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Abstract—This paper presents a formal framework
that provides construction principles for well-behaved
scalable systems, such that starting with a prototype
system satisfying a desired safety property result in
a scalable system satisfying a corresponding safety
property, called scalable safety property. With respect
to different aspects of scalability, the focus of this
work is on property preserving structural scalability.
At that, we consider systems composed of a varying
set of individual components where individual com-
ponents of the same type behave in the same manner,
which is characteristic for the type. The respective
properties can rely on specific component types and
a specific number of individual components but not
on the specific individuality of the components. Well-
behaved scalable systems are characterised by those
systems, which fulfil such a kind of property if already
one prototype system (depending on the property)
fulfils that property. Sufficient conditions to specify
a certain kind of basic well-behaved scalable systems
are given and it is shown, how to construct more com-
plex systems by the composition of several synchro-
nisation conditions. Scalable safety properties can be
used to express privacy policies as well as security
and dependability requirements. It is demonstrated,
how the parameterised problem of verifying such a
property is reduced to a finite state problem for well-
behaved scalable systems. The formal framework for
well-behaved scalable systems is developed in terms
of prefix closed formal languages and alphabetic lan-
guage homomorphisms.

Keywords-uniformly parameterised systems, mono-
tonic parameterised systems, behaviour-abstraction,
self-similarity of behaviour, privacy policies, scalable
safety properties.

I. Introduction
This article is based on [1], where the concept of

well-behaved scalable systems has been introduced. It
is extended by extensive proofs of the theorems and
the definition of scalable safety properties as well as
their verification for well-behaved scalable systems. This
is illustrated by a complex example, where several
synchronisation conditions are composed.

Scalability is a desirable property of systems. However,
the term scalability is often not clearly defined and thus
it is difficult to characterise and understand systems
with respect to their scalability properties [2]. In [3],
four aspects of scalability are considered, i.e., load

scalability, space scalability, space-time scalability, and
structural scalability. In this paper, we focus on structural
scalability, which is “the ability of a system to expand in
a chosen dimension without major modifications to its
architecture” [3]. Examples of systems that need to be
highly scalable comprise grid computing architectures and
cloud computing platforms [4], [5]. Usually, such systems
consist of few different types of components and for each
such type a varying set of individual components exists.
Component types can be defined in such a granularity
that individual components of the same type behave in
the same manner, which is characteristic for the type. For
example, a client-server system that is scalable consists
of the component types client and server and several sets
of individual clients as well as several sets of individual
servers. Let us now call a choice of sets of individual
components an admissible choice of individual component
sets, iff for each component type exactly one set of
individual components of that type is chosen. Then,
a “scalable system” can be considered as a family of
systems, whose elements are systems composed of a
specific admissible choice of individual component sets.
For safety critical systems as well as for business

critical systems, assuring the correctness is imperative.
Formally, the dynamic behaviour of a discrete system
can be described by the set of its possible sequences of
actions. This way to model the behaviour is important,
because it enables the definition of safety requirements
as well as the verification of such properties, because for
these purposes sequences of actions of the system have to
be considered [6], [7], [8]. For short, we often will use the
term system instead of systems behaviour if it does not
generate confusions. With this focus, scalable systems
are families of system behaviours, which are indexed by
admissible choices of individual component sets. We call
such families parameterised systems. In this paper, we
define well-behaved scalable systems as a special class of
parameterised systems and develop construction princi-
ples for such systems. The main goal for this definition
is to achieve that well-behaved scalable systems fulfil
certain kind of safety properties if already one prototype
system (depending on the property) fulfils that property
(cf. Section IV). To this end, construction principles for
well-behaved scalable systems are design principles for
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verifiability [9]. We give an example that demonstrates
the significance of self-similarity for verification purposes
and show that for well-behaved scalable systems scalable
safety properties can be verified by finite state methods.
The main content of the paper can basically be

divided into three parts. Besides the basic definitions,
the first part (Section III and Section IV) comprises a
characterisation of the systems under consideration and
their fundamental properties. The second part (Section V
and Section VI, enriched by the appendix) provides the
formal framework for the construction of well-behaved
systems. The last part (Section VII) provides a generic
verification scheme for scalable safety properties and
presents an example for its application. Concluding
remarks and further research directions are given in
Section VIII.

II. Related Work
Considering the behaviour-verification aspect, which

is one of our motivations to formally define well-behaved
scalable systems, there are some other approaches to be
mentioned. An extension to the Murϕ verifier to verify
systems with replicated identical components through a
new data type called RepetitiveID is presented in [10].
The verification is performed by explicit state enumera-
tion in an abstract state space where states do not record
the exact numbers of components. A typical application
area of this tool are cache coherence protocols. The aim of
[11] is an abstraction method through symmetry, which
works also when using variables holding references to
other processes. In [12], a methodology for constructing
abstractions and refining them by analysing counter-
examples is presented. The method combines abstraction,
model-checking and deductive verification. A technique
for automatic verification of parameterised systems based
on process algebra CCS [13] and the logic modal mu-
calculus [14] is presented in [15]. This technique views
processes as property transformers and is based on
computing the limit of a sequence of mu-calculus [14]
formulas generated by these transformers. The above-
mentioned approaches demonstrate that finite state
methods combined with deductive methods can be ap-
plied to analyse parameterised systems. The approaches
differ in varying amounts of user intervention and their
range of application. A survey of approaches to combine
model checking and theorem proving methods is given
in [16]. Far reaching results in verifying parameterised
systems by model checking of corresponding abstract
systems are given in [17], [18]. It is well known that the
general verification problem for parameterised systems is
undecidable [19], [20]. To handle that problem, we present
(a) a formal framework to specify parameterised systems
in a restricted manner, and (b) construction principles
for well-behaved scalable systems.

III. Characterisation of Scalable Systems

The behaviour L of a discrete system can be formally
described by the set of its possible sequences of actions.
Therefore, L⊂ Σ∗ holds where Σ is the set of all actions
of the system, and Σ∗ (free monoid over Σ) is the set of
all finite sequences of elements of Σ, including the empty
sequence denoted by ε. This terminology originates from
the theory of formal languages [21], where Σ is called the
alphabet (not necessarily finite), the elements of Σ are
called letters, the elements of Σ∗ are referred to as words
and the subsets of Σ∗ as formal languages. Words can be
composed: if u and v are words, then uv is also a word.
This operation is called the concatenation; especially
εu = uε = u. A word u is called a prefix of a word v
if there is a word x such that v = ux. The set of all
prefixes of a word u is denoted by pre(u); ε ∈ pre(u)
holds for every word u. Formal languages, which describe
system behaviour, have the characteristic that pre(u)⊂L
holds for every word u ∈ L. Such languages are called
prefix closed. System behaviour is thus described by
prefix closed formal languages. Different formal models
of the same system are partially ordered with respect to
different levels of abstraction. Formally, abstractions are
described by alphabetic language homomorphisms. These
are mappings h∗ : Σ∗ −→ Σ′∗ with h∗(xy) = h∗(x)h∗(y),
h∗(ε) = ε and h∗(Σ) ⊂ Σ′ ∪{ε}. So, they are uniquely
defined by corresponding mappings h : Σ−→ Σ′∪{ε}. In
the following, we denote both the mapping h and the
homomorphism h∗ by h. We consider a lot of alphabetic
language homomorphisms. So, for simplicity we tacitly
assume that a mapping between free monoids is an
alphabetic language homomorphism if nothing contrary
is stated. We now introduce a guiding example.

Example 1. A server answers requests of a family of
clients. The actions of the server are considered in the
following. We assume with respect to each client that a
request will be answered before a new request from this
client is accepted. If the family of clients consists of only
one client, then the automaton in Fig. 1(a) describes the
system behaviour S ⊂ Σ∗, where Σ = {a,b}, the label a
depicts the request, and b depicts the response.

b
a1 2

(a) Actions at a server
with respect to a client

b1 a2
b2

a1 a2 b1
a1b2

0 2

1 3

(b) Two clients served concurrently
by one server

Figure 1. Scalable client-server system

Example 2. Fig. 1(b) now describes the system behaviour
S{1,2} ⊂ Σ∗{1,2} for two clients 1 and 2, under the
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assumption that the server handles the requests of different
clients non-restricted concurrently.

For a parameter set I and i∈ I let Σ{i} denote pairwise
disjoint copies of Σ. The elements of Σ{i} are denoted by
ai and ΣI :=

⋃
i∈I

Σ{i}, where Σ{j} ∩Σ{k} = ∅ for j 6= k.

The index i describes the bijection a↔ ai for a ∈ Σ and
ai ∈ Σ{i}.

Example 3. For ∅ 6= I ⊂N with finite I, let now SI ⊂Σ∗I
denote the system behaviour with respect to the client set
I. For each i∈N S{i} is isomorphic to S, and SI consists
of the non-restricted concurrent run of all S{i} with i ∈ I.
It holds SI′ ⊂ SI for I ′ ⊂ I.
Let I1 denote the set of all finite non-empty subsets

of N (the set of all possible clients). Then, the family
(SI)I∈I1 is an example of a monotonic parameterised
system.

If the example is extended to consider several servers,
which are depicted by natural numbers, then, e.g.,

I2 := {I̊× Î ⊂N×N|I̊ 6= ∅ 6= Î, with I̊ , Î finite}

is a suitable parameter structure.
I2 used in the example above shows how the component

structure of a system can be expressed by a parameter
structure using Cartesian products of individual compo-
nent sets. The following Definition 1 abstracts from the
intuition of a component structure.

Definition 1 (parameter structure). Let N be a count-
able (infinite) set and ∅ 6= I ⊂P(N)\{∅}. I is called a
parameter structure based on N .

For scalable systems it is obvious to assume that
enlarging the individual component sets does not reduce
the corresponding system behaviour. More precisely: let
I and K be two arbitrary admissible choices of individual
component sets, where each individual component set in
I is a subset of the corresponding individual component
set in K. If SI and SK are the corresponding systems’
behaviours, then SI is a subset of SK . Families of systems
with this property we call monotonic parameterised
systems. The following definition formalises monotonic
parameterised systems.

Definition 2 (monotonic parameterised system). Let I
be a parameter structure. For each I ∈ I let LI ⊂ Σ∗I be
a prefix closed language. If LI′ ⊂ LI for each I,I ′ ∈ I
with I ′ ⊂ I, then (LI)I∈I is a monotonic parameterised
system.

As we assume that individual components of the
same type behave in the same manner, SI and SK are
isomorphic (equal up to the names of the individual
components), if I and K have the same cardinality. This

property we call uniform parameterisation. With these
notions we define scalable systems as uniformly monotonic
parameterised systems. Monotonic parameterised systems,
in which isomorphic subsets of parameter values describe
isomorphic subsystems, we call uniformly monotonic
parameterised systems.

Definition 3 (isomorphism structure). Let I be a
parameter structure, I,K ∈ I, and ι : I →K a bijection,
then let ιIK : Σ∗I → Σ∗K the isomorphism defined by

ιIK(ai) := aι(i) for ai ∈ ΣI .

For each I,K ∈ I let B(I,K) ⊂ KI a set (possibly
empty) of bijections. BI := (B(I,K))(I,K)∈I×I is called
an isomorphism structure for I.

Definition 4 (scalable system). Let (LI)I∈I a mono-
tonic parameterised system and BI = (B(I,K))(I,K)∈I×I
an isomorphism structure for I.
(LI)I∈I is called uniformly monotonic parameterised
with respect to BI iff

LK = ιIK(LI) for each I,K ∈ I and each ι ∈ B(I,K).

Uniformly monotonic parameterised systems for short
are called scalable systems.

Example 4. Let I = I2.

B2(I̊× Î ,K̊× K̂) := {ι ∈ (K̊× K̂)(I̊×Î) |it exist bijections
ι̊ : I̊ → K̊ and ι̂ : Î → K̂ with ι((r,s)) = (̊ι(r), ι̂(s))
for each (r,s) ∈ (I̊× Î)}

for I̊× Î ∈ I2 and K̊× K̂ ∈ I2 defines an isomorphism
structure B2

I2
.

IV. Well-behaved Scalable Systems
To motivate our formalisation of well-behaved, we

consider a typical security requirement of a scalable client-
server system: Whenever two different clients cooperate
with the same server then certain critical sections of the
cooperation of one client with the server must not overlap
with critical sections of the cooperation of the other client
with the same server. If for example both clients want
to use the same resource of the server for confidential
purposes, then the allocation of the resource to one of the
clients has to be completely separated from the allocation
of this resource to the other client. More generally, the
concurrent cooperation of one server with several clients
has to be restricted by certain synchronisation conditions
to prevent, for example, undesired race conditions.
According to this example, we focus on properties,

which rely on specific component types and a specific
number of individual components for these component
types but not on the specific individuality of the indi-
vidual components. Now, we want to achieve that a well
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behaved scalable system fulfils such a kind of property if
already one prototype system (depending on the property)
fulfils that property. In our example, a prototype system
consists of two specific clients and one specific server.

To formalise this desire, we consider arbitrary I and K
as in the definition of monotonic parameterised system.
Then we look at SK from an abstracting point of
view, where only actions corresponding to the individual
components of I are considered. If the smaller subsystem
SI behaves like the abstracted view of SK , then we
call this property self-similarity or more precisely self-
similarity of scalable systems, to distinguish our notion
from geometric oriented notions [22] and organisational
aspects [23] of self-similarity. In [7], it is shown that
self-similar uniformly monotonic parameterised systems
have the above desired property. Therefore, we define
well-behaved scalable systems as self-similar uniformly
monotonic parameterised systems. We now formally look
at LI from an abstracting point of view concerning
a subset I ′ ⊂ I. The corresponding abstractions are
formalised by the homomorphisms ΠII′ : Σ∗I → Σ∗I′ .

Definition 5 (self-similar monotonic parameterised sys-
tem). For I ′ ⊂ I let ΠII′ : Σ∗I → Σ∗I′ with

ΠII′(ai) =
{
ai | ai ∈ ΣI′
ε | ai ∈ ΣI \ΣI′ .

A monotonic parameterised system (LI)I∈I is called self-
similar iff ΠII′(LI) = LI′ for each I,I ′ ∈ I with I ′ ⊂ I.

Definition 6 (well-behaved scalable system). Self-
similar scalable systems for short are called well-behaved
scalable systems.

A fundamental construction principle for systems
satisfying several constraints is intersection of system
behaviours. This emphasises the importance of the
following theorem.

Theorem 1 (intersection theorem). Let I be a parameter
structure, BI an isomorphism structure for I, and T 6= ∅.

i) Let (LtI)I∈I for each t ∈ T be a monotonic param-
eterised system, then (

⋂
t∈T
LtI)I∈I is a monotonic

parameterised system.
ii) Let (LtI)I∈I for each t∈ T be a scalable system with

respect to BI , then (
⋂
t∈T
LtI)I∈I is a scalable system

with respect to BI .
iii) Let (LtI)I∈I for each t ∈ T be a self-similar mono-

tonic parameterised system, then (
⋂
t∈T
LtI)I∈I is a

self-similar monotonic parameterised system.

Proof of Theorem 1 (i)–(iii):
Proof of (i): Let (LtI)I∈I a monotonic parameterised
system for each t ∈ T , then LtI′ ⊂ L

t
I for t ∈ T , I,I ′ ∈ I,

and I ′ ⊂ I. This implies⋂
t∈T
LtI′ ⊂

⋂
t∈T
LtI ,

and thus (i).
Proof of (ii): Let (LtI)I∈I an scalable system with

respect to (B(I,K))(I,K)∈I×I for each t ∈ T , then
ιIK(LtI) = LtK for t ∈ T , I, K ∈ I, and ι ∈ B(I,K).
Because all ιIK are isomorphisms,

ιIK(
⋂
t∈T
LtI) =

⋂
t∈T

ιIK(LtI) =
⋂
t∈T
LtK ,

which proves (ii).
Proof of (iii): Let (LtI)I∈I a self-similar monotonic

parameterised system for each t ∈ T . For I,I ′ ∈ I with
I ′ ⊂ I holds

ΠII′(
⋂
t∈T
LtI)⊂

⋂
t∈T

ΠII′(L
t
I) =

⋂
t∈T
LtI′ ⊂

⋂
t∈T
LtI . (1)

Because
⋂
t∈T
LtI′ ⊂ Σ∗I′ holds

ΠII′(
⋂
t∈T
LtI′) =

⋂
t∈T
LtI′ .

Together with the second inclusion from (1) it follows⋂
t∈T
LtI′ ⊂ΠII′(

⋂
t∈T
LtI).

Because of the first part of (1) now holds

ΠII′(
⋂
t∈T
LtI) =

⋂
t∈T
LtI′ ,

which proves (iii).
Weak additional assumptions for well-behaved scalable

systems imply that such systems are characterised by
parametrisation of one well-defined minimal prototype
system. More precisely:

Definition 7 (minimal prototype system). Let I be a
parameter structure based on N . For I ∈ I and n ∈N let
τ In : Σ∗I → Σ∗ the homomorphisms given by

τ In(ai) =
{
a | ai ∈ ΣI∩{n}
ε | ai ∈ ΣI\{n}

.

For a singleton index set {n}, τ{n}n : Σ∗{n}→ Σ∗ is an
isomorphism and for each n ∈ I ∈ I holds

ΠI{n} = (τ{n}n )−1 ◦ τ In. (2)

If now (LI)I∈I is a well-behaved scalable system with
respect to (B(I,K))(I,K)∈I×I with {n} ∈ I for n ∈ I ∈ I
and B(I,K) 6= ∅ for all singleton I and K, then because
of (2) holds

LI ⊂
⋂
n∈I

(τ In)−1(L) for each I ∈ I,



243

International Journal on Advances in Systems and Measurements, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where L= τ
{n}
n (L{n}) for each n ∈

⋃
I∈I

I.

L is called the minimal prototype system of (LI)I∈I .

Definition 8 (behaviour-family (L̇(L)I)I∈I generated
by the minimal prototype system L and the parameter
structure I). Let ∅ 6= L ⊂ Σ∗ be prefix closed, I a
parameter structure, and

L̇(L)I :=
⋂
i∈I

(τ Ii )−1(L) for I ∈ I.

The systems L̇(L)I consist of the “non-restricted con-
current run” of all systems (τ{i}i )−1(L)⊂Σ∗{i} with i ∈ I.
Because τ{i}i : Σ∗{i}→ Σ∗ are isomorphisms, (τ{i}i )−1(L)
are pairwise disjoint copies of L.

Theorem 2 (simplest well-behaved scalable systems).
(L̇(L)I)I∈I is a well-behaved scalable system with respect
to each isomorphism structure for I based on N and

L̇(L)I =
⋂
i∈N

(τ Ii )−1(L) for each I ∈ I.

The proof of this theorem is given in the appendix.

V. Construction of Well-behaved Systems by
Restriction of Concurrency

Now, we show how to construct well-behaved systems
by restricting concurrency in the behaviour-family L̇.
In Example 3, holds SI = L̇(S)I for I ∈ I1. If, in the
given example, the server needs specific resources for the
processing of a request, then - on account of restricted
resources - an non-restricted concurrent processing of
requests is not possible. Thus, restrictions of concurrency
in terms of synchronisation conditions are necessary. One
possible but very strong restriction is the requirement
that the server handles the requests of different clients in
the same way as it handles the requests of a single client,
namely, on the request follows the response and vice
versa. This synchronisation condition can be formalised
with the help of S and the homomorphisms ΘI as shown
in the following example.

Example 5. Restriction of concurrency on account
of restricted resources: one “task” after another. All
behaviours with respect to i ∈ I influence each other. Let

S̄I := SI ∩ (ΘI)−1(S) =
⋂
i∈I

(τ Ii )−1(S)∩ (ΘI)−1(S)

for I ∈ I1, where generally, for each index set I, ΘI :
Σ∗I → Σ∗ is defined by ΘI(ai) := a, for i ∈ I and a ∈ Σ.

From the automaton in Fig. 1(b), it is evident that
S̄{1,2} will be accepted by the automaton in Fig. 2(a).
Given an arbitrary I ∈ I1, then S̄I is accepted by an

automaton with state set {0}∪ I and state transition
relation given by Fig. 2(b) for each i ∈ I.

b1

b2

a1

a20

2

1

(a) Automaton accepting S̄{1,2}

bi

ai0 i

(b) Automaton accepting S̄I

Figure 2. Automata accepting S̄{1,2} and S̄I

From this automaton, it is evident that (S̄I)I∈I1 is
a well-behaved scalable system, with respect to each
isomorphism structure BI1 for I1.

Example 6. A restriction of concurrency in the extended
example where a family of servers is involved is more
complicated than in the case of (S̄I)I∈I1 . The reason
for that is that in the simple example the restriction of
concurrency can be formalised by a restricting influence
of the actions with respect to all parameter values (i.e.,
the entire ΣI). When considering the restriction of
concurrency in the extended example, the actions influence
each other only with respect to the parameter values, which
are bound to the same server.
Let the first component of the elements from N×N in

the parameter structure I2 denote the server, then the
actions from Σ{r}×Î influence each other for given r ∈ I̊
with I̊× Î ∈ I and thus restrict the concurrency.

For the formalisation of this restriction of concurrency,
we now consider the general case of monotonic param-
eterised systems (L̇(L)I)I∈I . As already observed in
(2), for each well-behaved scalable system (LI)I∈I there
exists (under weak preconditions) a system (L̇(L)I)I∈I
with LI ⊂ L̇(L)I for each I ∈ I, where L = τ

{n}
n (L{n})

for each n ∈ I ∈ I. Moreover, in context of Definition 8
it was observed that L̇(L)I consists of the non-restricted
concurrent run of pairwise disjoint copies of L.

In conjunction, this shows that an adequate restriction
of concurrency in (L̇(L)I)I∈I can lead to the construction
of well-behaved scalable systems. Therefore, the restrict-
ing influence of actions with respect to specific parameter
values described above shall now be formalised.

Definition 9 (influence structure). Let T 6= ∅ and I a
parameter structure. For each I ∈ I and t ∈ T a sphere
of influence is specified by E(t,I)⊂ I. The family

EI = (E(t,I))(t,I)∈T×I

is called influence structure for I indexed by T .

The non-restricted concurrent run of the pairwise
disjoint copies of L will now be restricted in the following
way: For each t∈ T the runs of all copies k with k ∈E(t,I)
influence each other independently of the specific values
of k ∈ E(t,I). With respect to our extended example
(several servers) with I2, the spheres of influence E(t,I)
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are generalisations of the sets {r}× Î, where I = I̊× Î
and t= (r,s) ∈ I̊× Î.
Generally, for each t ∈ T the intersection

L̇(L)I ∩ (τ IE(t,I))
−1(V ) (3)

formalises the restriction of the non-restricted concurrent
run of the copies of L within L̇(L)I by the mutual
influence of each element of E(t,I).

Definition 10 (behaviour of influence and influence
homomorphisms). In (3), the behaviour of influence V
is a prefix closed language V ⊂ Σ∗, and for I,I ′ ⊂N the
homomorphism τ II′ : Σ∗I → Σ∗ is defined by:

τ II′(ai) =
{
a | ai ∈ ΣI∩I′
ε | ai ∈ ΣI\I′

.

The homomorphisms τ IE(t,I) are called the influence
homomorphisms of EI .

Definition 11 (behaviour-family (L(L,EI ,V )I)I∈I gen-
erated by the minimal prototype system L, the influence
structure EI , and the behaviour of influence V ). Because
the restriction (3) shall hold for all t ∈ T , the restricted
systems L(L,EI ,V )I are defined by the prefix closed
languages

L(L,EI ,V )I := L̇(L)I ∩
⋂
t∈T

(τ IE(t,I))
−1(V ) for I ∈ I.

Definition 11 shows how synchronisation requirements
for the systems L̇(L)I can be formalised by influence
structures and behaviour of influence in a very general
manner. Since, similar to the well-behaved scalable
systems (L̇(L)I)I∈I , in the systems (L(L,EI ,V )I)I∈I
each L(L,EI ,V ){i} shall be isomorphic to L for each
{i} ∈ I, V ⊃ L has to be assumed. Therefore, in general
we assume for systems (L(L,EI ,V )I)I∈I that V ⊃ L 6= ∅.
Note that τ II′ are generalisations of τ In and ΘI , because

τ In = τ I{n} and ΘI = τ II = τ IN

for each I ⊂N and n ∈N .
Further requirements, which assure that

(L(L,EI ,V )I)I∈I are well-behaved scalable systems, will
now be given with respect to EI , BI , L and V . Assuming
T =N and ε ∈ V the scalability property is assured by
the following technical requirements for EI and BI :

Theorem 3 (construction condition for scalable sys-
tems). Let I be a parameter structure based on N ,
EI = (E(n,I))(n,I)∈N×I be an influence structure for
I, and let BI = (B(I,I ′))(I,I′)∈I×I be an isomorphism
structure for I. Let ε ∈ V ⊂ Σ∗, for each I ∈ I and n ∈
N let E(n,I) = ∅, or it exists an in ∈ I with E(n,I) =
E(in, I), and for each (I,I ′) ∈ I ×I, ι ∈ B(I,I ′) and i ∈
I holds

ι(E(i,I)) = E(ι(i), I ′).

Let E(t,I ′) = E(t,I) ∩ I ′ for each t ∈ T and I,I ′ ∈
I, I ′ ⊂ I. Then (L(L,EI ,V )I)I∈I is a scalable system
with respect to BI and

L(L,EI ,V )I = L̇(L)I ∩
⋂
n∈I

(τ IE(n,I))
−1(V )).

The proof of this theorem is given in the appendix.

Example 7. Let I be a parameter structure based on N ,
and for I ∈ I let Ē(i,I) := I for i ∈N .

ĒI := (Ē(i,I))(i,I)∈N×I satisfies the assumptions
of Theorem 3 for each isomorphism structure BI . (4)

It holds (ΘI)−1(V ) = (τ I
Ē(i,I))

−1(V ) for each i ∈
N,I ∈ I, and V ⊂ Σ∗.
Therefore, L(L, ĒI ,V )I = L̇(L)I ∩ (ΘI)−1(V ) for I ∈ I.
Especially, S̄I = L(S, ĒI1 ,S)I for each I ∈ I1.

Example 8. For the parameter structure I2, and for
I̊× Î ∈ I2 let

E2((̊n, n̂), I̊× Î) :=
{
{n̊}× Î | n̊ ∈ I̊

∅ | n̊ ∈N\ I̊
.

E2
I2 := (E2((̊n, n̂), I̊× Î))((̊n,n̂),I̊×Î)∈(N×N)×I2

(5)

satisfies the assumptions of Theorem 3 for the isomor-
phism structure B2

I2
.

(L(S,E2
I2
,S)I)I∈I2 is the formalisation of the extended

example (several servers) with restricted concurrency.

In order to extend Theorem 3 with respect to self-
similarity, an additional assumption is necessary. This is
demonstrated by the following counter-example.

Example 9. Let G⊂ {a,b,c}∗ the prefix closed language,
which is accepted by the automaton Fig. 3(a). Let H ⊂
{a,b,c}∗ the prefix closed language, which is accepted
by the automaton in Fig. 3(b). It holds ∅ 6= G ⊂H but
(L(G, ĒI1 ,H)I)I∈I1 is not self-similar, e.g.,

Π{1,2,3}{2,3} (L(G, ĒI1 ,H){1,2,3}) 6= (L(G, ĒI1 ,H){2,3}

because
a1b1a2a3 ∈ L(G, ĒI1 ,H){1,2,3},

and hence

a2a3 ∈Π{1,2,3}{2,3} (L(G, ĒI1 ,H){1,2,3}),

but
a2a3 /∈ (L(G, ĒI1 ,H){2,3}.

Definition 12 (closed under shuffle projection). Let
L,V ⊂Σ∗. V is closed under shuffle projection with respect
to L, iff

ΠNK [(
⋂
n∈N

(τNn )−1(L))∩ (ΘN)−1(V )]⊂ (ΘN)−1(V ) (6)
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(b) Automaton accepting H

Figure 3. Counterexample

for each subset ∅ 6= K ⊂ N. We abbreviate this by
SP(L,V ).

Remark 1. It can be shown that in SP(L,V ) N can be
replaced by each countable infinite set.

Remark 2. If L and V are prefix closed with ∅ 6= L⊂ V ,
then it is easy to show that SP(L,V ) follows from self-
similarity of (L(L, ĒI1 ,V )I)I∈I1 .

With Definition 12 we are now able to formulate
our main result for constructing well-behaved scalable
systems defined by a single synchronisation condition.

Theorem 4 (construction condition for well-behaved
scalable systems). By the assumptions of Theorem 3
together with SP(L,V )

(L(L,EI ,V )I)I∈I

is a well-behaved scalable system.

The proof of this theorem is given in the appendix.

Example 10. For k ∈N let the prefix closed language
Fk ⊂ {a,b}∗ be defined by the automaton in Fig. 4(a).

b
a

b
a0 k-11 k

(a) Automaton for Fk ⊂ {a,b}∗

ac as

bc bs

0
21

3

(b) One client, one server

Figure 4. Automata at different abstraction levels

With respect to Example 1, F1 = S holds. It can
be shown that SP(S,Fk) holds for each k ∈ N. With
Theorem 4 now, by (4) and (5) especially, the sys-
tems (L(L, ĒI1 ,Fk)I)I∈I1 and (L(L,E2

I2
,Fk)I)I∈I2 are

uniformly monotonic parameterised and self-similar.
These are the two cases of the guiding example where the
concurrency of the execution of requests is bounded by k.

Theorem 4 is the main result for constructing well-
behaved scalable systems defined by a single synchronisa-
tion condition. The following section shows how this result
together with the Intersection Theorem can be used for

constructing more complex well-behaved scalable systems
defined by the combination of several synchronisation
conditions, as for example well-behaved scalable systems
consisting of several component types.
VI. Well-behaved Scalable Systems Generated

by a Family of Influence Structures
Up to now, the examples were considered at an

abstraction level, which takes into account only the
actions of the server (or the servers, depending on the
choice of the parameter structure).

Example 11. For a finer abstraction level, which addi-
tionally takes into account the actions of the clients, a
finer alphabet, e.g., Σ̌ = {ac, bc,as, bs} and a prefix closed
language Š ⊂ Σ̌∗ is needed, which, e.g., is defined by the
automaton in Fig. 4(b).

In general, a finer relation for system specifications at
different abstraction levels can be defined by alphabetic
language homomorphisms.

Definition 13 (abstractions). In general, let Ľ⊂ Σ̌∗ and
L⊂ Σ∗ be prefix closed languages. We call Ľ finer than
L or L coarser than Ľ iff an alphabetic homomorphism
ν : Σ̌∗→ Σ∗ exists with ν(Ľ) = L.

For each parameter structure I and I ∈ I ν defines
an homomorphism νI : Σ̌∗I → Σ∗I by νI(ai) := (ν(a))i for
a ∈ Σ̌ and i ∈ I, where (ε)i := ε.

Let now EI be an influence structure for I indexed by
N , which is the base of I, and let ∅ 6= L ⊂ V ⊂ Σ∗ be
prefix closed. (L(L,EI ,V )I)I∈I induces a restriction of
the concurrency in (L̇(Ľ)I)I by the intersections

L̇(Ľ)I ∩ (νI)−1[
⋂
t∈N

(τ IE(t,I))
−1(V )] for each I ∈ I. (7)

If τ̌ II′ : Σ̌∗I → Σ̌∗ is defined analogously to τ II′ for I,I
′ ⊂

N by

τ̌ II′(ai) =
{
a | a ∈ Σ̌ and i ∈ I ∩ I ′
ε | a ∈ Σ̌ and i ∈ I \ I ′

,

then holds τ II′ ◦ν
I = ν ◦ τ̌ II′ . From this it follows that

(νI)−1[
⋂
t∈N

(τ IE(t,I))
−1(V )] =

⋂
t∈N

(τ̌ IE(t,I))
−1(ν−1(V ))

and therewith

L̇(Ľ)I ∩ (νI)−1[
⋂
t∈N

(τ IE(t,I))
−1(V )] = L(Ľ,EI ,ν−1(V ))I

(8)
for each I ∈ I. Notice that ∅ 6= Ľ⊂ ν−1(V )⊂ Σ̌∗ is prefix
closed. So if (L(L,EI ,V )I)I∈I fulfils the assumptions of
Theorem 3, then this holds for (L(Ľ,EI ,ν−1(V ))I)I∈I
as well and the system

(L̇(Ľ)I ∩ (νI)−1[
⋂
t∈N

(τ IE(t,I))
−1(V )])I∈I , (9)
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which is defined by the intersections (7), is a scalable
system. The following general theorem can be used to
prove self-similarity of such systems.

Theorem 5 (inverse abstraction theorem). Let ϕ : Σ∗→
Φ∗ be an alphabetic homomorphism and W,X ⊂ Φ∗, then

SP(W,X) implies SP(ϕ−1(W ),ϕ−1(X)).

Proof of Theorem 5:
Let K be a non-empty set. Each alphabetic homomor-
phism ϕ : Σ∗→ Φ∗ defines a homomorphism ϕK : Σ∗K →
Φ∗K by

ϕK(an) := (ϕ(a))n for an ∈ ΣK , where (ε)n = ε.

If τ̄Kn : Φ∗K →Φ and Θ̄K : Φ∗K →Φ are defined analogous
to τKn and ΘK , then

ϕ◦ τKn = τ̄Kn ◦ϕK , and ϕ◦ΘK = Θ̄K ◦ϕK . (10)

Let now N be an infinite countable set. Because of
(10), for W,X ⊂ Φ∗

(
⋂
n∈N

(τNn )−1(ϕ−1(W )))∩ (ΘN )−1(ϕ−1(X))

= (ϕN )−1[(
⋂
n∈N

(τ̄Nn )−1(W ))∩ (Θ̄N )−1(X)]. (11)

Because of ϕK(w) = ϕN (w) for w ∈ Σ∗K ⊂ Σ∗N and
∅ 6=K ⊂N

(ϕK)−1(Z)⊂ (ϕN )−1(Z) for Z ⊂ Φ∗K . (12)

If now SP(W,X), and

ΠNK [(ϕN )−1(Y )] = (ϕK)−1(Π̄NK [Y ]) (13)

for Y ⊂ Φ∗N and ∅ 6=K ⊂N , where Π̄NK : Φ∗N → Φ∗K is
defined analogous to ΠNK , then follows (with (10) - (13))

ΠNK [(
⋂
n∈N

(τNn )−1(ϕ−1(W )))∩ (ΘN )−1(ϕ−1(X))]

= (ϕK)−1(Π̄NK [(
⋂
n∈N

(τ̄Nn )−1(W ))∩ (Θ̄N )−1(X)])

⊂ (ϕK)−1((Θ̄N )−1(X))⊂ (ϕN )−1((Θ̄N )−1(X))
= (ΘN )−1(ϕ−1(X)). (14)

With (14)

SP(ϕ−1(W ),ϕ−1(X)) follows from SP(W,X), (15)

if (13) holds.
It remains to show (13). For the proof of (13) it is

sufficient to prove

ΠNK((ϕN )−1(y)) = (ϕK)−1(Π̄NK(y)) (16)

for each y ∈ Φ∗N , because of

ΠNK((ϕN )−1(Y ) =
⋃
y∈Y

ΠNK((ϕN )−1(y))

and

(ϕK)−1(Π̄NK(Y )) =
⋃
y∈Y

(ϕK)−1(Π̄NK(y)).

Here, for f :A→B and b ∈B we use the convention

f−1(b) = f−1({b}).

With Y = {y} (16) is also necessary for (13), and so
it is equivalent to (13).

Definition 14 ((general) projection). For arbitrary
alphabets ∆ and ∆′ with ∆′ ⊂ ∆ general projections
π∆

∆′ : ∆∗→∆′∗ are defined by

π∆
∆′(a) :=

{
a | a ∈∆′
ε | a ∈∆\∆′ . (17)

In this terminology the projections

ΠNK : Σ∗N → Σ∗K and Π̄NK : Φ∗N → Φ∗K
considered until now are special cases, which we call
parameter-projections. It holds

ΠNK = πΣN
ΣK

and Π̄NK = πΦN
ΦK

. (18)

Because of the different notations, in general we just
use the term projection for both cases.

We now consider the equation (16) for the special case,
where ϕ : Σ∗→ Φ∗ is a projection, that is ϕ= πΣ

Φ with
Φ⊂ Σ. In this case also ϕN : Σ∗N → Φ∗N is a projection,
with

ϕN = πΣN
ΦN

. (19)

Lemma 1 (projection-lemma).
Let ∆ be an alphabet, ∆′ ⊂∆, Γ ⊂∆ and Γ′ = ∆′ ∩Γ,
then

π∆
∆′((π

∆
Γ )−1(y)) = (π∆′

Γ′ )
−1(π∆

∆′(y))

for each y ∈ Γ∗.

Proof: Let y ∈ Γ∗. We show

π∆′
Γ′ (π

∆
∆′(z)) = π∆

∆′(y) for each z ∈ (π∆
Γ )−1(y) (20)

and we show that

for each u ∈ (π∆′
Γ′ )
−1(π∆

∆′(y)) there exists a
v ∈ (π∆

Γ )−1(y) such that π∆
∆′(v) = u. (21)

From (20) it follows that

π∆
∆′((π

∆
Γ )−1(y))⊂ (π∆′

Γ′ )
−1(π∆

∆′(y))

and from (21) it follows that

(π∆′
Γ′ )
−1(π∆

∆′(y))⊂ π∆
∆′((π

∆
Γ )−1(y)),

which in turn proves Lemma 1.
Proof of (20): By definition of π∆

Γ , π∆′
Γ′ and π∆

∆′ follows

π∆′
Γ′ (π

∆
∆′(z)) = π∆

∆′(π
∆
Γ (z))
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for each z ∈∆∗ and therewith (20).
Proof of (21) by induction on y ∈ Γ∗:

Induction base. Let y = ε, then u ∈ (∆′ \Γ′)∗ for each
u ∈ (π∆′

Γ′ )
−1(π∆

∆′(y)). From this follows

π∆
∆′(v) = u with v := u ∈ (π∆

Γ )−1(ε).

Induction step. Let y = ẙŷ with ẙ ∈ Γ∗ and ŷ ∈ Γ.
Case 1: ŷ ∈ Γ\Γ′ = Γ∩ (∆\∆′)
Then

(π∆′
Γ′ )
−1(π∆

∆′(y)) = (π∆′
Γ′ )
−1(π∆

∆′(ẙ)).

By induction hypothesis then for each
u ∈ (π∆′

Γ′ )
−1(π∆

∆′(y)) it exists v̊ ∈ (π∆
Γ )−1(ẙ) such

that π∆
∆′ (̊v) = u.

With v := v̊ŷ holds π∆
Γ (̊vŷ) = ẙŷ = y and hence

v ∈ (π∆
Γ )−1(y) and π∆

∆′(v) = π∆
∆′ (̊v) = u.

Case 2: ŷ ∈ Γ′ ⊂∆′
Then π∆

∆′(y) = π∆
∆′(ẙ)ŷ. Therefore, each

u ∈ (π∆′
Γ′ )
−1(π∆

∆′(y)) can be departed into u= ůŷû with
ů ∈ (π∆′

Γ′ )
−1(π∆

∆′(ẙ)) and û ∈ (∆′ \Γ′)∗.
By induction hypothesis then exists v̊ ∈ (π∆

Γ )−1(ẙ) such
that π∆

∆′ (̊v) = ů.
With v := v̊ŷû holds π∆

Γ (̊vŷû) = ẙŷ = y and hence

v ∈ (π∆
Γ )−1(y) and π∆

∆′(v) = π∆
∆′ (̊v)ŷû= ůŷû= u.

This completes the proof of (21).
For y ∈ Γ∗ holds

π∆
∆′(y) = πΓ

∆′∩Γ(y) = πΓ
Γ′(y).

Therewith, from Lemma 1 follows

π∆
∆′((π

∆
Γ )−1(y)) = (π∆′

Γ′ )
−1(πΓ

Γ′(y)) for each y ∈ Γ∗.
(22)

For ∅ 6=K ⊂N,Φ⊂Σ,∆ := ΣN ,∆′ := ΣK , and Γ := ΦN
holds Γ′ = ∆′∩Γ = ΦK .

Assuming ϕ= πΣ
Φ , which implies ϕK = πΣK

ΦK
, then from

(22) (with (18) and (19)), follows

ΠNK((ϕN )−1(y)) = (ϕK)−1(Π̄NK(y))

for y ∈ Φ∗N , and so (16). With this,

premise (13) is fulfilled for (15), when ϕ is a projection,
(23)

which proves Theorem 5 for projections.

Definition 15 (strictly alphabetic homomorphism). Let
Σ, Φ alphabets, and ϕ : Σ∗→ Φ∗ a homomorphism. Then
ϕ is called alphabetic, if ϕ(Σ)⊂ Φ∪{ε}, and ϕ is called
strictly alphabetic, if ϕ(Σ)⊂ Φ.

Each alphabetic homomorphism ϕ : Σ∗ → Φ∗ is the
composition of a projection with a strictly alphabetic
homomorphism, more precisely,

ϕ= ϕS ◦πΣ
ϕ−1(Φ)∩Σ, (24)

where ϕS : (ϕ−1(Φ)∩Σ)∗→ Φ∗ is the strictly alphabetic
homomorphism defined by

ϕS(a) := ϕ(a) for a ∈ ϕ−1(Φ)∩Σ.

ForW,X ⊂Φ∗ and ϕ : Σ∗→Φ∗ alphabetic (24) implies

ϕ−1(W ) =(πΣ
ϕ−1(Φ)∩Σ)−1((ϕS)−1(W )) and

ϕ−1(X) =(πΣ
ϕ−1(Φ)∩Σ)−1((ϕS)−1(X)). (25)

Now with (23) and (25) it remains to prove Theorem 5
for strictly alphabetic homomorphisms. This will be done
by Lemma 2, which proves (16) for strictly alphabetic
homomorphisms.

Lemma 2. Let ϕ : Σ∗ → Φ∗ be a strictly alphabetic
homomorphism, then for all y ∈ Φ∗N and ∅ 6= K ⊂ N
holds

ΠNK((ϕN )−1(y)) = (ϕK)−1(Π̄NK(y)).

Proof: Proof by induction on y.
Induction basis: y = ε
Because ϕN is strictly alphabetic

(ϕN )−1(ε) = {ε} and so ΠNK((ϕN )−1(ε)) = {ε}.

For the same reason

(ϕK)−1(Π̄NK(ε)) = (ϕK)−1(ε) = {ε}.

Induction step: Let y = y′at with at ∈ΦN , where a∈Φ
and t ∈N . Because ϕN is alphabetic, it holds

(ϕN )−1(y′at) = ((ϕN )−1(y′))((ϕN )−1(at)),

and so

ΠNK((ϕN )−1(y′at)) = ΠNK((ϕN )−1(y′))ΠNK((ϕN )−1(at)).

Also holds

(ϕK)−1(Π̄NK(y′at)) = (ϕK)−1(Π̄NK(y′))(ϕK)−1(Π̄NK(at)).

According to the induction hypothesis, it holds

ΠNK((ϕN )−1(y′)) = (ϕK)−1(Π̄NK(y′)).

Therefore, it remains to show

ΠNK((ϕN )−1(at)) = (ϕK)−1(Π̄NK(at)).

Case 1: t /∈K
Because ϕN is strictly alphabetic, it holds (ϕN )−1(at)⊂
Σ{t}, so

ΠNK((ϕN )−1(at)) = {ε}.

Additionally holds Π̄NK(at) = ε, and therewith

(ϕK)−1(Π̄NK(at)) = {ε},

because ϕK is strictly alphabetic.
Case 2: t ∈K

Because ϕN is strictly alphabetic, it holds

(ϕN )−1(at) = {bt ∈ Σ{t}|ϕ(b) = a},
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and therewith

ΠNK((ϕN )−1(at)) = {bt ∈ Σ{t}|ϕ(b) = a}.

Π̄NK(at) = at and therewith

(ϕK)−1(Π̄NK(at)) = {bt ∈ Σ{t}|ϕ(b) = a},

because ϕK is strictly alphabetic. This completes the
proof of Lemma 2.

This completes the proof of Theorem 5.
Generally, by (6), SP(ν−1(L),ν−1(V )) implies

SP(X,ν−1(V )) for each X ⊂ ν−1(L). Especially
SP(Ľ,ν−1(V )) is implied by SP(L,V ) on account of
Theorem 5. So, by Theorem 5, if (L(L,EI ,V )I)I∈I fulfils
the assumptions of Theorem 4, then

(L(Ľ,EI ,ν−1(V ))I)I∈I
= (L̇(Ľ)I ∩ (νI)−1[

⋂
t∈N

(τ IE(t,I))
−1(V )])I∈I (26)

is a well-behaved scalable system.
The intersections in (7) formalise restriction of con-

currency in (L̇(Ľ)I)I∈I under one specific aspect (one
specific synchronisation condition), which is given by
ν, EI , and V . Restriction of concurrency under several
aspects (several synchronisation conditions) is formalised
by the intersections

L̇(Ľ)I ∩
⋂
r∈R

(νIr )−1[
⋂
t∈N

(τ IEr(t,I))
−1(Vr)] (27)

for each I ∈ I based on N , R 6= ∅ is the index set of the
aspects. The family of aspects restricting concurrency is
given by
• a family (νr)r∈R of alphabetic homomorphisms νr :

Σ̌∗→ Σ(r)∗ for r ∈R,
• a family (ErI)r∈R of influence structures ErI =

(Er(t,I))(t,I)∈N×I indexed by N for r ∈R, and
• a family (Vr)r∈R of influence behaviours Vr ⊂ Σ(r)∗

for r ∈R.
From (8) it follows now

L̇(Ľ)I ∩
⋂
r∈R

(νIr )−1[
⋂
t∈N

(τ IEr(t,I))
−1(Vr)]

=
⋂
r∈R
L(Ľ,ErI ,ν−1

r (Vr))I

for each I ∈ I. Because of the intersection theorem, the
uniform monotonic parameterisation and self-similarity
of the system

(L̇(Ľ)I ∩
⋂
r∈R

(νIr )−1[
⋂
t∈N

(τ IEr(t,I))
−1(Vr)])I∈I

can be inferred from respective properties of the systems

(L(Ľ,ErI ,ν−1
r (Vr))I)I∈I for each r ∈R.

Using (9) and (26), this requires the verification of
the assumptions of Theorem 4 for

(L(νr(Ľ),ErI ,Vr)I)I∈I for each r ∈R. (28)

If I is based on N =×
k∈K

Nk, where K is a finite set and

each Nk is countable, then along the lines of I2, a param-
eter structure IK can be defined for this domain. Such
IK fit for systems consisting of finitely many component
types. Each subset K′ ⊂K with ∅ 6= K′ 6= K defines a
bijection between N and (×

k∈K′
Nk)× ( ×

k∈K\K′
Nk). By

this bijection, for each of these K′ an influence structure
EK′IK

is defined like E2
I2

that satisfies the assumptions
of Theorem 3 with respect to an isomorphism structure
BKIK

defined like E2
I2
.

VII. Scalable Safety Properties
We will now give an example that demonstrates the

significance of self-similarity for verification purposes and
then present a generic verification scheme for scalable
safety properties.

Example 12. We consider a system of servers, each
of them managing a resource, and clients, which want
to use these resources. We assume that as a means to
enforce a given privacy policy a server has to manage
its resource in such a way that no client may access this
resource during it is in use by another client (privacy
requirement). This may be required to ensure anonymity
in such a way that clients and their actions on a resource
cannot be linked by an observer.

We formalise this system at an abstract level, where
a client may perform the actions ac (send a request),
bc (receive a permission) and cc (send a free-message),
and a server may perform the corresponding actions as

(receive a request), bs (send a permission) and cs (receive
a free-message). The automaton L depicted in Fig. 5
describes the cooperation of one client and one server.

cc

cs

as
cs

as
acbc

cs

ac bs

1

32
54 76

8

Figure 5. Automaton L

We now formalise the parameterised cooperation
(CJ )J∈I according to the description in Section VI.

CJ = L̇(Ľ)J ∩
⋂
r∈R

(νJr )−1[
⋂
t∈N

(τJEr(t,J))
−1(Vr)].
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Because (CJ )J∈I involves several clients as well as
several servers, let I := I2, N :=N×N, and BI := B2

I2
,

where the first component refers to the client and the
second component refers to the server. Now Ľ is the prefix
closed language that is accepted by the automaton L.

For the examined example we assume that both clients
and servers are subject to constaints with respect to
processing several cooperations. Thus, two aspects of
constaints are considered, therefore: R := {c,s}, Σ(c) :=
{ac,bc,cc}, Σ(s) := {as,bs,cs}, Σ̌ = Σ(c) ·∪Σ(s), νc : Σ̌∗→
Σ(c)∗ with

νc(x) :=
{
x | x ∈ Σ(c)

ε | x ∈ Σ(s) ,

and νs : Σ̌∗→ Σ(s)∗ with

νs(x) :=
{
x | x ∈ Σ(s)

ε | x ∈ Σ(c) .

νc(Ľ) and νs(Ľ) now describe the behaviour of a client
respectively a server in the cooperation of a client with
a server. νc(Ľ) and νs(Ľ) are accepted by the automata
in Fig. 6(a) and Fig. 6(b).

cc
ac bc

1 3

2

(a) Automaton accepting νc(Ľ)

cs
as cs

bs as
1

3

2 4

(b) Automaton accepting νs(Ľ)

Figure 6. Client and server behaviour in the cooperation

These automata show that in νc(Ľ) the “phase” acbccc

can happen repeatedly and in νs(Ľ) two instances of the
“phase” asbscs can run partly concurrently.

We now assume that this restriction of concurrency
shall also hold for the parameterised system. This re-
striction is then given by the definitions Vc := νc(Ľ)
and Vs := νs(Ľ) with an appropriate choice of influence
structures.

Because for each client respectively server all coopera-
tions with all servers respectively clients influence each
other, let now according to Example 8, for I×K ∈ I2
and (i,k) ∈N×N:

Ec((i,k), I×K) :=
{
{i}×K | i ∈ I

∅ | i ∈N\ I ,

Es((i,k), I×K) :=
{
I×{k} | k ∈K

∅ | k ∈N\K ,

EcI2 := (Ec((i,k), I×K))((i,k),I×K)∈(N×N)×I2 , and

EsI2 := (Es((i,k), I×K))((i,k),I×K)∈(N×N)×I2 .

As in Example 8, both influence structures satisfy the
assumptions of Theorem 3 for the isomorphism struc-
ture B2

I2
. Therefore, (L(νc(Ľ),EcI2

,νc(Ľ))J )J∈I2 and

(L(νs(Ľ),EsI2
,νs(Ľ))J )J∈I2 are scalable systems. Because

of (28) now (CJ )J∈I2 is a well-behaved scalable system
if SP(νc(Ľ),νc(Ľ)) and SP(νs(Ľ),νs(Ľ)) hold.
In [24], sufficient conditions are given for a property

equivalent to SP(U,V ). These can be proven for both
examples. A comprehensive and more general method
for verification of SP(U,V ) is subject of a forthcoming
paper.
Considering bc as the begin action and cc as the end

action with respect to accessing a resource, the privacy
requirement for each CJ with J = I ×K ∈ I2 can be
formalised by the following condition (29).

Let i, i′ ∈ I, i 6= i′, k ∈K and

µI×K<i,i′,k> : Σ∗I×K →{bc
(i,k),cc

(i,k),bc
(i′,k)}∗ with

µI×K<i,i′,k>(x) :=
{
x | x ∈ {bc

(i,k),cc
(i,k),bc

(i′,k)}
ε | x ∈ ΣI×K \{bc

(i,k),cc
(i,k),bc

(i′,k)}.

Condition: For each i, i′ ∈ I, i 6= i′ and k ∈K holds

µI×K<i,i′,k>(CI×K)∩Σ∗{i,i′}×{k}b
c
(i,k)bc

(i′,k) = ∅. (29)

For i, i′ ∈ I, i 6= i′, and k ∈K let

ρ<i,i′,k> : Σ∗{i,i′}×{k}→{b
c
(i,k),cc

(i,k),bc
(i′,k)}∗

be defined by

ρ<i,i′,k>(x) :=


x | x ∈ {bc

(i,k),cc
(i,k),bc

(i′,k)}
ε | x ∈ Σ{i,i′}×{k} \{bc

(i,k),cc
(i,k),

bc
(i′,k)}

,

then
µI×K<i,i′,k> = ρ<i,i′,k> ◦ΠI×K{i,i′}×{k}.

Hence,

µI×K<i,i′,k>(CI×K) = ρ<i,i′,k>(C{i,i′}×{k}) (30)

because (CI×K)I×K∈I2 is a well-behaved scalable system.
Let

ι<i,i′,k> : Σ∗{i,i′}×{k}→ Σ∗{1,2}×{1}
be the isomorphism defined by

ι<i,i′,k>(x) :=


(τ{1}×{1}(1,1) )−1(τ{i}×{k}(i,k) (x)) | x ∈

Σ{i}×{k}
(τ{2}×{1}(2,1) )−1(τ{i

′}×{k}
(i′,k) (x)) | x ∈

Σ{i′}×{k}

.

Then

ι<i,i′,k> ∈ {ι
{i,i′}×{k}
{1,2}×{k}|ι ∈ B

2({i, i′}×{k},{1,2}×{1})}

(cf. Example 4), and therefore

ι<i,i′,k>(C{i,i′}×{k}) = C{1,2}×{1}, (31)

because (CI×K)I×K∈I2 is a scalable system.
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cc
(1,1)

bc
(1,1)

bc
(2,1)

1 2

(a) Minimal automaton
of ρ<1,2,1>(C{1,2}×{1})

cs
as

cs

as

bs as

1
3

2 4

(b) Automaton accepting ν′s(Ľ)

Figure 8. Minimal automaton and counter example

Now, by (30), (31), and

ρ<i,i′,k> = ι−1
<i,i′,k> ◦ρ<1,2,1> ◦ ι<i,i′,k>,

CI×K fulfils the privacy requirement (29) for each I×K ⊂
I2 iff

ρ<1,2,1>(C{1,2}×{1})∩Σ∗{1,2}×{1}b
c
(1,1)bc

(2,1) = ∅.
(32)

This can be verified by checking the automaton of
C{1,2}×{1} that consists of 36 states (see Fig. 7). The
actions of interest with regard to the privacy requirement,
namely bc and cc, are depicted by solid lines. For example,
after the begin action bc

(1,1) connecting states 7→ 11
a respective end action cc

(1,1) is either directly possible
(see 11→ 15) or after an intermediate action (see 11→ 16)
or two intermediate actions (see 11→ 16→ 23).
The minimal automaton of ρ<1,2,1>(C{1,2}×{1}) is

shown in Fig. 8(a), which implies (32).
On the contrary, let C′I×K be defined as CI×K but with

V ′s instead of Vs, where V ′s is defined by the automaton of
Fig. 8(b). Then (C′I×K)I×K∈I2 is not self-similar because

ac
(1,1)ac

(2,1)ac
(3,1)as

(1,1)bs
(1,1)as

(2,1)as
(3,1)bs

(2,1)bc
(1,1)

bc
(2,1) ∈ C′{1,2,3}×{1}, and so

ac
(1,1)ac

(2,1)as
(1,1)bs

(1,1)as
(2,1)bs

(2,1)bc
(1,1)bc

(2,1)

∈Π{1,2,3}{1}{1,2}{1} (C′{1,2,3}×{1})
but
ac

(1,1)ac
(2,1)as

(1,1)bs
(1,1)as

(2,1)bs
(2,1)bc

(1,1)bc
(2,1)

/∈ C′{1,2}×{1}.

The same action sequence shows that C′{1,2,3}×{1} does
not fulfil the privacy requirement.
The privacy requirement of the example is a typical

safety property [25]. These properties describe that
“nothing forbidden happens”. They can be formalised by a
set F of forbidden action sequences. So a system LJ ⊂Σ∗J
satisfies a safety property FJ ⊂ Σ∗J iff LJ ∩FJ = ∅.
In our example, the privacy requirement (29) is for-

malised by

FpI×K =
⋃

i,i′∈I,i6=i′
k∈K

(µI×K<i,i′,k>)−1(Σ∗{i,i′}×{k}b
c
(i,k)bc

(i′,k))

=
⋃

i,i′∈I,i6=i′
k∈K

(ΠI×K{i,i′}×{k})
−1(ι−1

<i,i′,k>[ρ−1
<1,2,1>

(Σ∗{1,2}×{1}b
c
(1,1)bc

(2,1))])

because of

µI×K<i,i′,k> = ι−1
<i,i′,k> ◦ρ<1,2,1> ◦ ι<i,i′,k> ◦ΠI×K{i,i′}×{k}

and

ι<i,i′,k>(Σ∗{i,i′}×{k}b
c
(i,k)bc

(i′,k))
= Σ∗{1,2}×{1}b

c
(1,1)bc

(2,1).

As

{({i, i′}×{k}, ι−1
<i,i′,k>) | i, i′ ∈ I, i 6= i′, and k ∈K}

= {(I ′×K′, ι{1,2}×{1}I′×K′ ) | I ′×K′ ⊂ I×K and
ι ∈ B2({1,2}×{1}, I ′×K′)}

it follows

FpI×K =
⋃

I′×K′⊂I×K
ι∈B2({1,2}×{1},I′×K′)

(ΠI×KI′×K′)
−1(ι{1,2}×{1}I′×K′ (F p))

(33)
with

F p := ρ−1
<1,2,1>(Σ∗{1,2}×{1}b

c
(1,1)bc

(2,1)).

The representation (33) can be generalised for arbitrary
parameter structures I and corresponding isomorphism
structures BI = (B(J,J ′))(J,J ′)∈I×I :
Let J̄ ∈ I and F̄ ⊂ Σ∗

J̄
, then for each J ∈ I let

F F̄J :=
⋃

J ′∈I,J ′⊂J,ι∈B(J̄,J ′)

(ΠJJ ′)
−1(ιJ̄J ′(F̄ )). (34)

Now by the same argument as in our privacy example,
we get

Theorem 6. Let (LJ )J⊂I be a well-behaved scalable
system, and let F̄ ⊂ Σ∗

J̄
with J̄ ∈ I, then

LJ ∩F F̄J = ∅ for each J ∈ I iff LJ̄ ∩F
F̄
J̄

= ∅. (35)

If LJ̄ and F̄ are regular subsets of Σ∗
J̄
, then (35) can

be checked by finite state methods [21].
If (LJ )J⊂I is defined as in (27) the regularity of Ľ and

of Vr for each r ∈ R and finiteness of R and J̄ implies
regularity of LJ̄ .
For finite sets J, J̄ ∈ I with #(J) < #(J̄), where #

denotes the cardinality of a set, holds F F̄J = ∅, because
of B(J̄ ,J ′) = ∅ for each J ′ ∈ J with J ′ ∈ I. Therefore,
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Figure 7. Automaton of C{1,2}×{1}

it makes sense to consider safety properties defined by
finite unions of sets as defined in (35).

Definition 16 (Scalable safety properties).
Let I be a parameter structure, BI = (B(J,J ′))(J,J ′)∈I×I
a corresponding isomorphism structure, T a finite set,
and F̄t ⊂ Σ∗

J̄t
with J̄t ∈ I for each t ∈ T , then (FJ )J∈I

with FJ :=
⋃
t∈T
F F̄t
J is called a scalable safety property.

Corollary 1. For a well-behaved scalable system
(LJ )J∈I the parameterised problem of verifying a scalable
safety property is reduced to finite many finite state
problems if the corresponding LJ̄t

and F̄t are regular
languages.

VIII. Conclusions and Further Work
Structural scalability of a system in terms of the ability

to compose a system using a varying number of identical
components of a few given types is a desired property that
is analysed in this work. For safety critical systems as well
as for business critical systems, assuring the correctness of
systems composed in such a way is imperative. Thus, the

focus of this paper is on property preserving structural
scalability.
This motivates the formal definition of well-behaved

scalable systems, which starts with a prototype system
that fulfils a desired safety property and then “embeds”
this prototype system in a scalable system. When this
scalable system is constructed according to the methods
given in this paper, then corresponding safety properties
are fulfilled by any instance of the scalable system. In
other words, it is shown that for well-behaved scalable
systems a wide class of safety properties can be verified
by finite state methods.
For this purpose, a formal framework is presented

that can be utilised to construct well-behaved scalable
systems in terms of prefix closed formal languages and
alphabetic language homomorphisms. The basic parts
of that framework are formalisations of parameter struc-
tures, influence structures and isomorphisms structures.
Together with so-called prototype systems and behaviours
of influence these structures formally define scalable
systems, if certain conditions are fulfilled. With respect
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to such scalable systems, the focus is on properties,
which rely on specific component types and a specific
number of individual components for these component
types but not on the specific individuality a component.
Well-behaved scalable systems are characterised by those
systems, which fulfil such a kind of property if already one
prototype system (depending on the property) fulfils that
property. Self-similar scalable systems have this desired
property. A sufficient condition for such self-similarity is
given in terms of prototype systems and behaviours of
influence. A deeper analysis of this condition is subject
of a forthcoming paper of the authors.
Usually, behaviour properties of systems are divided

into two classes: safety and liveness properties [25].
Intuitively, a safety property stipulates that “some-
thing bad does not happen” and a liveness property
stipulates that “something good eventually happens”.
To extend this verification approach to reliability or
general liveness properties, additional assumptions for
well-behaved scalable systems have to be established. In
[26], such assumptions have been developed for uniformly
parametrised two-sided cooperations. To generalise these
ideas to a wider class of well-behaved scalable systems is
subject of further work.
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Appendix
Theorem 2 (simplest well-behaved scalable systems).
(L̇(L)I)I∈I is a well-behaved scalable system with respect
to each isomorphism structure for I based on N and

L̇(L)I =
⋂
i∈N

(τ Ii )−1(L) for each I ∈ I.

The proof of Theorem 2 will be given in context of
influence structures because it consists of special cases of
more general results on influence structures (see (59)).
Further requirements, which assure that

(L(L,EI ,V )I)I∈I are well-behaved scalable systems, will
be given with respect to EI , BI , L and V . This will be
prepared by some lemmata.

Lemma 3. Let EI := (E(t,I))(t,I)∈T×I be an influence
structure for I indexed by T , and let V ⊂ Σ∗. If

E(t,I ′) = E(t,I)∩ I ′ (36)

for each t ∈ T and I,I ′ ∈ I I ′ ⊂ I, then

((τE(t,I))−1(V ))I∈I

is a monotonic parameterised system for each t ∈ T , and
by the intersection theorem

(
⋂
t∈T

(τE(t,I))−1(V ))I∈I

is a monotonic parameterised system.

Proof: Let I ∈ I and t ∈ T . From the definitions
of influence homomorphisms and influence structures it
follows

τ IE(t,I)(ai) =
{
a | ai ∈ ΣE(t,I)
ε | ai ∈ ΣI \ΣE(t,I)

.

For I ′ ⊂ I, I ′ ∈ I and ai ∈ ΣI′ then because of (36)

τ IE(t,I)(ai) =
{
a | ai ∈ ΣE(t,I)∩ΣI′
ε | ai ∈ ΣI′ ∩ΣI \ΣE(t,I)

=
{
a | ai ∈ ΣE(t,I′)
ε | ai ∈ ΣI′ \ (ΣE(t,I)∩ΣI′)

=
{
a | ai ∈ ΣE(t,I′)
ε | ai ∈ ΣI′ \ΣE(t,I′)

= τ I
′

E(t,I′)(ai),

and therefore

(τ I
′

E(t,I′))
−1(V )⊂ (τ IE(t,I))

−1(V ) for V ⊂ Σ∗.

So,
((τ IE(t,I))

−1(V ))I∈I
is a monotonic parameterised system for each t ∈ T .

Example 13. Let I be a parameter structure based on
N . For I ∈ I and i ∈N let:

Ė(i,I) :=
{
{i} | i ∈ I
∅ | i ∈N \ I .

By the definition of parameter structure N 6= ∅. So

ĖI := (Ė(i,I))(i,I)∈N×I

defines an influence structure for I indexed by N . ĖI
satisfies (36) and by τ Ii = τ I{i} τ

I
i = τ I

Ė(i,I) for i ∈N and
I ∈ I.
Now by Lemma 3 for V ⊂ Σ∗

((τ Ii )−1(V ))I∈I is a monotonic parameterised system
(37)

for each i ∈N .

For this special influence structure ĖI a stronger result
can be obtained.

Lemma 4. Let I be a parameter structure based on N
and ε ∈ L⊂ Σ∗. Then

((τ Ii )−1(L))I∈I
is a self-similar monotonic parameterised system for each
i ∈N , and by the intersection theorem

(
⋂
i∈N

(τ Ii )−1(L))I∈I

is a self-similar monotonic parameterised system.

Proof: On account of (37)

ΠII′((τ
I
i )−1(L)) = (τ I

′
i )−1(L)

has to be shown for I,I ′ ∈ I, I ′ ⊂ I, and i ∈N .
(37) implies (τ I′i )−1(L)⊂ (τ Ii )−1(L) and therefore,

(τ I
′
i )−1(L) = ΠII′((τ

I′
i )−1(L))⊂ΠII′((τ

I
i )−1(L)). (38)

It remains to show ΠII′((τ
I
i )−1(L))⊂ (τ I′i )−1(L).

Case 1. i /∈ I ′
Because of ε ∈ L and τ I′i (w) = ε for i /∈ I ′ and w ∈Σ∗I′

it holds (τ I′i )−1(L) = Σ∗I′ and so

ΠII′((τ
I
i )−1(L))⊂ (τ I

′
i )−1(L) for i /∈ I ′. (39)

Case 2. i ∈ I ′
From definitions of ΠII′ , τ

I
i and τ I′i follows

τ Ii = τ I
′
i ◦ΠII′ for i ∈ I

′. (40)
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For x ∈ ΠII′((τ
I
i )−1(L)) exists y ∈ Σ∗I with τ Ii (y) ∈ L

and x= ΠII′(y). Because of (40) holds

τ I
′
i (x) = τ I

′
i (ΠII′(y)) = τ Ii (y) ∈ L,

hence, x ∈ (τ I′i )−1(L). Therefore,

ΠII′((τ
I
i )−1(L))⊂ (τ I

′
i )−1(L) for i ∈ I ′. (41)

Because of (39), (41) and (38) holds

ΠII′((τ
I
i )−1(L)) = (τ I

′
i )−1(L)

for I,I ′ ∈ I, I ′ ⊂ I and i ∈N .
Intersections of system behaviours play an important

role concerning uniformity of parameterisation. Therefore,
some general properties of intersections of families of sets
will be presented.

Let T be a set. A family f = (ft)t∈T with ft ∈ F for
each t ∈ T is formally equivalent to a function f : T → F
with ft := f(t).

Let M be a set. A family f = (ft)t∈T with ft ∈ F =
P(M) for each t ∈ T is called a family of subsets of M .
Let now T 6= ∅ and f a family of subsets of M . The

intersection
⋂
t∈T

ft is defined by

⋂
t∈T

ft = {m ∈M |m ∈ ft for each t ∈ T}. (42)

If f = g ◦h with h : T →H and g :H → F then⋂
t∈T

f(t) =
⋂

x∈h(T )
g(x). (43)

If especially f = h and g is the identity on F , then from
(43) follows ⋂

t∈T
f(t) =

⋂
x∈f(T )

x.

For a second family of sets f ′ : T ′→ F with f ′(T ′) =
f(T ) follows then⋂

t∈T
f(t) =

⋂
t′∈T ′

f(t′).

In the following we will use family and function
notations side by side.

Let f = (ft)t∈T a family of sets with f : T →F =P(M).
If T = T̊ ∪ T̂ with T̊ 6= ∅ and f(T̂ ) = {M}, then from (42)
follows ⋂

t∈T
f(t) =

⋂
t∈T̊

f(t). (44)

Let EI = (E(t,I))(t,I)∈T×I be an influence structure
for I indexed by T .

For each I ∈ I a family of sets

EI(I) := (E(t,I))t∈T

with E(t,I) = EI(I)(t) ∈ P(I) is defined, and it holds

EI(I) : T →P(I).

From (43) it follows (with h= EI(I))⋂
t∈T

(τ IE(t,I))
−1(V ) =

⋂
x∈EI(I)(T )

(τ Ix)−1(V ) (45)

for each V ⊂ Σ∗ and I ∈ I.
For each I ∈ I holds τ I∅ (w) = ε for each w ∈ Σ∗I . It

follows,
(τ I∅ )−1(V ) = Σ∗I if ε ∈ V ⊂ Σ∗. (46)

Because of (43), (44), (45), and (46)⋂
t∈T

(τ IE(t,I))
−1(V ) =

⋂
x∈EI(I)(TI)

(τ Ix)−1(V )

=
⋂
t∈TI

(τ IE(t,I))
−1(V ) (47)

for each TI with ∅ 6= TI ⊂ T and EI(I)(T )\EI(I)(TI) ∈
{∅,{∅}} and ε ∈ V ⊂ Σ∗.
Each bijection ι : I → I ′ defines another bijection ῐ :

P(I)→P(I ′) by

ῐ(x) := {ι(y) ∈ I ′|y ∈ x} for each x ∈ P(I).

Lemma 5. Let EI = (E(t,I))(t,I)∈T×I be an influ-
ence structure for I indexed by T , and let BI =
(B(I,I ′))(I,I′)∈I×I be an isomorphism structure for I.
Let

ε ∈ V ⊂ Σ∗, and let (TK)K∈I be a family
with ∅ 6= TK ⊂ T and
EI(K)(T )\EI(K)(TK) ∈ {∅,{∅}} for each K ∈ I,
such that ῐ(EI(I)(TI)) = EI(I ′)(TI′)
for each (I,I ′) ∈ I ×I and ι ∈ B(I,I ′), (48)

then ⋂
t∈T

(τ IE(t,I))
−1(V ) =

⋂
t∈TI

(τ IE(t,I))
−1(V ) (49)

for each I ∈ I, and

ιII′ [
⋂
t∈T

(τ IE(t,I))
−1(V )] =

⋂
t∈T

(τ I
′

E(t,I′))
−1(V ) (50)

for each (I,I ′) ∈ I ×I and ι ∈ B(I,I ′).

Proof of (49): Because of (47) from assumption (48)
directly follows (49).
For the proof of (50) the following property of the

homomorphisms τ IK is needed:
Let ι : I → I ′ a bijection and K ⊂ I, then τ I′ι(K) ◦ ι

I
I′ =

τ IK and so
τ I
′

ι(K) = τ IK ◦ (ιII′)
−1. (51)

Proof of (51):
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The elements of ΣI are of the form ai with i ∈ I and
a ∈ Σ. For these elements holds

τ IK(ai) =
{
a | i ∈K
ε | i ∈ I \K

=
{
a | ι(i) ∈ ι(K)
ε | ι(i) ∈ I ′ \ ι(K)

= τ I
′

ι(K)(aι(i)) = τ I
′

ι(K)(ι
I
I′(ai)),

which proves (51).
Proof of (50): Because of (47) and (51)

ιII′ [
⋂
t∈T

(τ IE(t,I))
−1(V )]

= ιII′ [
⋂

x∈EI(I)(TI)
(τ Ix)−1(V )]

= ((ιII′)
−1)−1[

⋂
x∈EI(I)(TI)

(τ Ix)−1(V )]

=
⋂

x∈EI(I)(TI)
((ιII′)

−1)−1[(τ Ix)−1(V )]

=
⋂

x∈EI(I)(TI)
(τ Ix ◦ (ιII′)

−1)−1(V )

=
⋂

x∈EI(I)(TI)
(τ I
′

ι(x))
−1(V )

=
⋂

x∈EI(I)(TI)
(τ I
′

ῐ(x))
−1(V ). (52)

From (43) (with h= ῐ) and the assumption (48) follows⋂
x∈EI(I)(TI)

(τ I
′

ῐ(x))
−1(V ) =

⋂
x′∈ῐ(EI(I)(TI))

(τ I
′
x′ )
−1(V )

=
⋂

x′∈EI(I′)(T ′
I
)

(τ I
′
x′ )
−1(V ).

Furthermore, from (47) follows⋂
x′∈EI(I′)(T ′

I
)

(τ I
′
x′ )
−1(V ) =

⋂
t∈T

(τ I
′

E(t,I′))
−1(V ). (53)

(52) - (53) prove (50).
The case T = N , where I is based on N , allows a

simpler sufficient condition for (49) and (50).

Lemma 6. Let I be a parameter structure based on N ,
EI = (E(n,I))(n,I)∈N×I be an influence structure for
I, and let BI = (B(I,I ′))(I,I′)∈I×I be an isomorphism
structure for I.

Let ε ∈ V ⊂ Σ∗, (54a)
for each I ∈ I and n ∈N let E(n,I) = ∅,
or it exists an in ∈ I with E(n,I) = E(in, I), and

(54b)
for each (I,I ′) ∈ I ×I, ι ∈ B(I,I ′) and i ∈ I holds
ι(E(i,I)) = E(ι(i), I ′). (54c)

Then ⋂
n∈N

(τ IE(n,I))
−1(V ) =

⋂
n∈I

(τ IE(n,I))
−1(V )

for each I ∈ I, and

ιII′ [
⋂
n∈N

(τ IE(n,I))
−1(V )] =

⋂
n∈N

(τ I
′

E(n,I′))
−1(V )

for each (I,I ′) ∈ I ×I and ι ∈ B(I,I ′).

Proof: From (54b) follows EI(I)(N) = EI(I)(I) or
EI(I)(N) = EI(I)(I) ·∪{∅}, so

EI(I)(N)\EI(I)(I) ∈ {∅,{∅}} for each I ∈ I. (55)

From (54c) follows

ῐ(EI(I)(I))⊂ EI(I ′)(I ′). (56)

Because ι : I → I ′ is a bijection, for each i′ ∈ I ′ exists
an i∈ I with ι(i) = i′. Because of (54c) holds ῐ(E(i,I)) =
E(i′, I ′), where E(i,I) ∈ EI(I)(I). From this follows

EI(I ′)(I ′)⊂ ῐ(EI(I)(I)). (57)

Because of (55) - (57), with T =N and (TI)I∈I = (I)I∈I ,

(54a)− (54c) implies (48).

Example 14 (Example 13 (continued)). Let I
be a parameter structure based on N and BI =
(B(I,I ′))(I,I′)∈I×I be an isomorphism structure for I.
Then ĖI satisfies (54b) and (54c).

So for ε ∈ L⊂ Σ∗ Lemma 6 implies⋂
n∈N

(τ In)−1(L) =
⋂
n∈I

(τ In)−1(L) for each I ∈ I and

ιII′ [
⋂
n∈N

(τ In)−1(L)] =
⋂
n∈N

(τ I
′
n )−1(L) (58)

for each (I,I ′) ∈ I ×I and ι ∈ B(I,I ′).

Now Lemma 4 together with (58) proves Theorem 2.
(59)

Because of τ In = τ I
Ė(n,I) for I ∈ I and n ∈ N , (58)

and the definitions of (L̇(L)I)I∈I and (L(L,EI ,V )I)I∈I
imply

L̇(L)I =
⋂
n∈I

(τ In)−1(L) =
⋂
n∈I

(τ In)−1(L)∩
⋂
n∈I

(τ In)−1(V )

= L̇(L)I ∩
⋂
n∈N

(τ In)−1(V )

= L̇(L)I ∩
⋂
n∈N

(τ I
Ė(n,I))

−1(V )

= L(L, ĖI ,V )I (60)

for I ∈ I and V ⊃ L.
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(60) gives a representation of (L̇(L)I)I∈I in terms of
(L(L,EI ,V )I)I∈I .

For the following theorems please remember that by
the general definition of L(L,EI ,V )I it is assumed that
∅ 6= L ⊂ V and L,V are prefix closed. This implies ε ∈
L⊂ V .

Lemma 7. Let I be a parameter structure, EI an influ-
ence structure for I indexed by T and BI an isomorphism
structure for I.
Assuming (36) and (48), then

(L(L,EI ,V )I)I∈I

is a scalable systems with respect to BI . It holds

L(L,EI ,V )I = L̇(L)I ∩
⋂
n∈TI

(τ IE(n,I))
−1(V )

for each I ∈ I.

Proof: By Theorem 2, (L̇(L)I)I∈I is a scalable
system with respect to BI . By Lemma 3 and 5 (50)

(
⋂
t∈T

(τ IE(t,I))
−1(V ))I∈I

is a scalable system with respect to BI too. Now part (ii)
of the intersection theorem proves (L(L,EI ,V )I)I∈I to
be a scalable system with respect to BI . Lemma 5 (49)
completes the proof of Lemma 7.
Using Lemma 6 instead of Lemma 5 proves the

following.

Theorem 3 (construction condition for scalable systems).
By the assumptions of Lemma 6 and (36) with T = N ,
(L(L,EI ,V )I)I∈I is a scalable system with respect to BI .
It holds

L(L,EI ,V )I = L̇(L)I ∩
⋂
n∈I

(τ IE(n,I))
−1(V )).

Remark 3. It can be shown that in SP(L,V ) N can be
replaced by each countable infinite set.

More precisely, let N ′ be another set and ι :N→N ′ a
bijection. ιNN ′ : Σ∗N→ Σ∗N ′ is the isomorphism defined as
in the definition of isomorphism structure. It now holds

ΘN = ΘN ′ ◦ ιNN ′ and τ
N
n = τN

′

ι(n) ◦ ι
N
N ′ (61)

for each n ∈N. Furthermore,

ιNN ′ ◦ΠNK = ΠN
′

ι(K) ◦ ι
N
N ′ (62)

for each K ⊂N. From (61) and commutativity of inter-
section now

(
⋂
n∈N

(τNn )−1(L))∩ (ΘN)−1(V ) =

= (ιNN ′)
−1[(

⋂
n∈N

(τN
′

ι(n))
−1(L))∩ (ΘN ′)−1(V )]

= (ιNN ′)
−1[(

⋂
n′∈N ′

(τN
′

n′ )−1(L))∩ (ΘN ′)−1(V )].

(63)

By (62),

ΠNK ◦ (ιNN ′)
−1 = (ιNN ′)

−1 ◦ΠN
′

ι(K). (64)

Because of (63) and (64)

ΠNK [(
⋂
n∈N

(τNn )−1(L))∩ (ΘN)−1(V )] =

= (ιNN ′)
−1(ΠN

′

ι(K)[(
⋂

n′∈N ′
(τN

′
n′ )−1(L))∩ (ΘN ′)−1(V )]).

From

ΠNK [(
⋂
n∈N

(τNn )−1(L))∩ (ΘN)−1(V )]⊂ (ΘN)−1(V )

now follows

ΠN
′

ι(K)[(
⋂

n′∈N ′
(τN

′
n′ )−1(L))∩ (ΘN ′)−1(V )]

⊂ ιNN ′((Θ
N)−1(V )). (65)

Because of (61) ΘN ◦ (ιNN ′)
−1 = ΘN ′ and so

(ΘN ′)−1(V ) = ιNN ′((Θ
N)−1(V )).

Therefore, from (65) follows

ΠN
′

ι(K)[(
⋂

n′∈N ′
(τN

′
n′ )−1(L))∩ (ΘN ′)−1(V )]⊂ (ΘN ′)−1(V ).

Because for each ∅ 6=K′ ⊂N ′ it exists an ∅ 6=K ⊂N
with K′ = ι(K), by SP(L,V ), we get for each ∅ 6=K ⊂N
a corresponding inclusion with N ′ replacing N and K′
for K.

Lemma 8. The assumptions of Lemma 3 and Lemma 4
together with SP(L,V ) imply that (X(L,V,t)I)I∈I with

X(L,V,t)I :=
⋂
n∈N

(τ In)−1(L)∩ (τ IE(t,I))
−1(V )

is a self-similar monotonic parameterised system for each
t ∈ T .

Proof: By Lemma 3 and Lemma 4,
((τ IE(t,I))

−1(V ))I∈I and (
⋂
n∈N

(τ In)−1(L))I∈I are

monotonic parameterised systems. So by the intersection
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theorem (X(L,V,t)I)I∈I is a monotonic parameterised
system for each t ∈ T . Therefore,

X(L,V,t)I′ = ΠII′(X(L,V,t)I′)⊂ΠII′(X(L,V,t)I)

for each I,I ′ ∈I with I ′⊂ I. So the proof of self-similarity
can be reduced to the proof of

ΠII′(X(L,V,t)I)⊂X(L,V,t)I′ (66)

for each t ∈ T and I,I ′ ∈ I with I ′ ⊂ I.
Because by Lemma 4

(
⋂
n∈N

(τ In)−1(L))I∈I

is self-similar, it holds

ΠII′(X(L,V,t)I)⊂ΠII′(
⋂
n∈N

(τ In)−1(L)) =
⋂
n∈N

(τ In)−1(L).

So the proof of (66) can be reduced to the proof of

ΠII′ [
⋂
n∈N

(τ In)−1(L)∩ (τ IE(t,I))
−1(V )]⊂ (τ I

′

E(t,I′))
−1(V )

(67)
for each t ∈ T and I,I ′ ∈ I with I ′ ⊂ I.

For each

w ∈ (
⋂
n∈N

(τ In)−1(L))∩ (τ IE(t,I))
−1(V )

exists a r ∈ N and ui ∈ Σ∗E(t,I) for 1 ≤ i ≤ r and vi ∈
Σ∗I\E(t,I) for 1≤ i≤ r with w = u1v1u2v2 . . .urvr. Note
that Σ∅ := ∅ and ∅∗ = {ε}. Because u1u2 . . .ur ∈ Σ∗E(t,I)
and v1v2 . . .vr ∈ Σ∗I\E(t,I) holds

ΘN (u1u2 . . .ur) = τ IE(t,I)(u1u2 . . .ur)
= τ IE(t,I)(w) ∈ V. (68)

With the same argumentation holds

τNn (u1u2 . . .ur) = τ In(u1u2 . . .ur) = τ In(w) ∈ L (69)

for n ∈ E(t,I) and

τNn (u1u2 . . .ur) = ε ∈ L (70)

for n ∈N \E(t,I). With (68) - (70) now

u1u2 . . .ur ∈ (
⋂
n∈N

(τNn )−1(L))∩ (ΘN )−1(V ),

and on behalf of precondition SP(L,V ) holds

ΠNI′ (u1u2 . . .ur) =ΠE(t,I)
I′∩E(t,I)(u1u2 . . .ur)

∈ Σ∗I′∩E(t,I)∩ (ΘN )−1(V ). (71)

Furthermore,

ΠII′(w) =ΠII′(u1v1u2v2 . . .urvr)

=ΠE(t,I)
I′∩E(t,I)(u1)ΠI\E(t,I)

I′\E(t,I)(v1) . . .

ΠE(t,I)
I′∩E(t,I)(ur)Π

I\E(t,I)
I′\E(t,I)(vr). (72)

Because of (36), E(t,I ′)⊂E(t,I) and so I ′ \E(t,I)⊂
I ′ \E(t,I ′) and thus

τ I
′

E(t,I′)(Π
I\E(t,I)
I′\E(t,I))(vi) = ε

for 1≤ i≤ r. With (36) and (72) it follows

τ I
′

E(t,I′)(Π
I
I′(w)) = τ I

′

E(t,I′)(Π
E(t,I)
E(t,I′)(u1 . . .ur)). (73)

Because τ I′E(t,I′)(x) = ΘN (x) for each x ∈ Σ∗E(t,I′) now
on behalf of (73), (36), and (71)

τ I
′

E(t,I′)(Π
I
I′(w)) = ΘN (ΠE(t,I)

E(t,I′)(u1 . . .ur)) ∈ V,

and thus
ΠII′(w) ∈ (τ I

′

E(t,I′))
−1(V ).

This proves (67) and completes the proof of Lemma 8.

Because of the idempotence of intersection⋂
n∈N

(τ In)−1(L)∩
⋂
t∈T

(τ IE(t,I))
−1(V )

=
⋂
t∈T

[
⋂
n∈N

(τ In)−1(L)∩ (τ IE(t,I))
−1(V )].

Now the intersection theorem and Lemma 8 imply

Lemma 9. If SP(L,V ), then by the assumptions of
Lemma 3 and 4

[
⋂
n∈N

(τ In)−1(L)∩
⋂
t∈T

(τ IE(t,I))
−1(V )]I∈I

is a self-similar monotonic parameterised system.

Combining Lemma 9 with Lemma 7 or Theorem 3
imply

Theorem 4 (construction condition for well-behaved
scalable systems). By the assumptions of Lemma 7 or
Theorem 3 together with SP(L,V )

(L(L,EI ,V )I)I∈I

is a well-behaved scalable system.


