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Abstract—In today’s surveillance systems, there is a need for
enhancing the situation awareness of an operator. Supporting
the situation assessment process can be done by extending the
system with a module for automatic interpretation of the observed
environment. In this article, the information flow in intelligent
surveillance systems is described and a detailed modeling of the
situation assessment process is presented. The main contribution
of this article is a probabilistic modeling of situations of interest.
The result of this modeling is a Situational Dependency Network
(SDN), which represents the dependencies between several situa-
tions of different abstraction levels. The focus is on a top-down
approach, i.e., the modeling is done in a human-understandable
way and can be done by maritime experts. As especially critical
situations can change very fast in their characteristics and also
they do not happen very often, the machine learning approach
is not appropriate for detecting such situations, even if they
are very powerful. Therefore, we present an approach, where
expert knowledge can be included into a Dynamic Bayesian
Network (DBN). In this article, we will show how a DBN can
be generated automatically from the SDN. We mainly focus on
the determination of the parameters of the model, as this is the
crucial point. The resulting DBN can then be applied to vessel
tracks and the probability of the modeled situations of interest
can be inferred over time. Finally, we present an example in the
maritime domain and show that the probabilistic model yields
the expected results.

Keywords—surveillance system; situation awareness; situation
assessment; data fusion; dynamic Bayesian networks; probabilistic
reasoning.

I. INTRODUCTION

This article is based on our previous work that was pre-
sented at the ICONS 2012 conference and published in [1]. In
this section, we will describe the motivation of our approach.

During the operation of complex systems that include
human decision making, the processes of acquiring and in-
terpreting information from the environment forms the basis
for the state of knowledge of a decision maker. This mental
state is often referred to as situation awareness [2], whereas
the processes to achieve and maintain that state is referred
to as situation assessment. In today’s maritime surveillance
systems, the situation assessment process is highly supported
through various heterogeneous sensors and appropriate signal
processing methods for extracting as much information as
possible about the surveyed environment and its elements.
They are equipped with powerful sensors like radar systems,
the Automatic Identification System (AIS), see [3], or even

infrared cameras. All of these sensor systems, either active
or passive, are able to detect vessels in the observed area.
The surveillance system fuses the estimated positions into
consistent tracks, which then can be displayed in a dynamic
map. Maritime surveillance systems have been used so far
to monitor traffic, to guide passing vessels, and to ensure
compliance with traffic regulations. Using these sensor systems
is, of course, an essential capability for every surveillance
system in order to be able to observe a designated area and to
detect and track objects inside this area.

But there is an increasing demand for using their power in
security-related applications like the detection of critical situa-
tions. However, current systems do not provide any support
in the detection of spatio-temporal patterns, i.e., situations.
Thus, there is a need for concepts and methods that are
able to infer real situations from observed elements in the
environment and to project their status in the near future. The
challenge of intelligent surveillance systems is therefore not
only to collect as much sensor data as possible, but also to
detect and assess complex situations that evolve over time
as an automatic support to an operator’s situation assessment
process, and therefore enhancing his situation awareness.

In applications like this, the current approach is to learn the
characteristics, i.e., the features of the situation of interest with
some training data, and recognizing the situations based on the
trained model. There is a lot of machine learning methods
that can be used for detecting sequential patterns, see for
example [4] or [5]. All methods have in common that they need
training data. In order to use such machine learning techniques
for estimating maritime situations, there are several challenges
that have to be addressed and we will highlight them in the
following.

• Data Collection: There has to be an access to sensors
that are able to collect vessel data. Data of differ-
ent sensors, e.g., AIS and radar, should be fused
into a consistent representation of vessel tracks. The
representation should not only contain position data
over time, but also additional information like speed,
course, MMSI (maritime mobile service identity),
beam, length, etc. Since surveillance systems are
equipped with these sensors, data collection can be
provided easily.

• Data Labeling: The collected data has to be labeled in
order to perform supervised training. As we want to

245

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



detect specific situations, the vessel tracks have to be
labeled, i.e., it has to be determined for which time in-
terval the situation is either true or false. The labeling
step is done by humans and is therefore extremely
time-consuming. Moreover, labeling of higher-level
situations is not always straightforward, as critical
situations can have very similar patterns than non-
critical situations.

• Data Selection: It has to be decided, which of the
labeled data should be used for training the model.
There has to be enough data to represent several
variations of the situation. Especially when the model
has many parameters, there has to be enough training
data in order to avoid overfitting.

• Model Validation: It has to be guaranteed that the
trained model is able to recognize situations under
various circumstances. So there should be a kind of
testbed for evaluating the model under real circum-
stances to determine the reliability and trustworthiness
of the results when using the trained model.

Thus, the process of generating training data for one
situation of interest is quite complex and time-consuming.
Moreover, this process has to be done for every situation of in-
terest. But especially in security-related applications, situations
of interest can change very rapidly in their characteristics and
they do not happen very often. This means that in most cases,
there is only few or even no training data available. Therefore,
the machine learning approach is not fully satisfactory for
detecting such situations, even if these methods are very
powerful.

For human experts instead, it is quite easy to formulate
and define the characteristics for new situations of interest.
Therefore, our approach is to model this expert knowledge in-
stead of using machine learning approaches. For modeling the
expert knowledge and recognizing the situations of interest, we
use a probabilistic model, i.e., a Dynamic Bayesian Network
(DBN). DBNs, and especially their simplified version, the
Hidden Markov Models (HMM) are widely used in machine
learning approaches for situation recognition. The potential
of these models is for example shown in [6] for maritime
surveillance and in [7] for traffic scenarios. It has been shown
that these models are able to handle noisy input data like wrong
observation values.

However, maritime experts are in general not familiar with
such kind of models. They are not able to determine the
parameters of the model, i.e., the conditional probabilities,
which are the crucial point for the model to yield the expected
results. In order to support maritime experts in modeling their
own situations of interest, we present an approach for setting
the parameters automatically, based on the structure of the
DBN. The structure of the DBN is generated based on a Situ-
ational Dependency Network (SDN), a human-understandable
modeling of the situations of interest. The most challenging
task is to determine the parameters in a way that the resulting
DBN behaves like the human expert would expect it to behave.

The paper is structured as follows. In Section II, an
overview of related work is given. The information flow in
intelligent surveillance systems is highlighted in Section III.

A detailed description of the situation assessment process is
given in Section IV. Section V covers a definition of the term
situation and it is shown how situations of interest can be
characterized and how they can be represented in a SDN.
Section VI starts with a brief review of DBNs and it is shown
how the existences of situations of interest can be inferred. In
Section VII, the approach of generating the DBN, especially
the parameters, is presented. Finally, an application scenario in
the maritime domain is given in Section VIII and it is shown
that the approach yields the expected results.

II. RELATED WORK

Working with heterogeneous sensors, the theories of multi-
sensor data fusion [8] offer a powerful technique for sup-
porting the situation assessment process. A lot of research
has been done in combining object observations coming from
different sensors [9], and also in the development of real-
time methods for tracking moving objects [10]. Regarding data
fusion in surveillance systems, the object-oriented world model
(OOWM) is an approach to represent relevant information ex-
tracted from sensor signals, fused into a single comprehensive,
dynamic model of the monitored area. It was developed in [11]
and is a data fusion architecture based on the JDL (Joint
Directors of Laboratories) data fusion process model [12].
Detailed description of the architecture and an example of
an indoor surveillance application has been published in [13].
The OOWM has also been applied for wide area maritime
surveillance [14].

In [15], an overview of different approaches of modeling
and recognizing situations in the area of pervasive computing
is presented. However, these approaches can also be used in
the area of surveillance systems. In his article, Ye et al. divide
between two main techniques, specification-based techniques
and learning-based techniques. DBNs are not addressed di-
rectly in his article, only HMMs, which are a special case of
DBNs. However, HMMs are usually used for learning-based
approaches. We will not list machine learning approaches here,
as they are out of scope of this paper, but we refer to [15] for
an extensive discussion on them.

Specification-based techniques are used, when humans
model the situations of interest directly. We refer to them
as expert modeling approaches. A very recent work using
specification-based techniques has been published in [16],
in which petri nets are used for modeling and recognizing
situations of interest. In [17], situation modeling is done by
situational graph trees and situation recognition is performed
based on fuzzy-metric temporal logic. However, most of the
specification-based techniques are based on ontological model-
ing, see for example [18], [19]. The reasoning in ontologies is
performed by queries based on description logic and there exist
several publications on the detection of maritime situations
with ontologies, e.g., [20], [21], [22], or [23]. The main
drawback in ontological modeling is that it is not possible to
deal with uncertain information. For this reason, probabilistic
reasoning mechanisms, as provided by Bayesian networks, are
often used for situation assessment, e.g., [24] and [25].

Another development is the extension of the Web Ontology
Language (OWL), see [26], with a probabilistic representation,
which results in the Probabilistic Web Ontology Language
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(PR-OWL) presented in [27]. PR-OWL applies the theory
of Multi-Entity Bayesian Networks (MEBN) that have been
developed by Laskey [28]. MEBN are an extension of Bayesian
networks in the form that they allow representation of graphical
models with repeated sub-structures. Applications of PR-OWL
and MEBNs are presented in [29] for the semantic web, and
in [30], [31] for maritime applications. In [28], an algorithm
was presented, which creates situation-specific Bayesian net-
works, based on the modeled MEBN. However, the main
drawbacks in the MEBN-approach are that the parameters
of the network still have to be inserted manually and that
it is not possible to generate DBNs. However, the situation
assessment should be able to deal with noisy observations and
thus, the method of DBNs should be used. The work of this
artice is inspired by the MEBN-approach and addresses the
aforementioned problems.

First ideas of modeling situations in surveillance applica-
tions have been presented in our previous work in [32]. In [33],
a Bayesian network, was applied to observed objects in the
maritime domain and the user acceptance of such an automatic
situation assessment was shown. Further work has been done
in including temporal dependencies into the model, i.e., by
defining a DBN for the detection of vessels that are most
likely to carry refugees on board, and it was shown that the
DBN-approach yields promising results, see [1]. As modeling
a DBN is a difficult task and maritime experts are in general
not familiar with probabilistic methods, as they are not able
to determine the parameters of the model, a method for an
automated generation of a DBN was developed and presented
in [34] for scenarios on a parking space. A similar approach
was then applied to the maritime domain in [35]. This paper
extends the previous developed concepts for characterizing
situations at different abstraction levels and the methods for
generating a DBN.

III. INFORMATION FLOW IN SURVEILLANCE SYSTEMS

In this section, we will describe the information flow in
surveillance systems in a general way. The general information
flow for intelligent surveillance systems is visualized in Figure
1, wherein information aggregates are represented by boxes,
and processes are represented by circles. The information flow
is as follows.

In surveillance applications, the task is to observe a spatio-
temporal section of the real world, a so-called world of interest.
We will term all elements in the world of interest entities. By
the term entity, not only physical objects like vessels are meant,
as entities can also be non-physical elements in the real world
like vessel attributes, relations between vessels or situations.
Furthermore, not all entities can be observed, as there is no
sensor to observe them directly. Thus, entities can represent
observable or non-observable elements. All entities together
represent the complete state of the world of interest.

The next step in the information flow is the observation
of entities by several sensors. Sensor systems for observing
the real world can be of extremely heterogeneous types, e.g.,
video cameras, infrared cameras, radar equipment, or radio-
frequency identification (RFID) chips. Even human beings
can act like a sensor by observing entities of the real world.
Observing the world of interest with sensors results in sensor
data, for example a radar image or a video stream.

Inference

Sensor 

Data
Learning

Analyzing

Obser-

vation
Plan

World of Interest

Entities

Knowledge

Concepts

&

Methods

World Model

Representatives

Fig. 1. Information flow in a surveillance system represented by information
aggregates (boxes) and processes (circles).

Analyzing sensor data is done by means of knowledge and
the resulting information is transferred to the world model.
Analyzing sensor data includes for example the detection and
localization of moving vessels at sea from a video stream.
Knowledge contains all information that is necessary for
analyzing sensor data, for example specific signal-processing
methods and algorithms used for the detection, localization and
tracking of vessels in video streams.

The world model is a representation of entities in the world
of interest and consists therefore of representatives. Every
representative has a corresponding entity in the real world.
The mapping between entities in the world of interest and
representatives in the world model is structure-preserving and
can therefore be interpreted as a homomorphism. Specific
mappings are defined by concepts, which are part of the
knowledge. Concepts are for example used in the analyzing
process by defining how an observed vessel is represented in
the world model. As the world of interest is highly dynamic
and changes over time, the history of the representatives is
also stored in the world model.

However, as mentioned before, some entities cannot be
observed directly. Therefore an inference process is reasoning
about non-observable (and also unobserved) entities by means
of knowledge. A simple inference process is for example to
calculate an object’s velocity from the last and current position.
A more complex inference process would be to estimate if
the intention of an observed vessel is benign or adversarial.
Doing this way, the world model is always being updated and
supplemented with new information by predefined inference
processes. Thus, during operation, the world model tries to
estimate a complete representation of the world of interest in
every time step.
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Summing up, knowledge contains all information for an-
alyzing sensor data, updating the world model and supple-
menting it with new information. Knowledge consists of
abstract concepts and also of methods. Concepts are used for
the representation of real-world entities in the world model
and methods are used for analyzing data or inferring further
information. Characteristics of the knowledge are of course
extremely dependent on the application domain. Additionally,
knowledge is not static. The content of the world model can be
used for acquiring new knowledge by a learning process. This
could be, for example, a method for structure or parameter
learning in probabilistic graphical models.

To close the loop of the information flow, the result of
an inference process could also include a plan of how to act
further in the real world. Thus, the inference process can also
act like a decision support, on which the action plan is based.
The plan itself can be an action plan for an agent, for example,
to call the police, or a sensor management plan, for example,
a request for more detailed information from a special sensor.

Finally, we have to mention that the presented information
flow in surveillance systems is not intended to act fully
automatically. Every process can be designed in a way that
a human operator is involved and that he is able to use the
system interactively.

In the next section, we will have a more detailed look at
a specific inference process, namely the situation assessment
process. The situation assessment process tries to estimate
predefined situations of interest by using the information of
assessed objects over time.

IV. THE SITUATION ASSESSMENT PROCESS

By situation assessment, we mean the process of estimating
the existence of situations of interest, which is conform to [2]
and [12]. We divided the whole process into several sub-
processes, as we state that situation assessment does not only
consist of the process of recognizing situations, but also of the
process of characterizing and modeling situations of interest,
based on the current task. The conceptual framework of the
process is depicted in Figure 2 and will be described in the
following.

During the process of object assessment, estimates of
objects are created, which do not only include kinematic state
estimates like tracking the position and velocity of vessels,
but also descriptive attributes of the object. The result of this
process are object representatives, which are stored in the
world model over time. Thus, we will first describe how the
concept of an object is defined, i.e., how it is stored in the
world model.

The concept of an object is defined as a physical entity
of the real world. An object belongs to exactly one object
class. As an object has several attributes, an object class is
defined as the equivalence class of identical attribute lists. The
attributes of the object can be divided into properties and states.
Properties are time-invariant attributes, e.g., the length or the
name of a vessel. State values can change over time and are
therefore time-variant, e.g., the position or the velocity of a
vessel. Regarding its spatial position, an object can be mobile,
e.g., a vessel, or stationary, e.g., a land border. Thus, for a

Situation 

Characterization

Situational Dependency 

Network (SDN)

Situation Recognition

Existence of Situations

Statistical FeedbackVisualization

Object Representatives

Situation 

Assessment 

Process

Object 

Assessment 

Process

Fig. 2. The process of situation assessment.

vessel the position is a state attribute and for the land border
the position is a property. The concept of an object is visualized
in Figure 3.

As the representation in the world model also has a
memory, which means that the past states of an object are
stored, the complete history of the observed object is always
available. As this operation is very memory-intensive, for
practical reasons the world model should be connected to a
database and only the latest objects should be hold in memory.
Furthermore, the representation of an object in the world model
does not only include observed attributes, but also inferred
ones. For example, based on observed positions of a vessel, the
velocity can be inferred. Furthermore, attribute values can be
quantitative or qualitative. For example, the absolute position
and velocity of a vessel are quantitative attributes, and the
attribute value that a vessel is made of wood is a qualitative
one. The selection of the attributes is still up to the user.
However, the selected attributes should be dependent on the
sensor capabilities and also on the required task of the situation
assessment.

The process of situation assessment is divided into the sub-
processes of situation characterization, situation recognition,
visualization, and statistical feedback, which will be explained
in the following. The first sub-process of situation charac-
terization includes the a-priori modeling of expert knowledge
about situations of interest. Because there are a lot of semantic
dependencies between situations, these have to be modeled
in order to estimate the existence of the situations correctly.
This sub-process results in a Situational Dependency Network
(SDN). We will address the process of characterizing situations
in detail in Section V.

The sub-process of situation recognition analyses the object
representatives over time with respect to the existence of the
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Fig. 3. The concept of an object.

situations of interest. Thus, it applies the SDN to the estimated
object properties and states and infers, if the situations of
interest are existing or not. The result of this process is a set of
existence probabilities, one existence probability for each situ-
ation of interest. As we use DBNs for the process of situation
recognition, the existence probabilities can be calculated by
state-of-the-art inference mechanisms and algorithms that have
been developed for DBN. Inference can be performed either
exact or approximate. We refer the reader to [36] for detailed
information on such algorithms, as this is out of scope of the
article. However, many algorithms are available and ready to
use, e.g., in specific software [37] or Matlab toolboxes [38].
Based on the resulting probabilities, the existence of situations
can be inferred, if the probability value exceeds a certain
threshold value.

This calculation, combined with an appropriate visualiza-
tion, allows for a prompt assessment of the whole situation and
thus for prompt decisions. Inferred situations of interest can
be visualized in a dynamic map, where the involved vessels
are highlighted. Also the calculated existence probability of
the situations of interest can be visualized additionally. Of
course, visualization is a crucial point of supporting situation
awareness. Even if the results are calculated correctly, the
visualization of them to the user during operation can be done
in a wrong way, e.g., by presenting him too much information.
This results in an information overload and thus, reduces his
situation awareness [2]. However, evaluating different visual-
ization methods for situations of interest is out of scope for
this article and is therefore not discussed in detail.

Furthermore, a statistical feedback can be calculated from
the set of existence probabilities over time. This can be
used for refining the process of situation characterization and
thus is a process for integrating the user in the situation
assessment process. The feedback can have several objectives,
for example, it could suggest a refinement of the SDN or could

indicate situations that have not been detected at all, i.e., ask
the user if the situation is still of interest.

V. CHARACTERIZING SITUATIONS OF INTEREST

In this section, we will describe how situations can be
modeled as random variables and how their existence is de-
fined. We will introduce two different situation types and how
the dependencies between several situations can be modeled.
Finally, we will show how a complete SDN can be modeled.

A. Situation Modeling

Before we are able to characterize situations of interest, we
have to define the term situation. In [15], a situation is defined
as follows:

“A situation is defined as an external semantic in-
terpretation of sensor data. Interpretation means that
situations assign meanings to sensor data. External
means that the interpretation is from the perspective
of applications, rather than from sensors. Semantic
means that the interpretation assigns meaning on
sensor data based on structures and relationships
within the same type of sensor data and between
different types of sensor data.”

This definition corresponds to our understanding of the
term situation, but we try to give a more formal definition of a
situation. First of all, we state that a situation at time point t is
always connected with an external semantic statement, which
is either true or false. The semantic statement is always based
on a temporal sequence of a specific constellation of modeled
objects and their attributes.

We define O1, O2, . . . , On as the set of objects that are rel-
evant for the semantic statement. We define Ai

1, A
i
2, . . . , A

i
mi

as the set of the relevant attributes of the object Oi, with
i = 1, . . . , n. If an object or an attribute is relevant or not
is induced by the semantic statement of the situation and has
to be defined by the user. For example, for the situation that
a vessel is fast, only it’s velocity is relevant and it’s heading
can be ignored. We can then define the configuration space O
as

O =
n×

i=1

mi×
k=1

r(Ak), (1)

where r(Ak) denotes the range of the attribute values of Ak.
O has then the dimension dimO =

∑n
i=1mi.

We set Ω = O×T , where T represents the time and define
a situation St at time t as the mapping

St : Ω→ {0, 1}. (2)

We say that the set Ω̃ = Õ × T̃ ⊆ O×T is the support of the
Situation St, if

St(ω) =

{
1, if ω ∈ Ω̃,

0, if ω /∈ Ω̃.
(3)

Example 1: The semantic statement is that two objects are
close to each other, e.g., a yacht is close to a tanker. Relevant
objects are A and B, with a one-dimensional position value
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xa and xb, respectively. We chose a one-dimensional position
for visualization purposes. It is Ω = O × t, where t is a time
point. Then it is

ω ∈ Ω̃⇔ |xa − xb| ≤ r, (4)

where r is the threshold value. The support of this situation is
visualized in Figure 4.

xA

xB

r

~
Ω 
~
Ω 

Fig. 4. The support of the situation that object A is close to object B.

Example 2: The semantic statement is that two objects are
approaching each other, e.g., a vessel is approaching a specific
harbor. Relevant objects are A and B, with a one-dimensional
position value xa and xb, respectively, where xb is static. It is
Ω = O × T , where T is a discrete time interval. Then it is

ω ∈ Ω̃⇔ |xa − xb|t < |xa − xb|t−1,∀t, t− 1 ∈ T. (5)

The support of this situation is visualized in Figure 5.

xA

xB

~
Ω 

tt-1

Fig. 5. The support of the situation that object A is approaching object B,
with a selected value xA for time point t− 1.

B. Existence of Situations

We say that a situation exists, if the semantic statement is
true, and that it does not exist, if the semantic statement is
false. Thus, a situation exists, if the observed objects can be
assigned to the relevant objects of the configuration space and
for their attribute values it holds ω ∈ Ω̃.

For modeling the existence of situations, we interpret the
situation, i.e., the mapping St : Ω → {0, 1} as a binary
random variable. It is P a probability measure on St(Ω), thus a
probability distribution of St. Then the existence of a situation
St at time point t is given by P (St = 1), or shortly P (St).
Thus, when performing situation recognition, we are interested
in the probability P (St).

Due to this modeling, situations are characterized by infor-
mation collected over a time-period, but they only exist at a
special point in time. Their existence in the next time-point has
to be verified again. The time-period itself is induced by the
semantic statement of the situation. In example 2, it is enough
to take [t − 1, t] into account. But for other situations it may
be necessary to expand the time-period, e.g., for the situation
that the vessel was in a suspicious area during the last 2 hours.

C. Different Situation Types

We now face the problem that the semantic statement of
situations can be arbitrary complex and on a high abstraction
level, e.g., a vessel is a suspicious smuggling vessel. Thus, the
recognition of the situation depends on various characteristics
and the direct modeling of the support of the situation is not
always possible. Because of this fact, we can differentiate
between the following two cases:

• The existence of a situation can imply the existence
of other situations.

• The existence of a situation can lead to the existence
of another situation.

These dependencies can be used for the recognition of situ-
ations. To use them, we will define two types of situations,
namely elementary situations and abstract situations:

• Elementary situations: The support of the situation can
be modeled directly. The existence of the elementary
situation St can be modeled as the deterministic
mapping

P (St|ω) =

{
1, if St(ω) = 1,

0, if St(ω) = 0.
(6)

• Abstract situations: It is not possible to model the
support of the situation directly. The existence of
the abstract situation St is dependent of the exis-
tence of n other (elementary or abstract) situations
S1
t , S

2
t , . . . , S

n
t

P (St|S1
t , S

2
t , . . . , S

n
t ) =

P (St, S
1
t , S

2
t , . . . , S

n
t )

P (S1
t , S

2
t , . . . , S

n
t )

.

(7)

However, with an increasing number of dependent situ-
ations, it is not possible for an expert to model the joint
probability distribution P (St, S

1
t , S

2
t , . . . , S

n
t ). The solution

for this is to use the chain rule of probability by using the
aforementioned dependencies, e.g., for two situations S1, S2

this would be:

P (S1, S2) = P (S1|S2)P (S2) = P (S2|S1)P (S1). (8)

Thus, it is sufficient to model the conditional probabilities
between dependent situations. An attempt to visualize these
dependencies is depicted in Figure 6. Of course, in real
applications, it is often not straightforward to identify the
dependencies between situations. In practice, the identification
of dependencies have to be done by experts together with
system developers.
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Fig. 6. Visualization of dependencies and abstraction levels, visualized
without direction of dependencies.

D. Situational Dependencies

After defining situations formally, we have to consider
their semantic interpretation, especially their relationships
among each other. In [15], Ye et al. distinguish between five
different types of relationships: generalization, composition,
dependence, contradiction and temporal sequence, which we
will repeat shortly in the following:

• Generalization: A situation is more general than an-
other situation, if the occurrence of the latter implies
that of the former.

• Dependence: A situation depends on another situation
if the occurrence of the former situation is determined
by the occurrence of the latter situation.

• Composition: A situation can be decomposed into a set
of smaller situations, which is a typical composition
relation between situations.

• Contradiction: Two situations can be regarded as
mutually exclusive from each other if they cannot co-
occur at the same time in the same place on the same
subject.

• Temporal sequence: A situation may occur before,
or after another situation, or interleave with another
situation.

Our approach is now to model these relationships in a
SDN. For the SDN, we divide the relationships into two main
categories: sufficient and necessary conditions. We will explain
them in the following:

• Necessary condition: A situation A is necessary for
another situation B, if the existence of B implies the
existence of A, i.e.,

B
N−→ A.

If we have more than one necessary situations
A1, . . . , An, we have

B
N−→ A1 ∧A2 ∧ . . . ∧An.

• Sufficient condition: A situation A is sufficient for
another situation B, if the existence of A implies the
existence of B, i.e.,

A
S−→ B.

If we have more than one sufficient situations
A1, . . . , An, we have

A1 ∨A2 ∨ . . . ∨An
S−→ B.

Thus, we can always interpret the arrow from A to B as
follows: If situation A exists, then situation B exists. Or in
logical notation: A⇒ B, namely A implies B. A N−→

Compared to the five different types of relationships de-
fined in [15], we can state the following:

• Generalization: The generalization is in our case mod-
eled as the sufficient condition.

• Dependence: The dependency is in our case modeled
as the necessary condition.

• Composition: The composition is in our case modeled
through the necessary condition with more than one
necessary situation.

• Contradiction: The contradiction is not explicitly
modeled in our case, but should, of course, be repre-
sented by the semantics of the model. This means, the
parameters of the DBN should be determined in a way
that the two situations cannot exist simultaneously.

• Temporal sequence: The temporal sequence is not
yet addressed in our model so far. However, we can
extend the model by defining a specific sequence
of existences of different situations as a situation of
interest. We can recognize this sequential situation, for
example, by comparing it to the results of the Viterbi-
algorithm, which calculates the probability of the most
likely sequential situation.

E. Situational Dependency Network

We further assume that in real world applications, sensor
observations will be noisy. Noisy observation data can appear
as wrong observations or as missing observations. It is also
possible that some modeled elementary situations cannot be
observed because there is no sensor available that would be
able to observe the necessary information. Of course, the fact
of noisy observations has a big influence on the situation
recognition process.

Thus, we want to achieve a kind of inertia in the process
of situation recognition. The inertia of the process supports the
following statements:

• If we observe an area of interest over time, a single
observation should not yield to the recognition of a
situation, as it could be a noisy observation.

• If a situation of interest exists in the time step before,
it is very likely that it exists in the current time step,
also if different observations are made.

For achieving this inertia in the process, we have to extend
our model with recursive, i.e., temporal arrows. We will add
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the temporal arrow for abstract situation of interest, whose
elementary situations are assumed to be noisy, i.e., visually
draw an arrow from the situation at time point t to the same
situation at time point t + 1. The temporal arrows can then
be used in the DBN and result in a filtering effect of the
existence probability. As we will show later, the strenght of
the filtering effect can be adjusted by different weights. These
weights will have an influence on how many observations have
to be made to justify the existence of a situation or how many
noisy observations can be made without rejecting the existence.

Example 3: In this example, we have three situations:

• Situation area: The vessel was in a suspicious area,
known for smuggling activities.

• Situation AIS: The vessel is not sending any self-
identification signal like AIS.

• Situation smuggling: The vessel is a suspicious smug-
gling vessel.

The first and the second situations (area and AIS) are elemen-
tary situations and the third one (smuggling) is an abstract
situation, which we are interested in, and it is dependent on
the two others. The dependencies are as follows. If a vessel was
in a suspicious smuggling area, it is very likely that the vessel
is a smuggling vessel. Thus, the area situation is a sufficient
condition for the smuggling situation and we draw an arrow
from area to smuggling. If a vessel is a smuggling vessel,
then it is pretty sure that it does not send any identification
signal. Thus, the AIS situation is a necessary condition for the
smuggling situation and we draw an arrow from smuggling
to AIS. As we assume noisy observations, we add a temporal
arrow to the smuggling situation. The overall SDN is depicted
in Figure 7, where the temporal arrow is indicated with a red
T in the lower right corner of the node. Note that the same
SDN can be used, even if the suspicious area itself can change.

Smuggling

Area AIS

T

S N

Fig. 7. Example of a situational dependency network.

Finally, we can present the general approach for modeling
the SDN in Algorithm 1 and the calculation of the abstraction
level in Algorithm 2.

VI. RECOGNIZING SITUATIONS OF INTEREST

Due to this modeling, the SDN can be interpreted as a prob-
abilistic graphical model, namely a DBN. In a simple Bayesian
network, the basic idea is to decompose the joint probability
of various random variables into a factorized form. We will
now describe how a DBN is defined and how the existence
probabilities of the modeled situations can be inferred.

Algorithm 1 Creating a SDN
Require: set of situations and known pairwise dependencies
Ensure: SDN

model situations as nodes
for all nodes do

if support can be modeled directly then
declare it as elementary situation

else
declare it as abstract situation

end if
end for
for all dependencies do

if situation A is sufficient for situation B then
model the dependency as an arrow from A to B

end if
if situation A is necessary for situation B then

model the dependency as an arrow from B to A
end if

end for
for all abstract situations do

if abstract situation is dependent on an elementary situa-
tion with noisy observations then

add a temporal arrow to the abstract situation
end if

end for

Algorithm 2 Calculating abstraction levels
Require: SDN
Ensure: level of abstraction for each node

for all elementary nodes do
abstraction level =1

end for
i=2
initialize S̃ with a non-empty set
while S̃ 6= ∅ do

set S̃ to the set of abstract situations that are only
dependent on situations with abstraction level i− 1
set all elements of S̃ to abstraction level i
set i = i+ 1

end while

A. Dynamic Bayesian Networks

In a Bayesian network, random variables X1, X2, . . . , Xn

are depicted as nodes and conditional probabilities as directed
edges. The joint probability can then be factorized as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Pa(Xi)), (9)

where Pa(Xi) is the set of parents of the node Xi. If Pa(Xi)
is an empty set, then Xi is a root node and P (Xi|Pa(Xi)) =
P (Xi) denotes its prior probability.

A DBN [39] is defined as a pair (B0, 2TBN), where

• B0 defines the prior distribution P (X0) over the set
X0 of random variables, and

• 2TBN defines a Bayesian network over two time
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slices with

P (Xt|Xt−1) =

n∏
i=1

P (Xi
t |Pa(Xi

t)), (10)

where Xi
t is a node at time slice t and Pa(Xi

t) is the
set of parent nodes, which can be in the time slice t
or in the time slice t− 1.

Note that in the definition of a 2TBN , Pa(Xi
t) is never

empty, i.e., every node in time slice t has at least one parent
node and, therefore, the left side of equation (9) differs from
the left side of equation (10). An example of a 2TBN with 3
nodes in each time slice is shown in Figure 8.

x
3

t-1

x
2

t-1

x
1

t-1

xt-1
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3
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2

t

x
1

t

xt

Fig. 8. An example of a 2TBN defining dependencies between two time
slices and dependencies between nodes in time slice t adopted from [10]. Note
that a 2TBN does not define the dependencies between nodes in time slice
t− 1.

The joint probability distribution of a DBN can then be
formulated as

P (X0:T ) = P (X0) ·
T∏

t=1

n∏
i=1

P (Xi
t |Pa(Xi

t)), (11)

with P (X0:T ) = P (X0, . . . ,XT ).

As we want to model a network of situations by a DBN,
the structure of the network has to fulfill the following as-
sumptions:

• Stationarity: the dependencies within a time slice t and
the dependencies between the time slices t− 1 and t
do not depend on t.

• 1st order Markov assumption: the parents of a node are
in the same time slice or in the previous time slice.

• Temporal evolution: dependencies between two time
slices are only allowed forward in time, i.e., from past
to future.

• Time slice structure: The structure of one time slice
is a simple Bayesian network, i.e., without cycles.

If any of these assumptions are not fulfilled, the network is
not a DBN and inference algorithms could not be applied.

B. Inferring Existence Probabilities

Due to the dependency between elementary and abstract
situations and the fact that we can feed the DBN with evidence,

i.e., observations, only via the elementary situations, we can
calculate the joint probability recursively in time by

P (S∗0:T ,E1:T ) = P (S∗0) ·
T∏

t=1

P (S∗t |S
∗
t−1)P (Et|S∗t ), (12)

where E denotes the set of elementary situations filled with
evidences, and S∗ denotes all defined situations S in the DBN
without the collected evidence nodes, i.e., S∗ = S\E.

By using this kind of recursive calculation, we can make
different calculations over time, which we list in the following.
Note that S̃ is now an arbitrary set of abstract situations.

• Filtering: P (S̃t|E1:t) gives a solution to the existence
probability of a set of situations S̃ at the current time,

• Prediction: P (S̃t+k|E1:t) (with k > 0) gives a solu-
tion to the existence probability of a set of situations
S̃ in the (near) future,

• Smoothing: P (S̃k|E1:t) (with 0 < k < t) gives
a solution to the existence probability of a set of
situations S̃ in the past,

• Most likely explanation: argmax
S̃1:t

P (S̃1:t|E1:t)
gives a solution to the most likely sequence of sit-
uations S̃1:t.

Due to this modeling, the existence probability of an arbi-
trary set of abstract situations can be calculated in a recursive
way at each point in time. A situation is then represented in
the world model, if the corresponding existence probability is
larger than an instantiation-threshold. If the existence proba-
bility in the next time step is below a deletion-threshold, it is
assumed that the situation does not exist any longer and its
representation is removed from the world model. This way,
the world model tries to keep an up-to-date representation of
the existing situations of the real world. However, determining
a meaningful instantiation- and deletion-threshold is still an
open task.

VII. GENERATING SITUATION-SPECIFIC DBNS

In this section, we will describe how we generate a DBN
from our SDN model in order to be able to apply the afore-
mentioned inference calculations. As we may have modeled
a lot of situations in our SDN, and the operator may be only
interested in a subset of them, we will generate a DBN with
only the necessary nodes. We will term the generated DBN
a situation-specific DBN, which we adopted from the MEBN-
approach presented in [28].

A. SS-DBN Structure

For generating the structure of the SS-DBN, we will make
use of the structure of the pre-modeled SDN. In general, we
will use exactly the same structure, but only use the situations
that are relevant for the selected situations of interest. The
general approach is the described in Algorithm 3. Thus, we
get a reduced version of our SDN by making use of the
predefined abstraction levels. This way, we simply get our SS-
DBN structure by selecting the nodes with a lower abstraction
level.
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Algorithm 3 Generating the SS-DBN structure
Require: SDN
Ensure: DBN-structure

set S as selected situations of interest in the SDN
while S 6= ∅ do

for all incoming and outgoing arrows of every situation
s in S do

if abstraction level of the connected node is lower than
the one of s then

add node to DBN
else

ignore them
end if
set S as the set of all added nodes

end for
end while
for all temporal nodes do

add a reflexive arrow
end for

B. Criteria for good Parameters

The main challenge is now to set the parameters in a way
that the network behaves as we would expect it to behave.
In the following, we will list some criteria, which the DBN
should fulfill:

• Asymptotic behavior: How does the DBN behave if we
observe the same values over time? Especially if we
make no observations at all, we do not know anything
about the existence of the situation and the resulting
existence probability should be converging to 0.5.

• Switching behavior: How does the DBN behave if
observations change their values significantly? If we
first observe values that support the existence of the
situation of interest and then we make the opposite
observations, the resulting probabilities of the situation
should also change, i.e., the situation should switch its
state from true to false.

• Robustness: How does the DBN behave if we have
wrong or missing observations? As said above, the
resulting probability of the situation of interest should
not be very sensitive for noise.

Having determined these criteria, we will evaluate several
parameter settings with respect to them.

C. SS-DBN Parameters

We have to define parameters for every node, i.e., a
priori probabilities for nodes with no incoming arrows, and
conditional probabilities for nodes with incoming arrows. We
will treat the temporal arrows the same as all other incom-
ing arrows. The conditional probabilities then correspond to
P (Xi

t |Pa(Xi
t)) in equation (10). As a first rule for setting the

parameters, we have the following:

• If the situation has no incoming arrows, i.e., is a root
node, the prior probabilities are all set to 0.5.

• If the situation is a temporal situation, we set the
probabilities inside the first time point to 0.5.

In many cases, elementary situations have only one in-
coming arrow. This is due to the fact that at the lowest level,
there are the observation values of the DBN and they can
always be considered as necessary conditions. Thus, we have
to differentiate between two different types: either the parent
node is temporal or not. For non-temporal nodes, the higher
level situation can be interpreted as a semantic annotation to
the observed value and therefore, we can set the conditional
probabilities in a deterministic way:

• If the elementary situation A has one incoming arrow
from a non-temporal situation B, the probabilities are
set deterministic like in Table I.

TABLE I. CONDITIONAL PROBABILITY TABLE (CPT) FOR
ELEMENTARY SITUATION WITH NON-TEMPORAL PARENT.

P (A|B) B ¬B

A 1.0 0.0
¬A 0.0 1.0

If we have a temporal parent, we will apply a non-
deterministic conditional probability table. We will evaluate
some different parameter settings before choosing them. For
this small evaluation, we will only consider two nodes A and
B, where the parent B is a temporal node. We are interested
in good values for the CPT P (A|B). Thus, we fix the CPT
parameters for P (Bt+1|Bt). We set the CPT values in a
mirrored way, i.e.,

P (A|B) = P (¬A|¬B) and P (¬A|B) = P (A|¬B). (13)

This is because we do not want to have different influence
when observing true or false. Note that we only have to
change one value for our evaluation, namely p = P (A|B),
as P (¬A|B) = 1 − P (A|B). For the temporal node, we fix
the value P (Bt+1|Bt) = 0.9, see right side in Table II.

We evaluate five different values for p, and we show
three different results, namely the probability P (B|A) over
ten time steps. Figure 9 shows the resulting probability for
similar observations, switching observations, and for some
false observations. For the first observation sequence (Figure
9a), we would like to result in a high probability, so we discard
p = 0.6. For the second one (Figure 9b), we would like to
have a probability, that switches, but not rapidly, so we discard
p = 0.99. For the third sequence (Figure 9c), we would like to
have a probability that is not too sensitive to false observations,
so we finally choose p = 0.7. We therefore have the following
rule:

• If the elementary situation A has one incoming arrow
from a temporal situation B, the probabilities are set
like the ones on the left side in Table II.

TABLE II. CPT FOR ELEMENTARY SITUATION WITH TEMPORAL
PARENT (LEFT SIDE) AND CPT FOR TEMPORAL PARENT (RIGHT SIDE).

P (A|B) B ¬B

A 0.7 0.3
¬A 0.3 0.7

P (Bt+1|Bt) Bt ¬Bt

Bt+1 0.9 0.1
¬Bt+1 0.1 0.9

For all abstract situations, we apply an approach that
uses a weighted CPT-construction. Let Y be the abstract
situation, and X1, . . . , Xk the situations with an arrow to Y .
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(a) A = 1111111111 (b) A = 0000011111 (c) A = 1111101111

Fig. 9. P (B|A) over ten time steps with different observation sequences.

(a) A = 1111111111, B = 1111111111 (b) A = 0000111111, B = 0000001111 (c) A = 1111101111, B = 1111111111

Fig. 10. P (C|A,B) over ten time steps with different observation sequences.

For this approach, we have to determine two different types
of parameters.

• Relative influence of variables: This is modeled by
different weights λi with

∑k
i=1 λi.

• Absolute influence of variables: This is modeled by a
stretch value r ∈ [0.5, 1].

For the relative influence, we can use a weighting of the
influence, namely

P (Y = 1|X1 = x1, . . . , Xk = xk) =

k∑
i=1

λixi. (14)

Then it is P (Y = 1|X1 = x1, . . . , Xk = xk) ∈ [0, 1] and
P (Y = 1|X1 = x1, . . . , Xk = xk) = 0 for xi = 0 and
P (Y = 1|X1 = x1, . . . , Xk = xk) = 1 for xi = 1.

The aim of the absolute influence is to reduce the interval
[0, 1] to the values of [1 − r, r]. Thus, the overall strength of
the variables should be reduced. We define

f(x) = (2r − 1) · x+ (1− r). (15)

Then it is f(x) ∈ [1− r, r] for x ∈ [0, 1]. Thus, we can apply
f on P (Y = 1|X1 = x1, . . . , Xk = xk) and we have P (Y =
1|X1 = x1, . . . , Xk = xk) ∈ [1 − r, r]. In summary, we have

to determine k + 1 parameters, namely λ1, . . . , λk, r, instead
of 2k−1 for the CPT of P (Y = 1|X1 = x1, . . . , Xk = xk).

We will now show a small evaluation of our example with
different values of r. The values of r are chosen with steps
0.1. As 0.5 and 1.0 would not be reasonable values, we chose
the values 0.6, 0.7, 0.8, 0.9, and 0.99. We will use the same
criteria as above, namely insert observation sequences that
represent similar observations, switching observations, and for
some false observations. The result is shown in Figure 10.
For the first observation sequence (Figure 10a), we would like
to result in a high probability, so we discard r = 0.6 and
r = 0.7. For the second one (Figure 10b), we would like to
have a probability, that switches, but not rapidly, so we discard
p = 0.99. For the third sequence (Figure 10c), we would like to
have a probability that is not too sensitive to false observations,
so we finally choose p = 0.9. We can now state the final rule
for setting the parameters:

• If the situation is on a higher level, the weighted CPT-
construction is applied. The weights of the influences
can be adapted due to the semantics, and it is sug-
gested to set the stretch value to r = 0.9.
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VIII. APPLICATION EXAMPLE IN THE MARITIME
DOMAIN

Assume for example a security officer who is using a
maritime surveillance system located in a port on an island
and he is interested in detecting vessels, which are suspicious
smuggling vessels. There is also a suspicious zone next to
the island, in which a lot of smuggling activities recently
happened. The officer is able to formulate several character-
istics that lead to a higher probability of a smuggling vessel,
either if the vessel is incoming or outgoing. Note that these
characteristics are defined as situations itself.

Based on the different situations, the expert is able
to model an SDN, as depicted in Figure 11. A sketch
of such situations is visualized in Figure 12. Let us
give some examples for our modeling approach. In Fig-
ure 11, the situation Has unknown ID has the nec-
essary characteristic situation MMSI-Number is empty.
The situation Sends no AIS signal has the neces-
sary characteristic situations MMSI-Number is empty
and Is inside AIS receiver area. And the situa-
tion Was in suspicious area is a sufficient charac-
teristic situation for the situation Suspicious incoming
smuggling vessel. Thus, the existence of a sufficient
situation should lead to a higher probability of the existence of
the situation of interest, whereas the existence of the necessary
situations has to be fulfilled for inferring the existence of the
situation of interest.

Note that the arrows in the SDN are always pointing from
a situation that describes some characteristics of the situation
that is pointed to, either by a necessary or sufficient condition.
The arrows of a necessary condition are always pointing from
a higher level of abstraction to a lower level of abstraction
and the arrows of a necessary condition vice versa. The level
of abstraction of a single situation of interest is determined
by the structure of the whole SDN. At the lowest level of
abstraction, we only have our elementary situations that can be
inferred as true or false directly from attribute values of objects
or from geometric computations. An example is the situation

Suspicious 
smuggling 

area

Island

Unsuspicious 
vessel

Suspicious outgoing 
smuggling vessel

Vessel with 
rendezvous 

intention

Suspicious incoming 
smuggling vessel

Fig. 12. A sketch of the scenario for incoming and outgoing smuggling
vessels.

Past in polygon check that checks, if any point of the
vessel’s path is inside the polygon of the suspicious area. Thus,
at the lowest level, and only there, the observations are fed
into network. Every situation with a direct connection, either
incoming or outgoing arrows, is moved to the next higher level
of abstraction. Based on these connections, we result in the
SDN, as shown in Figure 11.

We will now evaluate the behavior of the whole network.
We construct the DBN with the approach described above and
set the parameters with the rules we established. We evaluate
two different scenarios. In the first scenario the observations
should lead to the decision of a suspicious outgoing smuggling
vessel, the second one should indicate a suspicious incoming
smuggling vessel.

For the first scenario, we will assume some observations
that are not noisy, namely

• past point in polygon check=0 for all time
points, i.e., the vessel was not in a suspicious area,
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Fig. 11. A SDN with two modeled situations of interest: suspicious incoming and suspicious outgoing smuggling vessel.
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• checking object type=1 for all time points,
i.e., the vessel is no tanker/cargo/passenger vessel,

• MMSI-Number is empty=1 for all time points,
i.e., vessel has an unknown ID,

• point in polygon check=1 for all time points,
i.e., vessel is inside AIS receiver area.

We will assume the following noisy observations:

• heading intersects area polygon=1 with
a certain probability for all time points, i.e., the vessel
is heading towards suspicious area,

• heading intersects island polygon=0
with a certain probability for all time points, i.e., the
vessel is not heading towards the island,

• speed larger than zero=1 with a certain
probability for all time points, i.e., the vessel is
moving,

• distance to zone is decreasing=1 with a
certain probability for all time points, i.e., the vessel
is approaching AIS area boundary.

We evaluated the DBN with different observation probabilities,
i.e., different amount of noise in the observation data. Figure
13a), b), and c) shows the result where the probability of wrong
observations is 0.1, 0.3, and 0.5, respectively.In the second
scenario, where the vessel is an incoming smuggling vessel,
we assume the following deterministic observations:

• past point in polygon check=1 for all time
points, i.e., the vessel was in a suspicious area,

• checking object type=1 for all time points,
i.e., the vessel is no tanker/cargo/passenger vessel,

• MMSI-Number is empty=1 for all time points,
i.e., vessel has an unknown ID,

• point in polygon check=0 for all time points,
i.e., vessel is not inside AIS receiver area.

We assume the following noisy observations:

• heading intersects area polygon=0 with
a certain probability for all time points, i.e., the vessel
is not heading towards suspicious area,

• heading intersects island polygon=1
with a certain probability for all time points, i.e., the
vessel is heading towards the island,

• speed larger than zero=1 with a certain
probability for all time points, i.e., the vessel is
moving,

• distance to zone is decreasing=1 with a
certain probability for all time points, i.e., the vessel
is approaching the boundary of the AIS-area.

Like in the first scenario, we present the results with
different observation noise in Figure 14. In both scenarios,
we see that the two situations of suspicious incoming
smuggling vessel and suspicious outgoing
smuggling vessel can be clearly distinguished from
each other, even if we add noisy observations with a
probability of 0.5. In both cases, the probability of the
underlying situation is around 0.9 or higher, whereas the
probability of the other situation is much lower. Of course, if
we add more noise, the probability of situation that is not true
is more unstable over time. The values range from around 0.4
to 0.7. The reason that the probability is not close to zero is
that we have observations that support both situations. Thus,
we have contradictory observations for the situation that is
not true, which results in probability values between 0.4 and
0.7.

IX. CONCLUSION AND FUTURE WORK

In this article, the information flow in an intelligent surveil-
lance system was highlighted. We described the process of
situation assessment in detail and showed how it can be
included into the information flow.

The main contribution of this work was the establishment
of systematic approach to characterize and recognize situations
of interest in a probabilistic way. The focus hereby was on a
top-down approach, i.e., that a maritime expert is able to model
the situations of interest by necessary and sufficient conditions
regarding other situations. The result of the characterization

(a) Probability of wrong observation: 0.1 (b) Probability of wrong observation: 0.3 (c) Probability of wrong observation: 0.5

Fig. 13. Outgoing smuggling vessel scenario: probabilities of incoming and outgoing smuggling vessel over 100 time steps with different observation noise.
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(a) Probability of wrong observation: 0.1 (b) Probability of wrong observation: 0.3 (c) Probability of wrong observation: 0.5

Fig. 14. Incoming smuggling vessel scenario: probabilities of incoming and outgoing smuggling vessel over 100 time steps with different observation noise.

process is a Situational Dependency Network (SDN), of which
a Dynamic Bayesian Network (DBN) can be generated auto-
matically. For the generation of the DBN, we presented several
rules for determining the parameters. During the process of
recognizing situations, the DBN uses observation values of
so-called elementary situations and is able to determine the
probability of more abstract situations over time by using well-
known efficient inference methods.

Finally, an application example of a SDN in the mar-
itime domain was given. We generated a DBN by using
the established rules and evaluated the DBN by using noisy
observations. Especially, we showed that the network behaves
as a user would expect. By using this approach, the operator
would be able to define situations of interest by himself and
to perform a probabilistic situation assessment without the use
of training data. Future work includes a refinement of the
parameter settings and an evaluation with real data.
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