
Generic Frameworks for a Matrix of RFID Readers Based Interactions

Nicolas Géraud
Dasein Interactions,

4 pl Jean Achard, 38000 GRENOBLE
Email: nicolas.geraud@dasein-interactions.fr

Maxime Louvel
Univ. Grenoble Alpes, F-38000 Grenoble, France

CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38000 Grenoble, France
Email: maxime.louvel@cea.fr

François Pacull
Univ. Grenoble Alpes, F-38000 Grenoble, France

CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38000 Grenoble, France
Email: francois.pacull@cea.fr

Abstract—The paper presents first a framework to develop
applications on a very innovative hardware associating hundreds
of RFID readers and a high resolution display within a table.
The framework is built on top of a rule-based coordination
middleware that provides mechanisms to handle combinations
of events, generated by the RFID readers. This framework
offers the basic blocks to fully support the hardware. The paper
demonstrates the interest and the possibilities of the framework
through simple examples. In a second part, the flexibility of the
approach is illustrated by combining this ”interface” framework
with ”rendering” frameworks built on top of the same coordi-
nation middleware. As a result, we exemplify the re-usability
approach through two scenarios (case-studies) belonging to very
different application domains: help to decision making and urban
mediation.

Keywords-Coordination Middleware; RFID; Data aggregation.

I. INTRODUCTION

Sensor networks are continuously growing and bringing new
designs and usages. The increasing number of devices implied
at the same time and the increasingly complex interactions
required by the usages do not ease the task of the application
programmers. There is a need for a middleware layer, offering
as basic blocks high level mechanisms, in order to move most
of the complexity from the application to the middleware. This
paper illustrates this with an innovative smart table hosting a
high resolution display and a matrix of several hundreds of
RFID readers. The usage of this table is multiple when it is
question of interaction, mediation and collaboration between
several users. A first experience has been described in [1]. This
paper goes further and shows the re-usability and extensibility
of software components built with the proposed middleware.
A completely different application domain is considered as a
second case study.

The paper is organised as follows. Section II describes the
hardware embedded in the table. The table allows to detect
the identity and the position of RFID tagged objects put on
the table, and to display arbitrary pictures on the HD screen.
Section III presents the rule based middleware and the frame-
works built on top, which offers to the application designer

the basic interactions involving objects equipped with RFID
tags and graphical engines managing 2D and 3D graphical
objects displayed as feedback to the users. Then, Section IV
puts these frameworks in context to show how interactions can
be build. Section V then offers a discussion on the proposed
software environment and puts it in perspective of related
works. Section VI illustrates two complex applications to help
decision making and urban mediation. Finally, Section VII
concludes the paper.

II. HARDWARE

To illustrate the capability of our middleware to manage
complex events detection, this paper describes our experiment
with an original hardware. This hardware combines within a
table, a RFID based location system and a HD screen that is
used as a dynamic tablecloth.

RFID reader

Tile

HD display
RFID reader matrix

Fig. 1. Description of the table

Fig. 1 describes the table, composed of two layers. The first
layer is a 42” screen able to display with a HD resolution of
1080p. This screen is seen as a classical LCD display and can
thus be connected to a computer or smaller footprint board
(e.g., a raspberry pi board). Under this display layer, there is
a set of RFID readers organised as a matrix of 6 x 4 tiles, with
each tile containing itself a matrix of 4 x 4 RFID readers. As

1

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a result there are 24 x 16 (384) RFID readers distributed in
the table. The size of a RFID reader antenna is 3.3 x 3.3 cm.

This table works with classical RFID tags that can be
attached to any physical object. The raw information received
for each RFID reader is the set of detected tags along with the
corresponding signal strengths. This information is collected
via Ethernet. Each tile has its own IP address and gives
information for the 16 RFID readers constituting the tile.

There are two interesting functioning modes of this table.
In the first mode (push), the tiles are autonomous and send
automatically information each time a RFID is seen. In the
second mode (pull), each tile can be interrogated in order to
have the information corresponding to the RFID readers it
contains.

With this hardware, the applicative fields are quite infinite
provided that the middleware offers the required abstraction
layer and a powerful mechanism to define the coordination
schemes we want to put in place.

III. SOFTWARE

The presented hardware allows a lot of interactions through
tangible objects. It needs a high level middleware able to
quickly react to the context defined by the set of objects
present on the table at the same time. Applications for this
hardware typically combine RFID tag location, co-location
(several tags), proximity, distance, sequence of tags put on the
table. Moreover it is possible to use other interfaces connected
to the system (e.g., 3d mouse, cameras). This section firstly
introduces the middleware we use. For a more detailed descrip-
tion of this middleware, the reader may refer to [2] or [3],
where it has been used in the building automation context.
Then, the section presents the frameworks we developed on
top to ease the creation of applications involving the table.

A. Coordination Middleware

This middleware, called LINC, is an evolution of earlier
middlewares [4], [5]. LINC has been specifically re-designed
to tackle lightweight embedded systems. It provides a uniform
abstraction layer that eases the integration and coordination of
the different components (software and hardware). It relies on
the Associative memory paradigm implemented in our case
as a distributed set of bags containing resources (tuples).
Following Linda [6] approach the bags are accessed through
three operations:
• rd() that takes as parameter a partially instantiated tuple

and returns from the bag a fully instantiated tuple whose
fields match the input pattern;

• put() that takes as parameter a fully instantiated tuple
and inserts it in the bag;

• get() that takes as parameter a fully instantiated tuple,
verifies its presence in the bag and consumes it in an
atomic way.

For a matrix of RFID readers like the one in the table, bags
RawInformation and Position may contain raw data
such as (tagid, tileid, readerid) or more refined
data as (tagid, posX, posY). Depending on the usage
(calibration or real application) they both have an interest.

Once the location is computed according to the raw data,
metadata may be considered from the association between
(physicalTagId, tagId) or (tagId, objectId).

The put() operation can insert tuples into bags configuring
the readers operating mode or other configuration parameters.
Finally, some bags may be used to control the videos that are
displayed on the table screen.

In addition, bags can be grouped inside objects for identi-
fication purpose. For instance, the object modelling the RFID
readers will contain all the bags allowing its management.

The operations rd(), get() and put() are used in
production rules [7] to express the way these resources are
used in the classical pre-condition and performance phases.

Precondition phase: It relies on a sequence of rd() opera-
tions to find and detect the presence of resources in several
bags. This can be sensed values, result of service calls or states
stored in tuplespaces or databases.

The particularity of the precondition phase is that:
• the result of a rd() operation can be used to define some

fields of the subsequent rd() operation;
• a rd() is blocked until a resource corresponding to the

pattern is available.
Performance phase: It combines the operations rd(),

get() and put() to respectively verify that some resources
found in the precondition phase are still present, consume
some resources and insert new resources. In this phase, the
operations are embedded in distributed transactions [8]. This
ensures several properties that go beyond traditional produc-
tion rules. In particular, it ensures that:
• the conditions responsible of firing the rule (precondition)

are still valid in the performance phase;
• the different involved bags are effectively all accessible.
These properties are very important since they allow to

verify that a set of objects are actually present “at the same
time” on the table.

B. Frameworks

In LINC the approach is to define frameworks dedicated to
a specific aspect of the underlying hardware or the legacy soft-
ware component that is encapsulated. The frameworks provide
basic blocks (LINC objects) that are then used to define the
applications. The more application neutral the objects are, the
more reusable they are.

Here, we consider three frameworks. The first framework
is responsible for the interaction through the RFID readers
embedded in the table. It has been written from scratch since
it is related to a very specific hardware. It consists mainly of
one LINC object called RFID.

The second framework is responsible for managing what is
displayed on the screen. This is a standard LINC framework
already used in other applications. It is composed of two
objects: Display and 2D_Engine. It is responsible for
rendering more or less complex 2D information on a screen
such as: videos, static or animated drawing, text, etc.

The third framework encapsulates off-the-self 3D engines
able to render scenes containing moving 3D objects and
managing textures, points of view, lights, etc. It contains two

2

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

objects 3D_OSG and 3D_Ogre encapsulating respectively
OpenSceneGraph [9], [10] and Ogre [11], two well known
3D engines built on top of OpenGL [12]. 3D_Ogre has been
developed first, then we did the same for 3D_OSG, keeping
the same bags in order to make them interchangeable.

C. First framework: RFID Table

Object RFID: This object models the RFID readers matrix.
It contains the following bags:
• Position (tagId, posX, posY): contains the

position of the tag (0,0 defines the top left position);
• LogicalTag (physicalTagId, tagId): stores

the association of a physical tagId with a more mean-
ingful logical id, e.g., (”030209348393”, ”video1”);

• TagStatus(tagId, status): contains the status
of a tag: "in" if detected by a RFID reader or "out"
if not seen for a given time;

• Mapping (tagId, objectId): keeps the associa-
tion physical object and RFID tag that is attached to it
(e.g., an hourglass used to symbolise a timer);

• Type (tagId, type): maintains association of a
tagId with a type of tagged object (e.g., physical object,
video, action card, badge);

• Area (areaId, areaDefinition): contains ar-
eas on the table defined as a set of points forming a
polygon;

• PositionArea (tagId, areaId): contains the
tagId contained in a given area.

The detection of the tags placed on the table is done by
a driver that handles the events sent by the different RFID
readers (used in push mode). This information is decoded and
the different bags are filled with the corresponding resources.
When a tag is detected, the driver computes its position on the
table (X,Y) and adds the resource (tagId, posX, posY)
in the bag Position. A tag is detected by one or several
RFID readers of the table. To improve the precision of the
detected location we can use the signal strength provided by
the readers. Thus, we have higher precision than the size of
an RFID reader antenna. Practically, we can consider a step
equal to the third of the antenna size (around 1.1 cm).

As a RFID reader continuously sends the tag information
and as the information slightly vary, a filtering is applied to
avoid inserting new resources when it is not necessary. Hence,
a resource is inserted only when a significant change in the
location is effective. In addition, the status of the tag, "in"
if the tag is still on the table or "out" if it has been removed
(i.e., not be seen for a given time), is inserted as a resource
(tagId, status) in the bag TagStatus each time the
status changes.

The bags Type, Area or LogicalTag are configuration
bags and their usage is described here after.

Introduction to rules: The described middleware allows to
express with its rule based language actions to be performed
(performance phase) when some conditions (precondition
phase) are verified. The actions performed are embedded in
transactions enclosed in {}. As rd() actions may be included
in these transactions, it is possible to ensure that resources
found in the precondition are still valid in the performance.

1[” RFID” , ” TagStatus”] . rd (tag Id , ” i n ”) &
2# o t h e r p r e c o n d i t i o n s
3: :
4{
5[” RFID” , ” TagStatus”] . rd (tag Id , ” i n ”) ;
6# o t h e r a c t i o n s
7} .

Listing 1. Ensure tag is still there at performance phase

Listing 1 presents an example of rule, where the precon-
dition and performance part are respectively before and after
the "::". To simplify the example, we only show a single
operation in the precondition and performance phase but both
may contain several additional tokens.

The first token (line 1) reads in the bag TagStatus of
the object RFID all the tags with status ”in”. This allows
to detect new tags placed on the table and then to manage
the corresponding scenario. Line 5 guaranties that the tagId
is still on the table when the performance phase is executed.
Since actions in the performance are embedded in transactions
the other actions can only be done if the tag is still there. Note
that this approach simplifies a lot the management of events:
• events are detected in preconditions;
• when performances are executed, guarantying that the

condition related to the event is still valid only requires
to add a rd() in the performance part.

Initialisation rules: Listing 2 presents an initialisation rule.
No precondition is defined, this rule is always executed and
only once at the application launch time.

1: :
2{
3[” RFID” , ” Logica lTag”] . put(” 9 e7f9cce9” , ” tag v ideo tab le ”) ;
4[” RFID” , ” Area”] . put(” zoneA” , ”0 ,0 ;0 ,54 ,12 ,54 ;12 ,66 ;66 ,0 ”) ;
5[” RFID” , ” Type”] . put(” t v i deo p resen ta t i on tab le ” , ” v ideo”) ;
6} .

Listing 2. Initialisation rule

Here we initialise the bags LogicalTag, Area and Type.
In the first bag, we associate the physical tagid

"94e7f89cce9" to the more user friendly logical tag
"tag_video_table". This allows to manipulate in the
rules an id that is human readable. In addition, several physical
tags can be associated to the same logical tag for backup
reason or to offer to several people the possibility to trigger
the same action with different objects or cards.

In the second bag, we define a "zoneA" as a list of points
defining a polygon. This is taken into account by the driver to
populate the PositionArea bag.

In the third bag, we associate a type to a tag. The type
allows to define a specific context around this tag to verify
that it is correctly used. For instance, a tag associated to a
voting card cannot be placed everywhere on the table but in a
given area. Another usage is to give information to the driver
about the sampling frequency for a given tag or if the change
in the location is large enough to be reported or not.

Defining action area: To better organise the table, area
(i.e., zone of the table) can be used. An area is defined by
adding a resource (areaId, areaDefinition) in the
bag Area. The areaDefinition is a set of points defining
a polygon. When the RFID driver detects a new position for
a tag, at the same time it inserts the corresponding resource

3

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the bag Position, it scans all the defined areas and adds
the resources (tagId, areaId) in the bag Area. In the
same manner, when the driver inserts a resource (tagId,
"out") in the bag Status it removes all the resources
corresponding to the tag in the bag Area. This simplifies the
application designer’s task since she can directly write a rule
that starts with a token reading in the bag Area.

D. Second framework: 2D Rendering Engine

This framework is a generic 2D rendering engine. Its role is
to manage what is displayed on a screen. It includes an object
more oriented to video rendering and another that display
arbitrary 2D fixed or animated graphical objects. The target,
can be, as in our case, the screen included in the table, but
also a smart TV, a regular computer screen, a tablet or a
smartphone.

Object Display: The first object of the framework man-
ages the displays on the screen. It contains the following bags
(non exhaustive list):
• videoPlayer (playerId, videoname,
posX, posY, width, height,
orientation, soundTrack): this bag accepts
only the put() operations and launches a video player
displaying the video corresponding to the filename with
the given geometry, with or without sound track;

• video (videoname, status): maintains the sta-
tus of the video among started, finished,
paused;

• videoPlayerCommand(videoname, command):
this bag accepts only the put() operations and the
following commands: "stop", "pause", "resume",
"fs_on", "fs_off" (fs is for full screen).

A simple usage of this object is described in Listing 3.
This initialisation rule starts the video called video table
presenting the table on the top left corner of the screen. When
the performance is executing, a video player is started and
configured to display the video with the resolution (640x480)
at position (0,0). The status of the video is set to "started".

1: :
2{
3[” D i sp lay ” , ” v ideo”] . put(” v i deo tab le ” , ” s t a r t e d ”) ;
4[” D i sp lay ” , ” v ideoP layer ”] . put(” v l c ” , ” v i deo tab le ” ,

” 0 ” , ” 0 ” , ” 6 4 0 ” , ” 4 8 0 ” , ” True”) ;
5} .

Listing 3. Start presentation video of the table

To easily support any kind of video player, the framework
uses an external Linux process. The role of this process is to
display a video according to a media definition file containing
the basic information needed to define the layout, the position,
the fact that the sound track is on or off. The display driver
saves the PID of the process started in order to interact with
it independently of the video player used.

Listing 4 shows how to stop a video. The precondition waits
that the stop card is placed on the table. It then reads the
videoId of the started video. The performance actually stops
the video just by sending the signal SIGKILL to the PID
playing the video.

1[” RFID” , ” TagStatus”] . rd (” tag stop v ideo” , ” i n ”) &
2[” D i sp lay ” , ” v ideo”] . rd (v ideo Id , ” s t a r t e d ”)
3: :
4{
5[” D i sp lay ” , ” videoPlayerCommand”] . put(v ideo Id , ” s top ”) ;
6} .

Listing 4. Stopping a video with a control card

Object 2D engine: The second object of the framework
is a 2D engine. It is in charge of displaying the background
of the table. It is also in charge of the displayed animations.
The current version relies on a Scalable Vector Graphics [13]
(SVG) engine to define 2D animations that will be displayed
in a simple web browser that is opened in full screen on the
table display.

The 2D engine object contains the following bags (non
exhaustive list):
• Background (imagefile): When a resource (i.e.,

an image file) is inserted it replaces the current back-
ground of the table;

• Media (tagId, filename): associates a tagId
to a filename;

• Sprites (spriteId,x,y, svgfile): Allows to
display a sprite (SVG image) at the position x,y on the
table screen;

• MoveSpriteGrid (spriteid,x,y,duration,
nbsteps,renderlist): Allows to define an
animation for the sprite defined by spriteid. The
duration of the animation using; nbsteps steps
and using successively the SVG patterns defined in
renderlist;

• Visibility (spriteId,percent): defines the
opacity and the visibility of the sprite.

This object actually contains more bags that allow not only
to define a background but also sprites that can be animated
on top of this background. All the SVG attributes may be
dynamically modified.

The animations are done at the level of the object that
returns an html file when invoked through URL. This HTML
file is built from static information (HTML [14] and SVG [13]
templates) present in the file system and contextual informa-
tion present in the bags.

In addition, SVG templates are filled by javascripts [15] to
bring the dynamic aspects through animated SVG entities. Fi-
nally, through SVG and javascripts it is possible to attach URL
based interactions to classical events mouseclick, mouseover,
etc. These URL calls either insert or read resources in bags
dedicated to user interactions. Resources are put in bags to
capture the inputs from the users. Furthermore, resources are
regularly read in bags to obtain updated information. The
resources are returned to the web browser as json structure [16]
easily understandable by javascripts. Thus, with devices allow-
ing user interactions (e.g., tablet and phone) we can go very
far in term of user interface.

The main advantage of this approach is that we use the
full power of nowadays web technologies without paying an
heavy cost at the rendering level. As most of the current
equipments are surprisingly able to manage quite complex web
pages, this framework can deal with almost all the user life

4

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

objects owning a screen. For instance, we have built a user
interface including SVG drawing for home automation with a
simple kindle paperwhite e-reader. Thus, you can have a tablet-
based interface always available in your living room with an
autonomy of a month.

E. Third Framework: 3D Rendering

In the same way, we have developed a generic 3D rendering
engine that allows to display arbitrary 3D scenes.

Object 3D engine: This object encapsulates the 3D en-
gine Open Scene Graph [10]. It runs on a multicore laptop and
the output is displayed either on an external large screen or a
video projector. The role of this object is to display complex
interactive 3D scenes. To deal with performance, scalability
and high quality user experience the LINC object has been
decomposed in two parts. First, we have a set of bags that
are used to store the basic information about the manipulated
entities.
• Entity (entity, file): contains 3D models of

buildings that are the same as the ones used for printing
the buildings on the 3D printer. Thus, no extra effort is
required for the 3D virtual scene.

• Light (aspect, r, g, b): this bag allows to in-
sert different types of light that are used for rendering the
scene.

• Mode (key, mode): this bag allows to define the
visualisation modes. Currently, we consider objective or
subjective view.

• Location (entity, x, y, z): this bag keeps
tracks of the location of the different entities displayed
in the 3D scene.

In addition, we have a bag Command (command,
entity, p1, p2, p3) that is associated to the 3D engine
launched as an independent process. This bag is regularly
interrogated by the 3D engine and the commands are collected
one by one and executed in the context of the 3D scene. The
reason of such architecture is first to dedicate one of the CPU
cores to OpenSceneGraph managing the 3D scene. Second,
changes are only done when an update of the scene is required,
if no command is present nothing needs to be recomputed and
changed. Third, this allows the 3D engine to pace the rhythm
of command executions. If the rendering is very complex then
the frequency of update will slow down accordingly, the bag
working as a buffer. Thus, the user experience does not suffer
of the possible saturation of the 3D engine.

To deal with priorities, we do not consider a single
Command bag but two. The second bag is associated to high
priority commands. Thus, for instance, we can manage in
priority the commands linked to the displacement of the user
in a subjective view while adding new 3D objects in the
background scene is managed when possible.

F. Other available frameworks

Other frameworks, not used in this paper use cases, have
been built on top of the LINC middleware. Following the
same patterns, objects are linked to a dedicated context. They

define specific frameworks ready to be used to design new
applications.

For instance, to integrate sensors and actuators we have
built a framework that considers the main standards for wired
and wireless technologies. Each technology is managed by a
dedicated object acting as a gateway. All the objects share
the same set of bags to hide the heterogeneity. In addition,
we have developed another framework to integrate camera
(movement detection, face detection), light systems or mobile
robots. We also developed a framework for managing the
dynamic creation of scenarios and their management in term
of context and priorities. The three of them have been used in
the context of building automation [3], [17]. Finally, we have
also recently been working on a voice framework to integrate
voice recognition and text to speech engine.

IV. FRAMEWORKS IN CONTEXT

After presenting the global architecture, this section shows
how interactions involving objects from different frameworks
can be easily encoded with rules, through several examples.

A. Architecture

Ethernet link

HDMI link

Framework

Objet

Ethernet Switch

Rfid
RaspBerry Pi

or Netbook

3D engine

External HD display

Technical box

Laptop

Display

Rfid

2D engine

Display

Ethernet-

controller

HD display

3D navigator

Fig. 2. Global picture.

Fig. 2 presents the current hardware and software setting.
It contains the table described in Section II. In addition, there
are two computing resources: a laptop and a raspberry pi or a
netbook depending on the complexity we want to manage on
the screen table. In real situation, they are embedded inside
the technical box at the base of the table, hidden from the
users. The table’s screen is connected to the raspberry pi
with a HDMI cable, offering a 1080p HD resolution. The
Ethernet switch defines a local area network connecting the
matrix of RFID readers, the raspberry pi/netbook and the
laptop. From the software point of view, the objects of the
different frameworks are distributed among the two computing
resources.

The software configuration can be changed according to the
application. For instance, this paper details two applications (in
Section VI).

For the first application, the RFID and Display objects
run on the laptop, the 2D engine and another Display
objects run on the Raspberry pi. For the second application,
in addition a 3D engine object runs on the laptop. The

5

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

raspberry pi is replaced by a netbook to use more intensively
the 2D engine and the Display objects.

Some LINC objects launch background processes that inter-
act with them. For instance, the 2D engine object launches
a web browser, displayed in full screen, responsible for dis-
playing the generated HTML + SVG files. The object 3D
engine launches OpenSceneGraph engine also in fullscreen.
Finally, the object Display launches on demand one or more
instances of VLC multimedia viewer.

B. Examples of simple interactions through rules

To change the background with a card: In this example
(Listing 5), the background displayed on the screen is changed
when a card of type background is put anywhere on the
table. The first line of the precondition makes the rule fire
only for tags that are known to define a background. Then
(line 2), whenever a card of this type is on the table, line 3 finds
the filename image corresponding to the tagid. Then,
in the the performance phase the action (line 6) changes the
background of the table with the content of filename. After
the change, it is not necessary to let the card on the table.

1[” RFID” , ” Type”] . rd (tag Id , ” background”) &
2[” RFID” , ” TagStatus”] . rd (tag Id , ” i n ”) &
3[” 2 D Engine” , ” Media”] . rd (tag Id , f i l ename)
4: :
5{
6[” 2 D Engine” , ” background”] . put(f i l ename) ;
7} .

Listing 5. Rule to change the background when a card is put on the table

You can define as many backgrounds as you want, you just
need to insert a resource defining the type of your RFID tag
as a "background" in the bag "Type" and a resource to
associate the tag id to an image filename in the bag "Media".

To display a video at the location defined by the card: This
example aims at starting a video when a card of type video
is put. The card’s position defines the top-left corner of the
video. Listing 6 gives the rule implementing this scenario. As
previously, lines 1 and 2 make the rules fires when a video card
is put on the table. Line 3 gives the card’s position. Finally,
line 4 finds the video to be displayed from the tag id. The
performance then embeds in one transaction:
• ensuring that the card is still there (line 7);
• starting of the video player with (posX,posY) (line 8);
• saving state ”started” for the video (line 9).

1[” RFID” , ” Type”] . rd (tag Id , ” v ideo”) &
2[” RFID” , ” TagStatus”] . rd (tag Id , ” i n ”) &
3[” RFID” , ” P o s i t i o n ”] . rd (tag Id , posX, posY) &
4[” RFID” , ” Mapping”] . rd (tag Id , v i de o I d) &
5: :
6{
7[” RFID” , ” TagStatus”] . rd (tag Id , ” i n ”) ;
8[” D i sp lay ” , ” v ideoP layer ”] . put(” v l c ” , v ideo Id , posX,

posY, ” 6 4 0 ” , ” 4 8 0 ” , ” True”) ;
9[” D i sp lay ” , ” v ideoP layer ”] . put(v ideo Id , ” s t a r t e d ”) ;
10} .

Listing 6. Display video at card’s position

To switch a video currently played as a full screen video:
This scenario uses in addition to the card that started a video
as in previous scenario, a card that defines the modality
full-screen.

Listing 7 implements such scenario. Lines 1-3 check that
both cards are on the table. Line 4 fires when the video has
been started (by rule in Listing 6). The performance phase
checks that both cards are still on the table and the video
is still in started state. In these conditions, we switch the
video player to full screen by adding a resource in the bag
videoPlayerCommand (line 10).

1[” RFID” , ” TagStatus”] . rd (” t a g f u l l S c r e e n ” , ” i n ”) &
2[” RFID” , ” Type”] . rd (v ideo Id , ” v ideo”) &
3[” RFID” , ” TagStatus”] . rd (v ideo Id , ” i n ”) &
4[” D i sp lay ” , ” v ideoP layer ”] . rd (v ideo Id , ” s t a r t e d ”) &
5: :
6{
7[” RFID” , ” TagStatus” . rd (v ideo Id , ” i n ”) ;
8[” RFID” , ” TagStatus”] . rd (” t a g f u l l S c r e e n ” , ” i n ”) ;
9[” D i sp lay ” , ” v ideoP layer ”] . rd (v ideo Id , ” s t a r t e d ”) ;
10[” D i sp lay ” , ” videoPlayerCommand”] . put(p layer , ” fs on”) ;
11} .

Listing 7. Put video in full-screen

It is then necessary to write a rule (Listing 8) to quit the
full screen mode if the full screen card is removed from the
table. This rule is triggered when the full screen control card
is "out" (line 1). As previously, the performance checks the
player and the cards’ status and adds a resource in the bag
videoPlayerCommand (line 10).

1[” RFID” , ” TagStatus”] . rd (” t a g f u l l S c r e e n ” , ” ou t ”) &
2[” RFID” , ” Type”] . rd (v ideo Id , ” v ideo”) &
3[” RFID” , ” TagStatus”] . rd (v ideo Id , ” i n ”) &
4[” D i sp lay ” , ” V ideoPlayer”] . rd (v ideo Id , ” s t a r t e d ”) &
5: :
6{
7[” RFID” , ” TagStatus” . rd (v ideo Id , ” i n ”) ;
8[” RFID” , ” TagStatus”] . rd (” t a g f u l l S c r e e n ” , ” ou t ”) ;
9[” D i sp lay ” , ” V ideoPlayer”] . rd (v ideo Id , ” s t a r t e d ”) ;
10[” D i sp lay ” , ” VideoPlayerCommand”] . put(p layer , ” f s o f f ”) ;
11} .

Listing 8. Quit full-screen

V. DISCUSSION AND RELATED WORKS

So far we have illustrated the simplicity of writing inter-
actions with the proposed frameworks. The detailed examples
showed how information coming from distributed sources may
be aggregated as a complex distributed event.

In the literature such task is usually implemented with a
publish-subscribe approach [18], where subscribers register to
specific events generated by publishers (RFID readers in this
paper). This has been applied for instance in the context of
sensor networks [19]. With such a system it is possible to
write code that would be similar to the precondition part of
the rules presented in this section. For instance, to react to a
tag detected in a specific area or to an external event. However,
in a publish-subscribe approach when the system has to react
upon a set of events or to be sure that the events are still valid
when the actions have to be executed, the amount of additional
code is not negligible.

With the framework developed on top of our middleware
expressing an event as ”one card is put in a specific area”
and ”another card of a specific type is put at the same
time anywhere else” is simply a sequence of rd() tokens.
In addition, defining what to do if a card is put on the
table and immediately removed is possible thanks to the
distributed transaction offered in the performance phase that

6

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

aborts a transaction if the conditions are not currently true. In
a publish/subscribe approach it would correspond to remove
events that are no longer true but are still present in the system.
Dealing with that is not impossible, but it is for sure not an
easy task.

Other works have used as us resources and tuple spaces to
facilitate the coordination in a distributed system such as [20]
or [21]. These work focus on providing context awareness
to mobile applications. However, we believe that these ap-
proaches still rely too much on traditional object oriented
paradigms to be flexible enough to address the hardware used
in this paper. Other promising approaches for coordination of
complex systems have been proposed in [22] and [23]. For
instance, in [22], the authors propose to use the chemical
reaction paradigm to model the tuples evolution. The basic
idea is to let the tuples evolve and auto-regulate as in chemical
reaction. Even though these approaches could help coping
with complexity of interactions brought with the table, we
see two limitations. Firstly, self evolving coordination may be
too complex to build specific interactions such as the ones
described in this paper. Secondly, this work seems to be only
at the theoretical level since no implementation has been done.

VI. APPLICATIONS

This section presents two applications using the table:
the first one helps decision making, the second deals with
urban mediation. In both cases, we show how the frameworks
detailed previously have been used to build the applications.
The main advantage of our approach is that the objects of the
frameworks are very generic and thus highly reusable. The
specificities of the applications are in the coordination rules.

A. Help for decision making

A+

A-

B-

B-

B+

C+ C-

D+D- D-

Fig. 3. Veitch Diagram

The first application uses quite complex interactions be-
tween several users around this table. The application allows
to collect the opinion of a panel of people to elect the best
equipment, concept or decision according to a set of criteria.
In the present example, the panelists are asked to give their
opinions about a set of smartphones according to the following
criteria: aesthetic, user interface, size and autonomy. These

criteria are denoted A, B, C and D, respectively, and can take
the value positive or negative depending on the majority of
votes from the panelists. The resulting information is displayed
as a Veitch diagram as shown in Fig. 3.

The white cell contains the best choices that received
4 positive opinions. The adjacent cell contain choices that
received 3 positive opinions. The darker a cell is, the more
negative it is. The black bottom right cell contains the worst
choice with 4 negative opinions. This section now details
what is an interaction session and gives a few hints on the
implementation.

1) Interactions: At the beginning, each panellist has a
badge representing his/her identity. The master of session
presents a smartphone and may display a video on the table
by putting the corresponding card on it. Some modifier cards
added to the table may modify the display either by switching
to fullscreen or by launching a second video player with a 180
rotation to adapt to situation where people are all around the
table. In this case, the second video uses the same video flow
(without sound track) and is synchronised with the first one.
Once the presentation is done, the vote may start. The master
of session places the card corresponding to the criterion (e.g.,
aesthetic) and then the table display shows two areas, one
green to collect the badges of panelists liking the smartphone
design and one red for those that are not enthusiastic. An
additional video or photo specific to this criterion may also
be displayed. Then, the master of session triggers the vote
by placing an hourglass (tagged with an RFID) on the table.
A timer indicates at each corner of the table the remaining
time for the vote. Each panellist put her badge on the table
according to her opinion. A circle is displayed around the
badge to return a feedback to the user. Different modalities
may be configured at the beginning of the session to control
the vote:
• the duration of a vote phase;
• missing vote is considered as negative or positive;
• a vote is definitive or not.

Once the timer reaches zero the votes are stored for further
processing and the master of session can go to the next
criterion. When all the criteria have been considered, the
master of session can go to the next smartphone. At any
moment, the master of session may place a card on the table
to display or print current the status of the Veitch diagram.

2) Implementation: The full application described here may
be implemented by using small variation of the basic interac-
tions involving Display, 2D_Engine and Rfid objects
presented previously.

A specific Application object has been added. It con-
tains bags to store panelists identities, votes and current step
in the session (smartphone number and criteria number). This
object is dedicated to the application and is the only one that
is not re-usable. Associated with the coordination rules, this
defines the logic of the applications. All the other objects are
just a mean to access to the external world: table, screen, etc.

The basic settings, configuring a working session, are done
through initialisation rules that define modalities such as
default value of missing vote or the identity of the panelists.
Note that using the proposed framework is very appropriate

7

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

since adding new features simply requires to add new rules.
Existing rules can continue to work without concern. For
instance, we can use an initial round getting the identities of
the panelists rather than using a configuration rule. This can be
done without any other impact than replacing the initialisation
rule with the following rule required to obtain the identity of
the panelists.

Registration: The following rule (Listing 9) starts when
the registration card is placed on the table. It basically stores
the tagId of all the users who placed their id badge on the
table, in the bag Users of the object Application.

1[” RFID” , ” S ta tus ”] . rd (” t a g r e g i s t r a t i o n ” , ” i n ”) &
2[” RFID” , ” S ta tus ”] . rd (tag Id , ” i n ”) &
3[” RFID” , ” Type”] . rd (tag Id , ” badge”) &
4: :
5{
6[” RFID” , ” S ta tus ”] . rd (” t a g r e g i s t r a t i o n ” , ” i n ”) &
7[” RFID” , ” S ta tus ”] . rd (tag Id , ” i n ”) &
8[” A p p l i c a t i o n ” , ” Users”] . put(t a g I d)
9} .

Listing 9. Registration

When the registration card is removed, the resource
("tag_registration","in") is removed from the bag
Status replaced by ("tag_registration","out").
This immediately stops the effect of the registration rule:
performances will fail on the first token because of the absence
of the resource.

As a result, when the card is removed, all the registered
users are in the bag Users of the object Application.

Vote: A session of vote would then start with the follow-
ing rule:

1[” RFID” , ” S ta tus ”] . rd (” tag vote” , ” i n ”) &
2: :
3{
4[” A p p l i c a t i o n ” , ” Step”] . put(” v o t e s t a r t e d ”)
5[” 2 D Engine” , ” Background”] . put(” vote bg”)
6} .

Listing 10. Vote starting

It defines that we are in the step "vote_started" and
changes the table background creating a zone for the positive
votes in green and a zone for the negative votes in red.

The vote round stops either when the delay associated to
the round has expired with the following rule:

1[” A p p l i c a t i o n ” , ” Step”] . rd (” v o t e s t a r t e d ”) &
2SLEEP: 30
3: :
4{
5[” A p p l i c a t i o n ” , ” Step”] . get (” v o t e s t a r t e d ”)
6[” 2 D Engine” , ” Background”] . put(” end vote bg”)
7} .

Listing 11. Vote end (time out)

or when the master decides the end of the round, for instance
because everybody have voted. This is done when she removes
the cards associated to the tag_vote.

1[” A p p l i c a t i o n ” , ” Step”] . rd (” v o t e s t a r t e d ”) &
2[” RFID” , ” S ta tus ”] . rd (” tag vote” , ” ou t ”) &
3: :
4{
5[” A p p l i c a t i o n ” , ” Step”] . get (” v o t e s t a r t e d ”)
6[” RFID” , ” S ta tus ”] . rd (” tag vote” , ” ou t ”) &
7[” 2 D Engine” , ” Background”] . put(” end vote bg”)
8} .

Listing 12. Vote end (master decision)

At the application level it does not matter which of the 2
rules has been applied. As both of them consume the resource
vote_started the execution of one will prevent the other
to be executed.

The combination of the two rules defines that we are no
longer in the step "vote_started" and changes the table
background to indicate the end of the round.

The rule managing the vote itself is given in Listing 13.

1[” A p p l i c a t i o n ” , ” Step”] . rd (” Vo te s ta r ted ”) &
2[” RFID” , ” S ta tus ”] . rd (tag product , ” i n ”) &
3[” RFID” , ” Type”] . rd (tag product , ” p roduc t ”) &
4[” RFID” , ” S ta tus ”] . rd (tag proper ty , ” i n ”) &
5[” RFID” , ” Type”] . rd (tag proper ty , ” p r o p e r t y ”) &
6[” A p p l i c a t i o n ” , ” Users”] . rd (user tag Id) &
7[” RFID” , ” S ta tus ”] . rd (user tagId , ” i n ”) &
8: :
9{
10[” A p p l i c a t i o n ” , ” Step”] . rd (” v o t e s t a r t e d ”)
11[” RFID” , ” S ta tus ”] . rd (tag product , ” i n ”)
12[” RFID” , ” S ta tus ”] . rd (tag proper ty , ” i n ”)
13[” RFID” , ” S ta tus ”] . rd (user tagId , ” i n ”)
14[” RFID” , ” Area”] . rd (” p o s i t i v e ” , user tag Id)
15[” A p p l i c a t i o n ” , ” Vote”] . put(tag product ,

tag proper ty , user tagId , ” + ”)
16}
17{
18[” A p p l i c a t i o n ” , ” Step”] . rd (” v o t e s t a r t e d ”)
19[” RFID” , ” S ta tus ”] . rd (tag product , ” i n ”)
20[” RFID” , ” S ta tus ”] . rd (tag proper ty , ” i n ”)
21[” RFID” , ” S ta tus ”] . rd (user tagId , ” i n ”)
22[” RFID” , ” Area”] . rd (” nega t i ve ” , user tag Id)
23[” A p p l i c a t i o n ” , ” Vote”] . put(tag product ,

tag proper ty , user tagId , ”− ”)
24} .

Listing 13. vote

The first token of the precondition and of each transaction
in the performance phase is a guard ensuring the rule is only
active during the vote. (lines 1, 10 and 18) When the vote
ends, the resource ("vote_started") is removed from
the bag Step. As a result, all the transactions will fail on the
action rd("vote_started"). The rd() operations on
(tag_product,"in") and (tag_property,"in")
(lines 2 and 4 in the precondition) ensure that the vote is con-
sidered for the current property of the current product. Token
in line 6 of the precondition returns all the users registered for
the vote. This is a very natural manner to avoid considering
votes by an unregistered person. Obviously, as this information
is stored in a bag, it would be possible at any time to register
or unregister a user. Finally, the last token of the precondition
waits for each user tag to be put on the table. For each of these
tags, a performance is triggered. The performance is composed
of two very similar transactions. The first four tokens (lines 10
to 13 for the first transaction) are guards to ensure that the vote
is still open, for the current product, the current property and
that the user tag is still on the table. The last two tokens of the
transactions define the vote and save it. A vote card can be in
only one area, and the two areas cover all the table. Then, the
two transactions are exclusive. The first transaction succeeds
for positive votes, while the second transaction succeeds for
negative votes (enforced by lines 14 and 22). Hence we ensure
that one and only one transaction will succeed, counting the
vote correctly.

When all the votes have been done for a criterion, the users
can remove their voting card.

8

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This rule applies for all the products and the criteria inside a
product since the context is given by the corresponding cards
placed on the table.

Then, the master simply removes the criterion card and
replaces it by the card for the next criterion. This will trigger
a new branch in the precondition, at line 4. The value of
tag_property now contains the value of the new property.
Once all the criteria have been voted for a product, the master
replaces the product card by another product card and the vote
may continues with a new round of properties.

The goal of this section was not to describe all the rules
involved in the application but to show how problems that
seems quite complex may be managed with only a few number
of rules. Moreover, as the application can be decomposed in
steps and each rule associated to a step is controlled by the
presence of some specific resources in some bags, we can
easily avoid the ”unwanted” competition between rules. Thus,
it is very easy to guaranty that a set of rules verified in isolation
will not introduce flows in the whole set of rules defining the
full application.

B. Urban Mediation

The context of this second application is the mediation in
between people who design urban infrastructures, deciders of
the project and inhabitants who live or will live inside or
nearby the area. The table is used both as a ground for a
physical model of the urban sector under consideration and as
an interaction medium to augment the model with 3D virtual
representation of the same urban scene as shown in Fig. 4.

Physical building models can be put on the table to figure
out the area to be considered. These buildings are made with
a 3D printer and they are equipped with Rfid tags to allow
interaction with the table.

It is possible thanks to the framework 2D Rendering to
display various useful information on the table screen.
• Static information:

– maps or aerial view;
– parking lots, road, green spaces;
– electricity, communication, water or drain networks;
– underground transportation;
– meta information such as reserved location;
– specific difficulties linked to the ground nature

(floodplain, rocky soil, historic relic).
• dynamic information:

– graphs and statistical information;
– animation to render wind direction (venturi effect),

sound propagation;
– historical traffic data;
– videos.

An additional external screen or a projector is used to render
the urban area as a virtual 3D scene. This allows the user to
either have an objective view, flying over the full scene or a
subjective view, moving around directly within the scene. This
uses the framework 3D Rendering. In Fig. 4, an objective
view of the area is displayed.

This section now details how the user may interact with the
application and then gives some hints on the implementation.

Fig. 4. Urban mediation.

1) Interaction: In this application we do not have a strict
succession of steps as in the previous application. On the
contrary, we just have different ”modes” that can be freely
set at any moment by the user through the use of a context
card placed on the table.

For instance, a mode populates the physical model (on the
table) and thus the virtual scene (on the wall) with buildings
and other urban elements.

Fig. 5. Printed building and its verso equipped with RFID tags.

This is done by putting on the table 3D building models as
the one shown in Fig. 5. Each building has on the verso two
RFID tags placed respectively in the top left and bottom right
corners. These tags are used for the identification, the location
on the table and the orientation of the building.

Given the respective positions of the two tags, the barycentre
corresponds to the centre of the building that is required to
compute the actual position in the virtual scene. Using two
tags per building model also allows to have a rough idea of
the orientation of the building. Given the resolution of the
table we can consider steps of 45 degrees.

We define a single logical tag (concatenation of the two
physical ones) that uniquely identifies the building. Then,
we associate this logical tag to the physical building model,
its 3D model file, its location, its orientation and its virtual
representation in the 3D scene. This bridges the physical world
and the virtual one.

The 3D printed shapes represent, in the current urban scene,
the real buildings and the buildings for which the plans are
already known. However, sometime, for discussion in the early
phases, we want to have an idea of the impact of a possible
building. In this case, we use different black boxes as shown
the Fig. 6 prefiguring buildings of different shapes and sizes.
These blocks are also equipped with two tags.

9

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 6. Generic shapes for prefiguring future buildings footprint.

In order to enrich the urban scene, we can also use some
”ink pads” that once applied on the table create 2D markers
on the background and elements in the 3D virtual scene.
This concerns for instance trees, hedgerow and other scenery
elements.

The background can also be modified by placing cards on
the table. Backgrounds can be superposed in order to reveal
various additional informations as described in the previous
section.

It is also possible to move a token representing a pedestrian
within the physical model and acting on her field of vision
with the 3D Navigator. This is a device that includes the
functionality of a classical joystick in X and Y combined with
informations push and pull to add the Z axis. In addition, you
can rotate it and you have one button on each side.

As a result, we can see on an external screen, the 3D
virtual scene actually seen by the pedestrian. Moving the token
allows to progress in the 3D scene, visiting the different places.
Rotation of the pedestrian is done through the 3D navigator.
The pedestrian can thus turn on herself getting a 360 view.
A vision cone is displayed on the table to show the current
pedestrian field of view. The same device is used to manage
the head movement up, down, right and left. Finally, the two
buttons on the right and left sides of the device allow the
pedestrian to respectively go up and down. This allows to
consider the view from the different floors of a building. The
corresponding floor number is displayed on the table near the
vision cone.

All the modifications of the physical model are immediately
echoed on the 3D virtual scene and thus, the potential impact
can be better evaluated.

Switching back to objective view is done via a special card
placed on the table. In this mode, the 3D navigator is used to
fly over the scene with the same capability of movements.

In objective mode, it is also possible to enrich the 3D scene
according to lights and sun position. It is thus possible to see
the impact of a building in term of shadow in the neighbouring
according to the season, the hour, etc.

It is also possible to associate a texture to the black boxes
to test alternative to a project and how the future building can
be better integrated with the existing ones.

Finally, it is possible to launch video on the table screen or
on the external one.

2) Implementation: The application uses a combination of
the three frameworks described in this paper. These frame-
works provides very generic and reusable objects: a large part
of them is already used in the previous application. Some
of the interactions and the application logic of this second
application is given in the following as illustration.

The first rule manages the 3D printed buildings.

1[” RFID” , ” TagType”] . rd (i d , ” b u i l d i n g ”) &
2[” RFID” , ” TagPos i t ion”] . rd (i d , x, y) &
3COMPUTE: x1, y1, z1 = t rans fo rm(x, y) &
4[” OSG” , ” E n t i t y ”] . rd (i d , f i l ename) ;
5: :
6{
7[” OSG” , ” Command”] . put(” e n t i t y ” , i d , f i lename , ” ” , ” ”) ;
8[” OSG” , ” Command”] . put(” t r a n s l a t e ” , i d , x1, y1, z1) ;
9[” OSG” , ” Command”] . put(” sca le ” , i d , ” 1 ” , ” 1 ” , ” 1 ”) ;
10} .

Listing 14. Buildings

The precondition waits for all the tags of type building
in order to manage only tags corresponding to the 3D printed
building models. It then reads the location of the model on the
table. From the 2D coordinates it computes the correspond-
ing 3D coordinates in the virtual scene through the method
transform(). The method transform() is written in
python [24] code and may be very simple if we just do a
simple translation for x and y and set z to 0. It can be more
complex if we refer to a model of the ground that in addition
can give the z coordinate according to x and y. The last token
allows to obtain the 3D model file associated to the building.

The performance phase then inserts in the Command bag the
three commands required to create in 3D virtual scene with
the representation of the building. The first one creates the
entity according to its 3D model if it is not already done. The
second places the entity at the right place. The third changes
the scale of the object in the 3 dimensions. Indeed, by default,
when a new graphical object is created it has an initial scale
of 0 to stay hidden. Then we can make all the transformations
(translate, rotate, etc.) before acting on the scale in order to
make it appears at the correct place.

Moving a building will trigger another instance of this rule
with a new resource for the tag position and the building will
be moved accordingly in the 3D virtual scene. Removing a
building is detected by the status of the tag that becomes out
and in this case, we just set the scale of the object to 0 in
order to hide the building.

The second rule manages scenery elements that can be
added to the 3D virtual scene. It is almost similar to the
previously presented rule concerning buildings. The main
difference is that we have not one physical tagged object per
virtual one. Thus, we use a tag equipped ”ink pad” for each
type of element we want to consider. In the following example,
we consider a small tree. Each time this the pad is put on the
table, a new instance of the small tree is created as if a physical
3D object where placed. As a result, a 3D virtual small tree
appears at the corresponding location in the 3D virtual scene.

10

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1[” RFID” , ” TagPos i t ion”] . rd (” sma l l t r ee ” , x, y) &
2COMPUTE: x1, y1, z1 = t rans fo rm(x, y) &
3COMPUTE: i d = ” e l t ” + x+ ” ” + y &
4: :
5{
6[” OSG” , ” E n t i t y ”] . put(i d , ” a rb re . osg”) ;
7[” OSG” , ” Command”] . put(” e n t i t y ” , i d , ” t r e e 1 . osg” , ” ” , ” ”) ;
8[” OSG” , ” Command”] . put(” t r a n s l a t e ” , i d , x1, y1, z1) ;
9[” OSG” , ” Command”] . put(” sca le ” , i d , ” 1 ” , ” 1 ” , ” 1 ”) ;
10} .

Listing 15. Small tree ink pad

The precondition phase reads the 2D coordinates of the
pad on the table. Each pad has an unique identifier, here it
is small_tree. The 3D coordinates are computed as in
the previous rule. The last token creates an id that will be
associated to the virtual entity that is going to be created. This
entity is in fact an instance of the type of tree associated to
the pad. The id is of the form elt_<x>_<y> and is unique
for a given location. Indeed, we consider that we can have a
single scenery element at a given place.

In the performance phase, we declare a new entity referred
by its id and associated to it the corresponding 3D model
here in the format .osg native to OpenSceneGraph. We then
insert in the Command bag the three same commands as the
previous rule to make the trees appear in the scene.

This rule is very generic and we can manage, with small
variants, pads associated to various scenery elements. For
instance, we can act on the 3D model by using another model
file or we can act on the size by using different scale factors.
In LINC it is possible to generate dynamically new rules, thus
it is very simple to add new ink pad on the fly via a simple
web interface.

To remove an object created by a tag equipped ink pad, we
can use a tag equipped rubber as shown in the following rule.

1[” RFID” , ” TagPos i t ion”] . rd (” rubber ” , x, y) &
2COMPUTE: i d = ” e l t ” + x+ ” ” + y &
3[” OSG” , ” E n t i t y ”] . rd (i d , f i l ename) &
4: :
5{
6[” RFID” , ” TagPos i t ion”] . get (” rubber ” , x, y) &
7[” OSG” , ” E n t i t y ”] . get (ent i tyname , f i l ename) ;
8[” OSG” , ” Command”] . put(” sca le ” , ent i tyname , ” 0 ” , ” 0 ” , ” 0 ”) ;
9} .

Listing 16. Rubber

Each time the rubber is detected at a place, we compute (line
2) the id of a potential element that would have been created
by a pad. If the entity exists (line 3) then we can go further
and remove the element. This is done in the performance part
where we consume the information about the presence of the
rubber that is no longer required. Keeping this information
would prevent to put later another element at this place,
because it would be automatically immediately removed. The
entity itself is removed from the corresponding bag and finally
we hide the virtual element of the 3D scene by setting a scale
to 0. This creates an orphan hidden virtual element that will
be garbaged if we create a new scenery entity at the same
place since it will have the same id.

If the rubber is placed on an empty location, nothing
is done and when it is removed from the table the re-
source ("rubber",<x>,<y>) is removed from the bag

TagPosition preventing any erase action to be done at this
place.

The full application contains two tens of rules following
more or less the same scheme. Inputs from the table and the
3D navigator are combined and used to act on the table screen
and/or the 3D virtual scene. Here too, as the scenario depends
on a specific combination of tags read by the table, we can
ensure that each scenario is guaranteed to be executed with no
impact from the others. This decreases the risk of unexpected
behaviour.

Another advantage of this approach is the possibility to use
additional interfaces at a little cost. For instance, we have used
a 3D navigator to basically get the information X, Y, Z, tilt,
pan, roll that could also be easily obtained with a combination
of 3 axis magnetometers, accelerometers and gyroscopes. As
the interface with the 3D navigator is a set of bags receiving
the position information, we can replace the 3D navigator with
another device based on magnetometers, accelerometers and
gyroscopes without changing the coordination rules defining
the application.

VII. CONCLUSION

This paper has presented an innovative hardware and sev-
eral frameworks easing the development of applications. The
hardware, is a table combining a full HD display and a set of
384 RFID readers allowing to return the location of several
tens of object tagged with RFIDs.

The frameworks are built on top of our in house rule-based
middleware LINC. LINC relies on bags containing resources
modelling our system, production rules and distributed trans-
actions. A framework has been defined to map events coming
from the table into resources stored in bags allowing the
resources to be accessible with simple rules. This allows to
react to event composing several RFID tags and to embed
events verification in distributed transactions.

In addition, we have defined frameworks to offer a visual
feedback to the user via displays. This includes 2D and 3D
graphical objects rendering and multimedia contents such as
videos.

This paper has shown firstly in isolation, through simple
examples the genericity of these frameworks. Then, we have
described how they may be combined and specialised via coor-
dination rules to target two different application domains. This
shows how the combination of the hardware, the middleware
and the high level frameworks helps designing applications
while offering a high degree of re usability of the frameworks
components. The amount of work is decreased since a large
part of the application is already available in the existing
frameworks.

Future work is to enrich the tool kit around this table. We
can integrate more external devices, sensors and actuators. For
instance, cameras to deduce the number of people around the
table (e.g., counting the detected faces), sensors to define the
distance of the users from the table. We can also add voice
interface. All these additional informations combined with the
ones returned by the table may offer a richer user experience
in order to target other application domains.

11

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work has been partially funded by the FP7 SCUBA
project under grant nb 288079 and FUI Rapsodie project under
grant nb F1209039V.

REFERENCES

[1] M. Louvel and F. Pacull, “A coordinated matrix of RFID readers as
interactions input,” in SENSORDEVICES 2013, The Fourth International
Conference on Sensor Device Technologies and Applications, 2013, pp.
91–96.

[2] M. Louvel and F. Pacull, “LINC: A compact yet powerful coordination
environment,” in Coordination Models and Languages, ser. Lecture
Notes in Computer Science, E. Kuhn and R. Pugliese, Eds. Springer
Berlin Heidelberg, 2014, pp. 83–98.

[3] L.-F. Ducreux, C. Guyon-Gardeux, S. Lesecq, F. Pacull, and S. R. Thior,
“Resource-based middleware in the context of heterogeneous building
automation systems,” in IECON 2012, The 38th Annual Conference on
IEEE Industrial Electronics Society. IEEE, 2012, pp. 4847–4852.

[4] J.-M. Andreoli, F. Pacull, D. Pagani, and R. Pareschi, “Multiparty
negotiation of dynamic distributed object services,” Journal of Science
of Computer Programming, vol. 31, pp. 179–203, 1998.

[5] D. Arregui, C. Fernström, F. Pacull, G. Rondeau, and J. Willamowski,
“STITCH: Middleware for ubiquitous applications,” in sOc 2003, The
second International Smart Object Conference, 2003.

[6] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, pp. 444–458, April 1989.

[7] T. A. Cooper and N. Wogrin, Rule Based Programming with OPS5.
Morgan Kaufmann, July 1988.

[8] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Boston, MA, USA: Addison-Wesley
Longman Publishing, 1987.

[9] R. Wang and X. Qian, OpenSceneGraph 3.0: Beginner’s Guide. Packt
Publishing, 2010.

[10] R. Wang and X. Qian, OpenSceneGraph 3 Cookbook. Packt Publishing,
2012.

[11] F. Kerger, OGRE 3D 1.7 Beginner’s Guide. Packt Publishing, 2010.
[12] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL Programming

Guide: The Official Guide to Learning OpenGL, Version 1.2, 3rd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[13] J. C. Mong and D. F. Brailsford, “Using SVG as the rendering
model for structured and graphically complex web material,” in
DocEng 2003, The 2003 ACM symposium on Document engineering,
New York, NY, USA: ACM, 2003, pp. 88–91. [Online]. Available:
http://doi.acm.org/10.1145/958220.958236

[14] “HTML5,” http://www.w3.org/html/wg/drafts/html/CR/.
[15] J. J. Garrett, “Ajax: A new approach to web applications,”

http://www.adaptivepath.com/ideas/ajax-new-approach-web-
applications, 2005.

[16] T. Brown, Dynamic apache with ajax and json, 1st ed. O’Reilly, 2006.
[17] F. Pacull, L.-F. Ducreux, S. Thior, H. Moner, D. Pusceddu, O. Yaakoubi,

C. Guyon-Gardeux, S. Fedor, S. Lesecq, M. Boubekeur, and D. Pesch,
“Self-organisation for building automation systems: Middleware LINC
as an integration tool,” in IECON 2013, The 39th Annual Conference of
the IEEE Industrial Electronics Society, Nov 2013, pp. 7726–7732.

[18] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[19] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz,
and J. Kelner, “Mires: a publish/subscribe middleware for sensor net-
works,” Personal and Ubiquitous Computing, vol. 10, no. 1, pp. 37–44,
2006.

[20] J. Barbosa, F. Dillenburg, G. Lermen, A. Garzão, C. Costa, and J. Rosa,
“Towards a programming model for context-aware applications,” Com-
puter Languages, Systems & Structures, vol. 38, no. 3, pp. 199–213,
2012.

[21] C. Julien and G.-C. Roman, “Egospaces: Facilitating rapid development
of context-aware mobile applications,” IEEE Transactions on Software
Engineering, vol. 32, no. 5, pp. 281–298, 2006.

[22] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli,
“Spatial coordination of pervasive services through chemical-
inspired tuple spaces,” ACM Trans. Auton. Adapt. Syst.,
vol. 6, no. 2, pp. 14:1–14:24, Jun. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1968513.1968517

[23] M. Viroli, D. Pianini, and J. Beal, “Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments,” in Coordination
Models and Languages. Springer, 2012, pp. 212–229.

[24] M. Lutz, Programming Python. O’Reilly Media, Inc., 2006.

12

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

