖𝑗]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 .

(6)

Now we can define the max power constraint as

 ∑ ∑ 𝑎𝑙𝑙𝑜𝑐𝑃𝑜𝑤𝑒𝑟𝑖𝑗(𝑡)
𝑛𝑝𝑖
𝑗=1

𝑁
𝑖=1 < 𝑚𝑎𝑥𝑃𝑜𝑤𝑒𝑟 , ∀𝑡 ∈ 𝑇 (7)

While the max power constraints apply to the

optimization problem, time constraints simply restrict the

scheduling interval. Time constraints are twofold. On the

one hand, the end user can impose a scheduling interval for

any appliance, in terms of an earliest start time (𝐸𝑆𝑇), e.g.,

after 13:20, and a latest end time (𝐿𝐸𝑇), e.g., before 18:00.

𝐸𝑆𝑇𝑖 ≤ 𝑥𝑖1 ; 𝑥𝑖𝑃 + 𝐿𝑖𝑃 ≤ 𝐿𝐸𝑇𝑖 (8)

The above time constraint means that start time of the 1
st

phase of appliance 𝑖 , 𝑥𝑖1 , must occur after the imposed

𝐸𝑆𝑇𝑖 . Likewise, the completion time of the last phase,

denoted by 𝑥𝑖𝑃 + 𝐿𝑖𝑃 , must occur before the imposed 𝐿𝐸𝑇𝑖 .

The second time constraint is the maximum activation

delay of each of the sequential phases that make up each

power profile. While the scheduling interval specified in the

first constraint is absolute, the maximum activation delays

are relative and, therefore, the lower and upper bound time

limits of each phase need to be adjusted based on the

scheduling decisions for the previous phase.

(𝑥𝑖𝑗 + 𝐿𝑖𝑗) ≤ 𝑥𝑖(𝑗+1) ≤ (𝑥𝑖𝑗 + 𝐿𝑖𝑗) + 𝑚𝑎𝑥𝐷𝑒𝑙𝑎𝑦𝑖(𝑗+1) (9)

III. NP-HARD COMBINATORIAL OPTIMIZATION

PROBLEMS

Given the problem formulation, the scheduling of power

profiles, each composed by a set of sequential and possibly

delayable phases, under energy constraints is classified in the

more general family of Resource Constrained Scheduling

Problem (RCSP), which is known as being an NP-Hard

combinatorial optimization problem [6][7] .

Moreover, the presence of time constraints introduces

even another dimension to the complexity of problem,

known as RCSP/max, i.e., RCSP with time windows.

Combining the inherent complexity of the problem with the

fact that the limited computing power of the HG which runs

the logic of algorithm, and the almost real-time requirement

for finding a solution (typically the end user wants a

20

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

perceived immediate answer), make the formulation a

challenging problem.

From a theoretical perspective, combinatorial

optimization problems have a well-structured definition

consisting of an objective function that needs to be

minimized (e.g., the energy cost) and a series of constraints.

These problems are important for many real-life applications.

For some problems, exact methods can be exploited, such

as branch-and-cut and Mixed Integer Linear Programming

(MILP), with back-tracking and constraints propagation to

prune the search space. However, in most circumstances, the

solution space is highly irregular and finding the optimum is

in general impossible. An exhaustive method that checks

every single point in the solution space would be infeasible

in these difficult cases, since it takes exponential time.

As a point of fact, [8] also addresses a similar scheduling

problem of smart appliances, and relies on traditional MILP

as a problem solver. They provide computation time

statistics for their experiments, running on an Intel Core i5

2.53GHz equipped with 4GB of memory and using the

commercial application CPLEX and MATLAB. According

to their figures, discretizing the time interval in 10-minute

discrete slots (for a total of 144 daily slots), takes their

algorithm about 15.4 seconds to find a solution. With 5-

minute slots the time rises to 83.6 seconds and with 3-minute

slots to 860 seconds. From these figures, it is clear that a

traditional approach like MILP is hardly acceptable for

scheduling home appliances, and other more efficient

methods need to be investigated.

A. Convex and Smooth Objective Functions

Generally speaking, optimization problems can be

categorized, from a high-level perspective, as having either

a convex or non-convex formulation.

A convex formulation enables to represent the objective

function as a series of convex regions where traditional

deterministic methods work best and fast, such as conjugate

gradient descent and quasi-Newton variants, like L-BFGS

(Limited memory Broyden–Fletcher–Goldfarb–Shanno).

The main idea, in convex optimization problems, is that

every constraint restricts the space of solutions to a certain

convex region. By taking the intersection of all these

regions we obtain the set of feasible solutions, which is also

a convex region. Due to the nice structure of the solution

space, every single local optimum is a global one. Most

conventional or classic algorithms are deterministic. For

example, the simplex method in linear programming is

deterministic, and use gradient information in the search

space, namely the function values and their derivatives.

Non-convex constraints create a many disjoint regions,

and multiple locally optimal points within each of them. As

a result, if a traditional search method is applied, there is a

high risk of ending in a local optimum that may still be far

away from the global optimum. But the main drawback is

that it can take exponential time in the size of problem

dimension to determine if a feasible solution even exists.

Another definition is that of smooth function, i.e., a

function that is differentiable and its derivative is

continuous. If the objective function is non-smooth, the

solution space typically contains multiple disjoint regions

and many locally optimal points within each of them. The

lack of a nice structure makes the application of traditional

mathematical tools, such as gradient information, very

complicated or even impossible in these cases.

However, many real problems are neither convex nor

smooth, and so deterministic optimization methods can

hardly be applied.

B. An Overview of General Metaheuristic Algorithms

A problem is NP-Hard if there is not an exact algorithm

that can solve the problem in polynomial time with respect

to the problem’s dimension. In other words, aside from

some “toy-problems”, an NP-Hard problem would require

exponential time to find a solution by systematically

“exploring” the solution space.

A common method to turn an NP-Hard problem into a

manageable, feasible approach is to apply heuristics to

“guide” the exploration of the search space. These heuristics

are based on “common-sense” specific for each problem and

are the basis for developing Greedy Algorithms that can

build the solution by selecting at each step the most

promising path in the solution space based on the suggested

heuristics. Obviously, this approach is short-sighted since it

proceeds with incomplete information at each step. Very

rarely do greedy algorithms find the best solution or worse

yet they might fail to find a feasible solution even if one

does exist.

A better approach for solving complex NP-Hard

problems that has shown great success is based on

metaheuristic algorithms. The word meta means that their

heuristics are not problem specific to a particular problem,

but general enough to be applied to a broad range of

problems. Examples of metaheuristic algorithms are Genetic

and Evolutionary Algorithms, Tabu search, Simulated

Annealing, Greedy Randomized Adaptive Search Procedure,

Particle-Swarm-Optimization, and many others.

The idea of metaheuristics is to have efficient and

practical algorithms that work most the time and are able to

produce good quality solutions, some of them will be nearly

optimal. Figuratively speaking, searching for the optimal

solution is like treasure-hunting. Imagine we are trying to

find a hidden treasure in a hilly landscape within a time

limit. It would be a silly idea to search every single square

meter of an extremely large region with limited resources

and limited time. A more sensible approach is to go to some

place almost randomly and then move to another plausible

place using some hints we gather throughout.

Two are the main elements of all metaheuristic

algorithms: intensification and diversification.

Diversification via randomization means to generate diverse

solutions so as to explore the search space on the global

scale and to avoid being trapped at local optima.

21

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Intensification means to focus the search in a local region by

exploiting the information that a current good solution is

found in this region as a basis to guide the next step in the

search space. The fine balance between these two elements

is very important to the overall efficiency and performance

of an algorithm.

IV. CLASSIFICATION OF METAHEURISTIC

ALGORITHMS

Metaheuristic algorithms are broadly classified in two

large families: population-based and trajectory-based.

Going back to the treasure-hunting metaphor, in a

trajectory-based approach we are essentially performing the

search alone, moving from one place to the next based on

the hints we have gathered so far. On the other hand, in a

population-based approach we are asking a group of people

to participate in the hunting sharing all information gathered

by all members to select the most promising paths for the

next moves.

A. Genetic Algorithms

Genetic Algorithms (GA) were introduced by John

Holland and his collaborators at the University of Michigan

in 1975 [9]. A GA is a search method based on the

abstraction of Darwinian evolution and natural selection of

biological systems, and representing them in the

mathematical operators: crossover (or recombination),

mutation, fitness evaluation and selection of the best. The

algorithm starts with a set of candidate solutions, the initial

population, and generate new offspring through random

mutation and crossover, and then applies a selection step in

which the worst solutions are deleted while the best are

passed on to the next generation. The entire process is

repeated multiple times and gradually better and better

solutions are obtained. GA algorithms represent the

inseminating idea of all more recent population-based

metaheuristics.

One major drawback of GA algorithms is the

“conceptual impedance” that arises when trying to formulate

the problem at hand with the genetic concepts of the

algorithm. The formulation of the fitness function,

population size, the mutation and crossover operators, and

the selection criteria of the offspring population are

crucially important for the algorithm to converge and find

the best, or quasi-best, solution.

B. Simulated Annealing

Simulated Annealing (SA) was introduced by

Kirkpatrick et al. in 1983 [10] and is a trajectory-based

approach that simulates the evolution of a solid in a heat

bath to thermal equilibrium. It was observed that heat causes

the atoms to deviate from their original configuration and

transition to states of higher energy. Then, if a slow cooling

process is applied, there is a relatively high chance for the

atoms to form a structure with lower internal energy than

the original one. Metaphorically speaking, SA is like

dropping a bouncing ball over a hilly landscape, and as the

ball bounces and loses its energy it eventually settles down

to some local minima. But if the ball loses energy slowly

enough keeping its momentum, it might have a chance to

overcome some local peaks and fall through a better

minimum.

C. Particle Swarm Optimization

Particle Swarm Optimization (PSO), introduced in 1995

by American social psychologist James Kennedy, and

engineer Russell C. Eberhart [11], represents a major

milestone in the development of population-based

metaheuristic algorithms. PSO is an optimization algorithm

inspired by swarm intelligence of fish and birds or even

human behavior. The multiple particles swarm around the

search space starting from some initial random guess and

communicate their current best solutions and also share their

best. The greatest advantage of PSO over GA is that it is

much simpler to apply in the formulation of the problem.

Instead of using crossover and mutation operations it

exploits global communication among the swarm particles.

Each particle in the swarm modifies its position with a

velocity that includes a first component that attracts the

particle towards the best position so far achieved by the

particle itself. This component represents the personal

experience of the particle. The second component attracts

the particle towards the best solution so far achieved by the

swarm as a whole. This component represents the social

communication skill of the particles.

Denoting with N the dimensionality of the search space,

i.e., the number of independent variables that make up the

exploring search space, each individual particle is

characterized by its position and velocity N-vectors.

Denoting with 𝑥𝑖
𝑘 and 𝑣𝑖

𝑘 respectively the position and

velocity of particle 𝑖 at iteration 𝑘, the following equations

are used to iteratively modify the particles’ velocities and

positions:

𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑘) + 𝑐2𝑟2(𝑔∗ − 𝑥𝑖

𝑘) (10)

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (11)

where w is the inertia parameter that weights the previous

particle’s momentum; 𝑐1 and 𝑐2 are the cognitive and social

parameter of the particles multiplied by two random

numbers 𝑟1 and 𝑟2 uniformly distributed in [0 − 1], and are

used to weight the velocity respectively towards the

particle’s personal best, (𝑝𝑖 − 𝑥𝑖
𝑘), and towards the global

best solution, (𝑔∗ − 𝑥𝑖
𝑘), found so far by the whole swarm.

Then the new particle position is determined simply by

adding to the particle’s current position the new computed

velocity, as shown in Figure 2.

The PSO coefficients that need to be determined are the

inertia weight 𝑤, the cognitive and social parameters 𝑐1 and

𝑐2, and the number of particles in the swarm.

22

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. New particle position in PSO

We can interpret the motion of a particle as the

integration of Newton’s second law, where the components

𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑘) + 𝑐2𝑟2(𝑔∗ − 𝑥𝑖

𝑘) are the attractive forces

produced by springs of random stiffness, while 𝑤 introduces

a virtual mass to stabilize the motion of the particles,

avoiding the algorithm to diverge, and is typically a number

such that 𝑤 ≈ [0.5 − 0.9]. It has been shown, without loss

of generality, that for most general problems the number of

parameters can even be reduced by taking 𝑐1 = 𝑐2 ≈ 2.

D. Quantum Particle Swarm Optimization

Although much simpler to formulate than GA, classical

PSO has still many control parameters and the convergence

of the algorithm and its ability to find a near-best global

solution is greatly affected by the value of these control

parameters. To avoid this problem a variant of PSO, called

Quantum PSO (QPSO) was formulated in 2004 by Sun et al.

[12], in which the movement of particles is inspired by

quantum mechanics.

The rationale behind QPSO stems from the observation

that statistical analyses have demonstrated that in classical

PSO each particle 𝑖 converges to its local attractor 𝑎𝑖

defined as

𝑎𝑖 = (𝑐1𝑝𝑖 + 𝑐2𝑔∗) (𝑐1 + 𝑐2)⁄ (12)

where 𝑝𝑖 and 𝑔∗ are the personal best and global best of the

particle. The local attractor of particle 𝑖 is a stochastic

attractor that lies in a hyper-rectangle with 𝑝𝑖 and 𝑔∗ being

two ends of its diagonal, and the above formulation can also

be rewritten as

𝑎𝑖 = 𝑟𝑝𝑖 + (1 − 𝑟)𝑔∗ (13)

where 𝑟 is a uniformly random number in the range [0 − 1].
In classical PSO, particles have a mass and move in the

search space by following Newtonian dynamics and

updating their velocity and position at each step. In quantum

mechanics, the position and velocity of a particle cannot be

determined simultaneously according to uncertainty

principle. In QPSO, the positions of the particles are

determined by the Schrödinger equation where an attractive

potential field will eventually pull all particles to the

location defined by their local attractors. The probability of

particle 𝑖 appearing at a certain position at step 𝑘 + 1 is

given by:

𝑥𝑙
𝑘+1 = 𝑎𝑖 + 𝛽 |𝑥𝑚𝑏𝑒𝑠𝑡

𝑘 − 𝑥𝑙
𝑘| ln(1 𝑢⁄) , 𝑖𝑓 𝑣 ≥ 0.5 (14)

𝑥𝑙
𝑘+1 = 𝑎𝑖 − 𝛽 |𝑥𝑚𝑏𝑒𝑠𝑡

𝑘 − 𝑥𝑙
𝑘| ln(1 𝑢⁄) , 𝑖𝑓 𝑣 < 0.5 (15)

where 𝑢 and 𝑣 are uniformly random numbers in the range

[0 − 1], 𝑥𝑚𝑏𝑒𝑠𝑡
𝑘 is the mean best of the population at step 𝑘

defined as the mean of the best positions of all particles

𝑥𝑚𝑏𝑒𝑠𝑡
𝑘 = ∑ 𝑝𝑖

𝑁
𝑖=1 (16)

𝛽 is called contraction-expansion coefficient and controls

the convergence speed of the algorithm.

The QPSO algorithm has been shown to perform better

than classical PSO on several problems due to its ability to

better explore the search space and also has the nice feature

of requiring one single parameter to be tuned, namely the 𝛽

coefficient. The exponential distribution of positions in the

update formula makes QPSO search in a wide space.

Moreover, the use of the mean best position 𝑥𝑚𝑏𝑒𝑠𝑡 , each

particle cannot converge to the global best position without

considering all other particles, making them explore more

thoroughly around the global best until all particles are

closer. However, this may be both a blessing and a curse; it

may be more appropriate in some problems but it may slow

the convergence of the algorithm in other problems. Again,

there is a very fine balance between exploration and

exploitation. How large is the search space, and how much

time is given to explore before returning a solution.

E. Dealing with Constraints

Many real world optimization problems have

constraints, for example, the available amount of certain

resources, the boundary domain of certain variables, etc. So

an important question is how to incorporate constraints in

the problem formulation.

In some cases, it may be simple to incorporate the

feasibility of solutions directly in the formulation of a

problem. If we know the boundary domain of a certain

dependent variable and the proposed solution violates such

domain we can either reject the solution or modify it by

constraining the variable within the boundaries. For

example, suppose a time variable must satisfy the time

interval between 9:00 and 13:00, while the proposed

solution would place it at 14:34. One way to deal with the

above violation is to constrain the variable to its upper

bound (UB) 13:00 and reevaluate the objective function.

This will be probably worse than before, but at least it will

be feasible and need not be rejected altogether.

A common practice is to incorporate constrains directly

in the formulation of the objective function through the

23

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

addition of a penalty element so that a constrained problem

becomes unconstrained. If 𝑓(𝑥) is the objective function to

be minimized, any equality / disequality constrains can be

cast to penalty terms linearly added to the objective

function, typically with a high weight 𝑤 and a quadratic

function in the measured violation 𝑔(𝑥) = max (0, 𝑣(𝑥)2),

where 𝑣(∙) “measure” the amount of violation. Now the

augmented optimization problem becomes

arg min𝑥(𝑓(𝑥) + 𝑤 ∙ 𝑔(𝑥)) (17)

𝑤 is the penalty weight that needs to be large enough to

skew the choice of the fittest solutions towards the smallest

penalty component, typically in the range 10
9
 - 10

15
.

In our scheduling problem we have already defined the

max power constraint as upper bound inequality.

𝑔(𝑡) ≝ max [0, (∑ ∑ 𝑎𝑙𝑙𝑜𝑐𝑃𝑜𝑤𝑒𝑟𝑖𝑗(𝑡)𝑛𝑝𝑖
𝑗=1

𝑁
𝑖=1) − 𝑚𝑎𝑥𝑃𝑜𝑤𝑒𝑟]

(18)

F. Nature Inspired Random Walks and Lévy Flights

A random walk is a series of consecutive random steps

starting from an original point: 𝑥𝑛 = 𝑠1 + ⋯ + 𝑠𝑛 = 𝑥𝑛−1 +
𝑠𝑛, which means that the next position 𝑥𝑛 only depends on

the current position 𝑥𝑛−1 and the next step 𝑠𝑛 . This is the

typical main property of a Markov chain. Very generally,

we can write the position in random walks at step 𝑘 + 1 as

𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝜎𝑘 (19)

where 𝜎𝑘 is a random number drawn from a certain

probability distribution. In mathematical terms, each

random variable follows a probability distribution. A typical

example is the normal distribution and the random walk

becomes a Brownian motion. Besides the normal

distribution, the random walk may obey other non-Gaussian

distributions.

For example, several studies have shown that the

random walk behavior of many animals and insects have the

typical characteristics of the Lévy probability distribution

and the random walk is called a Lévy flight [13][14][15].

The Lévy distribution has the characteristic of being both

stable and heavy-tailed. A stable distribution is such that

any sum 𝑛 of random number drawn from the distribution is

finite and can be expressed as

∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑛

1
𝛼⁄ ∙ 𝑥 (20)

where 𝛼 is called the index of stability and controls the

shape of the Lévy distribution with 0 < 𝛼 ≤ 2 . Notably,

two value for 𝛼 are special cases of two other distribution,

the normal distribution for 𝛼 = 2 , and the Cauchy

distribution for 𝛼 = 1.

The heavy-tail characteristic implies that the Lévy

distribution has an infinite variance, decaying for large 𝑥 to

𝜆(𝑥)~|𝑥|−1−𝛼.

Figure 3. Cauchy

Figure 3 shows the shapes of the normal, Cauchy, and

Lévy distribution with 𝛼 = 1.5 . The difference becomes

more pronounced in the logarithmic scale showing the

asymptotic behavior of the Lévy and Cauchy distribution

compared with the normal.

Due to the stable property, a random walker following

the Lévy distribution will cover a finite distance from its

original position after any number of steps. Also, due to the

heavy-tail of the distribution, extremely long jumps may

occur, and typical trajectories are self-similar, on all scales

showing clusters of shorter steps interspersed by long

excursions, as shown in Figure 4. In fact, the trajectory of a

Lévy flight has fractal dimension 𝑑𝑓 = 𝛼.

Figure 4. Levy’s flight

In that sense, the normal distribution in Figure 5

represents the limiting case of the basin of attraction of the

generalized central limit theorem for 𝛼 = 2 and the

trajectory of the walker follows a Brownian motion.

Figure 5. Brownian path

24

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Due to the properties of being both stable and heavy-

tailed, it is now believed that the Lévy distribution nicely

describes many natural phenomena in physical, chemical,

biological and economical systems. For instance, the

foraging behaviors of bacteria and higher animals show

typical Lévy flights, which optimize the search compared to

Brownian motion giving a better chance to escape from

local optima.

Figure 6. the trajectories of a Gaussian (left) and a Lévy (right) walker

Figure 6 shows the trajectories of a normal (left) and a

Lévy (right) walker. Both trajectories are statistically self-

similar, but the Lévy motion is characterized by island

structure of clusters of small steps, connected by long steps.

G. Step Size in Random Walks.

In the general equation of a random walk 𝑥𝑘+1 = 𝑥𝑘 +
𝑠𝜎𝑘, a proper step size, which determines how far a random

walker can travel after 𝑘 number of iterations, is very

important in the exploration of the search space. The two

component that make up the step are the scaling factor s and

the length of the random number in the distribution 𝜎𝑘. A

proper step size is very important to balance exploration and

exploitation, too small a step and the walker will not have a

chance to explore potential better places, on the other hand,

too large steps will scatter the search from the focal best

positions. From the theory of isotropic random walks, the

distance traveled after 𝑘 steps in 𝑁 dimensional space is

 𝐷 = 𝑠√𝑘𝑁 . (21)

In a length scale 𝐿 of a dimension of interest, the local

search is typically reasonably limited in the region 𝐷 =
𝐿 10⁄ , which means that the scaling factor

𝑠 ≈
𝐿

10√𝑘𝑁
 (22)

In typical metaheuristic optimization problems, we can

expect the number of iterations 𝑘 in the range 100 – 1000.

For example, with 100 iterations and 𝑁 = 1 (a one

dimensional problem) we have 𝑠 = 0.01𝐿, and to another

extreme with 1000 iterations and 𝑁 = 10 we have 𝑠 =
0.001𝐿. Therefore, a scaling factor between 0.01 – 0.001 is

basically a reasonable choice in most optimization

problems. 𝐿 is still kept independent as each dimension of

the problem may very well have a very different length

scale.

V. RANKED PARTICLE SWARM WITH LÉVY FLIGHTS

In this section, we describe a variant of the QPSO,

named Ranked PSO with Lévy flights (RaPSOL) that

introduces some innovative strategies on the QPSO

borrowed from other disciplines, like observations of natural

phenomena, and the nice properties of ranking in descriptive

statistics the nonparametric measures of dependence,

namely Spearman’s rho and Kendall’s tau.

The result is an algorithm that provides a nice balance

between exploration and exploitation and gives good-quality

solutions in short time and with limited computing power.

In fact, the Home Gateway (HG) is a low power ARM

embedded system running a Java Virtual Machine in the

OSGi framework.

The first innovation is to replace the exponential

probability density function with the Lévy distribution. A

second innovation is to improve the global exploration

search by shifting the attention from just the single best

global leader, to all the ranked particles. In fact, one

shortcoming of standard leader-oriented swarm algorithms

is that they tend to converge very fast to the current best

solution, sometimes missing other promising search area.

With only one global leader, all particles quickly converge

together, something missing better solutions.

To overcome that shortcoming, in RaPSOL, particles are

ranked according to their fitness and instead of just

considering the global best particle for determining the

current attractor, any particle is entitled to choose any other

better particle, not just the global best. This selection is

uniform-random: the second best particle is only entitled to

choose the best particle, and in general each particle may

choose any other better particle as its current attractor.

The introduction of ranked selection is enough to

guarantee a broader search in the problem domain avoiding

premature convergence to local optima. The algorithm steps

are thus:

1. Rank all particles according to their current fitness.

2. For each particle, randomly select any particle

whose fitness is better than this particle’s. Name

such particle the relative leader.

3. Take a uniform random point in the linear

hyperplane that intersects the particle’s personal

best position and the relative leader. Name this

point the particle’s attractor

4. Do a Lévy flight from the attractor with a step-size

proportional to the swarm’s current radius, by

constraining on the current distance of the particle

and the relative leader.

From our experiments and simulations, the effect of

ranking, coupled with the Lévy distribution, has proven to

25

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exhibit very good results compared to traditional PSO and

QPSO.

For our purposes, the Lévy distribution coefficient α

chosen in RaPSOL is actually the Cauchy coefficient 𝛼 = 1.

The Cauchy random generator is much simpler than the

more general algorithm for Lévy generation and that is a

determining factor in runtime execution. Since the random

generation needs to be executed for an umpteen number of

times (i.e., the dimension of the problem, by the number of

particles in the swarm, by the number of iterations of the

algorithm), the computing speed of the random generation is

of paramount importance. From our experiments, within a

given time limit allotted to the algorithm to find a solution,

the Cauchy version of the algorithm is able to execute

almost twice the number of iterations than the general Lévy

version. Therefore, even if there was an optimal coefficient

α that provides better results for the same number of

iterations, it will be outperformed by the Cauchy variant that

with more allowed iterations finds better solutions.

VI. SIMULATION AND RESULTS

We ran a number of simulations modeling the same

scheduling problem both in the RaPSOL algorithm and a

pure mathematical model with commercial linear

programming (LP) solvers, namely XPress and CPLEX.

The scheduling problem was formalized with 4 instances

of washing-machine power profiles, each profile being

made of 4 phases, and 3 instances of dish-washing-machines

each made of 5 phases, for a total of 31 independent

variables to optimize in the scheduling problem instance.

Due to the hard problem space for the brute-force exact

algorithms, the scheduling horizon was limited to 12 hours

and the time slots at multiples of 3 minutes, otherwise, with

one-minute slot time, no feasible solutions were found even

in 7 days of uninterrupted run.

Running 96 hours, XPress found a solution at a cost of €

2.57358. With the same problem and running 1 hour

CPLEX found a solution at € 2.59123. Finally, the RaPSOL

was given a bound time of 15 seconds, and run 10 times to

have reliable statistics, finding a best solution at € 2.7877,

with an average cost of € 2.9351 for the 10 times. We

additionally report in Table I results of compared algorithms

over an extended dataset (described in the first two

columns), where missing entries mean that the target

algorithm has not been able to achieve any result in the

specified time limit.

The results obtained using linear programming and exact

solvers are very important as they fix theoretical optima for

benchmarking the convergence and performance of the

metaheuristic approach of the RaPSOL. Results show that

although RaPSOL finds a worse solution than the theoretical

optimum by a 8 – 13 %, the very short allotted time to find a

solution is anyway a very promising approach. In Figure 7

and Figure 8 are reported simulation results when

considering appliance scheduling with constant overload

threshold, variable tariff, and with the absence and presence

of photovoltaic generation respectively. An interesting use

case is the scheduling of an entire apartment building where

tenants share a common contract with the utility provider in

which the energy consumption of the apartment house as a

whole must be below a given “virtual” threshold that

changes in time. Figure 9 shows such scenario. The curved

red line represents the virtual threshold that the apartment

house should respect.

All energy above such threshold will not cause an

overload but its cost grows exponentially with the net effect

of encouraging a peak shaving of profile allocation. The

case study of Figure 10 is a scheduling of 15 apartments,

with 3 appliances each, for a total of 45 appliances. The

apartment house is also provided with common PV-panels.

Figure 7. RAPSOL simulation results: appliance scheduling with constant

overload threshold, variable tariff, no photovoltaic.

Table I. Comparison of different tested algorithms over dataset described in

the first two columns.

26

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. RAPSOL simulation results: appliance scheduling with constant

overload threshold, variable tariff, photovolltaic.

The 3 case studies described here show the remarkable

flexibility of the RaPSOL algorithm, and many other

metaheuristic algorithms for that matter, i.e., the ability to

adapt the algorithm to the unique attributes of a given

problem and not based on predefined characteristics.

Figure 9. RaPSOL simulation results: appliance scheduling for different
apartments with variable overload threshold, variable tariff, photovoltaic.

Figure 10. RaPSOL simulation results: overload avoidance and

optimization of cost

A. Extended simulations setups

Extended simulations with a number of appliances equal

to 50, overload threshold of 4kW and different tariffs

schemes are shown in the following figures. The different

conditions comprise:

- tariffs (in the lower part of each figure) highly

dynamic or three tiers:

- solar generation: photovoltaic generation with clear

sky conditions (present or not present).

Figure 11. RaPSOL simulation results for the case: 50 appliances, overload

threshold of 4kW, dynamic tariff, photovoltaic with clear sky condition

Figure 12. RaPSOL simulation results for the case: 50 appliances, dynamic

tariff, overload threshold of 4kW, no photovoltaic

Figure 13. RaPSOL simulation results for the case: 50 appliances, overload

threshold of 4kW, three-tiers tariff, photovoltaic with clear sky condition

27

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. RaPSOL simulation results for the case: 50 appliances, three-

tiers tariff, overload threshold of 4kW, no photovoltaic

B. Comparison with growing number of appliances

In order to verify the performances of RaPSOL

considering a growing number of appliances, different

simulations have been performed and compared in Figure

15. The cost normalized for a single appliance is shown.

Clearly, the case with no solar generation has higher cost.

As expected, increasing the number of appliances also

downgrade the final solution because of the increased

dimension and complexity of the optimization.

Figure 15. RaPSOL simulation results for a growing number of appliances

for the different tariffs, overload threshold of 4kW, photovoltaic or no
photovoltaic

C. Discussion and considerations

In a rapidly changing world, algorithmic paradigms that

are flexible and easy to adjust offer a competitive advantage

over rigid, tailor based methods. In such volatile domains,

the usefulness of an algorithm framework will not be given

by its ability to solve a static problem, rather its ability to

adapt to changing conditions. Such requirement is likely to

define the success or failure in optimization algorithms of

tomorrow.

Exact and formal techniques decompose the

optimization problems into mathematically tractable

problems involving precise assumptions and well-defined

problem classes. However, many practical optimization

problems are not strictly members of these problem classes,

and this becomes especially relevant for problems that are

non-stationary during their lifecycle. Traditional

deterministic techniques place constraints on the current

problem definition and on how that problem definition may

change over time. Under these circumstances, long-term

algorithm survival / popularity is less likely to reflect the

performance of the canonical algorithm and instead more

likely reflects success in algorithm design modification

across problem contexts [16].

VII. CONCLUSION

This work describes an innovative Ranked PSO with

Lévy flights metaheuristic algorithm for scheduling home

appliances, capturing all relevant appliance operations. With

appropriately dynamic tariffs, the proposed framework can

propose a schedule for achieving cost savings and overloads

prevention. Good quality approximate solutions can be

obtained in short computational time with almost optimal

solutions.

The proposed framework can easily be extended to take

into account solar power forecasting in the presence of a

residential PV system by simply adapting the objective

function and using the solar energy forecaster as further

input to the scheduler.

ACKNOWLEDGMENT

This work has been partially supported by INTrEPID,

INTelligent systems for Energy Prosumer buildIngs at

District level, funded by the European Commission under

FP7, Grant Agreement N. 317983.

The authors would like to thank Prof. Della Croce of

Operational Research department of the Politecnico di

Torino for the valuable insights and contribution on the

linear programming solvers.

REFERENCES

[1] E. Grasso, C. Borean, “QPSOL: Quantum Particle Swarm
Optimization with Levy’s Flight,” ICCGI 2014, The Ninth
International Multi-Conference on Computing in the Global
Information Technology, pp. 14-23.

[2] INTrEPID FP7 project, “INTelligent systems for Energy
Prosumer buildings at District level,” http://www.fp7-
intrepid.eu .

[3] J. W. Taylor “Short-Term Load Forecasting with
Exponentially Weighted Methods,” IEEE Transactions on
Power Systems, vol. 27, pp. 458-464, February 2011.

[4] N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy, “Cloudy
Computing: Leveraging Weather Forecasts in Energy
Harvesting Sensor Systems,” SECON 2010, Boston, MA,
June 2010.

[5] Energy@Home project, “Energy@Home Technical
Specification version 0.95,” December 22, 2011

[6] R. Kolisch and S. Hartmann, “Heuristic Algorithms for
Solving the Resource-Constrained Project Scheduling
Problem: Classification and Computational Analysis,” . in J.
Weglarz, editor, Project scheduling: Recent models,
algorithms and applications, pp. 147–178, Kluwer Academic
Publishers, 1999.

[7] R. Kolisch and S. Hartmann, “Experimental Investigation of
Heuristics for Resource-Constrained Project Scheduling: An
Update,” European Journal of Operational Research 174, pp.
23-37, Elsevier, 2006.

28

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] K. Cheong Sou, J. Weimer, H. Sandberg, and K. Henrik
Johansson, “Scheduling Smart Home Appliances Using
Mixed Integer Linear Programming,” 50th IEEE Conference
on Decision and Control and European Control Conference
(CDC-ECC), Orlando, FL, USA, December 12-15, 2011.

[9] J. Holland, “Adaptation in Natural and Artificial systems,”
University of Michigan Press, Ann Anbor, 1995.

[10] S. Kirkpatrick, C. D. Gellat, and M.P. Vecchi, “Optimization
by Simulated Annealing,” Science, 220, pp. 671-680, 1983.

[11] J. Kennedy and R. C. Eberhart, “Particle Swarm
Optimization,” in: Proc. of the IEEE Int. Conf. on Neural
Networks, Perth, Australia, pp. 1942-1948, 1995.

[12] J. Sun, B. Feng, and W. Xu, "Particle swarm optimization
with particles having quantum behavior," in IEEE Congress
on Evolutionary Computation, pp. 325-31, 2004.

[13] X. Yang, “Nature-Inspired Metaheuristic Algorithms,”
Luniver Press, 2008.

[14] X. Yang “Review of metaheuristics and generalized
evolutionary walk algorithm,” Int. J. Bio-Inspired
Computation, vol. 3, No. 2, pp. 77-84, 2011.

[15] A. Chechkin, R. Metzler, J. Klafter, V. Gonchar,
“Introduction to the theory of lévy flights.” In: Klages R,
Radons G, Sokolov IM (eds) Anomalous Transport:
Foundations and Applications, Wiley-VCH, Berlin, 2008.

[16] J. M. Whitacre “Survival of the flexible: explaining the recent
dominance of nature-inspired optimization within a rapidly
evolving world,” Journal Computing, Vol. 93, Issue 2-4 , pp
135-146 2009.

29

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

