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Abstract— This paper analyzes the problem of scheduling 

home appliances in the context of smart home applications. 

The optimization problem is modeled and different approaches 

to tackle it are presented and discussed. A new metaheuristic 

algorithm named Ranked Particle Swarm with Lévy flights 

(RaPSOL) is then proposed and described. The algorithm runs 

on the limited computational power provided by the home 

gateway device and in almost real-time as of user perception. 

Simulation results of RaPSOL algorithm applied in different 

use case scenarios are presented and compared with other 

approaches. The simulations include validation of the method 

in variable conditions considering both consumption, micro-

generation and imposed user constraints. 

Keywords— scheduling; swarm intelligence; metaheuristic smart 

grids; smart homes. 

I.  INTRODUCTION 

This paper considers the minimum electricity cost 

scheduling problem of smart home appliances. Functional 

characteristics, such as expected duration and power 

consumption of the smart appliances can be modeled through 

a power profile signal. The optimal scheduling of power 

profile signals minimizes cost, while satisfying technical 

operation constraints and consumer preferences. Time and 

power constraints, and optimization cost are modeled in this 

framework using a metaheuristic algorithm based on a 

variant of Particle Swarm Optimization (PSO), presented in 

[1]. The algorithm runs on the limited computational power 

provided by the home gateway device and in almost real-

time as of user perception. The context refers to the smart 

home environment, described in the INTrEPID European 

project [2], where a home environment equipped with plug-

sensors and smart appliances can be used for enhanced smart 

energy management services. 

The proposed framework can optimize appliance 

scheduling to minimize energy cost while avoiding the 

overload threshold. Very good quality solutions can be 

obtained in short computation time, in the order of a few 

seconds, which enables the deployment of this algorithm in 

low-cost embedded platforms. 

Owing to the pliable characteristics of metaheuristic 

algorithms, the proposed algorithm is easily extended to 

incorporate solar power production forecasting in the 

presence of residential photovoltaic (PV) systems by simply 

adapting the objective function and using the solar energy 

forecaster as further input to the scheduler ([3][4]).  
 

 
Figure 1.  Example Power Profile with its phases generated by a washing 

machine 

The paper is structured as it follows. Section II describes 

a model of the problem for the scheduling of smart 

appliance. Section III highlights how this problem can be 

classified as a NP-Hard Combinatorial Optimization 

Problem. In Section IV, a give a broad review of 

metaheuristic, while in Section V the new algorithm 

proposed in the paper is described. Section VI reports the 

results of the simulations of the proposed algorithm applied 

to the problem of scheduling smart appliances. Finally, 

Section VII contains concluding remarks and future 

analysis. 

II. SCHEDULING PROBLEM OF SMART HOME 

APPLIANCES 

Smart home applications are becoming one of the driving 

force of the Internet-of-Things (IoT), since connecting smart 

devices such as smart appliance to the internet envisions new 

scenarios that provide added value to both the final users and 

the other stakeholders. Possible applications are for instance 

the remote monitoring of smart appliances, remote 

activation/deactivation, automatic failure detection and alarm 

notification. Likewise, applications for appliance makers 

range from the remote diagnosis and assistance of 

appliances, thus reducing the assistance costs, to the 

collection of appliance statistics information useful to 

improve strategies for marketing new products, i.e., the 

appliance vendor could offer discounts in exchange for being 

allowed to get access to usage patterns and uncover the 
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features more appealing to their customers. To foster the 

pervasive adoption of these new IoT services, a common set 

of features need to be shared among the connected devices, 

so that “silo services” provided by each vendor are replaced 

by a smart home ecosystems where the connected appliance 

share value in participating.  

One of the most successful application of smart home 

systems is energy management, since smart energy 

applications are enabled by IoT technologies and are shared 

by many home devices, which are mains powered. With the 

increased needs for energy sustainability, both regulatory and 

nationwide organizations are urging to the adoption of 

Renewable Energy Sources (RES) to reach the compelling 

target of the Horizon-2020 strategy. Since RES are by their 

nature variable and oftentimes difficult to predict exactly 

subject to variable weather conditions (PV performance 

mainly depends on cloud-cover condition, while wind 

turbines depends on the wind strength and direction), the 

final tariffs of electricity should match the fickle dynamics of 

the effective production cost instead of current two, or at 

most three tier model in most countries. 

To enable a scenario with highly dynamic energy tariffs, 

it is essential the introduction if intelligent systems that can 

autonomously and conveniently schedule appliances to 

optimize energy use in presence of RES and variable tariffs. 

On top of the above considerations, new actors such as 

Energy Aggregators are entering the market to collect and 

manage demands in so called “energy-districts”. From the 

Aggregator standpoint, the proper management of energy 

demands of a set of users allows purchasing energy in the 

gross market and sharing the savings with the end users. 

These scenarios are explored in the INTrEPID project. 

Another important requirement is also the “shaving” of peak 

energy demands that cause inefficiencies in the electricity 

network (e.g., over-sizing electricity network to avoid 

blackouts) with additional costs and increased hazards (e.g., 

blackouts in case of power peaks not properly managed by 

the electricity network). 

The management of users energy demand can be 

leveraged by the introduction of IoT systems, such as 

connected appliances, smart-plugs, smart-meters, apps for 

smartphones and tablet in order to visualize proposals to the 

users. These systems can take part in an energy management 

application with the aim to optimize the scheduling of 

appliances in the homes of district.  

Taking into account the above considerations, not only is 

an automatic decision system highly desirable but even 

necessary in most cases, which either directly takes control 

of the appliances’ operations (depending on the availability 

of smart appliances in the market), or at the very least is 

capable of providing advice to the home consumers (in case 

where using IoT system the appliance consumptions patterns 

can be learned and used for the scheduling). 

This paper considers the minimum electricity cost 

scheduling problem of smart home appliances in the context 

of the INTrEPID Project. Functional characteristics, such as 

expected duration, mean and peak power consumption of 

smart appliances can be modeled through a power profile 

signal in time. Such power profiles could also be inferred by 

proper disaggregation of the cumulated power of a single 

smart meter with Non-Intrusive Load Monitoring (NILM) 

techniques. In other more advanced scenarios, the power 

profiles are notified by the smart appliances themselves. 

Protocols that enable that scenario have already been 

specified in several standard bodies and associations such as 

Energy@home [5]. 

In view of the above considerations, not only is an 

automatic decision system highly desirable but even 

necessary in most cases, which either directly takes control 

of the appliances’ operations, or at the very least is capable 

of providing advice to the home consumers. 

A. Smart Appliances in smart home 

The smart home applications are enabled by 

communication between devices (e.g., smart appliances) in 

a home network typically enabled by wireless technologies. 

The core element of a home network is the Home 

Gateway (HG) that coordinates and manages the smart 

appliances as end-devices. Among its functionalities, the 

HG provides the intelligence for real-time scheduling of 

residential appliances, typically in the time interval 24 

hours, based on the tariff of the day, the forecasted energy 

power consumption, and possibly the forecasted wind/PV 

power generation. 

The proposed scheduling framework borrows from the 

Power Profile Cluster defined in the E@H specifications 

[5], which specifies that each appliance operation cycle is 

modeled as a power profile composed by a set of sequential 

energy phases, as depicted in Figure 1. In some situation, 

and without loss of generality, a power profile has just a 

single phase, and in that simple case the power profile and 

its phase simply coincide. 

In the more general case in which a power profile is 

composed of several energy phases, each phase represents 

an atomic subtask of the appliance’s operation cycle. All 

phases are ordered sequentially since a phase cannot start 

until the previous phase is completed
1
, however, there may 

be some degree of freedom in the time slack between one 

phase and the next. 

Therefore, in general, each energy phase is characterized 

by a time duration and a power signal in time domain with 

the chosen sampling frequency
2
, and a maximum activation 

delay after the end of the previous phase. Some phases have 

a maximum delay of zero, meaning that they cannot be 

delayed and must start soon after the previous phase 

completes. Other phases may be delayed adding extra 

flexibility in the scheduling of the power profile, e.g., the 

                                                           
1 e.g., a washing machine agitator cannot start until the basin is 

filled with water 
2
 Typical sampling frequency are 1 Hz or 1/60 Hz 
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washing machine agitator must start within ten minutes of 

the basin being filled. 

Another input to the scheduler is the user’s time 

constraints, demanding that certain appliances be scheduled 

within some particular time intervals, e.g., the dishwasher 

must run between 13:00 and 18:00. 

The objective of the HG scheduler is to find the least 

expensive scheduling for a set of smart appliances, each 

characterized by a power profile with its energy phases, 

while satisfying the necessary operational constraints. 

B. Modeling the Scheduling Problem 

A first step in the scheduling problem modeling is to 

determine its dimension. Being N the number of appliances 

considered, and denoting by 𝑛𝑝𝑖  the number of energy 

phases associated with each appliance 𝑖 , the problem 

dimension, corresponding to the overall number of phases, 

is trivially given by  

 

|𝑃| ≝ ∑ 𝑛𝑝𝑖
𝑁
𝑖=1                            (1) 

 

The objective of the scheduler is to minimize the total 

electricity cost for operating the appliances based on the 24-

hour electricity tariff while respecting time and energy 

constraints.  

Denoting with 𝒙 ∈ 𝑇|𝑃| the vector of start times of the 
|𝑃|  phases, where 𝑇  is the scheduling time interval, the 

problem can be stated as: 

 

𝒙 = arg min𝒙(𝐶(𝒙))                       (2) 

 

being 𝐶(𝒙), the total cost, expressed as 

 

𝐶(𝒙) =  ∑ ∑ 𝐶(𝑥𝑖𝑗
𝑛𝑝𝑖
𝑗=1

𝑁
𝑖=1 )                     (3) 

 

and 𝐶(𝑥𝑖𝑗) the cost of starting phase 𝑗 of appliance 𝑖 at time 

𝑥𝑖𝑗 . The cost of a single phase at a given time is simply the 

product of the power phase signal and the tariff in the 

subinterval, 𝐿𝑖𝑗 , from the start time to the end of the energy 

phase. 

 

𝐶(𝑥𝑖𝑗) =  ∫ 𝑡𝑎𝑟𝑖𝑓𝑓(𝑡) 𝑝𝑜𝑤𝑒𝑟𝑖𝑗(𝑡 − 𝑥𝑖𝑗)𝑑𝑡
𝑥𝑖𝑗+𝐿𝑖𝑗

𝑥𝑖𝑗
   (4) 

 

The integral notation assumes that the mean power is a 

Lebesgue integrable function. The above formulation is the 

most general possible, which assumes the power signal is a 

continuous function. An approximate formulation is to 

discretize the problem by choosing a reasonable sampling 

frequency, i.e., a trade-off with regard to the power profile 

signal variability and the desired system accuracy. 

Following this idea, a reasonable approximation is to 

discretize the day time interval into 1440 time slots of 1 

minute each. In such formulation, the above integral reduces 

to its summation approximate 

𝐶(𝑥𝑖𝑗) =  ∑ 𝑡𝑎𝑟𝑖𝑓𝑓(𝑡)  ∙ 𝑝𝑜𝑤𝑒𝑟𝑖𝑗(𝑡 − 𝑥𝑖𝑗)
𝑥𝑖𝑗+𝐿𝑖𝑗

𝑡=𝑥𝑖𝑗
   (5) 

 

The max power constraint imposes that at any given 

time the amount of power required by all appliances’ active 

phases be less than the peak power threshold specified by 

the grid operator. Let us define the auxiliary allocation 

function on the whole support of the scheduling interval T, 

 

𝑎𝑙𝑙𝑜𝑐𝑃𝑜𝑤𝑒𝑟𝑖𝑗(𝑡) =  {
𝑝𝑜𝑤𝑒𝑟𝑖𝑗(𝑡 − 𝑥𝑖𝑗)       𝑖𝑓 𝑡 ∈  [𝑥𝑖𝑗 , 𝑥𝑖𝑗 + 𝐿𝑖𝑗]

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  . 

(6) 
 

Now we can define the max power constraint as 

 

 ∑ ∑ 𝑎𝑙𝑙𝑜𝑐𝑃𝑜𝑤𝑒𝑟𝑖𝑗(𝑡)
𝑛𝑝𝑖
𝑗=1

𝑁
𝑖=1 < 𝑚𝑎𝑥𝑃𝑜𝑤𝑒𝑟 , ∀𝑡 ∈ 𝑇  (7) 

 

While the max power constraints apply to the 

optimization problem, time constraints simply restrict the 

scheduling interval. Time constraints are twofold. On the 

one hand, the end user can impose a scheduling interval for 

any appliance, in terms of an earliest start time (𝐸𝑆𝑇), e.g., 

after 13:20, and a latest end time (𝐿𝐸𝑇), e.g., before 18:00. 

 

𝐸𝑆𝑇𝑖 ≤  𝑥𝑖1 ;   𝑥𝑖𝑃 + 𝐿𝑖𝑃 ≤ 𝐿𝐸𝑇𝑖                   (8) 

 

The above time constraint means that start time of the 1
st
 

phase of appliance 𝑖 , 𝑥𝑖1 , must occur after the imposed 

𝐸𝑆𝑇𝑖 . Likewise, the completion time of the last phase, 

denoted by 𝑥𝑖𝑃 + 𝐿𝑖𝑃 , must occur before the imposed 𝐿𝐸𝑇𝑖 . 

The second time constraint is the maximum activation 

delay of each of the sequential phases that make up each 

power profile. While the scheduling interval specified in the 

first constraint is absolute, the maximum activation delays 

are relative and, therefore, the lower and upper bound time 

limits of each phase need to be adjusted based on the 

scheduling decisions for the previous phase. 

 

(𝑥𝑖𝑗 + 𝐿𝑖𝑗) ≤ 𝑥𝑖(𝑗+1) ≤ (𝑥𝑖𝑗 + 𝐿𝑖𝑗) + 𝑚𝑎𝑥𝐷𝑒𝑙𝑎𝑦𝑖(𝑗+1)    (9) 

 

III. NP-HARD COMBINATORIAL OPTIMIZATION 

PROBLEMS 

Given the problem formulation, the scheduling of power 

profiles, each composed by a set of sequential and possibly 

delayable phases, under energy constraints is classified in the 

more general family of Resource Constrained Scheduling 

Problem (RCSP), which is known as being an NP-Hard 

combinatorial optimization problem [6][7] . 

Moreover, the presence of time constraints introduces 

even another dimension to the complexity of problem, 

known as RCSP/max, i.e., RCSP with time windows. 

Combining the inherent complexity of the problem with the 

fact that the limited computing power of the HG which runs 

the logic of algorithm, and the almost real-time requirement 

for finding a solution (typically the end user wants a 
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perceived immediate answer), make the formulation a 

challenging problem. 

From a theoretical perspective, combinatorial 

optimization problems have a well-structured definition 

consisting of an objective function that needs to be 

minimized (e.g., the energy cost) and a series of constraints. 

These problems are important for many real-life applications. 

For some problems, exact methods can be exploited, such 

as branch-and-cut and Mixed Integer Linear Programming 

(MILP), with back-tracking and constraints propagation to 

prune the search space. However, in most circumstances, the 

solution space is highly irregular and finding the optimum is 

in general impossible. An exhaustive method that checks 

every single point in the solution space would be infeasible 

in these difficult cases, since it takes exponential time. 

As a point of fact, [8] also addresses a similar scheduling 

problem of smart appliances, and relies on traditional MILP 

as a problem solver. They provide computation time 

statistics for their experiments, running on an Intel Core i5 

2.53GHz equipped with 4GB of memory and using the 

commercial application CPLEX and MATLAB. According 

to their figures, discretizing the time interval in 10-minute 

discrete slots (for a total of 144 daily slots), takes their 

algorithm about 15.4 seconds to find a solution. With 5-

minute slots the time rises to 83.6 seconds and with 3-minute 

slots to 860 seconds. From these figures, it is clear that a 

traditional approach like MILP is hardly acceptable for 

scheduling home appliances, and other more efficient 

methods need to be investigated. 

A. Convex and Smooth Objective Functions 

Generally speaking, optimization problems can be 

categorized, from a high-level perspective, as having either 

a convex or non-convex formulation. 

A convex formulation enables to represent the objective 

function as a series of convex regions where traditional 

deterministic methods work best and fast, such as conjugate 

gradient descent and quasi-Newton variants, like L-BFGS  

(Limited memory Broyden–Fletcher–Goldfarb–Shanno). 

The main idea, in convex optimization problems, is that 

every constraint restricts the space of solutions to a certain 

convex region. By taking the intersection of all these 

regions we obtain the set of feasible solutions, which is also 

a convex region. Due to the nice structure of the solution 

space, every single local optimum is a global one. Most 

conventional or classic algorithms are deterministic. For 

example, the simplex method in linear programming is 

deterministic, and use gradient information in the search 

space, namely the function values and their derivatives. 

Non-convex constraints create a many disjoint regions, 

and multiple locally optimal points within each of them. As 

a result, if a traditional search method is applied, there is a 

high risk of ending in a local optimum that may still be far 

away from the global optimum. But the main drawback is 

that it can take exponential time in the size of problem 

dimension to determine if a feasible solution even exists. 

Another definition is that of smooth function, i.e., a 

function that is differentiable and its derivative is 

continuous. If the objective function is non-smooth, the 

solution space typically contains multiple disjoint regions 

and many locally optimal points within each of them. The 

lack of a nice structure makes the application of traditional 

mathematical tools, such as gradient information, very 

complicated or even impossible in these cases. 

However, many real problems are neither convex nor 

smooth, and so deterministic optimization methods can 

hardly be applied. 

B. An Overview of General Metaheuristic Algorithms 

A problem is NP-Hard if there is not an exact algorithm 

that can solve the problem in polynomial time with respect 

to the problem’s dimension. In other words, aside from 

some “toy-problems”, an NP-Hard problem would require 

exponential time to find a solution by systematically 

“exploring” the solution space. 

A common method to turn an NP-Hard problem into a 

manageable, feasible approach is to apply heuristics to 

“guide” the exploration of the search space. These heuristics 

are based on “common-sense” specific for each problem and 

are the basis for developing Greedy Algorithms that can 

build the solution by selecting at each step the most 

promising path in the solution space based on the suggested 

heuristics. Obviously, this approach is short-sighted since it 

proceeds with incomplete information at each step. Very 

rarely do greedy algorithms find the best solution or worse 

yet they might fail to find a feasible solution even if one 

does exist. 

A better approach for solving complex NP-Hard 

problems that has shown great success is based on 

metaheuristic algorithms. The word meta means that their 

heuristics are not problem specific to a particular problem, 

but general enough to be applied to a broad range of 

problems. Examples of metaheuristic algorithms are Genetic 

and Evolutionary Algorithms, Tabu search, Simulated 

Annealing, Greedy Randomized Adaptive Search Procedure, 

Particle-Swarm-Optimization, and many others. 

The idea of metaheuristics is to have efficient and 

practical algorithms that work most the time and are able to 

produce good quality solutions, some of them will be nearly 

optimal. Figuratively speaking, searching for the optimal 

solution is like treasure-hunting. Imagine we are trying to 

find a hidden treasure in a hilly landscape within a time 

limit. It would be a silly idea to search every single square 

meter of an extremely large region with limited resources 

and limited time. A more sensible approach is to go to some 

place almost randomly and then move to another plausible 

place using some hints we gather throughout. 

Two are the main elements of all metaheuristic 

algorithms: intensification and diversification. 

Diversification via randomization means to generate diverse 

solutions so as to explore the search space on the global 

scale and to avoid being trapped at local optima. 
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Intensification means to focus the search in a local region by 

exploiting the information that a current good solution is 

found in this region as a basis to guide the next step in the 

search space. The fine balance between these two elements 

is very important to the overall efficiency and performance 

of an algorithm. 

IV. CLASSIFICATION OF METAHEURISTIC 

ALGORITHMS  

Metaheuristic algorithms are broadly classified in two 

large families: population-based and trajectory-based. 

Going back to the treasure-hunting metaphor, in a 

trajectory-based approach we are essentially performing the 

search alone, moving from one place to the next based on 

the hints we have gathered so far. On the other hand, in a 

population-based approach we are asking a group of people 

to participate in the hunting sharing all information gathered 

by all members to select the most promising paths for the 

next moves. 

A. Genetic Algorithms  

Genetic Algorithms (GA) were introduced by John 

Holland and his collaborators at the University of Michigan 

in 1975 [9]. A GA is a search method based on the 

abstraction of Darwinian evolution and natural selection of 

biological systems, and representing them in the 

mathematical operators: crossover (or recombination), 

mutation, fitness evaluation and selection of the best. The 

algorithm starts with a set of candidate solutions, the initial 

population, and generate new offspring through random 

mutation and crossover, and then applies a selection step in 

which the worst solutions are deleted while the best are 

passed on to the next generation. The entire process is 

repeated multiple times and gradually better and better 

solutions are obtained. GA algorithms represent the 

inseminating idea of all more recent population-based 

metaheuristics. 

One major drawback of GA algorithms is the 

“conceptual impedance” that arises when trying to formulate 

the problem at hand with the genetic concepts of the 

algorithm.  The formulation of the fitness function, 

population size, the mutation and crossover operators, and 

the selection criteria of the offspring population are 

crucially important for the algorithm to converge and find 

the best, or quasi-best, solution. 

B. Simulated Annealing 

Simulated Annealing (SA) was introduced by 

Kirkpatrick et al. in 1983 [10] and is a trajectory-based 

approach that simulates the evolution of a solid in a heat 

bath to thermal equilibrium. It was observed that heat causes 

the atoms to deviate from their original configuration and 

transition to states of higher energy. Then, if a slow cooling 

process is applied, there is a relatively high chance for the 

atoms to form a structure with lower internal energy than 

the original one. Metaphorically speaking, SA is like 

dropping a bouncing ball over a hilly landscape, and as the 

ball bounces and loses its energy it eventually settles down 

to some local minima. But if the ball loses energy slowly 

enough keeping its momentum, it might have a chance to 

overcome some local peaks and fall through a better 

minimum. 

C. Particle Swarm Optimization 

Particle Swarm Optimization (PSO), introduced in 1995 

by American social psychologist James Kennedy, and 

engineer Russell C. Eberhart [11], represents a major 

milestone in the development of population-based 

metaheuristic algorithms. PSO is an optimization algorithm 

inspired by swarm intelligence of fish and birds or even 

human behavior. The multiple particles swarm around the 

search space starting from some initial random guess and 

communicate their current best solutions and also share their 

best. The greatest advantage of PSO over GA is that it is 

much simpler to apply in the formulation of the problem. 

Instead of using crossover and mutation operations it 

exploits global communication among the swarm particles. 

Each particle in the swarm modifies its position with a 

velocity that includes a first component that attracts the 

particle towards the best position so far achieved by the 

particle itself. This component represents the personal 

experience of the particle. The second component attracts 

the particle towards the best solution so far achieved by the 

swarm as a whole. This component represents the social 

communication skill of the particles. 

Denoting with N the dimensionality of the search space, 

i.e., the number of independent variables that make up the 

exploring search space, each individual particle is 

characterized by its position and velocity N-vectors. 

Denoting with 𝑥𝑖
𝑘 and 𝑣𝑖

𝑘 respectively the position and 

velocity of particle 𝑖 at iteration 𝑘, the following equations 

are used to iteratively modify the particles’ velocities and 

positions: 

 

𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑘) + 𝑐2𝑟2(𝑔∗ − 𝑥𝑖

𝑘)     (10) 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                                   (11) 

  

where w is the inertia parameter that weights the previous 

particle’s momentum; 𝑐1 and 𝑐2 are the cognitive and social 

parameter of the particles multiplied by two random 

numbers 𝑟1 and 𝑟2 uniformly distributed in [0 − 1], and are 

used to weight the velocity respectively towards the 

particle’s personal best, (𝑝𝑖 − 𝑥𝑖
𝑘), and towards the global 

best solution, (𝑔∗ − 𝑥𝑖
𝑘), found so far by the whole swarm. 

Then the new particle position is determined simply by 

adding to the particle’s current position the new computed 

velocity, as shown in Figure 2. 

The PSO coefficients that need to be determined are the 

inertia weight 𝑤, the cognitive and social parameters 𝑐1 and 

𝑐2, and the number of particles in the swarm. 
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Figure 2.  New particle position in PSO 

We can interpret the motion of a particle as the 

integration of Newton’s second law, where the components 

𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑘) + 𝑐2𝑟2(𝑔∗ − 𝑥𝑖

𝑘)  are the attractive forces 

produced by springs of random stiffness, while 𝑤 introduces 

a virtual mass to stabilize the motion of the particles, 

avoiding the algorithm to diverge, and is typically a number 

such that 𝑤 ≈ [0.5 − 0.9]. It has been shown, without loss 

of generality, that for most general problems the number of 

parameters can even be reduced by taking 𝑐1 = 𝑐2 ≈ 2. 

D. Quantum Particle Swarm Optimization 

Although much simpler to formulate than GA, classical 

PSO has still many control parameters and the convergence 

of the algorithm and its ability to find a near-best global 

solution is greatly affected by the value of these control 

parameters. To avoid this problem a variant of PSO, called 

Quantum PSO (QPSO) was formulated in 2004 by Sun et al. 

[12], in which the movement of particles is inspired by 

quantum mechanics. 

The rationale behind QPSO stems from the observation 

that statistical analyses have demonstrated that in classical 

PSO each particle 𝑖  converges to its local attractor 𝑎𝑖 

defined as 

 

𝑎𝑖 = (𝑐1𝑝𝑖 + 𝑐2𝑔∗) (𝑐1 + 𝑐2)⁄                  (12) 

 

where 𝑝𝑖  and 𝑔∗ are the personal best and global best of the 

particle. The local attractor of particle 𝑖  is a stochastic 

attractor that lies in a hyper-rectangle with 𝑝𝑖  and 𝑔∗ being 

two ends of its diagonal, and the above formulation can also 

be rewritten as 

 

𝑎𝑖 = 𝑟𝑝𝑖 + (1 − 𝑟)𝑔∗                       (13) 

  

where 𝑟 is a uniformly random number in the range [0 − 1]. 
In classical PSO, particles have a mass and move in the 

search space by following Newtonian dynamics and 

updating their velocity and position at each step. In quantum 

mechanics, the position and velocity of a particle cannot be 

determined simultaneously according to uncertainty 

principle. In QPSO, the positions of the particles are 

determined by the Schrödinger equation where an attractive 

potential field will eventually pull all particles to the 

location defined by their local attractors. The probability of 

particle 𝑖  appearing at a certain position at step 𝑘 + 1  is 

given by: 

 

𝑥𝑙
𝑘+1 = 𝑎𝑖 + 𝛽 |𝑥𝑚𝑏𝑒𝑠𝑡

𝑘 − 𝑥𝑙
𝑘| ln(1 𝑢⁄ ) , 𝑖𝑓 𝑣 ≥ 0.5    (14) 

 

𝑥𝑙
𝑘+1 = 𝑎𝑖 − 𝛽 |𝑥𝑚𝑏𝑒𝑠𝑡

𝑘 − 𝑥𝑙
𝑘| ln(1 𝑢⁄ ) , 𝑖𝑓 𝑣 < 0.5    (15) 

 

where 𝑢 and 𝑣 are uniformly random numbers in the range 

[0 − 1], 𝑥𝑚𝑏𝑒𝑠𝑡
𝑘 is the mean best of the population at step 𝑘 

defined as the mean of the best positions of all particles 

 

𝑥𝑚𝑏𝑒𝑠𝑡
𝑘 = ∑ 𝑝𝑖

𝑁
𝑖=1                             (16) 

 

𝛽  is called contraction-expansion coefficient and controls 

the convergence speed of the algorithm. 

The QPSO algorithm has been shown to perform better 

than classical PSO on several problems due to its ability to 

better explore the search space and also has the nice feature 

of requiring one single parameter to be tuned, namely the 𝛽 

coefficient. The exponential distribution of positions in the 

update formula makes QPSO search in a wide space. 

Moreover, the use of the mean best position 𝑥𝑚𝑏𝑒𝑠𝑡 , each 

particle cannot converge to the global best position without 

considering all other particles, making them explore more 

thoroughly around the global best until all particles are 

closer. However, this may be both a blessing and a curse; it 

may be more appropriate in some problems but it may slow 

the convergence of the algorithm in other problems. Again, 

there is a very fine balance between exploration and 

exploitation. How large is the search space, and how much 

time is given to explore before returning a solution. 

E. Dealing with Constraints 

Many real world optimization problems have 

constraints, for example, the available amount of certain 

resources, the boundary domain of certain variables, etc. So 

an important question is how to incorporate constraints in 

the problem formulation. 

In some cases, it may be simple to incorporate the 

feasibility of solutions directly in the formulation of a 

problem. If we know the boundary domain of a certain 

dependent variable and the proposed solution violates such 

domain we can either reject the solution or modify it by 

constraining the variable within the boundaries. For 

example, suppose a time variable must satisfy the time 

interval between 9:00 and 13:00, while the proposed 

solution would place it at 14:34. One way to deal with the 

above violation is to constrain the variable to its upper 

bound (UB) 13:00 and reevaluate the objective function. 

This will be probably worse than before, but at least it will 

be feasible and need not be rejected altogether. 

A common practice is to incorporate constrains directly 

in the formulation of the objective function through the 
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addition of a penalty element so that a constrained problem 

becomes unconstrained. If 𝑓(𝑥) is the objective function to 

be minimized, any equality / disequality constrains can be 

cast to penalty terms linearly added to the objective 

function, typically with a high weight 𝑤  and a quadratic 

function in the measured violation 𝑔(𝑥) = max (0, 𝑣(𝑥)2), 

where 𝑣(∙) “measure” the amount of violation. Now the 

augmented optimization problem becomes 

 

arg min𝑥(𝑓(𝑥) + 𝑤 ∙ 𝑔(𝑥))                  (17) 

 

𝑤  is the penalty weight that needs to be large enough to 

skew the choice of the fittest solutions towards the smallest 

penalty component, typically in the range 10
9
 - 10

15
. 

In our scheduling problem we have already defined the 

max power constraint as upper bound inequality. 

 

𝑔(𝑡) ≝ max [0, (∑ ∑ 𝑎𝑙𝑙𝑜𝑐𝑃𝑜𝑤𝑒𝑟𝑖𝑗(𝑡)𝑛𝑝𝑖
𝑗=1

𝑁
𝑖=1 ) − 𝑚𝑎𝑥𝑃𝑜𝑤𝑒𝑟] 

(18) 

 

F. Nature Inspired Random Walks and Lévy Flights 

A random walk is a series of consecutive random steps 

starting from an original point: 𝑥𝑛 = 𝑠1 + ⋯ + 𝑠𝑛 = 𝑥𝑛−1 +
𝑠𝑛, which means that the next position 𝑥𝑛 only depends on 

the current position 𝑥𝑛−1 and the next step 𝑠𝑛 . This is the 

typical main property of a Markov chain. Very generally, 

we can write the position in random walks at step 𝑘 + 1 as 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝜎𝑘                               (19) 

 

where  𝜎𝑘  is a random number drawn from a certain 

probability distribution. In mathematical terms, each 

random variable follows a probability distribution. A typical 

example is the normal distribution and the random walk 

becomes a Brownian motion. Besides the normal 

distribution, the random walk may obey other non-Gaussian 

distributions. 

For example, several studies have shown that the 

random walk behavior of many animals and insects have the 

typical characteristics of the Lévy probability distribution 

and the random walk is called a Lévy flight [13][14][15]. 

The Lévy distribution has the characteristic of being both 

stable and heavy-tailed. A stable distribution is such that 

any sum 𝑛 of random number drawn from the distribution is 

finite and can be expressed as 

 

∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑛

1
𝛼⁄ ∙ 𝑥                              (20) 

 

where 𝛼  is called the index of stability and controls the 

shape of the Lévy distribution with 0 < 𝛼 ≤ 2 . Notably, 

two value for 𝛼 are special cases of two other distribution, 

the normal distribution for 𝛼 = 2 , and the Cauchy 

distribution for 𝛼 = 1. 

The heavy-tail characteristic implies that the Lévy 

distribution has an infinite variance, decaying for large 𝑥 to 

𝜆(𝑥)~|𝑥|−1−𝛼.
 

 

 
Figure 3.  Cauchy 

Figure 3 shows the shapes of the normal, Cauchy, and 

Lévy distribution with 𝛼 = 1.5 . The difference becomes 

more pronounced in the logarithmic scale showing the 

asymptotic behavior of the Lévy and Cauchy distribution 

compared with the normal. 

Due to the stable property, a random walker following 

the Lévy distribution will cover a finite distance from its 

original position after any number of steps. Also, due to the 

heavy-tail of the distribution, extremely long jumps may 

occur, and typical trajectories are self-similar, on all scales 

showing clusters of shorter steps interspersed by long 

excursions, as shown in Figure 4. In fact, the trajectory of a 

Lévy flight has fractal dimension 𝑑𝑓 = 𝛼. 

 

 

 
Figure 4.  Levy’s flight 

In that sense, the normal distribution in Figure 5 

represents the limiting case of the basin of attraction of the 

generalized central limit theorem for 𝛼 = 2  and the 

trajectory of the walker follows a Brownian motion.  

 

 

 
Figure 5.  Brownian path 
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Due to the properties of being both stable and heavy-

tailed, it is now believed that the Lévy distribution nicely 

describes many natural phenomena in physical, chemical, 

biological and economical systems. For instance, the 

foraging behaviors of bacteria and higher animals show 

typical Lévy flights, which optimize the search compared to 

Brownian motion giving a better chance to escape from 

local optima. 

 

 

Figure 6.  the trajectories of a Gaussian (left) and a Lévy (right) walker 

Figure 6 shows the trajectories of a normal (left) and a 

Lévy (right) walker. Both trajectories are statistically self-

similar, but the Lévy motion is characterized by island 

structure of clusters of small steps, connected by long steps. 

G. Step Size in Random Walks. 

In the general equation of a random walk 𝑥𝑘+1 = 𝑥𝑘 +
𝑠𝜎𝑘, a proper step size, which determines how far a random 

walker can travel after 𝑘  number of iterations, is very 

important in the exploration of the search space. The two 

component that make up the step are the scaling factor s and 

the length of the random number in the distribution 𝜎𝑘. A 

proper step size is very important to balance exploration and 

exploitation, too small a step and the walker will not have a 

chance to explore potential better places, on the other hand, 

too large steps will scatter the search from the focal best 

positions. From the theory of isotropic random walks, the 

distance traveled after 𝑘 steps in 𝑁 dimensional space is 

 

          𝐷 = 𝑠√𝑘𝑁 .            (21) 

 

In a length scale 𝐿 of a dimension of interest, the local 

search is typically reasonably limited in the region 𝐷 =
𝐿 10⁄ , which means that the scaling factor 

 

𝑠 ≈
𝐿

10√𝑘𝑁
                                  (22) 

 

In typical metaheuristic optimization problems, we can 

expect the number of iterations 𝑘 in the range 100 – 1000. 

For example, with 100 iterations and 𝑁 = 1  (a one 

dimensional problem) we have 𝑠 = 0.01𝐿, and to another 

extreme with 1000 iterations and 𝑁 = 10  we have 𝑠 =
0.001𝐿. Therefore, a scaling factor between 0.01 – 0.001 is 

basically a reasonable choice in most optimization 

problems. 𝐿 is still kept independent as each dimension of 

the problem may very well have a very different length 

scale. 

V. RANKED PARTICLE SWARM WITH LÉVY FLIGHTS 

In this section, we describe a variant of the QPSO, 

named Ranked PSO with Lévy flights (RaPSOL) that 

introduces some innovative strategies on the QPSO 

borrowed from other disciplines, like observations of natural 

phenomena, and the nice properties of ranking in descriptive 

statistics the nonparametric measures of dependence, 

namely Spearman’s rho and Kendall’s tau. 

The result is an algorithm that provides a nice balance 

between exploration and exploitation and gives good-quality 

solutions in short time and with limited computing power.  

In fact, the Home Gateway (HG) is a low power ARM 

embedded system running a Java Virtual Machine in the 

OSGi framework. 

The first innovation is to replace the exponential 

probability density function with the Lévy distribution. A 

second innovation is to improve the global exploration 

search by shifting the attention from just the single best 

global leader, to all the ranked particles. In fact, one 

shortcoming of standard leader-oriented swarm algorithms 

is that they tend to converge very fast to the current best 

solution, sometimes missing other promising search area. 

With only one global leader, all particles quickly converge 

together, something missing better solutions. 

To overcome that shortcoming, in RaPSOL, particles are 

ranked according to their fitness and instead of just 

considering the global best particle for determining the 

current attractor, any particle is entitled to choose any other 

better particle, not just the global best. This selection is 

uniform-random: the second best particle is only entitled to 

choose the best particle, and in general each particle may 

choose any other better particle as its current attractor. 

The introduction of ranked selection is enough to 

guarantee a broader search in the problem domain avoiding 

premature convergence to local optima. The algorithm steps 

are thus: 

1. Rank all particles according to their current fitness. 

2. For each particle, randomly select any particle 

whose fitness is better than this particle’s.  Name 

such particle the relative leader. 

3. Take a uniform random point in the linear 

hyperplane that intersects the particle’s personal 

best position and the relative leader. Name this 

point the particle’s attractor 

4. Do a Lévy flight from the attractor with a step-size 

proportional to the swarm’s current radius, by 

constraining on the current distance of the particle 

and the relative leader. 

From our experiments and simulations, the effect of 

ranking, coupled with the Lévy distribution, has proven to 
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exhibit very good results compared to traditional PSO and 

QPSO. 

For our purposes, the Lévy distribution coefficient α 

chosen in RaPSOL is actually the Cauchy coefficient 𝛼 = 1. 

The Cauchy random generator is much simpler than the 

more general algorithm for Lévy generation and that is a 

determining factor in runtime execution. Since the random 

generation needs to be executed for an umpteen number of 

times (i.e., the dimension of the problem, by the number of 

particles in the swarm, by the number of iterations of the 

algorithm), the computing speed of the random generation is 

of paramount importance. From our experiments, within a 

given time limit allotted to the algorithm to find a solution, 

the Cauchy version of the algorithm is able to execute 

almost twice the number of iterations than the general Lévy 

version. Therefore, even if there was an optimal coefficient 

α that provides better results for the same number of 

iterations, it will be outperformed by the Cauchy variant that 

with more allowed iterations finds better solutions. 

VI. SIMULATION AND RESULTS 

We ran a number of simulations modeling the same 

scheduling problem both in the RaPSOL algorithm and a 

pure mathematical model with commercial linear 

programming (LP) solvers, namely XPress and CPLEX. 

The scheduling problem was formalized with 4 instances 

of washing-machine power profiles, each profile being 

made of 4 phases, and 3 instances of dish-washing-machines 

each made of 5 phases, for a total of 31 independent 

variables to optimize in the scheduling problem instance. 

 

 

 

Due to the hard problem space for the brute-force exact 

algorithms, the scheduling horizon was limited to 12 hours 

and the time slots at multiples of 3 minutes, otherwise, with 

one-minute slot time, no feasible solutions were found even 

in 7 days of uninterrupted run. 

 

Running 96 hours, XPress found a solution at a cost of € 

2.57358. With the same problem and running 1 hour 

CPLEX found a solution at € 2.59123. Finally, the RaPSOL 

was given a bound time of 15 seconds, and run 10 times to 

have reliable statistics, finding a best solution at € 2.7877, 

with an average cost of € 2.9351 for the 10 times. We 

additionally report in Table I results of compared algorithms 

over an extended dataset (described in the first two 

columns), where missing entries mean that the target 

algorithm has not been able to achieve any result in the 

specified time limit.  

The results obtained using linear programming and exact 

solvers are very important as they fix theoretical optima for 

benchmarking the convergence and performance of the 

metaheuristic approach of the RaPSOL. Results show that 

although RaPSOL finds a worse solution than the theoretical 

optimum by a 8 – 13 %, the very short allotted time to find a 

solution is anyway a very promising approach. In Figure 7 

and Figure 8 are reported simulation results when 

considering appliance scheduling with constant overload 

threshold, variable tariff, and with the absence and presence 

of photovoltaic generation respectively. An interesting use 

case is the scheduling of an entire apartment building where 

tenants share a common contract with the utility provider in 

which the energy consumption of the apartment house as a 

whole must be below a given “virtual” threshold that 

changes in time. Figure 9 shows such scenario. The curved 

red line represents the virtual threshold that the apartment 

house should respect. 

All energy above such threshold will not cause an 

overload but its cost grows exponentially with the net effect 

of encouraging a peak shaving of profile allocation. The 

case study of Figure 10 is a scheduling of 15 apartments, 

with 3 appliances each, for a total of 45 appliances. The 

apartment house is also provided with common PV-panels. 

 

 

 
Figure 7.  RAPSOL simulation results: appliance scheduling with constant 

overload threshold, variable tariff, no photovoltaic. 

Table I. Comparison of different tested algorithms over dataset described in 

the first two columns. 
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Figure 8.  RAPSOL simulation results: appliance scheduling with constant 

overload threshold, variable tariff, photovolltaic. 

The 3 case studies described here show the remarkable 

flexibility of the RaPSOL algorithm, and many other 

metaheuristic algorithms for that matter, i.e., the ability to 

adapt the algorithm to the unique attributes of a given 

problem and not based on predefined characteristics.  

 

 

Figure 9.  RaPSOL simulation results: appliance scheduling for different 
apartments with variable overload threshold, variable tariff, photovoltaic. 

 
Figure 10.  RaPSOL simulation results: overload  avoidance and 

optimization of cost 

A. Extended simulations setups 

Extended simulations with a number of appliances equal 

to 50, overload threshold of 4kW and different tariffs 

schemes are shown in the following figures. The different 

conditions comprise: 

- tariffs (in the lower part of each figure) highly 

dynamic or three tiers: 

- solar generation: photovoltaic generation with clear 

sky conditions (present or not present). 

 

 

 
Figure 11.  RaPSOL simulation results for the case: 50 appliances, overload 

threshold of 4kW, dynamic tariff, photovoltaic with clear sky condition 

 

 

 
Figure 12.  RaPSOL simulation results for the case: 50 appliances, dynamic 

tariff,  overload threshold of 4kW, no photovoltaic  

 

 

 
Figure 13.  RaPSOL simulation results for the case: 50 appliances, overload 

threshold of 4kW, three-tiers tariff, photovoltaic with clear sky condition 
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Figure 14.  RaPSOL simulation results for the case: 50 appliances, three-

tiers tariff, overload threshold of 4kW, no photovoltaic  

B. Comparison with growing number of appliances 

In order to verify the performances of RaPSOL 

considering a growing number of appliances, different 

simulations have been performed and compared in Figure 

15. The cost normalized for a single appliance is shown. 

Clearly, the case with no solar generation has higher cost. 

As expected, increasing the number of appliances also 

downgrade the final solution because of the increased 

dimension and complexity of the optimization. 

 

 
Figure 15.  RaPSOL simulation results for a growing number of appliances 

for the different tariffs, overload threshold of 4kW, photovoltaic or no 
photovoltaic  

C. Discussion and considerations 

In a rapidly changing world, algorithmic paradigms that 

are flexible and easy to adjust offer a competitive advantage 

over rigid, tailor based methods. In such volatile domains, 

the usefulness of an algorithm framework will not be given 

by its ability to solve a static problem, rather its ability to 

adapt to changing conditions. Such requirement is likely to 

define the success or failure in optimization algorithms of 

tomorrow. 

Exact and formal techniques decompose the 

optimization problems into mathematically tractable 

problems involving precise assumptions and well-defined 

problem classes. However, many practical optimization 

problems are not strictly members of these problem classes, 

and this becomes especially relevant for problems that are 

non-stationary during their lifecycle. Traditional 

deterministic techniques place constraints on the current 

problem definition and on how that problem definition may 

change over time. Under these circumstances, long-term 

algorithm survival / popularity is less likely to reflect the 

performance of the canonical algorithm and instead more 

likely reflects success in algorithm design modification 

across problem contexts [16]. 

VII. CONCLUSION 

This work describes an innovative Ranked PSO with 

Lévy flights metaheuristic algorithm for scheduling home 

appliances, capturing all relevant appliance operations. With 

appropriately dynamic tariffs, the proposed framework can 

propose a schedule for achieving cost savings and overloads 

prevention. Good quality approximate solutions can be 

obtained in short computational time with almost optimal 

solutions. 

The proposed framework can easily be extended to take 

into account solar power forecasting in the presence of a 

residential PV system by simply adapting the objective 

function and using the solar energy forecaster as further 

input to the scheduler. 
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