
Developing an ESL Design Flow and Integrating Design Space Exploration
for Embedded Systems

Falko Guderian and Gerhard Fettweis
Vodafone Chair Mobile Communications Systems

Technische Universität Dresden, 01062 Dresden, Germany
e-mail:{falko.guderian, fettweis}@ifn.et.tu-dresden.de

Abstract—This paper introduces a systematic develop-
ment of design flows for embedded systems. The idea of
an executable design flow provides a basis for the design
automation starting at system level. The aim is to develop,
manage and optimize design flows more efficiently. A
seamless integration of design space exploration into a
design flow is presented coping with the conflicting design
goals of embedded systems at electronic system level.
It is further shown that an abstract design flow model
simplifies a derivation of domain-specific design flows. A
novel programming language is introduced allowing for
the development of design flows in a visual and textual
manner. A case study of the heterogeneous multicluster
architecture demonstrates a usage of the design approach
and automation. A systematic dimensioning of the multi-
cluster architecture, in terms of the necessary computation
resources, is presented in detail. The case study addresses
various design problems of future embedded systems
at electronic system level. Finally, this paper presents
design flow development and design space exploration for
embedded systems being systematically, fully integrated,
and automated in order to improve a system level design.

Keywords-electronic design automation, electronic system
level, design flow, design space exploration

I INTRODUCTION

It is commonly accepted by all major semiconduc-
tor roadmaps that only by raising the design process to
higher levels of abstraction will designers be able to cope
with the existing design challenges. This leads to an
electronic system level (ESL) design flow. The term sys-
tem level refers to a use of abstract system functions in
order to improve comprehension about a system. De-
sign space exploration (DSE) needs to be integrated in
order to trade-off between the conflicting goals of ESL
design, such as performance, power consumption, and
area [1]. ESL design aims at a seamless transformation

of a system specification into a hardware (HW)/ software
(SW) implementation [2]. Hence, electronic design au-
tomation (EDA) requires a system specification, which
is executable in a computer simulation. An executable
specification is a simulation model of the intended sys-
tem functions, also called a virtual prototype [3][4].

Today’s ESL design flows, from now on shortened
to flows, are typically based on a specify-explore-refine
(SER) methodology [5]. Such flows include a sequence
of design steps, from now on shortened to steps, succes-
sively refining a system model. Each step solves a de-
sign problem, such as application mapping. Moreover,
a specification model defines the starting point represent-
ing the targeted application characteristics and require-
ments. “Specification model is used by application de-
signers to prove that their algorithms work on a given
system platform” [2]. Then, each exploration step cre-
ates a design decision continuously increasing the ac-
curacy of the system model. Afterwards, the refined
model is passed to the next exploration step. Recently
developed EDA environments for ESL design, as pro-
posed in the MULTICUBE project [6] and NASA frame-
work [7], turn away from ad-hoc software infrastructure.
The generic EDA systems provide modularization and
well-defined interfaces. Despite these advancements, the
problem of a large number of possible flow sequences
has not been addressed yet.

Since future embedded systems will have an increas-
ing design complexity, the number of steps in a flow
is further rising. For example, an optimization of the
resource management will require additional steps [8].
Furthermore, the huge design space will draw more at-
tention to an ESL design at an early design stage in or-
der to avoid time-consuming low-level simulations. A
systematic methodology to develop, manage and opti-
mize flows promises for a significantly improved design
process. In this paper, the approach is denoted as the

92

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

design of design flow (DODF). Similar methodologies
have been developed in other scientific fields, such as
physics [9], mechanical engineering [10], and software
engineering [11]. Nevertheless, their degree of automa-
tion is limited and the main contribution of this paper is
to address this drawback. The aim is to provide an EDA
environment increasing the user’s productivity.

The remainder of this paper is organized as follows.
The related work and design approach are presented in
the Sections II and III. In Section IV, the authors intro-
duce the principle of an executable flow. The section also
focuses on an explanation of the DODF approach. Then,
the introduced concepts are exemplified via a functional
exploration of a finite impulse response (FIR) filter. In
Section V, the modeling of flows is explained. The idea
of abstracting the flows and a corresponding derivation
of a domain-specific flow are further introduced. In ad-
dition, DSE techniques, applicable to a step and flow,
are covered. In Section VI, a visual and textual design
flow language (DFL) are presented allowing to develop,
manage, and optimize a flow. An according tool flow
is introduced afterwards. Finally, Section VII applies the
previously developed models and automation tools for an
ESL design of the heterogeneous multicluster architec-
ture [12]. The several flows are arranged in a sequence of
flows. The flow for the multicluster dimensioning prob-
lem will be described in detail.

II RELATED WORK

The related work reviews representative design and
specification languages. Moreover, state-of-the-art DSE
environments are covered. Then, related studies on
meta-modeling are presented. Finally, the use of script-
ing languages is discussed in the context of EDA.

Specification Languages and DSE Environments

There is a variety of graphical and textual specification
languages and frameworks. They can be used to real-
ize ESL design by following a given design methodol-
ogy. Nevertheless, this is done in a less formal and less
generic manner compared to our systematic development
of flows. Hence, the reuse and interoperability across
tools, designers, and domains are limited. An example
is the specification and description language (SDL) [13]
allowing for formal and graphical system specification
and their implementation. In [14], HW/SW co-design
of embedded systems is presented using SDL-based ap-
plication descriptions and HW-emulating virtual proto-
types. Moreover, SystemC [15] and SpecC [16] are
system-level design languages (SLDL), which model ex-
ecutable specifications of HW/SW systems at multiple

levels of abstraction. These simulation models support
SW development. For example, SystemCoDesigner [17]
enables an automatic DSE and rapid prototyping of be-
havioral SystemC models. In [18], a comprehensive de-
sign framework for heterogeneous MPSoC is presented.
Based on the SpecC language and methodology, it sup-
ports an automatic model generation, estimation, and
verification enabling rapid DSE. Using an abstract spec-
ification of the desired system as starting point, pin-and
cycle-accurate system models are automatically created
through an iterative refinement at various levels of ab-
straction. Another example is the specification in a syn-
chronous language, e.g., via Matlab/Simulink. Opposed
to that, Ptolemy [19] supports various models of compu-
tation to realize executable specifications including syn-
chronous concurrency models. For both examples, DSE
has to be realized through a dedicated implementation.

As mentioned in Section I, the MultiCube project [6]
and the NASA framework [7] provide a generic infras-
tructure for ESL design including DSE. Nevertheless,
the works do not provide a systematic development of
flows and an according design flow language. Hence,
they are limited to proprietary flows.

Meta-modeling

Our paper differs to existing work since it is the first us-
ing meta-modeling for developing a design flow for em-
bedded systems. Meta-modeling has also been studied to
transform from the unified markup language (UML) to
SystemC at the meta-model level [20]. This guarantees
reuse of models and unifies a definition of the transfor-
mation rules. In [21], meta-modeling enables heteroge-
neous models of computations during modeling. In [22],
meta-modeling is used to improve the model semantics
and to enable type-checking and inference-based facili-
ties.

Electronic Design Automation

Principally, a general-purpose programming language,
such as C/C++, Java, C#, etc., can define a flow via
data and control structures. There are different im-
plementation options for a flow description avoiding a
unique representation of a flow. Moreover, compilation
times prevent from a seamless programming. Hence, a
scripting language, tailored to that task, would be rather
suited. For example, the major EDA tool vendors Synop-
sys [23], Cadence [24], and Mentor Graphics [25] pro-
vide a scripting language interface for design automa-
tion. Therein, the EDA functions are accessible via the
language commands in order to build custom flows. The
first example is the tool command language (Tcl) [26].
The scripting language has been integrated in the EDA

93

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tools of Synopsys and Mentor Graphics. Tcl is available
as open source project without licensing. Another design
automation language represents SKILL [27]. SKILL,
also a scripting language, has been derived from Lisp,
and is integrated in the EDA tools of Cadence. In addi-
tion, Perl, Ruby, and Python are used as EDA scripting
languages, as presented in [28]. A major drawback of the
languages is, they leave it to the designer how to develop,
manage and optimize a flow. Hence, the realization of
a systematic structure, parallelization, and debugging of
flows can differ for each language and designer. This
makes the understanding, maintenance and reuse of the
flow descriptions a challenging task. This paper address-
ing the issue by supporting a systematic development of
flows via DFL. Furthermore, DSE is directly considered
in the language design and implementation, which is not
the case for the existing EDA scripting languages.

III DESIGN APPROACH

This section provides an overview of the design ap-
proach. It includes two conceptual levels and one in-
stance level related to the terms method, methodology,
and model. This is illustrated in the Figure 1. The basic
idea is that models and methods are used by a method-
ology. The classification and relationships will be ex-
plained in the following. A composition refers to an el-
ement, which is part of another element. Instantiation
means that an element is derived from another element.
Moreover, the term meta is used in order to describe an
abstraction of a subject. An example is the meta-data,
which means data about data.

The meta-methodology defines a methodology re-
alizing another methodology. In Section B, a meta-
methodology for the development of flows, also consid-
ered as DODF, is introduced. Hence, a flow represents
a methodology, composed of steps, in order to build the
intended design. A view allows for a partitioning of a
flow resulting in a subset of the steps. Furthermore, a
step solves a design problem via a method or simula-
tion model. The step consumes inputs and produces out-
puts. An input can be an executable file, configuration,
parameter, or constraint. A method or simulation model
are compiled into an executable file or callable library.
Moreover, an output will be a configuration, which is
produced when the step has been finished. Each out-
put needs to be validated via a subsequent step includ-
ing a simulation model or evaluation method. In addi-
tion, a control loop between both steps will allow for
several design iterations until an output conforms to the
pre-defined constraints.

The meta-modeling describes the modeling of the
modeling languages. This includes an abstract syntax
and the semantics. For example, a meta-model enables
heterogeneous models of computations in the ESL de-
sign, as presented in [29]. In this paper, a meta-model
of a flow is introduced in Section A. The intension is
to avoid a discussion about the best definition of the
term model. The considered example is a suitable def-
inition, found in Wikipedia [30]: “A model is a pat-
tern, plan, representation (especially in miniature), or
description designed to show the main object or work-
ings of an object, system, or concept.”. A flow model
is derived from the meta-model. It defines a set of steps
and views in order to build a flow. The λ-chart [8], de-
scribed in Section C, represents a flow model follow-
ing the meta-model. Meta-models can also be defined
for the application and architecture models further be-
ing implemented in a simulation model and executable
specification, respectively. The application model rep-
resents the functions and the data exchange between the
functions of a target application. Moreover, an archi-
tecture model describes the structure and functions of
the intended system, such as the computation architec-
ture, interconnect topology, management infrastructure,
communication protocols, etc. Referring to Figure 1, an
application and architecture model for future embedded
systems are introduced in the Section VII.

A meta-method is a method to analyze another
method. For example, meta-optimization is an opti-
mization method to tune another optimization method.
In [31], a genetic programming technique has been used
for the meta-optimization in order to fine-tune compiler
heuristics. In Section VII, the author applies meta-
optimization via an exhaustive search in the Parameter
Tuning flow in order to find suitable input parameters
of a genetic algorithm (GA). Referring to Figure 1, the
method denotes a technique for solving an ESL design
problem. Optimization and estimation methods are used
in the case study presented in Section VII.

IV ESL DESIGN FLOW

Early EDA flows were dominated by capturing and
simulating incomplete specifications. Later, the logic
level and register-transfer level (RTL) synthesis allowed
to describe a design only from its behavior and struc-
tural representations. However, a system gap between
SW and HW design exists since SW designers still
provide HW designers with incomplete specifications.
An executable specification, such as implemented via
C++, SystemC [15], LabVIEW [32], Simulink [33], Es-
terel [34], Lustre [35], and Rhapsody [36], closed the

94

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Overview of the design approach.

system gap by describing the system functionality [37].
An ESL flow copes with the design complexity of cur-
rent multi-processor system-on-chips (MPSoCs). It is
expected that the complexity of future many-core SoCs
with thousands of cores will further increase the design
space [38]. An increasing number of components and
their interactions increases the complexity of implement-
ing a many-core SoC flow. The result is a larger num-
ber of steps and the inputs/outputs consumed and pro-
duced by the steps. In addition, the control structure
of a flow will become more complicated. For example,
a step can be dependent on multiple steps. Moreover,
the variation of multiple parameters/constraints may re-
quire nested looping and feedback loops. This section
addresses the complexity problem by introducing an ex-
ecutable flow and the DODF approach. The result is a
unified methodology to develop, manage, and optimize
flows.

A. Executable Design Flow

In [1], the authors presented the concept of an integra-
tion of DSE into a system-level specification. From that,
the idea of an executable flow [39] has been derived. An
executable flow denotes a program solving certain de-
sign problems and being automatically interpretable by
a machine. In an executable flow, methods and simu-
lation models, assigned to steps, are called in the same
way instructions of a computer program are called by
an interpreter. Predefined methods and models for the
steps, e.g., accessible via C++ libraries, would further
improve the quality, time and costs of a design. In an ex-
ecutable flow, inputs and outputs are consumed and pro-
duced by the steps. The input parameters and constraints
control an execution of the steps in a flow. Moreover, an
output could comprise a configuration of a refined sys-
tem model. Since several input values are most likely
possible, it results in a huge input or design space of an
executable flow. An optimization of the input combina-
tions of each step aims at an adequate step result. Never-
theless, an optimum, comprising all step inputs, is most

Figure 2. An example of an executable design flow.

likely impossible due to the huge design space. This im-
plies several local optima and according design tradeoffs.
Moreover, a read access to inputs of a flow will allow for
a detection of interfering, inadequate or missing inputs.
A further goal is to execute as much as possible steps
in parallel. This can be realized for the inputs of a step
or by executing independent steps of a flow in parallel.
A simple executable flow is illustrated in Figure 2. The
flow includes two steps realizing the methods of Dimen-
sioning and Mapping. First, the dimensioning, imple-
mented, e.g., via an estimation method, extracts an HW
architecture from the input configurations of the HW unit
options and application. Then, simulation results can be
obtained from the mapping of the application onto the
HW architecture, as done in the mapping step. Referring
to Figure 2, an executable specification implements the
system functions necessary to evaluate the system per-
formance.

B. Design of Design Flow

The structure of an executable flow and a methodology
for developing flows are incorporated into the DODF ap-
proach [39]. The concepts and realizations of DODF are
summarized in a hierarchical manner, as seen in Fig-
ure 3. The figure shows several members assigned to
different hierarchical levels. By moving from the outer
part to the inner part of the figure, the concepts are trans-
formed into concrete realizations. The Section C in-
cludes an example of a digital filter design illustrating
an executable flow and the DODF approach.

95

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Hierarchy of concepts and realizations in the
design of design flow.

First of all, the meta-methodology defines a method-
ology to create flows. Referring to Section III, the pre-
fix “meta” is used since a methodology is considered as
flow. The meta-methodology includes different stages
in order to correctly determine and arrange the mem-
bers defined in the DODF hierarchy. For example, once
the steps, their inputs, and their outputs are detected,
the steps need to be combined to a flow in order to re-
alize the design goal. In the DODF hierarchy, seen in
Figure 3, the flow model is a domain-specific compo-
sition of steps and views. The λ-chart [8] is an exam-
ple of a flow model. As already mentioned before, a
model for the modeling of other models is called meta-
model. From a meta-model, flow models are created for
a specific domain. Then, flows can be derived from the
domain-specific flow model. Conceptually, flows are hi-
erarchically composed in order to improve a division of
work by assigning a sub-flow or step to specialists in a
team. Hence, a flow can be a graph or subgraph with ver-
texes representing steps. The steps may further represent
sub-flows, as indicated in Figure 4. Moreover, each step
can belong to a view. Hence, a flow can also include sev-
eral views, as illustrated in Figure 4. A view represents a
level of abstraction in terms of a filter of selected steps.
In contrast to a hierarchical division of flows into sub-
flow, a view intends extracting a subset of steps assigned
to the view. This allows to focus on selective steps and
sub-flows. For example, Kogel et al. [40] define the four
views: functional view, architects view, programmers
view, and verification view. By defining views, a design
can be explored from different viewpoints, such as com-
putation topology, interconnect topology, etc. Then, the
functionality can be separately analyzed to be explored
together in a subsequent design stage. An example is a
step assigning the scheduling of computation tasks and
load/store tasks to separate views. After the scheduling
is explored separately, the results are combined in order
to apply the best scheduling technique for all task types.

Figure 4. A design flow composed of sub-flows and
steps filtered via the views.

As mentioned before, a flow is a combination of
steps refining a specification model into a targeted sys-
tem model. Each step uses inputs to apply a method
or simulation model, which are compiled into an exe-
cutable file. An input parameter relates to a description
of the structure, behavior, and physical realization of a
component or system. Parameters, configuring a design
method, are also covered. Furthermore, an input con-
straint is a restriction of a component or system, such
as latency, power consumption, or chip area. Then, the
output of a step serves as input for the subsequent step.

As explained before, a flow is derived from a flow
model using the meta-methodology and procedure, re-
spectively, illustrated in Figure 5. The idea is to sys-
tematically determine, assign, and order sub-flows and
the further members of the presented DODF hierarchy,
seen in Figure 3. Moreover, an executable flow is built
through an algorithmic ordering of the sub-flows and
steps. That means, dependencies, loops, branches, etc.,
realize an execution order of sub-flows and steps in an al-
gorithmic manner. Hence, the ordering of steps realizes
a system-level design algorithm based on flow control
structures and patterns, respectively, presented in Sec-
tion B. The meta-methodology glues the members of
the DODF hierarchy together in order to systematically
follow the DODF approach. Referring to Figure 5, the
design goals are first determined and sub-flows are ex-
tracted. For example, the design of system components,
such as processors, memory, controller, etc., and the de-
sign in different levels of abstraction, such as ESL and
transaction-level (TL), can be modeled into sub-flows.
Then, an algorithmic ordering of the aub-flows needs to
be formulated representing the structure of an executable
flow. The next stage is to determine the design problems
in order to assign each step the corresponding method or
simulation model. A method is determined for a step in
order to solve a design problem. The simulation mod-

96

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. A meta-methodology for the proposed DODF
approach.

els are required for measuring the system performance.
Afterwards, each step is assigned a view enabling a hori-
zontal partitioning of the flow. In addition, the inputs and
outputs are determined for each step. The next stage fi-
nalizes the design of an executable flow by bringing the
steps into an algorithmic order. In the end, the flow is
executed based on the algorithmic order and variation of
the inputs. From the interpretation of the results, the de-
sign goals and sub-flows are revised in order to improve
the structure and configuration of the flow.

C. A First Example - An FIR Filter

In the following, the flow development is illustrated con-
sidering a simple flow. An FIR filter, an ubiquitous digi-
tal signal processing algorithm, has been chosen and im-
plemented in a simulation model and executable specifi-
cation, respectively. Referring to the meta-methodology
in Figure 5, the goal and flow are first determined. The
goal is to minimize area and power consumption of the
memory in an HW implementation of the FIR filter. This
is realized via exploring a minimal word length for the
bit representation of the FIR filter coefficients. The sim-
ple flow is composed of two steps FIR filter simulation
and Validation, as seen in Figure 6. The flow realizes
an algorithmic exploration of the FIR filter focusing on
the functional view defined in [40]. Hence, the aim is to
find the best configuration of the input parameters hold-
ing an error constraint. The filter coefficients are pro-
vided as real numbers. The word length of each coeffi-

Figure 6. An executable design flow for a functional ex-
ploration of the FIR filter.

Figure 7. A functional simulation of the FIR filter via
SystemC.

cient radix can be varied separately. The step FIR filter
simulation requires an executable specification, the in-
put stimuli and filter coefficients as inputs. Referring to
Figure 6, the step calls an executable specification sim-
ulating the FIR function. The simulation performance
is evaluated by comparing the output values with a given
Matlab reference and calculating a (mean) absolute error,
as seen in Figure 7. The output of the step is a mean ab-
solute error representing a degradation compared to the
ideal Matlab reference. Referring to Figure 6, the step is
executed until the word length w reaches w = 31. Then,
the Validation step finds the best configuration that does
not infringe the maximum absolute error constraint. Fig-
ure 7 shows the executable specification in terms of a
functional simulation of an FIR filter implemented via
SystemC [15]. The stimuli represents the input values
of the FIR filter. The executable specification is config-
ured with the inputs mentioned before. After the error
calculation, a display function returns an absolute error
representing the output of the FIR filter simulation step.

The following test results are automatically gener-
ated by executing the flow. A 16 taps FIR filter with
a low-pass characteristic and a cutoff-frequency fg =

4kHz was configured. In the simulation setup, 1000 uni-
formly distributed random values are used as input stim-
uli ranging from 1 to 100. Moreover, the radix of the
FIR filter coefficients are jointly varied from 1 to 31 bits.

97

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Experimental results of the FIR filter explo-
ration.

The results are shown in Figure 8. The curve saturates
at around 28 bits radix word length with a mean error
of 2.6 · 10−7. In the flow, the maximum absolute error
has been set to 10−8. Nevertheless, the parameter varia-
tion in the flow needs to have its granularity refined since
different coefficients might have different optimal word
lengths. A further analysis is presented in the next sub-
section. The flow is limited to a functional analysis of
the FIR filter. Hence, the results should be passed to a
flow using executable specifications at a lower level of
abstraction, such as TL and RTL.

D. Integrating Design Space Exploration

As mentioned before, an executable flow includes con-
trol structures allowing to vary the inputs. Hence, the
systematic input variation realizes a design space explo-
ration (DSE). On the one hand, the inputs of a step can
be explored limiting the DSE to a step. This refers to
a step-oriented search. On the other hand, the aim is
to find a suitable combination of all inputs for the steps
of a flow. This relates to a flow-oriented search. Step-
oriented and flow-oriented search are illustrated in Fig-
ure 9. The step-oriented search is limited to the inputs
of a step, i.e., the parameters p1-2 or p3-4. Instead, the
flow-oriented search aims at exploring all input combi-
nations of a flow, here in the parameters p1-4. The step-
oriented search has been focused in this paper. So far,
an exhaustive search (ES) and heuristic technique (GA)
are developed both applicable to the step-oriented and
flow-oriented search. The authors refer to [41] for a
comprehensive overview of state-of-the-art search tech-
niques. In general, the DSE methods can be divided into
the problem space or the solution/objective space. In the
problem space, the parameters, defined in a specifica-
tion, are considered. An example is a design of a register
bank, for which a discrete set of word lengths (columns)
and number of words (rows) are available. Now, all pos-

Figure 9. Step-oriented vs. flow-oriented search in an
executable flow.

sible parameter combinations of columns and rows can
be searched within the problem space. In this scenario,
the solution space is driven by constraints, such as la-
tency, power, and area. An according DSE strategy can
be realized in an unguided or guided manner. ES is a
representative of an unguided type allowing for an unbi-
ased view on the design space. Heuristic search, such as
hill climbing and GA, is a path-oriented method. It in-
corporates knowledge in order to guide the search along
a path. The advantage is that the intermediate search re-
sults may be reused.

As mentioned before, parameters and constraints are
similarly represented in a step and flow. Depending on
the number of inputs and their range of values, a design
space may be divided into sub spaces. The realization
of the ES is rather trivial, for example the inputs can
be iteratively incremented or taken from a predefined
list. In this paper, a GA is presented implementing a
heuristic search in the design space. The GA needs to
be configured in terms of a minimization or maximiza-
tion problem. An one-chromosome individual is used to
describe the DSE problem. The chromosome includes
an one-dimensional array of genes. Each gene denotes
an input and the gene value defines an according value.
For example, a chromosome g = (3, 2, 5) includes three
inputs. The corresponding gene values are in the inte-
ger range. Hence, a set or range of values has to be
defined for each input. Given a randomly initialized
population, the GA generates its offspring via variation.
Each chromosome is evaluated by calculating a fitness
value. The calculation is done externally in a step and
the fitness value is gathered by the GA. In addition, the
GA prevents from recalculating already evaluated solu-
tions. Furthermore, variation through an one-point mu-
tation and order crossover enables an iterative improve-
ment of the offspring. In an executable flow, the imple-
mentation of a step-oriented and flow-oriented search is
realized by an expansion of the executed nodes, namely
steps and flows. Figure 10 shows an iterative execution
of many steps/flows parallelized via a selection node and

98

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Step-/flow-oriented search via parallelization,
synchronization, iteration, and feedback.

synchronized via an evaluation node. In case of an ES,
only one iteration is necessary. For each iteration, the
GA selects the steps/flows from the population and eval-
uates the individuals via a provided fitness value. Hence,
the selection node performs the genetic operators, such
as initialization, mutation, crossover, replacement, and
selection. An end of the GA-based search is determined
by the number of iterations (generations). This requires
a feedback-loop between the selection and evaluation
nodes. Further stopping criteria can be included. More-
over, the initialization of the GA population can be used
to realize a random (Monte Carlo) search. Hence, the
population size corresponds to the number of random
samples and the number of generations is set zero.

The step-oriented search is demonstrated via the
FIR filter example presented before. The number of
taps (#taps) of the FIR filter is #taps=16 and the word
length w of each coefficient radix is defined in the range
of 1 ≤ w ≤ 31 bits. Hence, 3116 input combinations mo-
tivate for solving the optimization problem via the GA
search. Equation (1) defines the fitness (objective) func-
tion in terms of a minimization.

γ ·

 1
#taps

#taps∑
i=1

wi

wmax

︸ ︷︷ ︸
word length

+ (1 − γ) ·
1 − emin

abs

eabs

︸ ︷︷ ︸
absolute error

→min

(1)

As mentioned before, Equation (1) needs to be im-
plemented in the FIR filter simulation in order to pro-
vide a fitness value for the GA. The fitness function finds
a tradeoff between the conflicting goals of a minimal
word length of the coefficients and a minimal absolute
error. The weight γ realizes a prioritization between both
goals. The first term minimizes the word length wi of the
taps i. In the example, the FIR filter requires 16 taps and
coefficients, respectively. Then, wmax = 31 bits denotes

the maximum word length configurable in the FIR filter
step. In addition, the second term targets a minimiza-
tion of the absolute error eabs. Referring to Figure 7, the
error is calculated from comparing the filter output in
case of quantized coefficients with a non-quantized ref-
erence generated via Matlab. Following, emin

abs represents
the minimum absolute error obtained from an FIR filter
step by using the maximum word length wmax = 31 bits
for all coefficients. Figure 11 shows the GA search re-
sults in terms of two convergence plots. In the follow-
ing, the GA is used in order to find a minimum fitness
value. The maximum absolute error is set to emax

abs = 10−3

in the FIR filter step. In case the constraint is vio-
lated, the FIR filter simulation returns a very large fit-
ness value indicating an invalid solution. In addition,
the weight γ = 0.3 prioritizes the error minimization ac-
cording to the error constraint introduced before. From
the FIR filter results in Figure 8, it is known that an aver-
age bit width of w = 15 reaches a good solution holding
the given error constraint. The goal is to reduce the av-
erage bit width w not violating the constraint. Hence,
the bit width of the coefficients is varied in the interval
13 ≤ wi ≤ 17. Furthermore, the GA parameters are set
as follows: pS ize = 50, nGen = 100, mRate = 0.1,
cRate = 0.8, and rRate = 0.5. In Figure 11, the upper
plot shows that the GA converges after 85 generations
with a fitness value of 0.6231. Please note, the small de-
crease of the fitness value at 85 generations is not vis-
ible in the figure. From the lower plot in Figure 11,
the according absolute error eabs = 0.00081 and average
bit width w = 14.3125 bits can be obtained. Hence, the
applied GA search has reduced w by almost 5% com-
pared to the result illustrated in Figure 8. In addition, the
GA outperforms the average bit width w, obtained via a
Monte Carlo simulation and holding the error constraint,
by around 12%. The GA generated 332 different solu-
tions and the DSE finishes after 72 seconds on an Intel
Core 2 Duo L7500 with 1.6 GHz utilizing one core. This
shows the efficiency of the GA compared to the 516 so-
lutions of an exhaustive search and a solution via Monte
Carlo simulation. Nevertheless, an optimal solution can
not be guaranteed due to the heuristic nature of a GA.

V MODELING DESIGN FLOWS

This section introduces a meta-model representing an
abstract flow model [39]. Moreover, flow patterns are
shown in terms of reusable flow structures. Given the
meta-model and patterns, a derivation of a flow is illus-
trated based on the modified λ-chart model [8].

99

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Convergence plots of the GA search in the
FIR filter example.

A. Meta-Model of Design Flows

A meta-model has been developed in order to provide a
minimal set of generic modeling elements necessary to
build a flow. The meta-model is described via a UML
class diagram, seen in Figure 12. It represents a funda-
ment or kernel of the language design and implementa-
tion presented in the Section VI. The language elements
relate to the meta classes. The Element class contains
Properties and Transitions from/to elements. A tran-
sition between two elements is used to model a unidi-
rectional dependency and a property represents an input,
output, or further information added to an element. The
transition also models a relationship between two flows.
Moreover, both Flow and Node inherit from the element
class. The assignment of elements to a view is realized
via a property class. Moreover, a flow may include many
nodes. Flows may have a nested structure consisting of
many flows. This allows to reduce model complexity and
to improve the reuse of available flows. Finally, a node
represents an executable element, such as step, loop and
branch nodes. Loop and branch nodes are further used
to describe an algorithmic ordering of flows and steps, as
introduced in Section B.

Figure 12. A meta-model for the derivation of design
flows.

B. Design Flow Patterns

In addition to the meta-model described before, a deriva-
tion of recurring structures of flows allows to determine
further modeling elements necessary for a systematic
construction of flows. The flow patterns, illustrated in
Figure 13, are a key enabler of the language design and
implementation presented in Section VI. In principle,
the patterns describe a parallel, iterative and conditional
execution of flows. Pattern (a) models a data depen-
dency between two steps. Hence, the subsequent step is
fed with inputs produced by its predecessor. An exam-
ple is that a scheduling step produces application map-
pings further being analyzed by a validation step. More-
over, a control dependency models decision making in
a flow as seen in pattern (b). It shows a conditional
statement deciding for one of two steps depending on
the output of a previous step. An example is that only
one of the two configurations of a scheduling step will
be selected based on the output of a provisioning step.
Moreover, pattern (c) describes a divide and conquer
approach aiming at a recursive break down of a prob-
lem into sub-problems. A possible realization would
be that a flow contains several sub-flows representing
the sub-problems. In pattern (d), a parallel execution of
many steps and the synchronization of the results are de-
scribed. An example would be to execute the same step
with different configurations multiple times in parallel
and choosing the best output as input of a subsequent
step. Moreover, pattern (e) and pattern (f) consider iter-
ations in a flow. In pattern (e), a step is executed until an
end condition reaches. For example, a step increments
a parameter in order to find a suitable parameter value.
Pattern (f) shows an iterative execution based on a feed-
back from a subsequent step. The information may al-
low for changing the selected inputs in order to improve
a step result.

100

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Reoccurring structures (patterns) in design
flows.

C. Domain-Specific Design Flow

In a previous work [8], the authors introduced the
λ-chart, which represents a model of design abstraction
and exploration. It addresses an ESL design of MPSoCs
and future many-core SoCs at an early stage. The mo-
tivation was to provide the designer with a flow model
allowing for a clear definition of the steps and a sepa-
ration of the important system functions. Therefore, an
administration view was included in order to highlight
the rising importance of management functions in em-
bedded systems. The model further allows to combine
the different steps of a flow. In the following, the λ-chart
has been slightly modified in order to focus more on the
design and exploration of the system resources, as illus-
trated in Figure 14. In addition, the term administration
has been replaced by a more management-centric point
of view. Hence, the λ-chart defines three views allow-
ing to separate the orthogonal system functions. A re-
source management view considers tasks for planning,
assignment, monitoring, and control. Instead, a com-
putation resources view relates to the code execution.
Moreover, a data logistic resources view addresses a de-
sign of data storage and data exchange between compo-
nents. Furthermore, the concentric bands underline the
five steps of a unified process. The modeling and par-
titioning step describes a starting point in order to build
the representations of the system structure and behav-
ior. Partitioning focuses on the parallelization of ap-
plications. Following, provisioning means to select the
type and number of components and behavior necessary

Figure 14. The modified λ-chart [8] - A model of design
abstraction and exploration.

to fulfill the purpose of the intended system. In schedul-
ing, a temporal planning of the computation, data logis-
tics and management is applied. This includes both the
application and architectural components, such as deter-
mining an execution sequence, power-aware planning,
monitoring, etc. Moreover, the allocation step focuses
on spatial planning, such as placement and packaging of
components, and application binding. Finally, validation
proves whether the system fulfills a previously defined
purpose. The authors refer to [8] for a more detailed ex-
planation.

The λ-chart follows the meta-model presented in
Section A. That means, a step is derived from the node
element and a flow is a sequence of steps connected via
transitions. Moreover, a view is modeled via the property
element. An example of a flow, depicted in Figure 15,
demonstrates the derivation of a flow from the λ-chart.
Three steps, limited to the computation resources view,
have been chosen. The combination of the steps and a
connection via transitions build the flow. The block di-
agram in Figure 15 shows an equivalent representation
of the flow. In addition, control primitives, such as a
branch node (if-then-else, switch-case) and loop node
(for/while), are inserted in a flow enabling a parallel, it-
erative and conditional execution of the flow. This al-
lows to realize the flow patterns presented before. In
Section IV, the DODF approach was introduced, giving
the designer a methodology to select appropriate flows,
views, steps, etc. The control structure is build via an
algorithmic order of the steps. Figure 16 details the in-
stantiation from the Element, Transition and Property
classes defined in the meta-model. Figure 16 (left) shows

101

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. An example of a λ-chart flow with instantiation from the meta-model.

Figure 15. An example for the derivation of a flow in the
modified λ-chart.

a flow traversing the allocation and validation steps it-
eratively. The DSE is restricted to the data logistic re-
sources view. In the following, a limited part of the flow,
marked by a dotted line, is considered. Referring to Fig-
ure 16 (right), the example focuses on the allocation step,
loop node, and transition from the loop to allocation. The
loop node controls an iteration of the input parameters
of allocation and includes an exit condition. Moreover,
the flow is named network-on-chip (NoC) DSE. NoC is
a promising network design approach for scaling from
MPSoC to many-core systems because the efficient com-
munication infrastructure supports a large amount of IP
cores [42, 43]. As mentioned before, an assignment of
the allocation step to a view is realized via the Property

class. The step also includes properties, such as the num-
ber of rows in a NoC. Hence, the properties are used as
input parameters of a step.

VI ESL DESIGN AUTOMATION

A comprehensive list of academic and commercial EDA
environments for ESL design can be found in [2]. Mod-
ern environments address DSE but with the limitation to
a proprietary implementation for a specific design prob-
lem, such as optimization of the application mapping.
Recent research introduces generic infrastructures turn-
ing away from ad-hoc software [6, 7]. Nevertheless, the
complexity of flows for future embedded systems is not
yet considered. The large number of flows, steps, inputs
and outputs requires a more systematic development. In
addition, commercial EDA systems allow for a flexi-
ble and efficient implementation of flows via scripting
languages. The major drawback of academic and com-
mercial EDA systems is that no systematic development,
management and optimization of flows is supported. The
user is either dependent on a proprietary implementation
or has to develop a representation of a flow by oneself.
This paper presents two programming languages [39] ad-
dressing these problems and supporting all aspects of our
DODF approach. Therefore, the user is supported in
developing, managing, and optimizing a flow. This in-
cludes flexible and efficient realization of DSE strategy
in the flow via little program code. First of all, a visual
programming language is introduced. This language has
been evolved to a textual programming language, called

102

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

design flow language (DFL). A tool flow, enabling DFL,
is presented afterwards.

A. Visual Programming of Flows

A visual programming of flows has been implemented
via a graphical prototype based on Microsoft Visio by
the authors [1]. It realizes the concepts introduced in
the Sections IV and V. The implementation allows to
instantiate steps and flows via drag-and-drop and copy
functions using the λ-chart model. The graphical user
interface (GUI) corresponds to the visualization in Fig-
ure 16 (left). The construction of a flow from the GUI
has been realized via the visual basic for applications
(VBA) programming language by detecting the depen-
dencies between the steps and reading the properties of
the steps. The prototype includes an import/export func-
tion in order to load and store the flows based on a prede-
fined XML-format. The definition of the XML-format is
explained via a simple flow, illustrated in Listing 1. The
flow corresponds to the Figure 16 (left). The XML-file
is read by an interpreter program implemented in C++.
The interpreter allows for a sequential and parallel exe-
cution of the steps. Referring to Listing 1, the flow and
node tags follow the meta-model presented in Section A.
The step and loop nodes are connected via transitions
and include many properties. Moreover, the loop node
requires a loop/exit body and an exit condition in order to
traverse the flow iteratively. In a property value, expres-
sions and system functions are used to read and modify
variables, directories, and files during a step execution.

Referring to Listing 1, the step “My Allocation”
(lines 3-10) and the step “My Validation” (lines 11-14)
are created. Therein, several properties are defined, such
as Step, View, etc. Moreover, the Rows property (line 6)
is initialized to three. Together with the Arguments
(line 7), Rows will be used as input of the IPCoreMap-
ping tool (line 8). Moreover, the loop node (lines 16-
21) defines several expressions in order to increment the
Rows property (line 18), to check for the exit condition
(line 19), and to define an action after the exit (line 20).
Finally, the flow is constructed by connecting the steps
via transitions (lines 22-24).

Nevertheless, the XML-format makes it inconve-
nient to program multiple expressions, nested condi-
tions, nested loops, and feedback loops. In addition, a
reuse of flows and steps is not supported. The limitations
motivated for an evolution towards the DFL representing
an efficient and flexible programming language.

B. Design Flow Language (DFL)

DFL is specially targeted to a development, manage-
ment and optimization of flows including the necessary

1 <? xml v e r s i o n=" 1 . 0 " e n c o d i n g="UTF−8" ?>

< f low>

3 <node name="My A l l o c a t i o n ">

< p r o p e r t y name=" S t ep " v a l u e=" A l l o c a t i o n " / >

5 < p r o p e r t y name=" View " v a l u e=" Data L o g i s t i c
R e s o u r c e s " / >

< p r o p e r t y name="Rows" v a l u e=" 3 " / >

7 < p r o p e r t y name=" Arguments " v a l u e="−ap p_ in
lambda \ \ a p p s _ s t a t e . xml . . . " / >

< p r o p e r t y name=" Tool " v a l u e=" IPCoreMapping
" / >

9 < !−− . . . −−>

< / node>

11 <node name="My V a l i d a t i o n ">

< p r o p e r t y name=" S t ep " v a l u e=" S c h e d u l i n g " / >

13 < p r o p e r t y name=" View " v a l u e=" Data L o g i s t i c
R e s o u r c e s " / >

< !−− . . . −−>

15 < / node>

<node name="My Loop ">

17 < p r o p e r t y name=" t y p e " v a l u e="LOOP" / >

< p r o p e r t y name=" loop_body " v a l u e="Rows=
Rows+1; . . . " / >

19 < p r o p e r t y name=" e x i t _ c o n d i t i o n " v a l u e="
Rows==4; . . . " / >

< p r o p e r t y name=" e x i t _ b o d y " v a l u e="
renameDir (lambda \ \ maps , Rows) ; . . . " / >

21 < / node>

< t r a n s i t i o n s o u r c e="My A l l o c a t i o n " t a r g e t ="My
V a l i d a t i o n " / >

23 < t r a n s i t i o n s o u r c e="My V a l i d a t i o n " t a r g e t ="My
Loop " / >

< t r a n s i t i o n s o u r c e="My Loop " t a r g e t ="My
A l l o c a t i o n " / >

25 < / f low>

Listing 1. XML source code imported/exported by the
visual programming prototype.

control and automation capabilities. Moreover, design
space exploration (DSE) is directly considered in the lan-
guage design and implementation. The requirements and
structure of DFL are shortly introduced in the follow-
ing. A simple flow example illustrates the use of the
language. For more details on the language, the authors
refer to [39].

Language Requirements

The purpose of DFL is to make the design of future em-
bedded systems more flexibly and efficiently via a sys-
tematic development of flows. This includes manage-
ment and optimization capabilities. The requirements
are summarized in the following. A clean syntax in-
creases the user’s productivity. Program commands for
the construction of flows are necessary. As in mod-
ern programming languages, control structure and pro-
gram modularization enable more complex applications.
Moreover, an acceleration of flows via parallelization

103

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should be realized. The use of DSE techniques within
a step or flow will allow to find an optimal or feasible
solution in design spaces with different complexity. Fur-
ther requirements relate to the EDA tools and design data
accessible via DFL. An executable file or library needs
to be assigned to a step. Moreover, design data should
be accessible via data structures, files, and data base op-
erations. In addition, some kind of inter-process com-
munication serves as interface between the EDA tools.
Finally, non-functional requirements address an access
from/to other programming languages. Moreover, data
analysis and debugging support will be beneficial in a
flow development.

Language Structure

The DFL is an imperative (procedural) programming
language read by an interpreter program. The inter-
preter controls an execution of the steps defined in a
flow. The syntax is derived from the C/C++ program-
ming language widely known in HW/SW programming.
The Flow, Step, Property and Transition classes, defined
in the meta-model and introduced in Section A, have
been integrated in the language design and implemen-
tation. Modularization is realized via subroutines and an
#include statement. Basic data types (bool, int, double,
string) and complex data types (vector, Flow, Step) are
available. DFL is further a structural programming lan-
guage supporting a full set of control primitives, such as
for, while, if-then-else and switch-case. The language
includes a limited number of keywords and various in-
put/output names are reserved for the step and flow. DFL
additionally supports typical arithmetic operators, log-
ical operators, and vector indexing. Moreover, com-
mands are case sensitive and single statements must be
ended with a semicolon.

A Simple Design Flow in DFL

In the Listing 2, a simple flow is described in DFL il-
lustrating its structure. The program accomplishes an
execution of two dependent steps in a flow, which corre-
sponds to Figure 16 (left). Lines 2-8 relate to the con-
figuration of an allocation step. This includes an assign-
ment of an executable file, called alloc(.exe), to the step
(line 3). The executable requires arguments (line 6) and
an input (line 7) in order to solve the IP core mapping
problem (line 4). In addition, the View parameter cor-
responds to the λ-chart in Figure 16. Since the step al-
lows for several input combinations, here indicated via
the rows vector (line 7), it is configured for a parallel ex-
ecution (lines 10-13). A space vector contains the vari-
ables defining the input combinations (lines 10-11). The

input parameter HPCJob (line 13) configures an avail-
able high performance cluster (HPC) environment for a
parallel execution of the steps. Then, a validation step
(lines 15-16) is instantiated. Further assignments to the
step are left out for simplification. Finally, the flow is
constructed (lines 19-22) and executed (line 24). The
steps need to be added to the flow (line 20) and the
execution order is determined via the connect function
(line 21). Line 22 saves the flow description in the visu-
alization of compiler graph (VCG) format [44] allowing
to check the flow structure.

1 /∗∗∗∗∗∗∗∗ ALLOCATION STEP ∗∗∗∗∗∗∗∗ /

Step s1 = Step (" A l l o c a t i o n ") ;
3 s1 . add (" E x e c u t i o n " , " a l l o c ") ;

s1 . add (" Tool " , " IPCoreMapping ") ;
5 s1 . add (" View " , " Data L o g i s t i c R e s o u r c e s ") ;

s1 . add (" Arguments " ," − ap p_ in lambda \ \ a p p s _ s t a t e
. xml . . . ") ;

7 v e c t o r < i n t > rows = [3 : 4] ;
/ / . . .

9 /∗∗∗∗∗∗∗∗ PARALLEL EXECUTION ∗∗∗∗∗∗∗∗ /

v e c t o r < s t r i n g > s p a c e ;
11 s p a c e . push_back (" rows ") ;

s1 . add (" Space " , " s p a c e ") ;
13 s1 . add (" HPCJob " , " t r u e ") ;

/∗∗∗∗∗∗∗∗ VALIDATION STEP ∗∗∗∗∗∗∗∗ /

15 Step s2 = Step (" V a l i d a t i o n ") ;
s2 . add (" E x e c u t i o n " , " v a l i d ") ;

17 / / . . .
/∗∗∗∗∗∗∗∗ FLOW CONSTRUCTION ∗∗∗∗∗∗∗∗ /

19 Flow f ;
f . add (s1) ; f . add (s2) ;

21 c o n n e c t (s1 , s2) ;
f . s ave (" vcg " , " f low . vcg ") ;

23 /∗∗∗∗∗∗∗∗ FLOW EXECUTION ∗∗∗∗∗∗∗∗ /

e x e c u t e (f) ;

Listing 2. Simple design flow in DFL.

DFL Tool Flow

In the following, the tool flow for the DFL is presented.
As typical for modern programming languages, it is sep-
arated into frontend, middle-end, and backend. Fig-
ure 17 illustrates the tool flow. The frontend includes a
scanner and parser to validate the DFL syntax. The scan-
ner splits the DFL source code into tokens by recogniz-
ing lexical patterns in the text. GNU Flex [45] has been
used to generate the scanner (lexical analyzer). Then,
the parser applies syntax-rule matching. The parser has
been generated using GNU Bison [46]. From the pars-
ing results, an abstract syntax tree and a statement list
are derived. In addition, a symbol table holds informa-
tion about the program. The statement list and symbol
table allow to interpret and optimize the program code,

104

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. Tool flow for the design flow language.

as done in the middle-end. The interpreter is responsi-
ble for type checking, type erasure (conversion), and ex-
pression evaluation. The code optimization refers to an
exploitation of the step-level and flow-level parallelism.
As mentioned before, the interpreter supports an export
of the flow structure in the VCG format [44] in order to
visualize the graph. Moreover, the explorer includes an
exhaustive, random and heuristic search allowing to ex-
plore design spaces with different complexity. Finally,
the backend provides functionality executing a DFL pro-
gram on a single computer or HPC. After a step execu-
tion, according design and validation data will be avail-
able for a further analysis. The next stage is to merge
DFL and model/method design into an integrated devel-
opment environment (IDE), presented in [39]. Therein,
the design methods and simulation models are imple-
mented via a native language, such as C/C++, in order
to fulfil the critical performance requirements. The aim
is to compile an executable or library and assign it di-
rectly to a DFL step in one IDE realizing a seamless de-
velopment. Then, the flow can be executed, tested, and
optimized in the IDE. The DFL implementation includes
a full set of language features. Open topics relate to the
implementation of performance analysis functions, plot-
ting functions, and database access. Furthermore, a fu-
ture DFL revision needs to address name spacing avoid-
ing naming conflicts.

VII DESIGN FLOW CASE STUDY

This section demonstrates the concept of an executable
flow and the DODF approach under realistic conditions.
The case study targets an ESL design of the heteroge-
neous multicluster architecture, as introduced by the au-
thors in [1]. The multicluster architecture represents

a promising candidate for future embedded many-core
SoCs [12]. The outline of this section is as follows:
First, a description of the application and architecture
model forms the basis of the underlying simulation mod-
els. Next, an according sequence of flows is introduced
showing a separation of the addressed design problems.
This allows to solve the complex problems more flex-
ibly and more efficiently as compared to a proprietary
and fully integrated design flow. Due to a lack of space,
only the dimensioning of the multicluster architecture is
selected for a more detailed explanation in terms of a de-
sign methodology, flow description, and the experimen-
tal results.

A. Application and Architecture Model

The models consider functionalities of the three views
defined in the modified λ-chart, seen in Figure 14. The
application model includes multiple, concurrently run-
ning applications and threads, respectively. A thread
is represented by a high-level task graph and it sequen-
tially executes tasks. Threads are only synchronized be-
fore or after execution. Then, a task is an atomic ker-
nel exclusively executing on an intellectual property (IP)
core, e.g., processing element (PE), memory (MEM) in-
terface, control processor (CP) interface, etc. Tasks pro-
duce and consume chunks of data accessed via shared
memory. Side effects are excluded by preventing access
to external data during computation.

As shown in Figure 18, the architecture model is
a heterogeneous set of multiprocessor system-on-chips
(MPSoCs) and clusters, respectively. The management
unit (MU) represents an application processor and in-
cludes a load balancer aiming at equally distributing
thread load amongst the clusters. Moreover, an MPSoC
contains heterogeneous types and numbers of IP cores.
In the model, each MPSoC contains a network-on-chip
(NoC) connecting the IP cores. Moreover, each clus-
ter includes a CP responsible for dynamically schedul-
ing arriving tasks to the available IP cores. The CPs are
directly connected to the MU. The heterogeneous multi-
cluster architecture, seen in Figure 18, includes a regular
2D mesh NoC. Each tile contains a router and n mod-
ules (IP cores). A module can be an MEM, CP, or PE,
such as general purpose processor (GPP), digital signal
processor (DSP), application-specific integrated circuits
(ASIC), etc.

B. Sequence of Design Flows

This case study is composed of five flows using dif-
ferent design methods and system models. Figure 19
illustrates a sequence of the flows. Further flows can
be added, such a memory optimization. The heteroge-

105

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. An architecture model for the heterogeneous
multicluster.

neous multicluster architecture implies a wide diversity
in terms of structural, behavioral (functional) and physi-
cal parameters. DFL programs have been developed for
the flows. Therein, the view and step definitions fol-
low the modified λ-chart model. Referring to Figure 19,
this case study addresses input parameters of the design
method, structural design, behavioral design, and phys-
ical design. In the following, the flows are shortly in-
troduced and a DFL program for the sequence of flows
is presented. The rest of this section will focus on the
multicluster dimensioning.

• Parameter Tuning aims at finding the best tool pa-
rameters for a GA solving the IP core mapping
problem [47];

• Multicluster Dimensioning creates a heterogeneous
multicluster architecture by distributing the antic-
ipated application load among clusters and solv-
ing the optimization problem via a genetic algo-
rithm (GA) and mixed-integer linear programming
(MILP) formulation [48];

• IP Core Mapping places IP cores in an 1-ary n-
mesh NoC constrained by the number of modules
at each router. The optimization problem is solved
via a GA and MILP formulation [47];

• NoC Arbitration and Multicluster Load Balancing
aim at finding suitable behavioral schemes from a
selection based on simulation results. NoC Arbi-
tration compares a locally fair with a globally fair
arbitration scheme [49]. In addition, flit-based and
packet-based switching are considered. Multiclus-
ter Load Balancing compares different estimators

of cluster load, such as response time and queue
size, used in the load balancing scheme of an MU.

Figure 19. The sequence of flows in the case study.

In the following, a DFL program for the sequence
of the flows is presented. The flows Parameter Tuning
and Multicluster Load Balancing are used as examples.
The source code of parameter_tuning.dfl, shown in List-
ing 4 in the appendix, gives a deep insight into a flow
developed in DFL. Referring to Listing 3 (lines 2-3),
the #include directive allows to insert predefined DFL
source code as mentioned in the previous section. The
variables tun and bal are declared in one include file
and they represent the predefined flows of the Parame-
ter Tuning and Multicluster Load Balancing. After the
#include, an execution sequence is scheduled by insert-
ing an identifier for each flow in the vector flow_order
(lines 5-9). Thereafter, the vector is iterated (lines 11-42)
and a switch-case statement (lines 17-38) lists the avail-
able flow choices. If a flow matches a case statement, it
is executed and a status message is displayed (lines 40-
41). The example further includes two specific inputs
and vectors, respectively (line 15). The elements of each
vector are used for a DSE purpose, such as searching for
the best configuration. The DSE is declared in the steps.
The input arch_in represents a set of available architec-
ture configurations. The elements in the vector are used
as parameter values for the tun step (line 21) and the bal
step (line 28). In addition, the vector config includes dif-
ferent configurations of the simulation setup for the bal
step in order to select a suitable load balancing scheme
(line 28). The sequence of flows can be further extended
in terms of additional flows, inputs, and, commands.

C. Multicluster Dimensioning

Given a set of target applications, the Multicluster Di-
mensioning flow realizes a provisioning of resources in
the heterogeneous multicluster architecture [48]. The
aim is to generate an appropriate distribution of the ap-
plications onto the clusters containing different types and
numbers of PEs. The E3S Benchmark Suite [50] is

106

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

used as basis of the applied application scenario. E3S
is largely based on data from the Embedded Micropro-
cessor Benchmark Consortium [51]. The included task
graphs describe periodic applications. The 20 applica-
tions range from automotive, industrial, telecommunica-
tion, networking to general-purpose applications. An ap-
plication scenario is built from the concurrently running
task graphs.

An overview of the methodology is illustrated in Fig-
ure 20. Besides optimization of the multicluster archi-
tecture, the flow applies further methods, such as esti-
mation, (architecture) refinement, simulation, and vali-
dation. Referring to Figure 20, the first step is to extract
a parallelism value matrixΦ via parallelism analysis, in-
troduced by the authors in [48]. The matrix is used as
input for the optimization via a GA and MILP formu-
lation. Given the optimized cluster configurations, the
selected IP cores are used to generate an multicluster ar-
chitecture. Then, the dynamic mapping of an application
onto the refined architecture is simulated. Each task of
an application is dynamically mapped onto an IP core at
runtime assuming a point-to-point communication pro-
tocol between the directly connected IP cores. Each task
is executable on at least one IP core of the refined ar-
chitecture ensuring schedulability. Moreover, a task ex-
ecution is prioritized based on its deadline. Afterwards,
the mapping results are validated by an average thread
response time quantifying the system performance. Re-
sponse time defines the time from the request of a thread
until its end including a possible network delay.

A compact flow description, seen in Figure 21, is
realized via the modified λ-chart. The flow focuses on
a suitable computation infrastructure for the heteroge-
neous multicluster architecture. Hence, DSE is limited
to the computation resources view. The modeling and
partitioning step serves as a starting point without any
further purpose. In the provisioning step, a target appli-
cation and the available IP cores are used to generate the
heterogeneous multicluster architecture. As mentioned
before, the optimization problem is solved via a GA and
MILP formulation. The subsequent scheduling step per-
forms an application mapping via simulation. An ac-
cording simulation model performs both a temporal and
spatial mapping of the tasks to the available PEs dynam-
ically at runtime. The results are analyzed in the vali-
dation step. Referring to Figure 21, a loop node incre-
ments a maximum allowed number of PEs in a cluster
(#PEsmax). For the simulations, the value range of the
input constraint is set to 3 ≤ #PEsmax ≤ 7.

In the literature, to the best knowledge of the authors,
multicluster dimensioning was not yet applied for the
E3S Benchmark Suite [50]. In order to compare the re-

Figure 20. Methodology of the Multicluster Dimension-
ing flow.

Figure 21. Overview of the Multicluster Dimensioning
flow via the modified λ-chart.

107

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sults, a single-cluster configuration with nine PEs is pro-
vided as reference in Figure 22. It has also been gener-
ated with the Multicluster Dimensioning flow. Applica-
tion mapping onto the single-cluster architecture results
in over 40 % thread cancelation. Then, using the thread
response time as a metric would be meaningless, hence
the total amount of PEs is considered as a reference.

Figure 22. Single-cluster reference for the Multicluster
Dimensioning flow.

Figure 23 shows the validation results in terms of
a total number of clusters/PEs and (average) thread re-
sponse time. The latter includes the impact of the dy-
namic scheduling scheme. The GA has been used to
solve the multicluster dimensioning problem. All val-
ues have been normalized to the largest occurring value.
The selection of a suitable solution bases on a trade-
off between the conflicting goals of a minimum number
of resources and a minimum thread response time. In
the figure, #PEsmax = 7 (red arrow) is selected as the
best tradeoff. Its application mappings did not produce
aborted threads. It includes a minimum number of clus-
ters of three and PEs of eleven. As mentioned before,
each cluster contains a CP further increasing the number
of resources in the system. In the result, the number of
clusters and PEs do not change for the larger #PEsmax
values. But due to its heuristic nature, the GA produced
the best solution in terms of a thread response time for
#PEsmax = 7. The resulting configuration, depicted in
Figure 24, represents a heterogeneous multicluster so-
lution since all clusters are heterogeneous in terms of PE
types (depicted by different shades of grey). In the Fig-
ure 24, it is shown that the PEs of the PE types AMD
K6-2E+ and IBM PowerPC are marginally used. The
both GPPs are able to execute most of the tasks in the
benchmark. The remaining PEs are well utilized using
the anticipated application load based on the average par-
allelism values. The configuration shows improvement
potential in the cluster C2. A solution would be to ex-

clude the IBM PowerPC from the mapping option table
in order to reduce the number of PEs in the cluster by
one PE. This requires that the PE can be replaced and no
additional PE is necessary to perform the tasks assigned
to the IBM PowerPC. Hence, the total number of PEs
decreases to ten.

Figure 23. Normalized results of the Multicluster Di-
mensioning flow.

Figure 24. Best multicluster configuration of the Multi-
cluster Dimensioning flow.

VIII CONCLUSION AND OPEN TOPICS

The large number of inputs and steps in the flows for
future embedded systems necessitates the development
of a systematic design of design flow (DODF) approach.
Then, the concept of an executable flow allows for ex-
ecuting steps in the same way instructions of a program
are processed. Both contributions of this paper are exem-
plified via a functional exploration of an FIR filter. Af-
terwards, the modeling principles of flows are explained.
The idea of abstracting the flows and a corresponding
derivation of a domain-specific flow are focused. The
concepts are the motivation for a visual and textual de-
sign flow language. The design automation allows for a
development, management, and optimization of flows.

108

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design space exploration is directly considered in the
language design and implementation. Finally, a case
study demonstrates a realistic ESL design of the hetero-
geneous multicluster architecture. The five flows are ar-
ranged in a sequence of flows. Each flow outputs ex-
perimental results representing suitable solutions for the
individual design problems.

In the rest of this paper, a discussion outlines the fu-
ture work. An open topic relates to the further develop-
ment of DFL towards additional language features, such
as name spacing, profiling, etc., allowing for more com-
plex applications. In addition, the language should pro-
vide advanced access and functions to analyze the de-
sign data. It would be beneficial to support more DSE
techniques, such as simulated annealing, hill climbing,
etc. In addition, the flow-based search is an open topic.
The implementation of DFL comprises a full set of lan-
guage features opposed to the visual language, which re-
quires several adjustments, such a support of sub-flows
in a flow. In future, the design flow development should
be extended towards a high-level synthesis for embedded
systems.

VIII APPENDIX: DFL FLOW EXAMPLE

The appendix illustrates the DFL source code for the
Parameter Tuning flow through Listing 4.

REFERENCES

[1] F. Guderian and G. Fettweis, “Integration of design space
exploration into system-level specification exemplified in
the domain of embedded system design,” in Proceed-
ings of International Conference on Advances in Circuits,
Electronics and Micro-electronics (CENICS), Aug. 2012.

[2] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner,
Embedded System Design: Modeling, Synthesis and Ver-
ification. Springer, 2009.

[3] R. Ernst, “Automatisierter entwurf eingebetteter sys-
teme,” at - Automatisierungstechnik, pp. 285–294, jul
1999.

[4] B. Bailey, G. Martin, and A. Piziali, ESL design and
verification: a prescription for electronic system-level
methodology, 1st ed., W. Wolf, Ed. Morgan Kaufmann,
2007.

[5] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specifi-
cation and design of embedded systems. Prentice-Hall,
Inc., 1994.

[6] W. Fornaciari, G. Palermo, V. Zaccaria, F. Castro,
M. Martinez, S. Bocchio, R. Zafalon, P. Avasare, G. Van-
meerbeeck, C. Ykman-Couvreur, M. Wouters, C. Kavka,
L. Onesti, A. Turco, U. Bondi, G. Marianik, H. Posadas,
E. Villar, C. Wu, F. Dongrui, Z. Hao, and T. Shibin,
“Multicube: Multi-objective design space exploration of

multi-core architectures,” in Proceedings of IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), July
2010, pp. 488 –493.

[7] Z. J. Jia, A. Pimentel, M. Thompson, T. Bautista, and
A. Nunez, “Nasa: A generic infrastructure for system-
level mp-soc design space exploration,” in Proceedings
of Embedded Systems for Real-Time Multimedia (ESTI-
Media), Oct 2010, pp. 41 –50.

[8] F. Guderian and G. Fettweis, “The lambda chart: A model
of design abstraction and exploration at system-level,” in
Proceedings of International Conference on Advances in
System Simulation (SIMUL), 2011, pp. 7–12.

[9] R. A. Fisher, The Design of Experiments. Oliver and
Boyd Ltd., Edinburgh, 1935.

[10] G. L. Glegg, The Design of Design, 1st ed. Cambridge
University Press, 1969.

[11] F. Brooks, The Design of Design: Essays from a Com-
puter Scientist. Addison-Wesley, 2010.

[12] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “The
multicluster architecture: reducing cycle time through
partitioning,” in IEEE/ACM International Symposium on
Microarchitecture (Micro), 1997, pp. 149–159.

[13] ITU-T, Recommendation Z.100 (08/02) Specification and
Description Language (SDL), International Telecommu-
nication Union (2002).

[14] S. Traboulsi, F. Bruns, A. Showk, D. Szczesny, S. Hes-
sel, E. Gonzalez, and A. Bilgic, “Sdl/virtual prototype
co-design for rapid architectural exploration of a mobile
phone platform,” in Proceedings of international SDL
conference on design for motes and mobiles, 2009, pp.
239–255.

[15] A. S. Initiative. (26 May 2013) Systemc, osci. [Online].
Available: http://www.systemc.org/

[16] D. D. Gajski, R. Zhu, J. Dömer, A. Gerstlauer, and
S. Zhao, SpecC Specification Language and Methodol-
ogy. Kluwer Academic Publishers, 2000.

[17] C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith,
“Systemcodesigner: automatic design space exploration
and rapid prototyping from behavioral models,” in Pro-
ceedings of the 45th annual Design Automation Confer-
ence, ser. Proceedings of Design Automation Conference
(DAC), 2008, pp. 580–585.

[18] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu,
S. Abdi, and D. D. Gajski, “System-on-chip environ-
ment: a specc-based framework for heterogeneous mpsoc
design,” EURASIP Journal on Embedded Systems, vol.
2008, pp. 5:1–5:13, Jan. 2008.

[19] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong, “Taming het-
erogeneity - the ptolemy approach,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 127–144, jan 2003.

109

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] L. Bonde, C. Dumoulin, and J.-L. Dekeyser, “Metamod-
els and mda transformations for embedded systems.” in
FDL, 2004, pp. 240–252.

[21] D. Mathaikutty, H. Patel, S. Shukla, and A. Jantsch,
“Ewd: A metamodeling driven customizable multi-moc
system modeling framework,” ACM Transactions on
Design Automation of Electronic Systems (TODAES),
vol. 12, no. 3, pp. 33:1–33:43, May 2008.

[22] D. Mathaikutty and S. Shukla, “Mcf: A metamodeling-
based component composition framework–composing
systemc ips for executable system models,” IEEE Trans-
actions on VLSI Systems, vol. 16, no. 7, pp. 792 –805,
july 2008.

[23] “Synopsys Inc.” 26 May 2013. [Online]. Available:
http://www.synopsys.com

[24] “Cadence Design Systems Inc.” 26 May 2013. [Online].
Available: http://www.cadence.com/

[25] “Mentor Graphics Inc.” 26 May 2013. [Online].
Available: http://www.mentor.com/

[26] B. Welch, Practical Programming in Tcl and Tk, 4th ed.
Prentice Hall, 2003.

[27] T. Barnes, “Skill: a cad system extension language,” in
Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE, jun 1990, pp. 266 –271.

[28] Q. Nguyen, CAD Scripting Languages: A collection of
Perl, Ruby,Python,TCL & SKILL scripts. Ramacad Inc.

[29] A. Sangiovanni-Vincentelli, G. Yang, S. Shukla,
D. Mathaikutty, and J. Sztipanovits, “Metamodeling: An
emerging representation paradigm for system-level de-
sign,” Design Test of Computers, IEEE, vol. 26, no. 3,
pp. 54 –69, may-june 2009.

[30] “Definition of model,” 26 May 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Model

[31] M. Stephenson, S. Amarasinghe, M. Martin, and U.-
M. O’Reilly, “Meta optimization: improving compiler
heuristics with machine learning,” in Proceedings of the
ACM SIGPLAN, ser. PLDI ’03. ACM, 2003, pp. 77–90.

[32] National Instruments, “Labview,” 26 May 2013. [Online].
Available: www.ni.com/labview

[33] Mathworks, “Matlab and simulink,” 26 May 2013.
[Online]. Available: http://www.mathworks.com/

[34] G. Berry, “The constructive semantics of pure es-
terel.” 26 May 2013. [Online]. Available: http://www-
sop.inria.fr/esterel.org/

[35] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “Lus-
tre: a declarative language for real-time programming,”
in Proceedings of the 14th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, 1987,
pp. 178–188.

[36] IBM, “Ibm rational rhapsody,” 26
May 2013. [Online]. Available:
http://www.ibm.com/software/awdtools/rhapsody/

[37] D. D. Gajski, J. Peng, A. Gerstlauer, H. Yu, and D. Shin,
“System design methodology and tools,” CECS, UC
Irvine, Technical Report CECS-TR-03-02, January 2003.

[38] S. Borkar, “Thousand core chips: a technology perspec-
tive,” pp. 746–749, 2007.

[39] F. Guderian, Developing a Design Flow for Embedded
Systems. Jörg Vogt Verlag, 2013.

[40] T. Kogel, A. Haverinen, and J. Altis, “Ocp tlm for archi-
tectural modelling,” OCP-IP white-paper, 2005.

[41] M. Gries, “Methods for evaluating and covering the de-
sign space during early design development,” Journal In-
tegration, the VLSI Journal, vol. 38, no. 2, pp. 131–183,
Dec. 2004.

[42] P. Guerrier and A. Greiner, “A generic architecture for on-
chip packet-switched interconnections,” in Proceedings
of Design, Automation, and Test in Europe (DATE), 2000,
pp. 250–256.

[43] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg,
M. Millberg, and D. Lindquist, “Network on a chip: An
architecture for billion transistor era,” in Proceedings of
NorChip, 2000.

[44] G. Sander, “Vcg visualization of compiler graphs,”
26 May 2013. [Online]. Available: http://rw4.cs.uni-
sb.de/ sander/html/gsvcg1.html

[45] V. Paxson, “Fast lexical analyzer generator, lawrence
berkeley laboratory,” 26 May 2013. [Online]. Available:
http://prdownloads.sourceforge.net/flex/flex-2.5.35.tar.gz

[46] “Bison - gnu parser generator,” 26 May 2013. [Online].
Available: http://www.gnu.org/software/bison/

[47] F. Guderian, R. Schaffer, and G. Fettweis,
“Administration- and communication-aware ip core
mapping in scalable multiprocessor system-on-chips
via evolutionary computing,” in Proceedings of IEEE
Congress on Evolutionary Computation (CEC), june
2012, pp. 1–8.

[48] F. Guderian, R. Schaffer, and G. Fettweis, “Dimension-
ing the heterogeneous multicluster architecture via par-
allelism analysis and evolutionary computing,” in Pro-
ceedings of IEEE Congress on Evolutionary Computation
(CEC), june 2012, pp. 1–8.

[49] F. Guderian, E. Fischer, M. Winter, and G. Fettweis, “Fair
rate packet arbitration in network-on-chip,” in Proceed-
ings of SOC Conference (SOCC), sept. 2011, pp. 278 –
283.

[50] R. Dick, “Embedded system synthesis bench-
marks suite,” 26 May 2013. [Online]. Available:
http://ziyang.eecs.umich.edu/∼dickrp/e3s/

[51] EEMBC, “The embedded microprocessor benchmark
consortium,” 26 May 2013. [Online]. Available:
http://www.eembc.org/

110

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

/∗∗∗∗ INCLUDE PREDEFINED FLOWS AND STEPS ∗∗∗∗ /

2 # i n c l u d e " p a r a m e t e r _ t u n i n g . d f l "
i n c l u d e " m u l t i c l u s t e r _ l o a d _ b a l a n c i n g . d f l "

4 /∗∗∗∗ SEQUENCE IDENTIFIER DEFINITION ∗∗∗∗ /

i n t S_TUN = 1 ; i n t S_BAL = 2 ;
6 /∗∗∗∗ DFFINE THE SEQUENCE OF FLOWS ∗∗∗∗ /

v e c t o r < i n t > f l o w _ o r d e r ;
8 f l o w _ o r d e r . push_back (S_TUN) ;

f l o w _ o r d e r . push_back (S_BAL) ;
10 /∗∗∗∗ RUN CONFIGURED FLOWS ∗∗∗∗ /

f o r (i n t i =0; i < f l o w _ o r d e r . s i z e () ; ++ i) {
12 s t r i n g d e s c r i p t i o n ;

Flow e s l D e s i g n F l o w ;
14 /∗∗∗∗ DEFINITION OF FLOW SPECIFIC PARAMETERS

∗∗∗∗ /

v e c t o r < s t r i n g > a r c h _ i n , c o n f i g ;
16 /∗∗∗∗ SELECT FLOW CONFIGURATION ∗∗∗∗ /

s w i t c h (f l o w _ o r d e r . a t (i)) {
18 c a s e S_TUN :

{
20 d e s c r i p t i o n = " P a r a m e t e r Tuning " ;

a r c h _ i n . push_back (" lambda_ tun / a r c h s / ∗ .
xml ") ;

22 e s l D e s i g n F l o w = t u n ;
b r e a k ;

24 }
c a s e S_BAL :

26 {
d e s c r i p t i o n = " M u l t i c l u s t e r Load

B a l a n c i n g " ;
28 a r c h _ i n = g e t F i l e n a m e s (" l ambda_ba l / a r c h s

/ ∗ . xml ") ;
c o n f i g = g e t F i l e n a m e s (" l ambda_ba l /

c o n f i g s / ∗ . xml ") ;
30 e s l D e s i g n F l o w = b a l ;

b r e a k ;
32 }

d e f a u l t :
34 {

p r i n t l n (" Unknown Flow Choice : " +

f l o w _ o r d e r . a t (i)) ;
36 c o n t i n u e ;

}
38 }

/∗∗∗∗ EXECUTE SELECTED FLOW ∗∗∗∗ /

40 p r i n t l n (d e s c r i p t i o n + " i s r u n n i n g . . . ") ;
e x e c u t e (e s l D e s i g n F l o w) ;

42 }

Listing 3. DFL source code for the flow sequence in the
case study prototype.

/∗∗∗∗∗∗ ALLOCATION STEP ∗∗∗∗∗ /

2 Step a l l o c = Step (" A l l o c a t i o n ") ;
v e c t o r < s t r i n g > views ;

4 views . push_back (" Computa t ion R e s o u r c e s ") ;
v iews . push_back (" Data L o g i s t i c R e s o u r c e s ") ;

6 views . push_back (" Resource Management ") ;
a l l o c . add (" View " , v iews) ;

8 a l l o c . add (" E x e c u t i o n " , " A l l o c a t i o n ") ;
a l l o c . add ("− t o o l " , " IPCoreMapping ") ;

10 a l l o c . add (" IPCoreMapping " , " t r u e ") ;
s t r i n g a l l o c _ c o n f i g _ p a r a m = "− ap p_ in

lambda_ tun \ \ a p p s _ s t a t e _ m o d . xml − c o n f i g
lambda_ tun \ \ dfConfigNoC . xml −

a r c h _ i n l a m b d a _ t u n \ \ a r c h _ g e n . xml −
a r c h _ d i r _ o u t l ambda_ tun \ \ a r c h s −
mappings_ in lambda_ tun \ \ m a p p i n g s _ i d e a l . xml
" ;

12 s t r i n g a l l o c _ s t a t i c _ p a r a m = " −A f f i n i t y W e i g h t
0 . 5 − s t a r _ s i z e 2 −rows 3 −columns 3 − r 1 −
s 5 0 " ;

a l l o c . add (" Argument " , a l l o c _ c o n f i g _ p a r a m +

a l l o c _ s t a t i c _ p a r a m) ;
14 /∗∗∗∗∗ INPUT PARAMETER SPACE ∗∗∗∗∗ /

v e c t o r < i n t > ngen = [1 0 0 0 : 1 0 0 0 0 : 1 0 0 0] ;
16 v e c t o r < i n t > p o p s i z e = [5 0 : 2 0 0 : 5 0] ;

v e c t o r < i n t > pmut = [0 . 0 1 : 0 . 1 : 0 . 0 1] ;
18 v e c t o r < i n t > p c r o s s = [0 . 2 : 0 . 4 : 0 . 2] ;

v e c t o r < s t r i n g > s p a c e ;
20 s p a c e . push_back (" ngen ") ;

s p a c e . push_back (" p o p s i z e ") ;
22 s p a c e . push_back (" pmut ") ;

s p a c e . push_back (" p c r o s s ") ;
24 a l l o c . add (" Space " , " s p a c e ") ;

a l l o c . add (" S t r a t e g y " , "ES ") ;
26 /∗∗∗∗∗ PARALLEL EXECUTION ∗∗∗∗∗ /

s t r i n g p a r a l l e l = " t r u e " ;
28 a l l o c . add (" HPCJob " , p a r a l l e l) ;

a l l o c . add (" w o r k D i r e c t o r y " , " \ \ \ \ s e r v e r \ \ hpc ") ;
30 a l l o c . add (" MaxCores " , 15) ;

a l l o c . add (" s c h e d u l e r " , " entmhpc3 ") ;
32 /∗∗∗∗∗ VALIDATION STEP ∗∗∗∗∗ /

Step v a l = Step (" C o m p u t a t i o n _ V a l i d a t i o n ") ;
34 v a l . add (" View " , " Computa t ion R e s o u r c e s ") ;

v a l . add (" E x e c u t i o n " , " V a l i d a t i o n ") ;
36 v a l . add ("− t o o l " , " E v a l u a t i o n ") ;

v a l . add (" O b j e c t i v e " , " min ") ;
38 v a l . add (" M e t r i c " , " GAFi tnes sSco re ") ;

s t r i n g v a l _ c o n f i g _ p a r a m = "−m a p p i n g s _ d i r _ i n
lambda_ tun \ \ maps − e v a l _ o u t lambda_ tun \ \

eva l_mapp ings . xml " ;
40 v a l . add (" Argument " , v a l _ c o n f i g _ p a r a m) ;

/∗∗∗∗∗ FLOW CONSTRUCTION ∗∗∗∗∗ /

42 Flow t u n = Flow (" P a r a m e t e r Tuning ") ;
t u n . add (a l l o c) ;

44 t u n . add (v a l) ;
c o n n e c t (a l l o c , v a l) ;

46 /∗∗∗∗∗ FLOW VISUALIZATION ∗∗∗∗∗ /

t u n . s ave (" vcg " , " p a r a m e t e r _ t u n i n g . vcg ") ;

Listing 4. DFL source code for the Parameter Tuning
flow.

111

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

