
Modeling and Synthesis of mid- and long-term
Future Nanotechnologies for Computer Arithmetic

Circuits
Bruno Kleinert and Dietmar Fey

Chair of Computer Architecture, University of Erlangen-Nürnberg, Germany
{bruno.kleinert,dietmar.fey}@cs.fau.de

Abstract—The paper presents a comparison between two future
nanotechnologies that are suitable for arithmetic computation
and non-volatile memory. An automatic synthesis procedure of
an optical computing design principle onto long-term future
Quantom-dot Cellular Automata (QCA) is presented. The goal of
this work is to provide a contribution for the elimination of the
lack of automatic design procedures for regular build-up QCA
arithmetic circuits. A SystemC model of the mid-term future
memristor technology is presented, to demonstrate the benefit
in space efficiency as a four-value logic memory in a fast signed
digit (SD) adder for a hardware implementation of the coordinate
rotation digital computer (CORDIC) algorithm. A comparison
between QCA and memristor technology presents the advantages
of memristors in multi-value logic environments. In this sense,
this work is a contribution to ease the automatic synthesis and
choice of future nanotechnologies for arithmetic circuits.

Keywords—Nano computing, Memristor computing, Optical
Computing, Quantum-dot Cellular Automata.

I. INTRODUCTION

MODERN computing devices, like processors or
Systems-on-a-Chip are getting more and more

powerful. Further raising clock frequencies but also energy-
saving requirements for embedded and handheld devices,
like smartphones and tablet PCs, push the state-of-the-art
CMOS technology to its limits, concerning data throughput
and manufacturing densities. At the moment of this writing,
classic CMOS technology is close to frequency and density
limit and new computing and memory technologies need to
be developed and researched. A common answer on how
to continue in the post-CMOS era, are nanosystems, that
are predicted to allow higher manufacturing densities, like
self-organization processes, higher clock frequencies and
better energy efficiency [1].

Therefore, we investigate two different promising and com-
plimentary nanotechnologies, each of which offer new pos-
sibilities for the design of arithmetic circuits in the post-
CMOS era. This is, on one side, a mid-term solution, based
on new storing capabilities, namely memristor technology,
which offers to store multiple different values in a single
storage device. This new feature, that is not offered by CMOS
memory devices, can be exploited to speed up arithmetic
circuits based on signed digit logic, which is not efficiently
possible with current technology. On the other side, there

is another new nanotechnology, that is to be considered as
a long-term alternative, the Quantum-dot Cellular Automata
(QCA) [2]. This technology is characterized by the potential
of extremely low-power consuming logic cells, based on single
electrons entailed in quantum-dots and a possible high-dense
arrangement of such cells.

Both technologies lack support by design tools, which
is obvious since they are new technologies. Therefore, we
contribute in this paper for a removal of this lack. To support
an automatic synthesis of arithmetic logic in QCA circuits,
we identified an analogy to another unconventional computing
technology: Symbolic Substitution Logic (SSL) [3]. It comes
from optical computing and shows a lot of similarities concern-
ing regular setup on pixel, respectively QCA cell processing
schemes, that can be used to adapt SSL design techniques to
synthesize QCA circuits. On the other side, we have the much
more mature memristor technology [4] that can be compatibly
manufactured with CMOS circuits. Therefore, we consider it
worthy, to research on modeling techniques on the digital level,
to allow the integrate memristors in an adequate manner to
conventional CMOS circuits. We chose the SystemC modeling
language for that purpose as it offers enough flexibility, to
model the properties of multi-value memristor-based memory
with appropriate data structures.

In this paper, we compare both nanotechnologies in the
context of automatic design patterns and simulation of basic
circuitry to derive building blocks that can be used to build
complex logic circuits. We successfully applied Symbolic
Substitution Logic (SSL) as a regular design pattern on QCA
and present an abstracted prototype model of a memristor for
SystemC digital system simulations. We identified challenges
for the development of hardware design and synthesis tools to
be reusable for the development of memristor-based systems
and later on for QCA technology based systems.

The rest of the paper is organized as follows. In Section II,
we present the basic principles of digital optical computing
based on SSL. In Section III, we present the basic principles
of digital optical computing based on SSL. In Section IV,
we explain nanotechnology information processing based on
QCA. In Section V, we present the mapping process between
SSL rules and QCA cells for the example of one stage of a
bit-serial QCA adder deduced from an SSL adder. Details and
possibilities with memristors are presented and described in
Section VI. In Section VII, we present and explain our abstract

82

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



model of a memristor for digital circuit simulations. Section
IX concludes our findings and points out future work.

II. SYMBOLIC SUBSTITUTION LOGIC

Symbolic Substitution Logic (SSL) was invented by Brenner
et al. [5] in 1986 as a new method for the design of optical
computing circuits. It was exactly tailored to the constraints
and possibilities of a high-dense pixel parallel processing
offered by optical hardware. The idea behind SSL is to search
for a certain binary pattern within a binary pixel image and
to replace the found patterns by another pattern. This substitu-
tion process can be exploited to realize a digital arithmetic
in a highly parallel manner. The key features of SSL are
characterized by their strong regularity concerning the pixel
processing and the focusing on operating on elementary binary
information cells, namely pixels, arranged in a grid structure.

In particular, this situation is also given in Quantum-dot
Cellular Automata (QCA) [6]. QCA is one of the promising
nanotechnologies besides carbon nanotube field effect transis-
tors and further nanodevice technologies based on tunneling
effects that are considered as candidates for a new device
technique to realize logic circuitry in the post CMOS area.
Analogue to an optical computing scheme like SSL QCA
are characterized by a highly dense implementation of binary
information cells and a regular information flow. Whereas
the elementary binary information cell in SSL was a pixel,
which is either bright or dark, the binary information cell in
QCA corresponds to two electrons, which are arranged in two
distinguishable directions in a four dot quantum cell.

In literature, a really large number of proposals for QCA
arithmetic circuits can be found, which have been developed
largely manually (e.g., [7], [8]). However, there is still a lack
of design methodologies that can be used for an automatic
design process of arithmetic circuits based on QCA. There is
an exception presented in [9], which proposes a methodology
how to convert Boolean sum-of-products in an algorithmic way
to QCA logic, in particular to QCA majority gates, which is
the basic gate structure in QCA (see Section IV). However,
most of the QCA arithmetic circuits are still developed in a
time consuming try-and-error process by hand.

On the other side there was a lot of research in the 1980s
and 1990s in the Optical Computing community on SSL (e.g.,
[10], [3]), which brought numerous proposals for digital optical
computing circuits based on the basic SSL logic building
block, the so-called SSL rule (see Section III). Due to this
fact and the similarities given in the kind how elementary
information is handled in QCA and SSL, we present in the
following sections on-going research on developing strategies
how SSL rules can be used for an automatic mapping process
onto QCA circuits, which can be used in future design tools.

III. OPTICAL COMPUTING WITH SSL
SSL [10], [3] has drawn a lot of attention during the 1980s

and 1990s as a method for exploiting the space invariance
of regular optical imaging systems for the set-up of digital
optical hardware. The base of information processing in an
SSL is the implementation of a so-called SSL rule. An SSL

N
O
R

N
O
R

SSL rule

LHS RHS

recognition replacement

reference
point

Fig. 1. Principle of SSL

detector

in
p
u
t im

a
g
e

imaging
optics

beam
splitter

mirrors

Fig. 2. Implementation of SSL with optical hardware

rule depicts a pattern substitution process and consists of two
parts, a left-hand side (LHS) and a right-hand side (RHS)
pattern (see Figure 1). By a corresponding optical hardware
each occurrence of the LHS pattern is searched within a binary
image and is replaced by the RHS pattern. Figure 2 shows
schematically a possible optical set-up for the search process
as it was frequently realized in SSL hardware demonstrators.
The principle processing works as follows.

For each switched-off pixel, i.e., a black pixel, in the LHS
of an SSL rule a copy of the image is produced, e.g., by a
beam splitter. Furthermore, a reference point is defined within
the LHS pattern, e.g., the lower left corner pixel. Each of the
copies is reflected, e.g., by tilted mirrors, in such a way that
the copies are superimposed and pixels, which have the same
relative position to each other as defined in the LHS pattern,
meet at the same location.

For the example of Figure 1, this means that one copy of the
image is not tilted since it corresponds to the set pixel in the
LHS pattern, which is already localed in the reference point.
Whereas the other copy is shifted by the tilted mirror, such
that each pixel in the copy of the input image is shifted one
pixel position down and left. At each position, where two dark
pixels meet, an occurrence is given of the LHS pattern in the
original input image. The superimposed image is mapped onto
an array of optical threshold detectors. Each detector operates
on one pixel of the superimposed image as a NOR device.
The detector output is used for switching on a LED or laser
diode. As a result, one gets a high light intensity at each
pixel position, which corresponds to the occurrence of the LHS
search pattern in the input image. We denote this new image
as a detector output image.

83

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



s
p
l
i
t

j
o
i
n

0101
+1001

1110

= 0

= 1

sum
carry

0
0

0
0

0
1

1
0

1
0

1
0

1
1

0
1

A
B

Fig. 3. Realization of a ripple carry adder with SSL. For reasons of improved
robustness a dual rail coding is used for 0 and 1.

The recognition step is followed by a replacement step,
which works analogue to the recognition step but in opposite
direction. For each switched-on pixel in the RHS pattern a
copy of the detector output image is again produced by optical
beam splitter hardware in such a way that the copies are shifted
towards the switched-on pixel in the RHS pattern. This means
for the example of Figure 1 that two copies from the detected
output image are generated and each of the copies are shifted
one pixel up resp. right before superimposing the copies. Once
again, the superimposed image is mapped onto a pixel-by-
pixel operating NOR detector and LED/laser diode array. The
reproduced output is a new image, in which each occurrence
of the LHS pattern in the original input image is substituted
by the corresponding RHS pattern.

Implementing appropriate SSL rules by splitting the input
image into multiple optical recognition and replacement paths,
which are applied simultaneously and joined at the end, have
been used for the proposing and realizing of digital optical
computer arithmetic circuits. Figure 3 shows this schematically
for an optical ripple carry adder based on SSL. A large number
of further arithmetic circuits using SSL or similar techniques
like optical shadow logic [11] have been published in the past
for optical adders, multipliers or image processing tasks. All
these proposals can be used to transfer them to QCA due to
the similarities between SSL and QCA we outlined above.

IV. NANOCOMPUTING WITH QCA

The elementary information cell in a QCA is a kind of
container that groups a few quantum dots, at which charged
particles, i.e., electrons, are fixed (see Figure 4). Mostly a QCA
cell consists of four dots, in which two electrons are grouped
in opposite order. Consequently, the cell knows exactly two
polarization adjustments, which are assigned to the binary
values 0 or 1. Due to quantum mechanical rules it is possible
that a cell can switch between the two states by tunneling of

0 1

type 1

type 2

Fig. 4. Binary coding in QCA cells. White circles correspond to empty
quantum-dots, gray ones represent dots occupied with electrons.

in outinverter
3-input

majority gate in1 out

in2

in3

QCA wire

Fig. 5. QCA logic building blocks

the charged particles between the dots. Concerning the two
different particle arrangements one distinguishes between type
1 and type 2 cells (see Figure 4).

A QCA cell serves not only as an information storage
cell but also as a transport cell since neighboring QCA cells
interchange by Coulomb forces. This means that a cell, which
is fixed to a certain polarization, transfers its state to a
neighboring cell because this arrangement shows the minimum
electrical field energy between neighboring particles of the
same charge. Consequently, a QCA wire can be built up, in
which information is transported not by an electric current
flow but by subsequent reordering of the quantum states in
neighboring QCA cells. Due to the fact that no current is
flowing and due to the small dimensions of a QCA cell,
this technology offers very low power dissipation. Besides
information transport one also needs logical gates to realize
computing circuits. QCA logic utilizes an inverter and a so-
called majority gate for this purpose. Figure 5 shows an
inverter built with cells of type 1. In both circuits, the output
cell adopts the opposite state of the input cell state, again due to
Coulomb forces. In contrast to CMOS circuits, QCA gate logic
is not based on the switching of parallel and serial connected
transistors but on the states of the cells surrounding a certain
QCA cell, serving as output cell of the gate. The majority of
the states in these surrounding cells determines the state of
the output cell. In Figure 5, a 3-input majority QCA gate is
shown. The output cell adopts the same state, which at least is
stored in two of the three neighboring cells. By fixing one of
the inputs to a certain polarization 2-input AND, OR, NAND
and NOR gates can be built.

Based on these three building blocks, QCA wire, QCA
inverter and QCA majority gate, various proposals exist in
literature for different typical digital circuits like adders,
multipliers, shifters, multiplexers and registers, which have
been found in a more or less try-and-error procedure. A very
impressive collection of computer arithmetic QCA adder and
multiplier circuits can be found in the work made by Hänninen
[12]. The solutions proposed in this work are distinguished by
their regular set-up that helps to realize QCA cells in the future.

84

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



This is an important feature since QCA technology has a long-
term perspective concerning its realization with real hardware.

Also design tools, which support the automatic synthesis of
regular built-up QCA circuits, will encourage and give hints
to device technologists how QCA technology should develop
in the best way. In this sense, we propose to use optical
computing SSL design procedure as a design entry point for
the systematic design of nanocomputing QCA logic. How this
mapping can be done is presented in the next section.

V. MAPPING SSL RULES TO QCA LOGIC

The procedure to map SSL logic to a regular built QCA
layout is subdivided in three steps. These steps correspond (i)
to the core of the logic circuitry, namely the synthesis of an
SSL rule into an equivalent QCA circuit, (ii) the realization
of the splitting process, because we want to realize systems,
which apply multiple SSL rules simultaneously, and (iii) the
realization of the join at the end of the recognition-substitution
stages. We will demonstrate the generic approach for these
mapping steps in the following subsections without loss of
generality on the example of the ripple carry adder from
Figure 3. Furthermore, we will use this example also to show
generic applicable optimization measures for mapping SSL
rules, which saves otherwise necessary QCA logic resources.

A. Mapping the split stage to QCA cells
As shown in Figure 3, the applying of multiple SSL rules

starts with a split function. The mapping of the split stage onto
QCA logic can be done in a straightforward manner. Producing
copies of input cells can be simply done with branches of QCA
wires running orthogonally to the input QCA wires. If one
has to copy more than one input, as for example for the LHS
rules in a ripple carry adder, one has to observe that crossing
branches can interchange without conflicts. This can be done
by crossing lines between QCA cells of type 1 and type 2. To
connect both types of cells, a QCA cell has to be shifted by
half height of a cell (see Figure 6, part split).

B. Mapping SSL rules to QCA cells
The mapping of SSL rules onto equivalent QCA layouts is

divided in two substeps, (i) the mapping of the recognition step
and (ii) the mapping of the replacement step. The recognition
of an LHS of an SSL rule is mapped to an equivalent QCA
majority gate realizing an appropriate AND gate. The number
of inputs of this AND gate depends on the number of values
in the LHS. For example, the number of relevant inputs for the
rules of the ripple carry adder is two. This means that a three-
input QCA majority gate can be used, if one of the three inputs
is fixed to 0 (see Figure 6). For rules with a higher number of
input values an appropriate majority AND gate has to be used.
A lot of solutions for QCA gates with more than three inputs
can be found in literature, e.g., in [13] an optimized solution
for a five-input majority gates is presented. If the value in the
LHS is 0, then an inverter has to be included in the path of
QCA cells that leads the input value corresponding to the LHS
entry to the input of majority gates. The output of the majority

Input A Input B

fixed to 0

fixed to 0

fixed 
to 1

fixed to 0
Output

sum
Output
carry

Split

recognition - rule 3

re
p
la

ce
m

e
n
t - 

ru
le

 3

1
1

0
1

rule 3

A
B

S
C

recognition - rule 2

1
0

1
0

rule 2

A
B

S
C

recognition - rule 1

0
1

1
0

rule 1

A
B

S
C

re
p
la

ce
m

e
n
t - 

ru
le

 2
re

p
la

ce
m

e
n
t - 

ru
le

 1

wired-OR bus 
to realize Join 

Fig. 6. Result of the mapping process of SSL logic onto QCA logic for
the ripple carry adder. To synchronize the changing of QCA cell states’ four
different clock zones have to be defined. In the figure these four clock zones
are marked with a different gray level in QCA cells. Electrons are not shown
in this figure.

cell is exactly 1, if the LHS pattern is detected. In this sense
the majority gate works analogous to the photo detector NOR
device used in SSL (see Figure 1).

The following explanations correspond to the replacement
stage in SSL. If the output of the majority gate is 0, then 0’s
are produced for all 1 values in the RHS of the corresponding
SSL rule. If the output of the majority gate is 1, i.e., the LHS
pattern was detected, a 1 is produced for each value 1 given
in the RHS by an additional majority gate operating as an OR
gate (see Figure 6, majority gate in replacement part with one
input fixed to 1). If the RHS is 0 no majority gate is necessary
since we will work with wired-OR buses in the join stage that
carry already the 0 value, which is possibly inserted by the
replacement stage located at the lowest position in the wired-
OR bus (see rule 2 in Figure 6).

C. Mapping the join stage to QCA cells
As just mentioned the principle of the join stage in SSL

is the realization of an optical wired-OR. The same idea
was pursued for the equivalent QCA logic. If a 1 has to be
inserted in the wire due to a relevant 1 from an RHS, which is
output from a replacement stage, this can be done with 3-input
majority gates with one input fixed to 1 (see Figure 6, wired-
OR bus in block rules 1). In this case, a 1 is only injected in the
wire if the output of the attached recognition stage to the wire
is 1 or the third input coming from the wire is already 1. This
functioning corresponds exactly to a wired-OR bus. A logical

85

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1 is injected if an LHS was found and a 1 in the corresponding
output of the RHS is given. If the detected rule requires a 0 in
the RHS this is automatically given by the fixed injection of a
0 in the QCA wire by the lowest replacement stage attached to
the wired-OR bus. If the rules are not in conflict, i.e., only the
LHS of exactly one rule was found, then only the output of
the RHS belonging to the LHS is injected. This can be either
a 0 or a 1. If it is a 0 an explicit injection is not necessary.
This causes that rules, which have only 0’s in the RHS, must
not be implemented if it is secure that exactly one of the rules
is always valid. This is given for the case of the ripple carry
adder. Therefore, the rule corresponding to (A,B)=(0,0) has not
to be implemented with corresponding QCA cells. If it is the
only rule that holds, then the corresponding 0’s in the output
are already on the QCA wires. Utilizing this a priori knowledge
the requirements to QCA hardware can be optimized during
the synthesis process from SSL logic to QCA logic.

VI. THE MEMRISTOR

In 1971, [14] stated that there must exist a fourth basic
circuit element, that he called the memristor. He derived the
word memristor from memory + resistor = memristor, a two-
connectors circuit element, that works as an adjustable resistor.
The resistance value is “memorized” by memristors without
the need of energy.

Though this element was predicted to exist in 1971, several
years passed by until an operational memristor was success-
fully built for the first time in the HP laboratories [4]. HP is
the current leader in building nanoscale 3D layered memristors
[15] and is still ongoing in research about this basic circuit
element. At the moment of this writing, literature states that
memristors can be built in size of down to 3nm2, which
theoretically gives very promising densities of non-volatile
memory. Industry is currently working on the manufacturing
of memristor-based memory chips as drop-in replacement for
flash memory.

Not only the resistance of a memristor can be used to control
the flow of a current, the resistance value can be used to store
information. When certain information is mapped to a certain
resistance value, information can be stored in memristors, by
setting a memristor to this resistance. The memristor then
keeps this resistance value, i.e., the information, until is is
later “read-out”. Reading out means to find out the current
resistance value, to which the memristor was previously set.
Due to the mapping, the stored information can be obtained
from the resistance of a memristor.

E.g., mapping 0 to the lowest possible resistance and 1 to
the highest possible resistance, binary information, as known
from current computers, can be stored. As it is possible to set
a memristor to an arbitrary resistance value, not only binary
information can be stored, but also multi-value information or
encodings. E.g., when the range of resistance from lowest to
highest resistance is divided into 10 specific resistance values,
the values 0 to 9 could be stored.

Another area in which memristors can be used, are pro-
grammable nano-scaled crossbars. Crossings of nanowires,
e.g., assembled from carbon nanotubes, can be connected

or disconnected in a switchable manner by the layered 3D
memristors from HP [15] with connectors on the bottom and
at the top of each memristor.

Not only switchable connections or non-volatile memory
can be build from memristors, but also computing, by building
basic gates, is possible. [16] describes how the very basic, in
CMOS technology widely used, NAND gate can be copied
with a circuit build from three memristors. As for QCA, this
also means for memristor-based computers, that computing
unit and memory meld together.

VII. MEMRISTOR-BASED CIRCUIT SIMULATION

Newly developed circuits are typically simulated before
expensive prototypes are produced. This should also apply to
future circuits that are based on memristors. Ideally, the use of
new technology should be completely transparent for hardware
developers. Though, it is possible to build arithmetic circuits,
computation logic and memory from memristors in theory,
their characteristics affect the design process of the whole
system. I.e., they can not transparently replace transistors in
existing circuits.

To simulate memristors in certain circuits, we used the
SystemC hardware modeling language. We chose this language
to analyze simulations of digital systems that make use of
memristors and its challenges. SystemC has the advantage to
be quick and easy to use and does not require a large toolchain
assembled from a variety of different software tools.

A. Abstraction of analogue behavior in digital simulators
As presented in the previous section, we use SystemC to

develop simulations of digital systems that are among others
build from memristors. In our first step, we use memristors as
a register.

Without going too deep into detail, which can be found
in other literature (see [17]), we will only explain those
characteristics of memristors in this paper, that are relevant
to our research. The resistance of a memristor is set by (i) a
current flow through the memristor, (ii) the time interval of
this current flow and (iii) the polarization of the current. I.e., a
higher current and a longer time interval of that current change
the resistance in a greater amount in contrast to a low current
for a short time interval.

To “read out” the resistance value of a memristor, [17]
suggests to apply an alternating-current to the memristor. An
alternating-current has the advantage that the resistance of the
memristor does not get changed, disregarding a small delta, as
the alternating-current, flowing through the memristor changes
its resistance value up and down by approximately the same
amount. By the help of comparators the current resistance
value of a memristor can be obtained.

As we want to work with digital simulators, this analogue
behavior has to be abstracted to model a memristor. As
mentioned above the write procedure needs a current and
time. A current can not be modeled in any way in a digital
simulation, as a result we propose to drop it from the model.
Though, the time interval in which current has to flow through
the memristor can be modeled. We propose to require time

86

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



intervals in the memristor model from literature and use the
clock frequency of the simulation as a reference. We propose
that the input value has to be applied to the memristor, i.e., its
model, for exactly as many clock cycles as necessary. If the
input signal is applied for a shorter or longer amount of time,
the memristor should store a lower or higher resistance value,
as it would happen in reality.

Another challenge that memristors introduce, is that they
should not be “blindly” set into a new state of resistance as
this could burn the device if a high current flows through
the memristor when it is in a low resistance state. This
is especially important for newly produced memristors, as
their initial resistance value is almost unpredictable, due to
tolerances during manufacturing. For simulated memristors
we suggest to set randomly picked resistance values to them
during the initialization phase at the beginning of a simulation
run. By doing so the unpredictable state of a new memristor
can be simulated.

Furthermore, we suggest to use the simulators debug ca-
pabilities to display warnings about erroneous behavior to
the user, to point out errors as obvious as possible. As the
complete field of applications for which memristors can be
used are unlikely to be ever known, simulators should not
decide whether an access to a memristor at a certain point
in time should lead to an error or not.

B. Impact on real circuits
In Section VII, we propose an analogue read-out circuit,

to obtain the current resistance value of a memristor. This
analogue circuit is hidden, i.e., not visible to the designer, in a
high level hardware description language, like VHDL, Verilog
or SystemC. When a hardware description is synthesized, these
analogue read-out circuits have to be added implicitly to the
later real hardware, which, of course, has extra costs of energy
consumption of these chips and the required extra space on
them.

We propose that hardware development software and ana-
lyzation and debugging tools have to be made aware of the
extra added read-out circuits, otherwise the analogue circuits
have to be added in a by-hand process which is typically
erroneous. This gives hardware developers the ability to better
understand and analyze memristor-based circuits before first
prototype samples of chips are produced.

C. Memristors as memory in four-value logic
Multi-value logic memory is a promising field to build space

efficient memory arrays. To demonstrate a possible use case for
multi-value, i.e., four-value memory in our case demonstration,
we chose the CORDIC [18] algorithm as an example. For
this algorithm, a successive multiplicity of additions have to
be computed. To obtain high performance, we do not use
a binary representation of addends, but a signed digit (SD)
logic representation, for fast signed digit adders. The high
performance is achieved as no carry bits have to be computed
in SD adders. Though the conversion from a number in SD rep-
resentation to binary representation is expensive, this will not
affect the overall performance of the CORDIC implementation

TABLE I. BINARY ENCODING OF SD DIGITS

SD Binary
-1 10
0 00
0 11
1 01

-+ -+ -+ -+
00 01 11 10

positive negative
0110 0011

 0110 (6)
-0011 (3)
 0011 (3)

Fig. 7. Conversion from an SD number into a binary or decimal number.

TABLE II. MAPPING OF 4-VALUE LOGIC

resistance SD Binary
lowest -1 10
low 0 00
high 0 11
highest 1 01

significantly, as the repeated additions outweigh the expensive
conversion.

In SD logic each digit can take the values -1, 0, and 1. These
digits are assembled of a positive and a negative weight. To
obtain the decimal value of a SD number, the negative weight
has to be subtracted from the positive one. As a result, a value
of 0 can be composed from 0 negative and 0 positve weight,
or from 1 negative and 1 positive weight. I.e., in SD logic
exactly 4 values or states are necessary to store an SD digit.
To encode one SD digit in binary, two bits have to be used
to encode its value. Table I depicts the binary encoding of
SD digits. The higher bit stores the negative weight, the lower
bit stores the positive weight. To convert an SD number into
binary or decimal representation, the negative weight has to
be subtracted from the positive weight of the whole number
as shown in Figure 7.

Memristors can be set to an arbitrary resistance value. We
take advantage of this capability and define four resistance
values for our case demonstration as follows:

• lowest resistance
• low resistance
• high resistance
• highest resistance

We map these for states to the SD values -1, 0 and 1.
Of course the difference in resistance between each pair of
encodings should be large enough to avoid faulty read-out re-
sults, that would lead to a misinterpretation. The four mappings
are necessary, because there are two valid representations of
the value 0 in SD logic, which can be expressed in a binary
encoding as 00 and 11. As a result a possible mapping is shown
in Table II.

87

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



+ + -

-+

PPM

x_p y_p x_m

d e

Fig. 8. PPM cell with its three input and two outputs connectors.

+ + -

-+

PPM
+ + -

-+

PPM
+ + -

-+

PPM
+ + -

-+

PPM

+ + -

-+

PPM
+ + -

-+

PPM
+ + -

-+

PPM
+ + -

-+

PPM

x3_p y3_p x3_m x2_p y2_p x2_m x1_p y1_p x1_m x0_p y0_p x0_m
y0_my1_my2_my3_m

0

0

s0_ms0_ps1_ms1_ps2_ms2_ps3_ms3_ps4_ms4_p

Fig. 9. 4 digit SD adder built from PPM cells.

D. SystemC memristor implementation
In this section, we describe our implementation in SystemC

of the necessary modules (circuit components) to evaluate the
use of memristors as memory or registers in fast SD adders.
This adder should later be used in a simulation for a DSP that
implements the CORDIC algorithm to compute trigonometric
functions.

For our case demonstration, we implemented the SD adder
as presented in [19]. This SD adder is assembled from so-
called Plus-Plus-Minus (PPM) cells and its advantage is, that
addends can be SD numbers, but also regular binary numbers
with 0 as negative weight in all digits. A PPM cell is depicted
in Figure 8. Its three inputs are from left to right the positive
weight of the addend x (x p), the positive weight of the addend
y (y p) and the negative weight of the addend x (x m). The
outputs are a positive weight d and a negative weight e,
whereas d is computed by

d = x p · y p ∨ x p · x̄ n ∨ y p · x̄ n

and e is
e = x p⊕ y p⊕ x n

(see also [19]).
The whole SD adder is assembled from two PPM cells

per digit, e.g., for a four digit SD adder eight PPM cells are
necessary. To perform the SD adding, the PPM cells have to
be connected as shown in Figure 9 to build a 4 digit input SD
adder (see also [19]).

Since the memristor is an analogue circuit element, we can
not implement it in classic SystemC directly, and, as already
mentioned in Section VII-A, it is not of interest to our research
to obtain an accurate analogue simulation model, but a digital
equivalent.

We implemented the memristor as a SystemC module. Its
interface has three input signals and one output signal, whereas
the input signals are a clock signal clock, a boolean input signal
w en to signal a “write” access and an input signal in of type

uint8 t that characterizes the resistance value to be stored in
the memristor. Internally the memristor module stores its state
in a private member state of type uint8 t. Another private
member is a boolean lock variable lock, its use is described
later in this section.

At first glance the clock input signal might seem unneces-
sary as the memristor is not a naturally clocked circuit element,
but as mentioned in Section VII-A, an input value should only
be stored correctly if the input that is to be stored is constantly
available for a certain time interval. Otherwise, the memristor
should not store the resistance value or a different one from
what was set at the input. The clock is used to trigger an
incremental counter on each rising clock edge. It allows the
memristor module to observe if the input signal is available
unchanged for the correct time interval, that corresponds to the
value to be stored, i.e., for the correct number of clock cycles.

Our SystemC model of a memristor implements an endless
loop in a SystemC thread, which immediately blocks and gets
woken up every rising clock edge. The loop checks if the
write signal is set to true and if the lock is free. If that is
the case the lock is taken and the loop blocks for 5ns with
the SystemC wait() instruction. After waiting for 5ns the input
value is copied into the internal state variable state and the lock
is released so that the resistance value of the memristor can
be changed again. As we propose in Section VII-A, a warning
is displayed during the SystemC simulation, if the input is
changed while waiting for 5ns or if the write signal gets set
to false.

For a sole digital system, it is sufficient to use type bool,
sc bit or sc logic for the input signal of the memristor.
Though, we want our model to be able to store four-value logic
but also very fast simulation for very large memristor-based
systems in the future. The SystemC documentation states, that
users should use C++ data types, where possible if one wants
to achieve high speed simulations. For that reason, we chose
uint8 t to store more than only binary information and to use
a C++ primitive data type for good simulation performance in
the future.

The choice of the input data type affects the way, how
to use our memristor model in circuit models. A typical
hardware description use boolean or sc logic types that store
and transport binary information. To attach our model to such a
circuit a transformation between digital logic and the memris-
tor inputs and outputs has to be performed. For this purpose we
implemented two connector modules to fulfill this requirement
for four-value logic: A conversion module that takes two-wire
binary input and is to be connected to the memristor input,
and a module that is connected to a memristor output and
transforms it to two-wire binary value. The transformation
modules have no memristor as a private member. We expect
the user to connect memristor and transformation modules by
herself, which leaves the option to use single transformation
modules for a cluster of memristors and place multiplexers
between the input and output ports of memristor modules. This
causes an extra effort to the user, but we considered it more
worth to save redundant conversion modules in situations when
they could be reused to access a cluster of memristors.

In our model, the conversion modules model the analogue

88

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Memristor
Module

bin_to_four
Module

four_to_bin
Module

clock

inw_en

out out

out r_en

Users' circuit

w_en

Fig. 10. Schematic depiction how memristor and conversion modules are to
be connected.

read-out and write-in circuits as there have to be in a real chip
that is based on memristors (see VII-A). Figure 10 depicts
schematically the architecture, how to use our memristor
model and the transformation modules in users’ hardware
descriptions. Data flow directions are pointed out with arrows.
From the user’s circuit, binary input in, data is stored in the
memristor, when the write enable signal w en is set to high.
Then the data is transformed and output via the left out signal
into four-value logic and stored in the memristor and the write
enable input w en of the memristor module is set to high to
signal the write procedure. To read the stored value from the
memristor, the user has to set the read enable input signal r en
to high and the four to bin module will output the value stored
in the memristor binary encoded on the very right output signal
out.

Above we presented all necessary modules to build the fast
SD adder with a four-value register for successive additions
for the CORDIC algorithm. The prototype model we have
implemented in SystemC is depicted in Figure 11. Both
addends x and y can be in SD representation and in binary
representation with negative weights set to 0. The multiplexer
MUX selects between the second addend or using a previously
calculated sum sum, stored in the memristor register. The SD
sum is computed by the PPM cells and available at the output
sum. When the sum is valid at the output of the SD adder, it
is also stored in the memristor register and can be reused as
addend at a later time.

E. Memristor simulation results

We present our results of the memristor and the fast SD
adder simulation in this section. By the help of a test bench
that we implemented in SystemC, we verified our memristor
SystemC model to be correct. To do so, we wrote a test bench
that attempted to store all possible values in the memristor
module, read it back and compared it to the previously stored
input. In order to test faulty accesses, we interrupted the input
to the memristor module during the write-in phase and verified
that the stored value differed from the input data.

Furthermore, we proved the SD adder module to be correct.
This implies that we also proved the PPM cell modules to
be correct while verifying the complete SD adder. In order to
verify the SD adder, we had it perform additions of all possible
input permutations to verify that the output sum corresponds
to the correct addition.

+ + -

-+

PPM
+ + -

-+

PPM
+ + -

-+

PPM
+ + -

-+

PPM

+ + -

-+

PPM
+ + -

-+

PPM
+ + -

-+

PPM
+ + -

-+

PPM

x3_p y3_p x3_m x2_p y2_p x2_m x1_p y1_p x1_m x0_p y0_p x0_m
y0_my1_my2_my3_m

0

0

s0_ms0_ps1_ms1_ps2_ms2_ps3_ms3_ps4_ms4_p

MUX

bin_to_four
Module

Memristor
Module

four_to_bin
Module

bin_to_four
Module

bin_to_four
Module

bin_to_four
Module

s0

s1

s2

s3

Memristor
Module

Memristor
Module

Memristor
Module

four_to_bin
Module

four_to_bin
Module

four_to_bin
Module

out0

out1

out2

out3

out0

out1

out2

out3

x y

SD adder

Memristor register

sum

Fig. 11. Architecture of our fast SD adder with memristor register for
CORDIC.

Due to the connections between the output ports d and e
of the top PPM cells to the input ports x p and x n of the
bottom PPM cells, a delay of one clock cycle is introduced.
This results from the limitation that ports can not be connected
directly or like wires, but are always transformed into Flip-
Flops that present the input value to its output connector with
a delay of one clock cycle.

Concerning the write access performance to the memristor it
depends on the simulated clock speed, how many clock cycles
are necessary to finish the successful storing of the value.
In our simulation, we used the standard clock frequency of
SystemC 2.3.0 that is 1GHz, i.e., a period of 1ns. As a result,
a write access to the memristor model lead to a delay of five
clock cycles in our simulation.

Both transformation modules, as presented in Section VII-D,
added a delay of one clock cycle, as information has to pass
through one stage of Flip-Flops that are connected to the output
ports.

For both data paths through our SD adder with memristor
registers, the data throughput is delayed only by Flip-Flops.
The worst case were two additions, in which the intermediate
sum was stored in the memristors an reused for a second
addition. In that case, the overall delay, until the final result
was displayed at the output sum (see Figure 11), composed as
follows: During the first addition 1 clock cycle delay appears
due to Flip-Flops in the interconnection between the PPM
cells and a 2nd delay until the final computation result is
displayed at the sum output ports. During the conversion from
SD to four-value logic, a delay appeared in the bin to four
transformation module and another 5 clock cycles delay until
data is stored in the memristors. Information was written
in parallel to the memristors, so the delay always remains

89

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



constant at 5 clock cycles, unless the frequency of the clock is
not changed. When the data is read out from the memristors,
1 clock cycle delay is added in the four to bin transformation
module. During the second addition, when an addend was
added to the intermediate sum, the delay was limited to the
same 2 clock cycles, exactly as during the previous addition.
All in all, the clock cycles sumed up to 11 clock cycles delay
in our worst case scenario.

Since we used the standard clock frequency of SystemC
2.3.0, 1ns was equivalent to one clock cycle. This allowed
us to use the SystemC built-in function sc time stamp() to
retrieve the delayed clock cycles.

VIII. COMPARISON OF QCA AND MEMRISTOR
TECHNOLOGY

While both technologies are two very differing approaches
to overcome the CMOS limitations, we identified overlapping
similarities in both technologies. In this section, we will
present our findings.

Though the memristor works by the transport of electrons
and QCA relies on the propagation of Coloumb force impulses
between electrons, both devices are stateful. While the memris-
tor can theoretically be put into an infinite number of different
states, i.e., it can be set to an arbitrary resistance, it is important
to put it into a well-chosen limited number of states, e.g., in a
digital system to low resistance for logic 0 and high resistance
for logic 1. By its nature, the memristor will keep its resistance,
to which it was previously set, without the need of energy. It
will remain in this state until it is changed to another resistance.

Regarding QCA, which needs a clocked electric field as
a clock signal [20], QCA cells keep their state, i.e., the
arrangement of the electrons in the potential wells, without the
need of energy. This is a common ground between QCA and
memristor technology. Regarding the state-of-the-art efforts
for current CMOS based computers, to put them into an
energy-saving “sleep” state, we identify the possibility of
future QCA- or memristor-based computers, this capability is
automatically available by the underlying technology. QCA
cells and memristors remain in their state without the need
of energy. I.e., a computer based only on QCA or memristor
technology is put into an energy saving state as soon as the
power supply is disconnected. As soon as it is reconnected to
its power supply it will continue computation at the very same
point when it was disconnected from power.

Simulations of QCA systems predict very high clock fre-
quencies, up to THz scale, while memristors limit data
throughput by the necessary time interval to put the memristor
in a specific resistance. This is an advantage of QCA over
memristors. On the other hand, the memristor can be used
in multi-value logic environments, whereas QCA can only
compute and store binary information. In our SD adder model,
the memristor is used to store four-value logic information,
which is an advantage over a binary memmory. The four-value
logic allows to reduce the number of memory devices to the
half, in contrast to binary memory. In larger systems than our
model, four-value memristor memory can improve the space
efficiency on a chip enormous.

IX. CONCLUSION

We presented a generic design procedure for mapping digital
optical computing circuits based on SSL onto nanocomput-
ing QCA circuits. This will form both the base for future
design tools for compact, regular build-up QCA circuits and
supports the direct mapping of optical computing circuits to
QCA technology. For example, we intend to map an integer
arithmetic unit based on SSL, designed by us [21], onto a
complete QCA integer unit. In addition, we have to verify the
schematically shown QCA circuit of Figure 6 by simulation
with the QCADesigner tool [2], the standard for simulating
QCA layouts. Furthermore, the insertion of an exact clocking
scheme for the QCA cells has to be considered in the synthesis
procedure. Nevertheless, the basic step for an automatic syn-
thesis of SSL arithmetic circuits to QCA layouts is established.

Furthermore, we presented our developed SystemC model
of a memristor and the characteristics of the model for a digital
circuit simulation, which we derived from its analogue behav-
ior. We have shown that the memristor can work as a four-
value logic memory in a fast SD adder circuit, which is our
prototype of a building-block for a future implementation of a
CORDIC implementation. Though the prototype needs some
further improvement, we also demonstrated that it is possible
to model this typical analogue device for a digital simulation
and design process. For our prototype we also modeled in
SystemC the analogue write-in and read-out circuits for a
digital simulator. The prototype was completely verified and
with some improvement will form a building-block for the
implementation of memristor-based arithmetic circuits.

Our findings pointed out, that development and synthesis
software tools for memristor-based circuits have to be aware
of the analogue extra circuitry. We proposed that the hardware
designer must be given the ability on a high level hardware
description, to influence and optimize the utilization and
reusability of underlying analogue circuitry, in order to gain
maximum space efficiency on a chip.

We compared both nanotechnologies and found challenging
differences in the requirements to automated design tools. If
memristor-based arithmetic units become state-of-the-art in the
mid-term future and hardware design tools get adopted to this
technology, our findings point that further research on design
tools is necessary to make them reusable for the long-term
QCA technology.

Despite the differences, we found a promising common
ground among both technologies for energy efficient future
computers. In contrast to current CMOS-based computers, both
technologies keep remain in their current state without the need
of energy. We propose to leverage this natural property for mid-
and long-term future computers to save energy. We suggest to
cut off power supply during idle states of these devices as
systems built from QCA cells and memristors will continue
their computations exactly when the were powered off.

We identified the advantage of memristors over QCA tech-
nology, to be suitable for multi-level logic environments.
With our model of a fast SD adder with a memristor-based
intermediate register, we demonstrated the advantage of space
efficiency of a four-value logic memory, that is implemented

90

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



with memristors. Our model needs only half of the memory
elements, compared to a binary memory.

REFERENCES

[1] D. Fey and B. Kleinert, “Using Symbolic Substitution Logic as an Au-
tomated Design Procedure for QCA Arithmetic Circuits,” in FUTURE
COMPUTING 2012, The Fourth International Conference on Future
Computational Technologies and Applications, 2012, pp. 94–97.

[2] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “QCADe-
signer: A rapid design and simulation tool for quantum-dot cellular
automata,” Nanotechnology, IEEE Transactions on, vol. 3, no. 1, pp.
26–31, 2004.

[3] K.-H. Brenner, A. Huang, and N. Streibl, “Digital optical computing
with symbolic substitution,” Appl. Opt., vol. 25, no. 18, pp. 3054–3060,
Sep 1986. [Online]. Available: http://ao.osa.org/abstract.cfm?URI=ao-
25-18-3054

[4] R. Williams, “How we found the missing memristor,” Spectrum, IEEE,
vol. 45, no. 12, pp. 28–35, 2008.

[5] K. H. Brenner, W. Eckert, and C. Passon, “Demonstration of an optical
pipeline adder and design concepts for its microintegration,” Optics &
Laser Technology, vol. 26, no. 4, pp. 229–237, 1994.

[6] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum
cellular automata,” Nanotechnology, vol. 4, no. 1, p. 49, 1993.
[Online]. Available: http://stacks.iop.org/0957-4484/4/i=1/a=004

[7] V. A. Mardiris and I. G. Karafyllidis, “Design and simulation
of modular 2n to 1 quantum-dot cellular automata (QCA)
multiplexers,” International Journal of Circuit Theory and
Applications, vol. 38, no. 8, pp. 771–785, 2010. [Online]. Available:
http://dx.doi.org/10.1002/cta.595

[8] F. Bruschi, F. Perini, V. Rana, and D. Sciuto, “An efficient Quantum-
Dot Cellular Automata adder,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, 2011, pp. 1–4.

[9] R. Zhang, K. Walus, W. Wang, and G. A. Jullien, “A method of majority
logic reduction for quantum cellular automata,” Nanotechnology, IEEE
Transactions on, vol. 3, no. 4, pp. 443–450, 2004.

[10] A. Louri, “Parallel implementation of optical symbolic substitution logic
using shadow-casting and polarization,” Applied optics, vol. 30, no. 5,
pp. 540–548, 1991.

[11] Y. Ichioka and J. Tanida, “Optical parallel logic gates using a shadow-
casting system for optical digital computing,” Proceedings of the IEEE,
vol. 72, no. 7, pp. 787–801, 1984.

[12] I. Hänninen, “Computer Arithmetic on Quantum-dot Cellular Automata
Technology,” Ph.D. dissertation, Tampare University of Technology,
http://dspace.cc.tut.fi/dpub/handle/123456789/6337?show=full, 2009.

[13] R. Akeela and M. D. Wagh, “A Five-input Majority Gate in Quantum-
dot Cellular Automata,” 2011.

[14] L. Chua, “Memristor-the missing circuit element,” Circuit Theory, IEEE
Transactions on, vol. 18, no. 5, pp. 507–519, 1971.

[15] G. S. Snider, “Self-organized computation with unreliable, memristive
nanodevices,” Nanotechnology, vol. 18, no. 36, p. 365202, 2007.

[16] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘Memristive’switches enable ‘stateful’logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873–876,
2010.

[17] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[18] J. E. Volder, “The CORDIC trigonometric computing technique,” Elec-
tronic Computers, IRE Transactions on, no. 3, pp. 330–334, 1959.

[19] B. Kasche, “Entwurf eines optoelektronischen Rechenwerkes,” Ph.D.
dissertation, 1999.

[20] S. E. Frost, “Memory Architecture for Quantom-dot Cellular Au-
tomata,” Ph.D. dissertation, University of Notre Dame, 2005.

[21] D. Fey and K. H. Brenner, “Digital optical arithmetic based on systolic
arrays and symbolic substitution logic,” Opt. Comput, vol. 1, pp. 153–
167, 1990.

91

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


