
Optimized Testing Process in Vehicles Using an

Augmented Data Logger

Karsten Hünlich

Steinbeis Interagierende Systeme GmbH

Esslingen, Germany

karsten.huenlich@steinbeis-ias.de

Daniel Ulmer

Steinbeis Interagierende Systeme GmbH

Esslingen, Germany

daniel.ulmer@steinbeis-ias.de

Ulrich Bröckl

University of Applied Sciences Karlsruhe

Karlsruhe, Germany

ulrich.broeckl@hs-karlsruhe.de

Steffen Wittel

Steinbeis Interagierende Systeme GmbH

Esslingen, Germany

steffen.wittel@steinbeis-ias.de

Abstract—The growing amount of electronic components in

vehicles requires an increasing communication load between

these components and hence an increasing load on the vehicles

communication buses. Both aspects entail an increasing

workload for the test engineer developing and executing test

cases to verify the required system behaviour in the vehicle.

This article considers a way to automate and reduce the

workload for in-vehicle testing by augmenting the functionality

of current data loggers. The idea is to use the data logger for

supporting the testing process for test drivers. The introduced

implementation shows a way to verify the test cases’ execution

on the fly in order to avoid finding erroneously executed test

cases at a later point in time. Additionally, the presented

implementation seamlessly includes the test environment for

in–vehicle testing into the tool chain, which is already used on

lower integration levels. This allows the test engineer to reuse

test cases from the lower integration levels in vehicle tests and

to compare the results from test runs on different integration

levels. The paper describes two stages of the development

process of the augmented datalogger and includes the first

feedback collected in a case study with a prototypical

implementation.

Keywords – automotie, data logger, intelligent data logger,

test case development, test case monitoring

I. INTRODUCTION

This paper offers a closer look at the augmented
datalogger and the associated process of in-vehicle testing as
they were shown in [1].

Many different data loggers are used in the automotive
industry. Primarily, they are designed to record the
communication between Electronic Control Units (ECUs)
[2]. In more advanced systems, the data content of the
Random Access Memory (RAM) of the ECUs is additionally
recorded [3]. These data loggers become more and more
important to the test engineers because the number of the
networked ECUs and hence the testing efforts in a vehicle is
continuously increasing. From each requirement on vehicle

level, the test engineers have to derive test cases to ensure
that the ECUs in a vehicle are performing the correct action
within correct time constraints. To check this in an in-vehicle
test it is necessary to record the bus traffic and the data
content of the ECUs’ RAM while executing a test case
manoeuvre with a car. The result of the test is determined by
evaluating the recorded data.

The amount of collected data can turn the evaluation of
the recorded test case data into a time consuming challenge.
In current solutions, the result of the evaluation can be
classified as “passed” or “failed” In case of a passed
classification, the recorded data show that the System under
Test (SuT), e.g., an ECU, exhibited the expected behaviour
described by the requirements. The classification failed
shows a deviation of the measured data from the expected
values and hence from the expected test result. But especially
if human beings are involved in test execution, the recorded
data might be “invalid” if there was a significant mistake
during the test case execution. In this case, the evaluation of
the recorded data is impossible with respect to the test case’s
definition.

Figure 1 shows the classification of the test results that
can occur in in-vehicle tests. In the first step, the recorded
data is usually examined manually by an engineer if it meets
the constraints of a valid data record. Some possible cases
for invalid data records are:

 The test driver has not driven the test case
correctly

 The data logger configuration was incorrect

 The recorded data was incomplete because the
measurement has stopped while the tests case
was executed

If the recorded data is valid it can be compared with the
expected results of the test case. The result of the test
evaluation is passed if the system works as expected or failed
if the system has not the expected behaviour.

72

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Classification of test results of in-vehicle tests

To minimize the cases of an invalid data record, and
therefore the time for the test case execution and evaluation,
the data logger can be augmented with additional
functionality to monitor the correct execution of the test case.
The necessary conditions are to be defined by the test
engineer before test execution. This is possible if the data
logger can be extended with instructions supervising relevant
signals. For these signals boundaries may be defined. A test
case can, e.g., be successfully accomplished if the signal
stays within these boundaries. However, the goal is not to
test the driver’s behaviour as mentioned in [4]. The goals are
to give instructions to the test case executor, which may be a
driver, a robot or a test automation tool, and to additionally
supervise the execution’s correspondence to the conditions
predefined by the test engineer. Especially a human driver is
one of the — corresponding to our experiences — biggest
error source in a vehicle during a test case execution. In the
following, we show how the augmented data logger can help
to avoid unnecessary work by evaluating a test case at
runtime for being valid or invalid. If the augmented data
logger is not only able to supervise the driver while
executing a test case, but also guides him through the test
case, the augmented data logger even helps to minimize
invalid test executions.

In addition to meeting the challenges of in-vehicle
testing, the introduced Augmented Data Logger (ADL) shall
seamlessly integrate into a typical development process of
the automotive industry. A short overview of the relevant
aspects shall be given within the next paragraphs.

Figure 2 shows an example of a system development
process according to the V-Model as shown in [5]. In this
example, the test on vehicle level is the last level of testing
within the integration process. Before this stage, many other
tests have already taken place on lower integration levels.
For efficiency reasons, it would be helpful if the test

engineer could reuse test cases developed on lower
integration levels, e.g., test cases from Hardware in the Loop
(HiL) tests [6]. The reuse of these test cases minimizes the
work for the test engineer to adopt the test cases to the
desired test platform. The reuse also enables the
comparability of the test results from a vehicle test with the
results from lower integration levels. For guaranteeing the
reusability of the test cases it is essential to specify the test
cases platform independently. A test case language is
needed, which is both platforms independent and suitable for
all testing platforms. Figure 2 shows typical levels in an
automotive V-model and the corresponding testing
platforms.

Figure 2. Commonly used application of the V-Model in the

automotive industry

The solution described in this article is based on a test
case language, which allows the reuse of test cases on
Software and ECU levels. Within this article, a solution for
extending this approach to “Vehicle Test” is discussed. The
solution is based on test cases from lower integration levels
by adding information to guide the driver through the test
case and by adding instruction to supervise the actions of the
driver. The article begins with a description of the state of
the art for data loggers and discusses two prototypes of the
augmented data logger. The added features are supported by
a case study. The paper ends with a summary and ideas for
future work.

II. DATALOGGER STATE OF THE ART

Today in-vehicle tests are usually executed without the
support of a software tool for giving feedback on the quality
of the test execution or a tool that guides the driver through a
test case. This conclusion is based on our experience from
several automotive companies and suppliers. Instead, the test
cases are often written in plain human readable text which
describes what a tester has to do in the vehicle to fulfil the
test case. These textual test cases are stored for example in a
database. For taking a set of test cases to the car, they are
either printed out or downloaded to a robust handheld
computer. In both cases, they are read before or during a
driving manoeuvre. The quality of the execution of the
manoeuvre thus depends on the skills of the test driver.
Details of the execution quality can be determined offline on
a parking lot or by evaluating the information on the data

Module

ECU

Software

 SW-Module SW-Module

Software

ECU

Vehicle Vehicle

Design

Design

Design

Design Test

Test

Test

Test

SiL

Software in the Loop (SiL)

Hardware in the Loop (HiL)

Manual In-Vehicle Test

Implementation

73

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

logger. Especially if test driver and test engineer is not the
same person, this process is error-prone and time consuming.
Since the test cases are in natural language there is enough
room for misunderstandings between a test manager who
writes the test cases and a test driver who has to execute the
manoeuvre. This fact tends to result in multiple iterations of
in vehicle tests of the same test case.

There are several solutions that have the aim to optimize
in vehicle tests and to minimize the time overhead. A touch-
display can be used in vehicles getting rid of the printed
check lists and directly sending the results of the test steps to
a database. A more advanced system is shown in [7], which
comprises of a driver guidance system and a feature to
immediately evaluate if the test is passed or failed.

For testing driver assistance functions, manoeuvres have
to be executed very precisely by the test driver. That means
in a significant number of tests the tests are failed not
because the system is not working correctly but the test
driver has made a mistake. To minimize this number of
invalid tests this paper describes a way to detect deviations
of the given test case during its execution. This avoids a
usually time consuming evaluation of invalid test cases.

Another solution is described in [8]. This paper describes
a system of a car and robot. The robot drives the car inside a
restricted area. Within this area the robot performs test cases
very precisely. The robot is controlled by engineers from a
base station. The approach needs a restricted area because
the robot does not recognize its surrounding. This system
was developed for executing very dangerous tests, e.g.,
collision mitigation/prevention tests at high speed rates.
Since the system is very expensive and restricted to special
test areas it is an addition for human driven cars but cannot
replace the human tests.

A. Datalogger Setup

Current data loggers [3] are designed for recording data
and neither for interpreting it nor for participating in the
testing process. This section describes a way of augmenting
the functionality of the data logger in order to support the
testing process and to seamlessly integrate the vehicle tests
in the system integration and testing process.

A data logger to record digital information in vehicles
might be designed in the way described in [9]: i.e., a host
computer is connected via a network interface, e.g., Ethernet,
to the data logger. Over this connection, the data logger can
be controlled and configured. The configuration defines
which signals are stored in the data storage and on which bus
interface the signals can be received. The host computer is
mainly used to start and stop the data logger and to visualize
an excerpt of the recorded data on the fly. The data logger
hardware is responsible for the real time processing of the
data. A commonly found feature is a trigger that starts a
measurement when a predefined condition becomes true as it
is described in [10].

For evaluating the trigger conditions the data logger
needs information about the connected data buses and the
data that is transferred over a particular data bus. Usually,
this information is available in form of configuration and

signal files that are interpreted by the host computer and
transferred to the data logger.

In some parts of a data logger execution in real-time is
mandatory. This is necessary because the test engineer needs
to know exactly when some data have been transmitted on a
particular bus. A common solution is that the communication
on a bus system is recorded together with timestamps, which
indicate the time instance when a message is transferred over
a bus [11]. Figure 3 shows the procedure of recording a
message from a bus. If the data logger receives a message a
timestamp is taken. For the evaluation of the recorded data it
is possible to correlate in time the different recordings with
the help of the timestamps, which means that the more
precisely the timestamp is taken the more precisely the
situation can be reproduced and evaluated.

Figure 3. Schematic procedure of measuring a message on the bus

The example in Figure 3 shows a host computer that is
connected over a communication interface with the
measurement control unit within the data logger. The host
computer is commonly a PC or a notebook with an operating
system that does not support real time tasks. Via the host
computer the engineer has access to and control over the data
logger. Additionally, the host computer can access
measurement data and visualize them to the user. Evaluating
this data while conducting a manoeuvre is almost impossible
since, in this case, the driver would have to fully concentrate
on the monitor instead on his driving task.

B. Current Testing Process on Vehicles

In the common testing process, the test engineer starts
looking at the requirements for the SuT. Based on these
requirements the test engineer creates the corresponding test
cases. How the test engineer writes down these test cases for
in-vehicle tests is mostly not defined. In some way, the test
cases have to be readable by the driver while he is executing
the manoeuvre in the vehicle. After finishing writing a test
case, the test engineer has to hand over the test case to the
driver who executes the manoeuvre specified in the test case
in the vehicle. This is usually supported by tools, which
allow configured testing and sending them, e.g., to handheld
devices. This test set is executed by the driver. The role of
the test engineer and of the driver might be taken by the
same person or by different ones. If the test engineer and the
driver are different persons who write and execute a test
case, the test case must be well defined to prevent

= +

Data Logger

Measurement

Control

Host

Computer

Measurement

Input Port Data

Storage

Timestamp Message Data Packet

Message

74

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

misunderstanding. If the test case specification is not
complete and therefore, the driver does not execute the test
case as intended by the test engineer, the following work
might be unavailing.

After having recorded the data of the manoeuvre that is
specified in the test case the driver hands over the recordings
to the test engineer. Afterwards, the test engineer evaluates
the data. Usually, this is done manually. The test engineer
has to search through a database of signals with probably
more than 10,000 entries. If the result of the test case is
passed, the test case will be documented and closed. In case
the result is failed, the test engineer has to find the exact
reason. The SuT can either have a bug or the test case has not
been executed accurately, which means that the test is
invalid. If the test case was executed within all defined
constraints by the test engineer the test case is valid and
hence failed. Both cases generate lots of work of analysing
and documentation for the test engineer. Especially, the work
for the first case can be minimized by finding out the validity
of the test case in an earlier stage of the process.

Generally, the biggest drawback of finding invalid test
runs late in the process is the time that the test engineer
spends on one test case. It must be considered that the
number of test cases that must be performed for each major
release can be up to several hundred test cases. As a
conclusion two main issues can be identified that can be
possibly optimized:

 The time for evaluating the test results by avoiding
invalid test cases

 The number of times moving from the office to the
vehicle and to the test track for repeating invalid
test case

Figure 4. Sample of the current testing process on vehicle level

Figure 4 visualizes the current testing process. The test
cases are executed in a vehicle and the recorded data is
stored on a local disk of the test system. Later the data is
transferred to a computer in the office for evaluation. An
engineer evaluates the data and removes invalid data sets.
The tests corresponding to the invalid data sets usually have
to be executed again. This means going back to the vehicle
on the test track. The feedback loop in this example is
between two different places, which is time consuming as

stated above. One approach to avoid going from the test
track to the office and back for several times would be to
evaluate the tests in the vehicle after having executed a test
set. But while evaluating the tests, the vehicle cannot be used
for executing other test sets. Since most of the time test
vehicles equipped with measurement systems are rare and
have to be shared by many engineers, this approach seems
even more inefficient.

The introduced testing process on vehicle level is very
different from the test processes on lower integration levels
of the development process shown in Figure 1. In the lower
levels, i.e., HiL or SiL, a test case is written in a defined
way. The test case can be reused and usually returns a
reproducible result. Another point is that the test result is
directly available after the test has been finished. It can be
said that the processes on different levels have mainly five
important parts [12]:

 The SuT itself

 Test case execution system

 Environment simulation that simulates the
environment of the SuT

 Measurement and data logging system

 Evaluation system
The evaluation system compares the measured values

with the ones that are specified in the test case for the SuT.
The test case execution system reads the test case and
controls the environment simulation that affects the SuT. In a
vehicle, the parts for the test process are different. The test
case execution system in a vehicle is the test driver. The test
driver has control over the environment of the SuT. The
evaluation system in a vehicle test is the test engineer who
evaluates the measurements.

The measurement and data logging system might be the
same as the one used in the vehicle. For the in-vehicle test,
an environment simulation is not necessary because the
vehicle is used in a real environment. Sometimes both
environments are mixed for the vehicle tests, e.g., foot
passengers are simulated with synthetic dolls or imaginary
sensor information.

III. AUGMENTED DATALOGGER VERSION I

This section introduces the first prototype of the ADL
implementation. The focus of this prototype is the
implementation of the basic features for giving feedback to
the driver. The attached display is not optimized for intuitive
feedback and only shows basic text output.

A. System Design

The first design of the data logger version was focused
on the test case execution inside the vehicle. In this case, a
test case is a sequence of instruction the driver has to
execute. It also includes a set of rules that has to be met for a
valid execution. Each step is s In case of an invalid hown
inside a small display as a text message. In case of an invalid
execution of the test case, the driver gets a response and the
test case execution stops. A laptop is necessary in this
version to control and configure the data logger. Only one
test case can be stored on the data logger. So the test case

75

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

selection and loading has to be done by the driver manually.
In this first prototype, the test case description has to be
converted by a code generator into executable code before
the test case execution can start. This approach was good
enough for first experiments but far too slow for efficient in-
vehicle testing.

B. Testing Process Supported by the ADL

To reduce the time for testing and evaluating of in-
vehicle testing a new approach for the testing work flow
should be considered. The first aspect is the form how the
test case is written. A uniform platform independent
language (see Section III C. for more detailed information) is
used to define the test cases. With this uniform language, the
test engineer can precisely describe the test case. The test
case is now not only human readable but also machine-
readable and can be interpreted by a program. Additional
instructions extend the abilities of the data logger. The
system now knows about the manoeuvre that has to be
executed for a particular test case. With the knowledge of
how a test case must be performed, driving errors can be
detected directly and time can be saved.

The new work flow has a strict separation between the
office work and the work in the vehicle. Right after
performing a test case, the driver gets a result if the test case
was executed accurately. The feedback also includes the
information why the test has been invalid. This information
depends on the test case description from the test engineer. If
the test engineer describes the test case in many details more
driving errors can be detected without looking at the whole
measured data back in the office. The advantage of this new
approach is that the driver:

 Is guided through the test case execution process

through a unified notification

 Gets a response directly after the manoeuvre if the

test is executed correctly and hence valid

 Gets the reason why a test case was classified as

invalid
This reduces the evaluation work and the test case

execution work. Since the data logger instructs and checks
the manoeuvre, it makes the execution more precise.

For this new approach, parts of the evaluation system and
the test case execution system are added to the data logger.
The schematic of a data logger shown in Figure 2 can be
extended to execute additional instructions given by the test
engineer, which controls the data logger and guides the test
driver through the manoeuvre. Figure 5 shows a simplified
version of such a measuring system. The CPU (Central
Processing Unit) has to fetch the messages from the bus, add
a timestamp to each message and extract relevant signals.
The values of the signals are internally decoded from the
coded bus signals and provided for the test case code.

Figure 5. Schematic measuring system extended with the test case

code

To control and configure the data logger the test case
needs a connection to the measurement control module. On
the first hand, the measurement has to be started at the
beginning of a test case and stopped when it has ended. On
the other hand, the measurement control module is
responsible for monitoring the execution of the test case. In
detail the measurement control module compares target
values defined in the test case (in the following called
“rules”) with the corresponding signals transmitted on the
vehicle bus. Furthermore, the measurement control module
generates instructions for the driver depending on the current
test step within the test case. These instructions are extracted
from the test case and are provided to the driver, e.g., via a
display. The ADL version 1 has an attached display that
shows only human readable text generated from the machine
readable test case description.

Figure 6 shows the testing process corresponding to an
augmented datalogger. The test case is supplemented with
instructions for the driver and with conditions for being
valid. Based on this the test engineer is guided through the
test while driving the car and the evaluation of the test case
for being executed correctly is done by the data logger on the
fly. Immediately after a violation of a rule within a test case
the test driver gets informed and has the choice whether to
finish the manoeuvre or stop immediately and start from the
beginning.

Figure 6. Optimized testing process

= +

Data Logger

Measurement

Control

Host

Computer

Measurement

Input Port Data

Storage

Timestamp Message Data Packet

Message

Test Case

Code

Signal

Extraction

Display

76

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Test Case Implementation and Execution

In this section, the test case implementation and
execution is shown using the following example:

Test Step 1: Start engine
Test Step 2: Accelerate to 60 km/h
Test Step 3: 60 km/h reached?
Test Step 4: Full braking
Rule: Steering wheel straight

Such a manoeuvre is used, e.g., to measure data of an

Anti-Blocking System (ABS) and to evaluate if it has
performed accurately during its intervention. A possible
criterion for an invalid ABS-test execution is defined by
looking at the steering angle. If the data show that the car did
not drive straight, the test case has not been executed
accurately. The manoeuvre can be described in a state chart
manner represented by an XML (Extensible Markup
Language) file [13].

The example in Figure 7 shows the ABS-manoeuvre in
XML code. The definition of the XML code is described by
Ruf [14] for Hardware in the Loop tests. The test case is
composed of states, actions, events and rule. For the above
test case the rule checks the steering wheel angle during the
whole test case. The states are following in chronological
order. Each state has one or more actions that have to be
performed by the test driver. If the condition of an event is
fulfilled the state machine enters the next state.

<?xml version="1.0" encoding="UTF-8"?>

<Testcase xmlns="http://www.ebtb.de/adl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ebtb.de/adl

http://www.ebtb.de/adl">

 <Rule SteeringAngle_deg_eqal="0" Tolerance_deg="5"/>

 <State num="1">

 <Action text="Get ready to start the manoeuvre"/>

 <Event wait_seconds="5"/>

 </State>

 <State num="2">

 <Action text="Start the engine"/>

 <Event wait_seconds="5"/>

 </State>

 <State num="3">

 <Action text="Accelerate to 60km/h"/>

 <Event velocity_kmh_equal ="60"/>

 </State>

 <State num="4">

 <Action text="Full braking"/>

 <Event velocity_kmh_equal ="0"/>

 </State>

 <State num="5">

 <Action text="Turn-off engine"/>

 <Event wait_seconds="5"/>

 </State>

 <State num="6">

 <Action text="Manoeuvre finished"/>

 <Event wait_seconds="3"/>

 </State>

</Testcase>

Figure 7. Listing of a test case in XML

D. Case Study

After having implemented a prototype of the described
data logger with its additional features, a case study has been

performed to determine the benefits of the augmented
measurement system for test drivers. The case study was
conducted with a group of eleven candidates. The group
consisted of team leaders, developers and testers. In the first
step, the content of the executed XML test case was
explained to the candidates. With this knowledge the
candidates were guided by the augmented measurement
system to execute the test case in the role of a test driver.

1) Manoeuvre
The selected manoeuvre for the case study was more

complex than the sample test case in Figure 7. The test
addresses the safety deactivation of the cruise control when
engaging the hand brake. For one test case example the test
steps are as follows:

Test Step 1: Start engine
Test Step 2: Accelerate to 50 km/h
Rule: Speed less than 55 km/h
Rule: Steering wheel straight
Test Step 3: Activate the Cruise Control with the

“SET” button
Test Step 4: Remove foot from acceleration pedal
Rule: Don’t turn the Cruise Control lever up
Comment: Cruise Control active
Test Step 5: Engage the hand brake
Rule: Speed more than 45 km/h and less 55 km/h
Comment: Cruise Control disabled
Test Step 6: Decelerate to zero
Test Step 6: Turn off engine

In this test case, the Driver should accelerate to the target

speed of 50 km/h. But in the test the driver should not
accelerate to a speed greater than 55 km/h and should not
turn the steering wheel.

In most cars with a Cruise Control lever, the function can
be activated on two ways:

1. Pressing the “SET” button to use the current
speed as reference

2. Tip the lever up to activate the Cruise Control
and accelerate or to resume to the speed set
before

The implementation might differ between manufacturers.
But if there is more than one way to activate the Cruise
Control the test case shall address exactly one. The other
ways are different test cases.

Engaging the hand brake turns the vehicle into the
following situation: The brake leads to a vehicle
deceleration. If the Cruise Control will not be disabled the
controller tries to match the speed that is set and accelerates.
To avoid this situation the Cruise Control has to be disabled
if the hand brake is engaged.

2) Feedback
The vehicle for the case study was equipped with an

extra display that is attached to the windscreen. The setup in
the vehicle looks similar to an external navigation system. In
this setup, the display shows the instructions and the current
state of the running test case. The execution of the test case
was done on a locked test track. This ensures a save

77

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

environment and that the candidates are not disturbed by
surrounding vehicles.

After executing, the test cases multiple times the
candidate was interviewed about his experience with the
augmented measurement system. The collected feedback is
summarized in Figure 8.

Case Study Feedback

(Total number of candidates: 11)

Figure 8. Case Study feedback results

Most candidates are confused and distracted by the
information shown in the display driving the test case for the
first time. The reason might be that the candidates do not yet
intuitively follow the instructions on the display. As soon as
the instructions are known to the candidate he can
concentrate less on the display and more on his driving task.
After a short learning curve the confidence and sureness
working with the augmented data logger raised. In summary,
7 candidates are seeing a benefit of such a system to speed
up and assist them in their daily work.

Furthermore, the feedback also includes suggestions for
improvements. The four mostly mentioned suggestions were:

 Additional speech output for instructions

 Direct connection to quality and lifecycle

management tools

 More detailed information in case of a invalid

result

 Using LCD glasses instead of a display attached to

the windscreen

 Adding a test case automation for processing

several test cases in a sequence
The feedback of the case study indicates that the

augmented data logger helps to speed-up the testing process
for in-vehicle testing.

IV. AUGMENTED DATALOGGER VERSION II

The second version of the ADL has several
improvements. The display shows more detailed information
of the current state. To handle these information most
actions, events and rules are displayed as icons. This might
increase the reaction time of the driver while executing a first
manoeuvre but after getting used to the icons they can be
instantly understood. The icons have been designed in
cooperation with the University of Applied Sciences
Karlsruhe. They shall be intuitive to new drivers. It is
planned to add the speech output for instructions at a later
time and optimize the required visual aspect. As an
additional feature in the second prototype a testing
automation has been implemented. The driver has the
possibility to execute several test cases in a sequence.
Finally, the implementation can filter test cases from lower
integration levels and skip test cases that are not suitable for
the in-vehicle setup.

Another major improvement of the ADL version II is the
way how test cases are loaded in the data logger. The first
version generates code from an XML test case description
and executes that code on the data logger. In the second
version, the XML test case is transferred to the data logger.
The data logger interprets the test case and executes it
directly. This is a big benefit because the code generation
step is no longer necessary.

A. Display icons

Figure 9 shows an example how a test case state might
look on a display. Two actions should be executed:

 Switch gear selector in state “D”

 Accelerate to 80 km/h

78

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The event occurs if 75 km/h are reached. The grey
number indicates the degree of fulfilment. The two “R”
inside the squares depict the active rules:

 Steering wheel straight ±5 degrees (Tolerance is not
shown in Figure 9)

 Speed less than 85 km/h

Figure 9. Possible display screen with actions, rules and one event

If a rule is not fulfilled the test case execution stops and
shows a red screen with the broken rule. If all test steps are
executed and no rule is broken the driver gets a green screen.
Both the green and the red screen terminate with the test
automation screen.

B. Test Automation

To give the test driver the ability to easily switch between
the available test cases on the data logger, a test case
automation system [15] was implemented and is shown in
Figure 10.

Figure 10. Test case sequence automation

The test driver can select a list of test cases for execution
and upload these test cases to the data logger. Beginning
with the first test case the driver performs all tests one after
another. If the test is passed, the following test case is loaded
for execution. In case of a failure, the driver has the choice to
drive the test case again or to go to the next test case.

The results of the test runs are stored and will be
presented in a report showing the valid and invalid test cases.
The measurements are stored for both cases, valid and
invalid tests. Running one test case multiple times will
produce multiple test reports and measurements. It is up to
the test engineer to select the relevant reports and
measurements for evaluation.

C. Test Case Filters

As explained in the sections before, the test cases for in-
vehicle testing can be reused from lower integration levels.
Since the underlying test case language is manoeuvre-based,
a large number of test cases can be reused without any
change. But there are test cases that cannot be reused
directly.

One reason is that test cases might use special actions
that cannot be performed in each vehicle setup. These types
of test cases can be called “platform dependent test cases”.
For example on a HiL platform the bus signals sent from the
HiL’s bus interface can be manipulated easily because the
HiL simulates all other ECUs on the specific bus. In a
vehicle these ECUs are existent. This means that the vehicle
needs a special hardware that separates the bus between the
SuT and all other ECUs on the bus. This hardware
manipulates all incoming messages and signals to the SuT as
specified in the test case. If this hardware is not available
within a certain test vehicle a test case, which needs this
signal manipulation cannot be executed.

Another example is a hardware interface manipulation.
Some HiL platforms are able to apply hardware errors to the
interface of the SuT such as a defective contact. These tests
are platform specific and as well as can only be tested
automatically inside a vehicle if the corresponding
manipulation hardware is installed.

Complex test cases are using a predefined environment to
test driver assistance functions. The environment can be a
given driving track or surrounding objects like other
vehicles, motor cycles and trucks. Lower integration levels
are using simulated sensor ECUs to simulate the
environment. Inside a test vehicle the sensors are real and
will detect the given environment. A basic example is an
adaptive cruise control manoeuvre. The test vehicle is behind
another vehicle — called object vehicle. The object vehicle
accelerates or decelerates and the test vehicle should do the
same automatically to keep a safe distance between the two
vehicles.

One approach for testing the acceleration algorithm in a
vehicle is replacing the sensor ECUs with the environment
simulation of a HiL. These test cases can only be executed in
an in-vehicle test if the vehicle is modified as described.
Another idea, which is left for future work is to distribute the
test case to several ADLs in several vehicles.

79

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The three examples show the ADLs ability of executing a
test case is depending on the content of the test case and the
setup of the vehicle. With the help of a filter test cases can be
automatically sorted corresponding to the required test
equipment.

A different use case for applying a filter is the way how
the test engineers write the tests. As explained above, the test
cases can have a variable amount of actions in a state that
will be performed simultaneously. On SiL/HiL platforms it is
possible to perform many actions at the same time because
the simulated driver can perform the actions simultaneously.
A real test driver gets all the information what he has to do in
a certain state at once and has to perform all these tasks as
fast as possible. The more actions are within a test case state
the more tasks the test driver has to execute. He has to gather
all the information and perform the required physical actions.
The risk to forget to execute an action rises with the amount
of actions in a state.

One result of the work with the University of Applied
Sciences Karlsruhe has been that there should be only one
action in a state, which has to be executed by the driver.
Skilled drivers might be able to execute up to three actions.
Since the test cases can be executed on HiL-platforms as
well, it is important to know that Actions are executed on a
HiL platform immediately after entering the state. A human
driver has recognition and response times. These times are
rising with each additional action. First tests and the case
study show a very high range of the reaction times. These
reaction times may be critical to get a valid test case result.
An analysis of existing test cases showed that even the HiL
test cases are modelled with a maximum of three driver
actions per state. This means that the display layout can be
optimized to show one to three actions at a time. Due to
these limitations the number of actions within a state is
limited to three for test cases that shall be used on vehicle
level. Test cases with more than three driver actions per state
are refused. An example, which shall clarify this statement,
is the following test case:

1. Switch the gear selector to “R”
2. Press the turn indicator to right blinking
3. Press the brake pedal
4. Release the tightened parking brake

For a human driver it is almost impossible to perform all
these actions simultaneously. In this case, the test case writer
has to check the test specification whether the actions can be
split into two states without altering the expected test case
results. According to our experience splitting one state with
several driver actions into several states with one driver
action is mostly possible.

There are two ways to address the limitation of driver
actions within the software tools, either globally limiting the
allowed amount of driver actions within one state to three or
by adding a filter to the in-vehicle test automation, which
suggests skipping test cases with more than three driver
actions. One topic for future work is to automatically detect
and convert these test cases and to inform the author
immediately after writing such a test case that an in-vehicle
execution is not possible. Based on this approach, one future
work might be to automatically forecast the dynamic

criticality of a test case. The dynamic criticality is a factor
that indicates how risky the execution of the test case is for
the driver himself and the surrounding environment.
Manoeuvres marked with a high dynamic criticality have a
high potential for injury and vehicle or environmental
damage. For example, a test case that requires high
deceleration or gear movements at high velocities might be
automatically marked as dangerous and only suitable for
adequate test tracks.

This approach will enable the test automation to filter the
test cases for the required environment. For example, all test
cases can be executed, which have to be driven on a high-
speed track. A first prototype of this semantic filter of the
test cases has been implemented. Defining a metric for the
combination of all driver actions and its evaluation is left for
future work and prototypes.

V. CONCLUSION AND FUTURE WORK

This work shows an approach how the process of in-
vehicle testing can be improved. The introduced approach
shows a way to reduce the costs for the testing process by
reusing test cases from other testing platforms and by
optimizing the workflow of in-vehicle testing. As a rule of
thumb, we experienced that for complex testing scenarios
comprising about 100 test cases over 30 per cent of the test
cases are invalid when they are evaluated manually after test
execution. A major part in the optimized workflow is the
possibility for declaring a test case invalid.

The extended classification of a test case enables an early
feedback about the quality of the executed test case and
hence makes sure that only valid test cases are evaluated. In
the introduced approach, a test case can be classified as
"passed", "failed", "valid" and "invalid". The first two
classifications are based on the requirements and can only be
evaluated if the data is valid for the SuT, while the other two
classifications reveal if the test case is executed within
defined constraints that are based on additional testing
requirements. The test engineer has only to look at the
measurements of the test cases that are classified as valid.
This helps to reduce the evaluation time especially if the test
case manoeuvre is very complex or time critical.

A first prototype of the Augmented Data Logger has been
discussed, which allow to use test case descriptions from
lower integration levels and use them as a basis for the in-
vehicle test. The test engineer needs no knowledge in
programming languages for implementing and running a test
case on the introduced augmented data logger.

While driving a test case the test driver has precise
instructions on his current tasks and is guided through the
test case manoeuvre. The test driver has immediate feedback
if the constraints of the test case added by the test engineer
are fulfilled. The augmented data logger observes the
execution and the driver gets a response if the manoeuvre is
valid or if the test driver has made a mistake during the
execution. It is then up to the test driver to decide if he wants
to immediately repeat the manoeuvre or continue with the
next test case.

A case study shows that the approach is useful and has
potential for improvements. The second version of the ADL

80

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

improves the visual recognition by using icons instead of text
messages. The tool chain has been extended by a test
automation that supports the driver by defining test
sequences that can be executed at once.

The use of test cases from lower integration levels shows
that they can be reused if the technical conditions are met. To
detect these conditions the idea is to implement filters for the
test cases. A filter can select the test cases that are suitable to
run in the test vehicle.

For future work, a distributed ADL can be considered to
support the in-vehicle test of advanced driver assistance
systems where several vehicles are involved. Furthermore,
augmented reality glasses instead of a display might be
considered for informing the test driver. A semantic
interpretation of the test cases might help to forecast the
dynamic criticality of a manoeuvre and to recommend a test
track.

REFERENCES

[1] K. Hünlich, D. Ulmer, S. Wittel, and U. Bröckl,, “Optimized
testing process in vehicles using an augmented data logger”,
IARIA ICONS Conference, Febuary 2012, ISBN 978-1-
61208-184-7

[2] K. Athanasas, “Fast prototyping methodology for the
verification of complex vehicle systems”, Dissertation, Brunel
University, West London, UK, March 2005

[3] S. McBeath, “Competition car data logging: a practical
handbook”, J. H. Haynes & Co., 2002, ISBN 1-85960-653-9.

[4] L. Petersson, L. Fletcher, and A. Zelinsky, “A framework for
driver-in-the-loop driver assistance systems”, Intelligent
Transportation System Conference 2005: Proceeding of an
IEEE International conference Vienna (Austria), September
2005, pp. 771 – 776.

[5] E. Meier, „V-Modelle in Automotive-Projekten,
AUTOMOBIL-ELEKTRONIK“, Journal, February 2008, pp.
36 – 37.

[6] M. Schlager, „Hardware-in-the-Loop simulation“, VDM
Verlag Dr. Mueller e.K., 2008, ISBN-13: 978-3836462167.

[7] mm-lab, “Driver guidance system”, Automotive Testing
Technology International, September 2009, page 89.

[8] H-P. Schöner, S. Neads and N Schretter, “Testing and
verification of active safety with coordinated automated
driving”, NHTSA ESV21 Conference 2009, http://www-
nrd.nhtsa.dot.gov/pdf/esv/esv21/09-0187.pdf

[9] J. Park, and S. Mackay, “Practical data acquisition for
instrumentation and control systems”, An imprint of Elvester,
2003, ISBN-10: 075-0657-960.

[10] M. Koch, and A. Theissler, “Mit Tedradis dem Fehler auf der
Spur”, Automotive Journal, Carl Hanser Verlag, September
2007, pp. 28 – 30.

[11] D. Ulmer, A. Theissler, and K. Hünlich, “PC-Based
measuring and test system for high-precision recording and
in-the-loop-simulation of driver assistance functions”,
Embedded World Conference, March 2010.

[12] S. Dangel, H. Keller, and D. Ulmer, “Wie sag’ ich’s meinem
Prüfstand?”, RD Inside, April/Mai, 2010.

[13] B. Ruf, H. Keller, D. Ulmer, and M. Dausmann,
“Ereignisbasierte Testfallbedatung - ein MINT-Projekt der
Daimler AG und der Fakultät Informationstechnik”. spektrum
33/2011, pp. 68–70.

[14] B. Ruf, H. Keller, D. Ulmer, and M. Dausmann,
“Ereignisbasierte Testfallbedatung”, Spektrum 33/2011, pp.
67 – 68.

[15] M. Spachtholz, “Mission Control - Automatisiertes Testen
von Fahrerassistenzsystemen im Fahrzeug”, Bachelor Thesis,
University of Applied Sciences Esslingen, 2012

81

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

