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Abstract—We present a novel heuristic for 2D-packing of rect-
angles inside a rectangular area where the aesthetics of the
resulting packing is amenable to generating large collages of
photographs or images. The heuristic works by maintaining
a sorted collection of vertical segments covering the area to
be packed. The segments define the leftmost boundaries of
rectangular and possibly overlapping areas that are yet to be
covered. The use of this data structure allows for easily defining
ahead of time arbitrary rectangular areas that the packing must
avoid. The 2D-packing heuristic presented does not allow the
rectangles to be rotated during the packing, but could easily
be modified to implement this feature. The execution time of
the present heuristic on various benchmark problems is on par
with recently published research in this area, including some
that do allow rotation of items while packing. Several examples
of image packing are presented. A multithreaded version of our
core packing algorithm running on a 32-core 2.8 GHz processor
packs a billion rectangles in under 10 minutes.

Keywords–bin packing; rectangle packing; multi-threaded and par-

allel algorithms; heuristics; greedy algorithms; image collages.

I. INTRODUCTION

We present a new heuristic for placing two-dimensional
rectangles in a rectangular surface. The heuristic keeps track
of the empty area with a new data structure that allows
for the natural packing around predefined rectangular areas
where packing is forbidden. The packing flows in a natural
way around these “holes” without subdividing the original
surface into smaller packing areas. The main application for
this heuristic is the creation of collages of large collections
of images where some images are disproportionally larger
than the others and positioned in key locations of the original
surface. This feature could also be applied in domains where
the original surface has defects over, which packing is not to
take place.

This article is an extended version of a paper presented at
Infocomp 2013 [1]. Here we include new results relating to the
performance of the core algorithm, and extend our original
results by reporting the execution times of a multithreaded
version of the core algorithm running on an Amazon EC2 32-
core instance, and packing a billion rectangles.

We are especially interested in avoiding packings that place
the larger items concentrated on one side of the surface, and
keep covering the remainder of the surface using decreasingly
smaller items. These are not aesthetically pleasing packings.

This form of 2D-packing is a special case of the 2D Or-
thogonal Packing Problem (OPP-2), which consists in deciding
whether a set of rectangular items can be placed, rotated or
not, inside a rectangular surface without overlapping, and such
that the uncovered surface area is minimized. In this paper
we assume that all dimensions are expressed as integers, and
that items cannot be rotated during the packing, which is
important if the items are images. 2D-packing problems appear
in many areas of manufacturing and technology, including
lumber processing, glass cutting, sheet metal cutting, VLSI
design, typesetting of newspaper pages, Web-page design or
data visualization. Efficient solutions to this problem have
direct implications for these industries [2].

Our algorithm packs thousands of items with a competitive
efficiency, covering in the high 98 to 99% of the original
surface for large collections of items. We provide solutions
for several benchmark problems from the literature [3]–[5],
and show that our heuristic in some cases generates tighter
packings with less wasted space than previously published
results, although running slower than the currently fastest
solution [6].

To improve the aesthetics of the resulting packing, we
use Huang and Chen’s [7] surprising quasi-human approach
borrowed from masons who pack patios by starting with the
corners first, then borders, then inside these limits (similarly
to the way one solves a jigsaw puzzle). Our algorithm departs
from Huang and Chen’s in that it implements a greedy lo-
calized best-fit first approach and uses a collection of vertical
lines containing segments. Each vertical segment represents the
leftmost side of rectangular area of empty space extending to
the rightmost edge of the area to cover. The collection keep
the lines ordered by their x-coordinate. All the segments in a
line have the same x-coordinate and are ordered by their y-
coordinate. Representing empty space in this fashion permits
the easy and natural definition of rectangular areas that can
be excluded from packing, which in turn offers two distinct
advantages: the first is that some rectangular areas can be
defined ahead of time as containing images positioned at key
locations, and therefore should not be packed over. The second
is that subsections of the area to pack can easily be delineated
and given to other threads/processes to pack in parallel. Simple
scheduling and load-balancing agents are required to allow
such processes to exchange items as the packing progresses.
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II. THE AESTHETICS OF PHOTO COLLAGES ON A LARGE
SCALE

The impetus for this algorithm is to pack a large number
of images, typically thousand to millions, in a rectangular
surface of a given geometry to form large-scale collages. In
such applications items are not rotated 90 degrees since they
represent images. This type of packing is referred to as nesting
[8].

Large collages of images are challenging, both because
of the packing required, and also because of the required
aesthetics. Herr et al. [9] present a large collage of images
associated with Wikipedia articles organized as a graph that
groups together images based on the similarity of the pages on
which they appear. In this context, similar pages are pages that
have the same number of shared links. The packing is a simple
2D packing where all images are given the same rectangular
frame, and is made to occupy a large circle fit for printing
on a poster. In this data visualization, articles are represented
by green, blue and yellow disks overlapping each to form
clusters around text labels identifying concepts, and all overlay
the mosaic of packed images. The aim of this visualization
is to present a qualitative aesthetics, rather than to use the
packing of variously sized images to convey some quantified
relationship. Little effort is made to make the images carry
any significant information. The number of images displayed
is less than a thousand and already illustrates the challenge of
displaying a large collection of images.

On a much larger scale is the packing of the over one
billion faces of Facebook users attempted by Natalia Rojas
[10]. In this visualization, Rojas presents the visitor of the
app.thefacesoffacebook.com page with an approximately 1,200
by 1000 pixel image, where each of the 1.2 million randomly
colored pixels represent a Facebook profile image. Packing in
this case is straightforward: each rectangle is 1x1 and randomly
placed. The visitor of the Web site can zoom in on any of
the pixels and is presented by a grid of 100 by 100 pixel
images, each image representing an actual profile picture of
a Facebook user. The uniform size for the images makes for
a trivial packing. It is worth noting that Rojas picked a fairly
large 100x100 pixel format for each image, allowing visitors
to quickly spot the various faces.

In [11], Wattenberg, Viegas and Hollenbach use chromo-
grams, colored fixed-height rectangles aligned in a horizontal
bar, to show the edits by users on various Wikipedia pages.
While their techique is not a collage, it involves using rectan-
gles of various colors to convey some information pertinent to
Wikipedia contents. They cite the large-scale historics contain-
ing more than 100,000 events or the irregular structure of the
edit logs as significant challenges for making the visualization
both effective and aesthetically pleasing.

New developments in display technology that covers walls
with video screens and displays billion-pixel digital images
have been embraced recently by museum, research centers,
and corporate offices. The Cleveland Art Museum [12] is an
example where museum goers are presented with a packing
of images from the museum collection on a wall of large
connected touch-screens. The visitors interact with the display,

picking images for additional information. The packing is in
bands of same-height images. The result is a pleasing collage
of images that are allowed to overlap when the user interacts
with them. The Texas Advanced Computing Center’s Massive
Pixel Environment library [13] allows users to display Pro-
cessing sketches/citeProcessingOrg over multiple large screen
displays. Its use is mostly for visualizing simulation results.

These various efforts are all based in part on the availability
of new libraries such as Shiffman’s most-pixels-ever Process-
ing package [14], which makes it feasible to display very
large images or a large collection of small images, making the
problem of packing them efficiently a timely one to address.

Algorithm 1 Simplified Packing Heuristic
1: N = dimension( rects )
2: VL = {L0, L1}
3: while not VL.isempty() do
4: success = false
5: for all line vl in VL do
6: list = { } // empty collection
7: for all segment sl in vl do
8: rect = rectangle in Rects with height closest to

but less than sl
9: if rect not null then

10: list.add( Pair( rect, sl ) )
11: end if
12: end for
13: if list.isempty() then
14: continue
15: end if
16: sort list in decreasing order of ratio of rect.length to

sl.length
17: for all pair in list do
18: rect, sl = pair.split()
19: if rect fits in VL then
20: pack rect at the top of sl
21: update VL
22: success = true
23: break
24: end if
25: end for
26: if success == true then
27: break
28: end if
29: end for
30: if Rects.isEmpty() then
31: break
32: end if
33: end while

III. REVIEW OF THE LITERATURE

Possibly because of its importance in many fabrication
processes [2], different forms of 2D-packing have evolved
and been studied quite extensively since Garey and Johnson
categorized this class of problems as NP-hard [15]. It is hence
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Figure 1. The basic concept of the packing heuristic. (a) The algorithm starts with one vertical line L0 in the left-most position. (b) A rectangle is added,
shortening the L0 line and forcing the addition of a second vertical line L1. (c) A second rectangle is added on L1, cutting L1 and forcing the addition of a third
line L2. (d) Starting from (a) a rectangle is added in the middle of the available space, creating the addition of a segmented Line L1a, L1b, and a full line L2.

Figure 2. Two examples of potential rectangle placements. In (a) the proposed location for the rectangle (shown in dashed line) is valid and will not intersect
with other placed rectangles (not shown) because 1) its horizontal projection on the line Li directly left of it is fulling included in a segment of Li, and 2) its
intersection with Lines Lj , Lk , and Lm is fully covered by segments of these lines. In (b) the proposed location for the rectangle is not valid, and will result
in its overlapping with already placed rectangles since its intersection with Line Lj is not fully included in one of Lj ’s segments.

a challenge to create a comprehensive review of the literature,
as any 2-dimensional arranging of rectangular items in a
rectangular surface can be characterized as packing. Burke,
Kendall and Whitwell [3] and Verstichel, De Causmaecker,
and Vanden Berghe [16] provide among the best encompassing
surveys of the literature on 2D-packing and strip-packing

research.

While exact solutions are non-polynomial in nature and
slow, researchers have achieved optimal solutions for small
problem sizes. Baldacci and Boschetti, for example, reports
four known approaches to the particular problem of 2D orthog-
onal non-guillotine cutting problem [17], Beasley’s optimal
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algorithm [18] probably being the one most often cited. Unfor-
tunately such approaches work well on rather small problem
sets. Baldacci and Boschetti, for example, report execution
times in the order of tens of milliseconds to tens of seconds
for problem sets of size less than 100 on a 2GHz Pentium
processor.

Scientists from the theory and operations-research commu-
nities have also delved on 2D-packing and have generated
close to optimal solutions [19], [20]. The Bottom-Left heuristic
using rectangles sorted by decreasing width has been used
in various situations yielding different asymptotic relative
performance guarantees [21]–[24]. Other approaches concen-
trate on local search methods and lead to good solutions in
practice, although computationally expensive. Genetic algo-
rithms, tabu search, hill-climbing, and simulated annealing
[25], [26] are interesting techniques that have been detailed
by Hopper and Turton [2], [4]. These meta-heuristics have
heavy computational complexities and have been outperformed
recently by simpler best-fit based approaches, including those
of Hwang and Chen [5], [7], or Burke, Kendall and Whitwell
[3]. Huang and Chen show that placement heuristics such as
their quasi-human approach inspired by Chinese masons out-
performs the meta-heuristics in minimizing uncovered surfaces
in many cases, although requiring relatively long execution
times. Burke et al. propose a best-fit heuristic that is a close
competitor in the minimization of the uncovered surface but
with faster execution times.

Probably the fastest algorithm to date is that of Imahori
and Yagiura [6], which is based on Burke et al.’s best-fit
approach. Their algorithm is very efficient and requires linear
space and O(n log n) time, and solves strip-packing problems
where the height of the surface to pack can expand infinitely
until all items are packed. They report execution times in
the order of 10 seconds for problems of size 2

20 items. Our
serial application is slower, as our timing results show below,
but provide a better qualitative aesthetic packing in a fixed
size surface with similarly small wasted area. A multithreaded
version of our heuristic, however, will pack a million rectangles
under 4 seconds, and is presented in details in Section VII.
Furthermore, the ability to pack around rectangular areas make
for easy parallelization of the algorithm, as we illustrate below.
Because the time consuming operation of a collage of image is
in the resizing and merging of images on the canvas that vastly
surpasses our packing time by several orders of magnitude,
the added value of the quality of the aesthetics of the packing
makes our algorithm none-the-less attractive compared to the
above cited faster contenders.

In the next section we present the algorithm, its basic
data structure, and an important proposition that controls the
packing and ensures the positioning of items without overlap.
We follow with an analysis of the time and space complexities
of our algorithm, and show that the algorithm uses linear
space and requires at most O(N3

log(N)

2
) time, although

experimental results show closer to quadratic evolution of the
execution times. This is due to the fact that the algorithm
generally finds a rectangle to pack in the first few steps of the
process, and the execution time is proportional mostly to the
number of rectangles. Only the last few remaining rectangles

take the longest amount of time to pack in the left over space.
We compare our algorithm to several test cases taken from
the literature in the benchmark section, and close with several
examples illustrating how the algorithm operates. We then take
the core packing loop and show that by subdividing the area to
pack into thin horizontal bands, the speed of the packing can
be significantly sped up, making the packing of billions of
rectangles possible in the space of minutes. The conclusion
section presents possible improvements and future research
areas.

IV. THE ALGORITHM

A. Basic Data-Structures

The algorithm is a greedy, localized best-fit algorithm that
finds the best fitting rectangles to pack closest to either one of
the left side or top side of the surface. Figure 1 captures the
essence of the algorithm and how it progresses.

The algorithm maintains ordered collections of vertical seg-
ments representing rectangular areas of empty space. Segments
are vertical but could also be made horizontal without imped-
ing the operation of the algorithm. These vertical segments
can be thought of as the left-most height of a rectangle
extending to the right-most edge of the surface to pack. Vertical
segments with the same x-coordinate relative to the top-left
corner of the surface to cover are kept in vertical lines. The
algorithm’s main data structure is thus a collection of lines
ordered by their x-coordinates, each line itself a collection of
segments, also ordered by their y-coordinates. The collections
are selected to allow efficient exact searching, approximate
searching returning the closest item to a given coordinate,
inserting a new item (line or segment) while maintain the
sorted order. Red-black trees [27] are good implementations
for these collections.

The main property on which the algorithm relies to position
a new rectangle on the surface without creating an overlap with
already positioned rectangles is expressed by the following
proposition:

Proposition 1: A new rectangle can be positioned in the
surface such that its top-left corner falls on the point of
coordinates (xtl, ytl) and such that it will not intersect with
already positioned rectangles if it satisfies two properties
relative to the set of vertical lines:

1) Let Lleft be the vertical line whose x-coordinate xleft is
the floor of xtl, i.e., the largest x such that x <= xtl.
In other words, Lleft is the vertical line the closest
to or touching the left side of the rectangle. For the
rectangle to have a chance to fit at its present location,
the horizontal projection of the rectangle on Lleft must
intersect with one of its segments that completely contains
this projection.

2) The horizontal projection of the rectangle on any vertical
line that intersects it must also be completely included in
a segment of this line.

Figure 2 illustrates this proposition.
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Figure 3. A solution generated by our algorithm for the packing of 100 items in 16 objects as proposed by Hopper as the “M1a” case.

B. Basic Operation

The algorithm starts with two vertical lines, L0 and L1.
The first line originates at the top-left corner of the surface to
cover, and contains a single segment whose length defines the
full height of the surface to pack. L1 is a vertical line located
at an x-coordinate equal to the width of the surface to pack.
L1 contains no segments. It identifies the end of the area to
pack. Any rectangle that extends past the end of the area to
cover will cross L1, and because this one does not contain
segment, the second part of the proposition above will reject
the rectangle.

To simplify the description of the algorithm, we use the
generic term line to refer to lines and segments. The algorithm
packs from left to right, and favors top rather than down
locations. Starting with the vertical line L0 it finds the item
R0 with the largest height less than L0. If several items have
identical largest height, the algorithm picks the one with the
largest perimeter and tests whether it can be positioned without
overlapping any other already placed items. The algorithm tries
three different locations: at the top of L0, at the bottom of
L0, or at the centre of L0. The item is positioned at the first
location that offers no overlap, otherwise the next best-fitting
item is tested, and so on.

The positioning of R0 shortens L0, as shown in Figure 1(b).
A new line L1 is added to the right of R0 to indicate a new
band of space to its right that is free for packing.

The goal is to place all larger items first and automatically

the smaller ones find places in between the larger ones.
In Figure 1(c), the algorithm finds R1 as the rectangle

whose width is the largest less than L1 and positions it against
the left most part of L1. Adding R1 shortens L1, indicating that
all the space right of the now shorter L1 is free for packing.
Again, a new line L2 is added to delineate a band of empty
space to the right of R1.

We implement the data-structures for the lines as trees sorted
on the line position relative to the top-left corner of the initial
surface, so that a line or a group of lines perpendicular to
particular length along the width or height of the original
surface can be quickly found.

Note that in our context these line-based data-structures
allow for the easy random positioning of rectangles in the
surface before the packing starts, as illustrated in Figure 1(d)
where a rectangle R0 is placed first in the middle of the surface
before the packing starts.

C. The Code and its Time and Space Complexities
We now proceed to evaluate the time complexity of our

heuristic, whose algorithmic description is given in Algorithm
1. In it, N is the number of items to pack, rects is the list of
items to pack, VL the collection of vertical lines, and vl one
such individual line.

Since N is the original number of items to pack, then clearly
the size of VL is O(N). Given a line vl of VL, we argue that
the average number of segments it contains (exemplified by
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Figure 4. The packing of 97,272 randomly generated items in a a rectangular surface. The application is multithreaded, each thread associated with a rectangular
border. 5 large lime-green rectangles with different geometries are placed in various locations before the computation starts.

L1a and L1b in Figure 1) is O(N). The goal of the Loop
starting at Line 3 is to pack all rectangles, and it will repeat
N times, hence O(N). The combined time complexity of the
loops at Lines 5 and 7 is O(N) because they touch at most
all segments in all the lines, which is bounded by O(N). The
time complexity of Line 16 is clearly O(N log N), although on
the average the number of pairs to sort will be O(

p
N) rather

than O(N log N). The loop starting at Line 17 processes at
most O(N) pairs, and for each rectangle in it, must compare
it to at most O(N) line vl. So it contributes O(N2

), which
overpowers the sorting of the list. Therefore, the combined
complexity of the whole loop starting on Line 3 is O(N3

).
Empirically, however, the algorithm evolves in quasi

quadratic fashion as illustrated in Figure 6, where various
selections of rectangles with randomly set dimension are
packed in a rectangular surface that is selected ahead of time
to be of a given aspect ratio, and whose total area is 1%
larger than the sum of all the items to pack. We found this
approach the best for packing quickly. The dimensions of the
randomly-sized rectangles for all the experiments reported here
are computed by the following equations:

width = max(20, RandInt(500))

height = max(20, RandInt(500))

where RandInt() returns a random integer between 0 and
500, excluded. This translate in 230,400 uniformly distributed
possible geometries. Remember that we do not allow for
rectangles to rotate, so all geometries are unique.
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Figure 6. Running times and regression fits for packings of 100 to 5,000,000
random rectangles on one core of a 3.5 GHz 64-bit AMD 8-core processor.

Note that the times reported are user times, and that
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Figure 5. The packing of 2,200 photos of various sizes and aspect-ratios, as many are cropped for artistic quality. The size of the photos is randomly picked
by the algorithm. All the photos belong to this author.

only one core of the processor is used, corresponding to
a totally serial execution time. A second-degree polynomial
fit of the measured times is shown. The fit has equation
y = 5.985 10

�11 x2
+ 6.447 10

�4 x � 3.514 10

1, with a
correlation coefficient r2 of 0.99898, and a standard error of
49.263.

The space complexity is clearly O(N2
), since the addition

of a rectangle to a group of R already packed rectangles will
cut at most R lines and introduce at most R new segments.
The cumulative effect results in a quadratic variation of the
number of segments.

D. Algorithmic Features
Our heuristic sports one feature that is key for our image-

collage application: Rectangular areas in which packing is
forbidden can easily be identified inside the main surface to
be packed, either statically before starting the packing or even
dynamically during run time. We refer to these areas as empty
zones. This feature offers the user the option of positioning
interesting images at key positions on the surface to be packed
ahead of time. In other domains of application these could
be areas with defects. Additionally, it allows parallel packing
approaches where rectangular empty zones can be given out
to new processes to pack in parallel, possibly shortening the
execution time.

V. BENCHMARKS

A set of benchmark cases used frequently in the literature
are those of Hopper and Turton [4], and of Burke, Kendall
and Whitwell [3]. For the sake of brevity we select a sample
of representative cases and run our heuristic on each one. The
computer used to run the test is one core of a 64-bit Ubuntu
machine driven by a 3.5GHz AMD 8-core processor, with
16GB of ram. The heuristic is coded in Java. Note that all
published results do not always provide a derivation of the
time complexity of the heuristic presented, and the goodness
of the algorithm is measured by its execution time on various
benchmark cases. Unfortunately, all experiments are run are
on different types of computers, ranging from ageing memory-
limited laptops to supped up desktops, all with different proces-
sor speed and memory capacities. To provide a more objective
comparison, we make the following assumptions: a) all results
reported in the literature corresponded to compiled applications
that are all memory residents, b) they are the only workload
running on the system, c) MIPS are linearly related to CPU
frequency, and thus we scale the execution times of already
published data reported by the ratio of their operating CPU
frequencies to that of our processor (3.5GHz).

We follow the same procedure used by the researchers
whose algorithms we compare ours to, and we run our ap-
plication multiple times (in our case 30 times) on the same
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TABLE I. PERFORMANCE COMPARISON TABLE

Burke GRASP 3-way DT
Case Number items optimal height diff. time (s) diff. time (s) diff. time (s) diff. time (s)
N1 10 40 0 ⇠14.571 0 ⇠34.286 5 <0.009 0 0.05
N2 20 50 0 ⇠14.571 0 ⇠34.286 3 <0.009 6 <0.01
N3 30 50 1 ⇠14.571 1 ⇠34.286 4 <0.009 10 <0.01
N4 40 80 2 ⇠14.571 1 ⇠34.286 6 <0.009 49 <0.01
N5 50 100 3 ⇠14.571 2 ⇠34.286 4 <0.009 5 0.03
N6 60 100 2 ⇠14.571 1 ⇠34.286 2 <0.009 22 0.01
N7 70 100 4 ⇠14.571 1 ⇠34.286 7 <0.009 14 <0.01
N8 80 80 2 ⇠14.571 1 ⇠34.286 3 <0.009 23 <0.01
N9 100 150 2 ⇠14.571 1 ⇠34.286 13 <0.009 5 0.04
N10 200 150 2 ⇠14.571 1 ⇠34.286 2 0.01 10 0.03
N11 300 150 3 ⇠14.571 1 ⇠34.286 2 0.01 2 0.49
N12 500 300 6 ⇠14.571 3 ⇠34.286 5 0.02 7 0.07
N13 3152 960 4 ⇠14.571 3 ⇠34.286 4 0.20 5 0.927

C7-P1 196 240 4 ⇠14.571 4 ⇠34.286 6 <0.009 17 0.02
C7-P2 197 240 4 ⇠14.571 3 ⇠34.286 4 <0.009 41 0.02
C7-P3 196 240 5 ⇠14.571 3 ⇠34.286 5 <0.009 24 0.01

problem set and keep the best result.
Table I shows the scaled execution times of the various

heuristics for problem sets taken from the literature. Column
1 identifies the various cases from Burke et al. [3], with the
number of items packed in Column 2, and the optimal height of
the packing in Column 3. The difference between the resulting
height of algorithm’s packing and optimal along with the
execution time in seconds are shown for each of 4 algorithms,
in Columns 4-5, 6-7, 8-9, and 10-11. Our heuristic’s data
covers the last two columns. The times are those reported
in the literature multiplied by a scaling factor equal to the
3.5GHz/speed of processor, where the processor is the one
used by the researchers. For the Burke column, the speed of
the processor is 850MHz. For the GRASP column, 2GHz, and
for the 3-way column, 3GHz.

We observe that, as previously discovered [6] our packing
efficiency improves as the number of items gets larger (in the
thousand of items), which is the size of our domain of interest.
The execution times of our heuristic are faster than those of
Burke’s best-fit, or of GRASP, and at most five times slower
than the fast running 3-way best-fit of Imahori and Yagiur
[6]. This difference might be attributed to either the choice of
language used to code the algorithm, Java in our case, versus
C for theirs.

VI. PERFORMANCE FOR LARGE SCALE PACKING

A. Subdividing the space into horizontal bands
In this section, we report on experiments conducted on a

modified version of our heuristic where we skip the packing of
the corners and borders first, and divide the rectangular packing
area in small non overlapping horizontal bands of the same
length as the large area to pack. We have found that limiting the
packing to smaller bands significantly decreases the packing
time by reducing the size of the Red-Black tree data-structures
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Serial Packing Time as a Function of Number of Bands
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Figure 7. Running times for packing 1,000,000 rectangles with 1 to 256
bands dividing the packing area. User times measured on one core of a 3.5
GHz 64-bit AMD 8-core processor.

holding all the lines and segments. Typically, the area to pack is
divided in 256, 512, 1024 or more horizontal bands as long as
all the rectangles can be packed in the given area (small-height
bands decrease the packing efficiency). For packing 1,000,000
rectangles without dividing the space into band requires 603
seconds on one core of our 3.5 GHz processor. Dividing the
space into 256 bands and packing each band one after the
other, serially, on one core, brings the user execution time to
4.03 seconds and maintains a packing efficiency greater than
99%. Figure 7 shows the user-times in seconds for packing
1,000,000 randomly selected rectangles when the area to pack
is divided in 1, 2, 4, 8, ... 256 bands. Note that when we
increase the number of bands by two, the execution time
is almost halved. Therefore, applications that require high-
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speed 2D-packing should organize the area to pack in as many
narrow horizontal bands as possible while maintaining a target
efficiency.

In the next section, we show several packings generated by
our heuristic.

VII. PACKING EXAMPLES

In this section, we provide several examples of packing
under various conditions and constraints, some of them taken
from the literature.

In Figure 3, we apply our heuristic to Hopper’s M1a case
[2] where 100 items must be packed into 16 different objects.
Our algorithm also packs the objects, although this is not a
requirement of the test. In this experiment, our heuristic is
multithreaded and several threads pack the different objects.
A scheduler simply distributes the objects to separate threads,
picking the largest object first and assigning it to a new thread
implementing our packing heuristic. Then the scheduler picks
the next largest object (in terms of its area) and assigns it to a
new thread, and so on. The earliest starting threads are given a
random sample of the items to pack. Threads that start last have
to wait until earlier threads finish packing and return items that
could not be packed. This automatically packs objects in such
a way that as few objects as possible are packed, and some
left empty, which may be desirable.

In Figure 4, the original surface is divided at run time
into smaller surfaces, or borders one inside the other as the
packing progresses, and individual threads are running the
packing on individual borders. Here again the threads are given
random samples of the original population of items and a load
balancing scheme allows for the exchange of items between
threads. This is represented by items with different colors. For
example, the items associated with the first thread are all dark
green, and some can be found in the light green, orange or
pink borders as they are rejected by the first thread once it has
packed the dark green band. Note that the utilization of the
surface is 99.30%.

In Figure 4, we have placed five large items (yellow-
green rectangles) on the surface before launching the packing
algorithm. Notice how the heuristic naturally packs around
these areas. Note also that as in Figures 3 and 4, we follow
Huang and Chen’s quasi-human approach [7] and pack corners
and borders first before proceeding with the inside areas. Note
that this modification of the algorithm fits completely with
the natural properties of the heuristic, and enhances the visual
aspect of the final packing.

VIII. 2D-PACKING A BILLION RANDOM RECTANGLES

The ability to divide the rectangular area to pack into
thin horizontal bands leads us to consider the challenge of
packing a billion rectangles with random dimensions. The
main obstacle to solve this problem is not in a long execution
time, but rests in the ability to keep a billion objects in random-
access memory (RAM). Given that a rectangle is defined
by a geometry requiring a minimum of two longs for the
coordinates, and two ints for the dimensions, at least 24 to

32 Gigabytes of storage are required to store a billion such
objects, depending on whether the application runs on a 32
or 64-bit system. If packing speed is of the essence, then the
objects must reside in memory.

To keep the computation CPU-bound as well as RAM-
bound, and measure the best possible packing performance, we
multi-thread our packing heuristic and run it on an Amazon
c3.8xlarge instance, which, at the time of this writing, sports
the following characteristics:
• CPU Architecture: 64 bits.
• Cores: 32 hyperthreaded 2.8 GHz Intel Xeon E5-2680v2

cores (Ivy Bridge).
• Performance: Combined CPU speed equivalent to 108

m1.small Amazon instances. An m1.small typically has
the same performance as a 1.0-1.2 GHz 2007 Intell
Opteron or 2007 Xeon processor.

• RAM: 60 Gigabytes.
• Disk Storage: two 320-GB Solid-Stated Device disks.
• Network Speed: 10 GBits.

Note that the c3.8xlarge processor frequency can be turbo-
boosted to 3.6 GHz if enough thermal room is available.

A. Multithreaded Algorithm

We adopt a simple scheduling and load-balancing of the
different threads. Assuming that there are N rectangles to
pack and that the area to cover is divided into B bands, we
assign each one to a single thread, and we run in parallel the
packing of the first B� 1 bands. We perform a join operation
on all the running threads. We allocate alpha N /B rectangles
(alpha > 1) to each thread so that the packing can benefit from
a greater collection of rectangles than what can fit during the
packing. We have found that alpha = 1.01 yields good packing
efficiencies. When the first B�1 bands have been packed, the
threads return the rectangles that could not be packed and these
are returned to the pool of unpacked items. This collection,
along with all remaining unallocated rectangles, is given to a
final thread that packs the last band.

The algorithm is detailed in Algorithm 2 below.

B. Execution Time

Dividing the total area to be covered in 4096 bands, and
launching the multithreaded algorithm to pack a billion rect-
angles on an Amazon c3-8xlarge instance takes 8 minutes and
56 seconds of user time. For comparison, dividing the space
in 2048 bands, instead, results in a user time of 11 minutes
and 52 seconds. Packing 1 million rectangles in 256 bands
now takes only 3.2 seconds. We keep the RAM usage low by
observing that since we need randomly sized rectangles, they
do not need to be stored ahead of time, but instead they can
be generated on the fly as they are passed to each thread. Only
the rectangles that have been packed and assigned coordinates
relative to each band’s top-left corner are kept.
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Algorithm 2 Multithreaded Packing Scheduling and Load-
Balancing

1: rects = list of all rectangles to pack
2: N = dimension( rects )
3: B = dimension( bands )
4: noBandsPacked = 0
5: ↵ = 1.01
6: while noBandsPacked < B-1 do
7: create Thread ti for Band bi

8: allocate (N /B * ↵) rectangles to ti
9: rects.remove( all allocated rectangles )

10: start ti
11: noBandsPacked noBandsPacked + 1

12: end while
13: join on all threads ti
14: for all joined thread ti do
15: rects.append( rectangles unpacked by ti )
16: end for
17: create Thread tB�1

18: allocate rects to tB�1

19: start tB�1

20: join on tB�1

C. New Application Domains
The ability to quickly pack large collections of rectangles

opens applications based on 2D-packing to the realm of real-
time and interactive implementations.

It is now conceivable that a user may interact with a large
display, say in a museum showing its entire collection as a
packing of images, pick one or a group of images and have the
application automatically remove, reposition, or resize them,
quickly refreshing the space around or underneath them with a
new 2D-packing. This new feature requires the implementation
of fast data structures for quickly locating packed rectangles
inside an area or overlapping a given point. R-trees [28],
which maintain groupings of objects in space by geographical
closeness, offer interesting possibilities, and are the subject of
ongoing research.

IX. CONCLUSIONS

We have presented a new heuristic for packing or nesting
two-dimensional images in a rectangular surface. The heuristic
packs the items by creating a collection of segments that are
maintained in two data structures, one for horizontal segments,
and one for vertical segments. The segments represent the
leftmost and topmost side of rectangular surfaces that extend to
the edges of the original surface to pack. These data structures
permit to test quickly whether a new item can be positioned
in the surface without overlapping a previously placed item.

Our packing heuristic does not rotate items, but none-the-
less compares favourably with other heuristics published in
the literature that solve 2D-strip packing with rotation of items
allowed. If rotation of items is required, a possible modification
of the algorithm is to give a packing thread two versions of
the same rectangle, one the 90-degree rotated version of the

other, both linked to each other. Whenever one of the versions
is packed, the algorithm quickly searches its list of unpacked
items and removes the item linked to the one just packed.

The data structure used to maintain the empty areas lends
itself well to positioning items in key places ahead of time, or
in subdividing the original surface into multiple holes that can
be either left empty, reserved for large size items, or assigned
to separate processes that will pack in parallel. Such holes may
contain defects (for example in a sheet of metal, or glass) that
need to be avoided by the packing process.

It is possible to significantly speed the core packing al-
gorithm up by slicing the area to cover into individual thin
horizontal rectangular bands. This limits the amount of search-
ing for the best fitting place for the next rectangle, and the
execution time drops inversely proportionally with the width
of the bands.

If the slicing of the packing area creates undesirable horizon-
tal dividing lines on which rectangles align themselves during
the packing, one can easily pre-pack small rectangles over the
boundaries of bands, hiding in effect the dividing line.

Because our domain of application is that of image collages,
we have found that the the quasi-human approach of Huang
and Chen, along with subdividing the surface into nested
rectangular area significantly improves the aesthetic quality of
the packing compared to most heuristic that privilege one side
or corner and put all largest items there and finish packing
with the smaller items at the opposite end.
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