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Abstract—Achieving the property of evolvability is consid-
ered a major challenge of the current generation of large,
compact, powerful, and complex systems. An important fa-
cilitator to attain evolvability is the concept of modularity: the
decomposition of a system into a set of collaborating subsys-
tems. As such, the implementation details of the functionality
in a module is hidden, and reduces complexity from the point
of view of the user. However, some information should not
be hidden if they hinder the (re)use of the module when
the environment changes. More concretely, all collaborating
modules must be available for each other. The way how
a collaborating module is accessible is also called module
coupling. In this paper, we examined a list of classifications
of types of module couplings. In addition, we made a study
on the implications of the used address space for both data
and functional constructs, and the implications of how data is
passed between modules in a local or remote address space.
Several possibilities are evaluated based on the Normalized
Systems Theory. Guidelines are derived to improve reusability.

Keywords-Reusability, Evolvability, Modularity, Coupling, Ad-
dress space.

I. INTRODUCTION

Modern technologies provide us the capabilities to build
large, compact, powerful, and complex systems. Without
any doubt, one of the major key points is the concept
of modularity. Systems are built as structured aggregations
of lower-level subsystems, each of which have precisely
defined interfaces and characteristics. In hardware for in-
stance, a USB memory stick can be considered a module.
The user of the memory stick only needs to know its
interface, not its internal details, in order to connect it to
a computer. In software, balancing between the desire for
information hiding and the risk of introducing undesired
hidden dependencies is often not straightforward. However,
these undesired hidden dependencies should be made ex-
plicit [1]. Experience contributes in learning how to deal
with this issue. In other words, best practices are rather
derived from heuristic knowledge than based on a clear,
unambiguous theory.

Normalized Systems Theory has recently been proposed
[2] to contribute in translating this heuristic knowledge into
explicit design rules for modularity. In this paper, we want
to evaluate which information hiding is desired and which
is not with regard to the theorems of Normalized Systems.
The Normalized Systems theorems are fundamental, but it

is not always straightforward to check implementations in
different application domains against these theorems. This
paper aims at deriving more concrete guidelines for software
development in a PLC environment on a conceptual level.

Doug McIlroy already called for families of routines to
be constructed on rational principles so that families fit to-
gether as building blocks. In short, [the user] should be able
safely to regard components as black boxes [3]. Decades
after the publication of this vision, we have black boxes, but
it is still difficult to guarantee that users can use them safely.
However, we believe that a lot of necessary knowledge to
achieve important parts of this goal are available and we
should primarily document all the necessary unambiguous
rules to make this (partly tacit) knowledge explicit.

In this paper, we examined a list of classifications of types
of module couplings, and evaluated in which terms these
types are contributing towards potentially compliance with
the Normalized Systems theory. These couplings are studied
in an abstract environment [1]. Further, we extended this
study by placing the constructs in an address space, and eval-
uated the consequences. This evaluation is based on some
case studies in an IEC 61131-3 programming environment
by way of small pieces of code [4]. We investigated on how
different data constructs relate to a local or a remote memory
address space, and which consequences these relations have
to functional modules. Next, we placed the focus on the
functional constructs and paradigms, which also reside in a
local address space and might have a coupling to a remote
address space. We investigated the potential to use them
complying the Normalized Systems principles. Finally, we
present an set of derived, more concrete principles.

The paper is structured as follows. In Section II, the
Normalized Systems theory will be discussed. In Section III,
we discuss categories of coupling, seen in an abstract way. In
Section IV, we give an overview of how data can be passed
between functional modules in a local data memory address
space, or coupled with constructs in a remote address spaces.
In Section V, we focus on constructs for functionality, and
how they can be coupled (locally or remotely). A summary
of the evaluations and guidelines is given in Section VI.
Finally, Section VII concludes the paper.
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II. NORMALIZED SYSTEMS

The current generation of systems faces many challenges,
but arguable the most important one is evolvability [5]. The
evolvability issue of a system is the result of the existence of
Lehman’s Law of Increasing Complexity which states: “As
an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is
done to maintain or reduce it” ([6] p. 1068). Starting from
the concept of systems theoretic stability, the Normalized
Systems theory is developed to contribute towards building
systems, which are immune against Lehman’s Law.

A. Stability

The postulate of Normalized Systems states that a system
needs to be stable with respect to a defined set of anticipated
changes. In systems theory, one of the most fundamental
properties of a system is its stability: a bounded input
function results in bounded output values, even for T → ∞
(with T representing time).

Consequently, the impact of a change should only depend
on the nature of the change itself. Systems, built following
this rule can be called stable systems. In the opposite case,
changes causing impacts that are dependent on the size
of the system, are called combinatorial effects. To attain
stability, these combinatorial effects should be removed from
the system. Systems that exhibit stability are defined as
Normalized Systems. Stability can be seen as the requirement
of a linear relation between the cumulative changes and the
growing size of the system over time. Combinatorial effects
or instabilities cause this relation to become exponential
(Figure 1). The design theorems of Normalized Systems
Theory contribute to the long term goal of keeping this
relation linear for an unlimited period of time, and an
unlimited amount of anticipated changes to the system.

B. Design Theorems of Normalized Systems

In this section, we give an overview of the design the-
orems or principles of Normalized Systems theory, i.e., to
design systems that are stable with respect to a defined set
of anticipated changes:

• A new version of a data entity;
• An additional data entity;
• A new version of an action entity;
• An additional action entity.
Please note that these changes are associated with soft-

ware primitives in their most elementary form. Hence, real-
life changes or changes with regard to ‘high-level require-
ments’ should be converted to these elementary anticipated
changes [7]. We were able to convert all real-life changes
in several case studies to one or more of these abstract
anticipated changes [8][9]. However, the systematic trans-
formation of real-life requirements to the elementary antic-
ipated changes is outside the scope of this paper. In order
to obtain systems theoretic stability in the design during the

Figure 1. Cumulative impact over time

implementation of software primitives, Normalized Systems
theory prescribes the following four theorems:

1) Separation of concerns:
An action entity can only contain a single task in Nor-

malized Systems.
This theorem focuses on how tasks are structured within

processing functions. Each set of functionality, which is
expected to evolve or change independently, is defined as
a change driver. Change drivers are introducing anticipated
changes into the system over time. The identification of
a task should be based on these change drivers. A single
change driver corresponds to a single concern in the appli-
cation.

2) Data version transparency:
Data entities that are received as input or produced as

output by action entities, need to exhibit version trans-
parency in Normalized Systems.

This theorem focuses on how data structures are passed
to processing functions. Data structures or data entities need
to be able to have multiple versions, without affecting the
processing functions that use them. In other words, data
entities having the property of data version transparency,
can evolve without requiring a change of the interface of
the action entities, which are consuming or producing them.

3) Action version transparency:
Action entities that are called by other action entities,

need to exhibit version transparency in Normalized Systems.
This theorem focuses on how processing functions are

called by other processing functions. Action entities need to
be able to have multiple versions without affecting any of
the other action entities that call them. In other words, action
entities having the property of action version transparency,
can evolve without requiring a change of one or more action
entities, which are connected to them.
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4) Separation of states: The calling of an action entity
by another action entity needs to exhibit state keeping in
Normalized Systems.

This theorem focuses on how calls between processing
functions are handled. Coupling between modules, that is
due to errors or exceptions, should be removed from the
system to attain stability. This kind of coupling can be
removed by exhibiting state keeping. The (error) state should
be kept in a separate data entity.

III. EVALUATION OF TYPES OF COUPLING

Coupling is a measure for the dependencies between
modules. Good design is associated with low coupling and
high reusability. However, merely lowering the coupling
is not sufficient to guarantee reusability. Classifications of
types of coupling were proposed in the context of structured
design and computer science [10][11]. The key question of
this paper is whether a hidden dependency and, therefore,
coupling is affecting the reusability of a module? In general,
the Normalized Systems theorems identify places in the
software architecture where high (technical) coupling is
threatening evolvability [12]. More specifically, we will
focus in this section on several kinds of coupling and
evaluate which of them is lowering or improving reusability.
The sequence of the subsections is chosen from the most
tight type coupling to the most loose type of coupling.

A. Content coupling

Content coupling occurs when module A refers directly
to the content of module B. More specifically, this means
that module A changes instructions or data of module B.
When module A branches to instructions of module B, this
is also considered as content coupling.

It is trivial that direct references between (internal data
or program memory of) modules prevent them from being
reused separately. In terms of Normalized Systems, content
coupling is a violation of the first theorem, separation of
concerns. Achieving version transparency is practical not
possible. The same can be said about separation of states.

This intent to avoid content coupling is not new, other
rules than those of the Normalized Systems already made
this clear. For instance, Dijkstra suggested decades ago
to abolish the goto statement from all ‘higher level’ pro-
gramming languages [13]. The goto statement could in-
deed be used for making a direct reference to a line of
code in another module. Together with restricting access to
the memory space of other modules, Dijkstra’s suggestion
contributed to exile content coupling out of most modern
programming languages. Note that in the IEC 61131-3
standard, the Instruction List (IL) language still contains the
JMP (jump) instruction. For this and other reasons, IL is
considered a low level language, and similar to assembly.

B. Common coupling

Common coupling occurs when modules communicate
using global variables. A global variable is accessible by
all modules in the system, because they have a memory
address in the ‘global’ address space of the system. If a
developer wants to reuse a module, analyzing the code of
the module to determine which global variables are used
is needed. In other words, a white box view is required.
Consequently, black box use is not possible. In terms of
Normalized Systems, common coupling is a violation of the
first theorem, separation of concerns.

We add however, that not the existence but the way of
use of global variables violates the separation of concerns
theorem. A global variable is in fact just a variable in the
scope of the main program. When these global variables
are treated like a kind of local variables in the scope of
the main program, they do not cause combinatorial effects.
However, when these variables are passed to the submodular
level without using the interface of (sub)modules, which are
called by the main program, they can cause combinatorial
effects. Since the use of global variables in case of common
coupling is not visible through the (sub)module’s interface,
this way to use these global variables is considered to be
a hidden dependency. And since common coupling is a
violation of separation of concerns, this is an undesired
hidden dependency with respect to the safe use of black
boxes.

As a research case, we used global variables in a proof
of principle with IEC 61131-3 code, which complies with
Normalized Systems [9]. The existence of global variables
was needed for other reasons than mutual communication
between modules (i.e., connections with process hardware).
In this project, the global variables were passed via an in-
terface from one module to the other. In some cases, having
a self-explaining interface between collaborating modules is
enough to comply with the separation of concerns principle.
In other cases, dedicated modules called connection entities
are needed to guarantee this separation. In this paper, we
investigated in which cases there is a need for a connection
entity or not (see following subsections).

C. External coupling

External coupling occurs when two or more modules
communicate by using an external (third party?) database,
communication protocol, device or hardware interface. The
external entity, system or subsystem is accessible by all
(internal) modules. Consequently, the support (e.g., fault
handling) for the external access has to be included for all
modules.

Support for this particular external access is a concern.
Every module also includes at least one core functionality,
which is also a concern. Having more than one concern
in a single module is a violation of the separation of
concerns principle. Indeed, when the external entity receives
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an update, every module, which is calling the external entity,
needs an update too. This is an example of a combinatorial
effect.

To avoid this kind of combinatorial effect, one should
dedicate a special module - a connection entity - to make
the link with the external technology. More precisely, one
connection entity for every version or alternative external
technology. Version tags can be used to select the appropriate
connection entity. Each internal module should call the
connection entity to map parameters with the external entity.

Such a connection entity is considered to be a supporting
task. Separating the core task from supporting task does not
have to decrease cohesion. On the contrary they can nicely
fit together on the next modular level. In other words, the
core task module can be ‘hosted’ together with one or more
supporting task module in a higher-lever module.

D. Control coupling

Control coupling occurs when module A influences the
execution of module B by passing data (parameters). Com-
monly, such parameters are called ‘flags’. Whether a module
with such a flag can be used as a black box depends
on the fact whether the interface is explaining sufficiently
the meaning of this flag for use. If a white box view is
necessary to determine how to use the flag, black box
use is not possible. The evaluation of control coupling in
terms of reusability is twofold. On the one hand, adding
a flag can introduce a slightly different functionality and
improve the reuse potential. For example, if a control module
of a motor is supposed to control pumping until a level
switch is reached, a flag can provide the flexibility to use
both a positive level switch signal and an inverted one
(i.e., positive versus negative logic). On the other hand,
extending this approach to highly generic functions, would
lead in its ultimate form to a single function doIt, that
would implement all conceivable functionality, and select
the appropriate functionality based on arguments. Obviously,
the latter would not hit the spot of reusability.

One of the key questions during the evaluation of control
coupling is: how many functionalities should be hosted in
one module? In terms of Normalized Systems, the principle
‘separation of concerns’ should not be violated. The concept
of change drivers brings clarity here. A module should
contain only one core task, eventually surrounded by sup-
porting tasks. Control coupling can help to realize theorem
2 (data version transparency) and theorem 3 (action version
transparency) by way of version selection. The calling action
is able to select a version of the called action based on
control coupling. We conclude that control coupling should
be used for version selection only.

Control coupling, as a way of connecting two or more
modules, says something about the functional impact of
the coupling, not about how the coupling is realized. Con-
sequently, control coupling does not influence the choice

whether a connection entity is necessary or not.

E. Data coupling

Data coupling occurs when two modules pass data using
simple data types (no data structures), and every parameter
is used in both modules.

Realizing theorem 3 (action version transparency) is not
straightforward with data coupling, since the introduction
of a new parameter affects the interface of the module.
This newer version of the interface could not be suitable
for previous action versions, and could consequently not be
called a version transparent update. Not all programming
languages support flexibility in terms of the amount of
individual parameters. Changing the datatype, or removing
a parameter is even worse.

Note that the disadvantage of data coupling, affecting the
module’s interface in case of a change, does not apply on
reusing modules, which are not evolving. This can be the
case when working with system functions, e.g., aggregated
in a system function library. However, problems can occur
when the library is updated. We will give more details about
this issue in the next section.

When working with separated, simple data types as a
set of parameters, every change requires a change of the
interface of the module. Since we do not consider ‘changing
the interface’ as one of our anticipated changes, this should
be avoided. Huang et al. emphasized that it is important
to separate the version management of components with
their interfaces [14]. As such, the interface can be seen as
a concern, and should consequently be separated to comply
with the separation of concerns principle.

In other words, in case the development environment does
not support a flexible interface for its modules, data coupling
can cause combinatorial effects. In case mandatory argu-
ments are removed in a new version, a flexible development
cannot guarantee the absence of combinatorial effects.

F. Stamp coupling

Stamp coupling occurs when module A calls module B
by passing a data structure as a parameter when module B
does not require all the fields in the data structure.

It could be argued that using a data structure limits the
reuse to other systems where this data structure exists,
whereas only sending the required variables separately (like
with data coupling) does not impose this constraint. How-
ever, we emphasize that the key point of this paper does
not concern reuse in general. Rather, it focuses on safe
reuse specifically. Stamp coupling is an acceptable form of
coupling. With regard to the first theorem, separation of
concerns, one should keep the parameter set (data entity),
the functionality of the module (action entity) and the
interface separated. Keeping the interface unaffected, while
the data entity and action entity are changing, can be realized
with stamp coupling. Note that stamp coupling should be

43

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



combined with the rule that fields of a data structure can be
added, but not modified or deleted. This rule is necessary to
enable version transparency.

Note that if the data structure in a stamp coupling scenario
increases, it becomes convenient to pass the structure by
reference (see Section IV-D). As such, memory use and
copying processes can be limited. However, referring to the
data structure requires the stamp coupling to be applied
between modules which reside in the same address space
(see Section V-D).

G. Message coupling

Message coupling occurs when communication between
two or more modules is done via message passing. With
message passing, a copy of a data entity is sent to a so-called
communication endpoint. An underlying network does the
transport of (the copy of) the data entity. This underlying
network can offer incoming data, which can be read via
the communication endpoint. Message passing systems have
been called ‘shared nothing’ systems because the message
passing abstraction hides underlying state changes that may
be used in the implementation of the transport.

The property ‘sharing nothing’ makes message coupling
a very good incarnation of the separation of concerns
principle. Please note that asynchronous message passing
is highly preferable above synchronous message passing,
which violates the separation of states principle. The system
works with copies of the data, and the states of the transport
are separated from the application which is producing or
consuming the data. This concept complies with the separa-
tion of states principle.

In comparison with stamp coupling, stamp coupling can
be realized by passing a pointer, which refers to the data
structure. To implement this, both modules should share
the memory address space, where the pointer is referring
to. Since the concept of message coupling does not share
anything, also no address space, every data passing works
with copies. For this reason, message coupling is considered
the most loosely coupled of all categories.

Message coupling implies additional functionality with
regard to the modules which need to exchange data. To com-
ply with the separation of concerns principle, this additional
functionality should be separated from the core functionality
of the collaborating modules. Consequently, while the data
structure in a stamp coupling scenario – in a common
address space – can be used directly by the collaborating
modules, at least two connection entities are required when
these modules reside in a different address space (see Section
V-D)).

H. Summary of the theoretic evaluation of couplings

The existing categorization of coupling is based and or-
dered on how tight or how loose the discussed coupling type
is. We agree that in general loose coupling is better than tight

coupling, but there are more important consequences based
on the different types of coupling. It is not too surprising
that, following our evaluation, we discourage the use of the
two most tight types of coupling, i.e., content coupling and
common coupling. However, other conclusions are not based
on how tight a type of coupling is. For example, control
coupling is a special one, because it is the only discussed
type which says something about the functionality of the
connected modules. All other types says something about
how these modules are coupled. Data coupling and stamp
coupling are alternatives for each other, while other types
can be used complementary. We highly recommend stamp
coupling in stead of data coupling, because data coupling
can cause combinatorial effects.

Stamp coupling can be combined with control coupling,
message coupling or partly external coupling (depending
on the application). Control coupling should be used for
version selection only. Stamp coupling can be used as it
is in cases where the collaborating modules reside in the
same system. In case these collaborating modules reside in
different systems, stamp coupling has to be combined with
message coupling. In case the collaboration includes external
entities, from which we cannot control the evolution, con-
nection entities are necessary, which is a prerequisite to use
external coupling without potentially causing combinatorial
effects.

IV. DATA MEMORY ADDRESS SPACE AND ITS BORDERS

The discussion about message coupling illustrates that a
reference to a variable in a particular address space can
be seen as an occurrence of a hidden dependency. In this
section, we investigate this more in depth, and discuss
several software constructs which have a relation with one
or more memory address spaces.

In its most elementary form, programs are nothing but a
sequence of instructions, which perform operations on one
or more variables. These variables correspond to registers
in the data memory of the controller, and the instructions
correspond to registers in the program memory. The instruc-
tions are executed in sequential order, but instructions for
selections and jumping to other instructions are available.
In this elementary kind of programs, there is no explicit
modularity at all, any instruction can read any variable
in the program, and jumping from any instruction to any
other instruction is possible. For this purpose, we had
in the early ages of software development an instruction,
which has become well-known: the goto-statement. Dijkstra
called for the removal of the goto-statement in higher level
languages [13], and this call is mainly addressed. However,
the JMP (jump) instruction is still available in the lower level
language Instruction List (IL) of the IEC 61131-3 standard
for PLC (Programmable Logic Controller) programming [4].
Also, in surprisingly recent literature, goto elimination is still
a research objective [15].
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Figure 2. Concatenation, Selection, and Iteration

Alternatively, Dijkstra elaborated on the concepts con-
catenation, selection and iteration (Figure 2) to bring more
structure in a program [16]. However, these concepts do not
force modularity. In terms of Normalized Systems theory
reasoning, the separation of concerns principle is not ad-
dressed. Because of the lack of clearly identifiable modules,
the other theorems cannot be evaluated as well.

In this section, we discuss an amount of software con-
structs and how they relate to the address space, and whether
the desired coupling has to cross the borders of this address
space. We evaluate some concepts or paradigms based on the
Normalized Systems theorems. We start our discussion with
the very first attempt to build modular software systems: the
‘closed subroutines’ of Wilkes et al. (1959). Next, we discuss
the concept of data variables, and how their scope can differ
corresponding their definition. Further, we discuss variables
which can be exchanged between modules. These kind of
variables are typically called parameters or arguments. Two
main ways how they can be passed is ‘by value’ or ‘by
reference’, which will be discussed. Finally, the concepts of
static and external variables will be discussed.

A. Subroutines

Wilkes et al. introduced the concept of subroutines,
which they termed a closed subroutine [17]. The concept
of subroutines is the first form of modularity. A subroutine,
also termed subprogram, is a part of source code within a
larger program that performs a specific task. As the name
subprogram suggests, a subroutine can be seen as a piece of
functionality, which behaves as one step in a larger program
or another subprogram. A subroutine can be called several
times and/or from several places during one execution of the
program (including from other subroutines), and then return
to the next instruction after the call once the subroutine’s
task is done (Figure 3).

Dijkstra reviewed the concept of subroutines in [16].
Following this review, the concept of subroutines served as
the basis for a library of standard routines, which can be
seen as a nice device for the reduction of program length.
However, the whole program as such remained conceived
as acting in a single homogeneous store, in an unstructured
state space; the whole computation remained conceived a
single sequential process performed by a single processor
([16], p. 46). In other words, the subroutine shares its data

Figure 3. Subroutines

memory address space with the main program and other
subroutines (if these exist). The return address of a closed
subroutine can not be seen as a parameter. Rather, it looks
like a well-placed jump.

In terms of Normalized Systems, progress is made towards
the separation of concerns principle, but it is not fully
addressed yet. Indeed, the details of the functionality in a
subroutine is separated from the main program (which can
be seen as a desired hiding of information for the reader
of the main program), but the data of the subroutine is not.
In fact, the lack of a local data memory address space in a
‘closed subroutine’ implies a violation of the separation of
concerns principle. On the side of functionality the concerns
‘main program’ and ‘closed subroutine’ are separated, but
on the side of data these concerns are not separated. Because
of the lack of separation of data memory address space, the
separation of states principle cannot be met. The separation
of states principle implies the buffering of every call to
another module. As such, when the called module does not
respond like expected, the calling module can handle the
unexpected result based on the buffered state. In other words,
every module needs its own local memory to store its state.

B. Variables

A variable is a storage location and an associated symbolic
name, which contains a value. Note that this concept is
very explicit exemplified in contemporary Simatic S7 PLCs,
where the programmer can choose for usage of absolute
addresses and symbolic addresses [18]. In this specific en-
vironment, the programmer has to manage the data memory
address space. For computer scientists, this might look old-
fashioned, but for contemporary PLC programmers this
is an important subject. Moreover, data memory address
space cross references are tools which are commonly used
to heuristically prevent combinatorial effects caused by
common coupling. More general, the variable name is the
usual way to reference the stored value, and a compiler
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is doing the data memory allocation and management by
replacing variables’ symbolic names with the actual data
memory addresses at the moment of compilation. The use
of abstract variables in a source code, which are replaced
by real memory during compilation is undoubtedly an im-
provement for reusability of the source code. However, when
the memory is still shared throughout the whole system,
these variables are called global variables, and require a
name space management to prevent name conflicts. In other
words, the problem of potential address conflicts is moved
to potential name conflicts. In terms of Normalized Systems,
when modules need global variables to exchange data, this
is not really an improvement in relation to the concept of
closed subroutines of Wilkes et al. ([17]).

A group of research computer scientists abandoned the
term ‘closed subroutine’ and called modules ‘procedures’
in the ALGOL 60 initiative [19]. The main novelty was
the concept of local variables. In terms of memory address
space, the concept ‘scope’ was introduced, i.e., the idea
that not all variables of a procedure are homogeneously
accessible all through the program: local variables of a
procedure are inaccessible from outside the procedure body,
because outside they are irrelevant. What local variables of
a procedure need to do in their private task is its private
concern; it is no concern of the calling program [16]. In
terms of Normalized Systems, local variables contribute in
addressing the separation of concerns principle. A point
of potential common coupling is still the fact that global
variables –which are declared outside the module– are still
accessible from the inside of the module. When these global
variables are used in the module, without documenting this
for the user, we have a violation of the separation of concerns
principle. The use of undocumented and thus invisible or
hidden global variables in a module makes it impossible to
evaluate compliance with the Normalized Systems theorems.
In other words, code analyses or white box inspection is
needed to decide whether the module can be (re)used in a
specific memory environment. Providing a list of the used
global variables in the module documentation would be an
improvement, but passing the global variables to the module
as parameters or arguments is even better. The reason why
this is better, is because of a better separation of the local
and global address space.

C. Parameters and arguments

Having a local data memory address space contributes in
separating concerns, but since the aim of software programs
is generally performing operations on data entities, we
should be able to exchange data between these separated
memory address spaces. The question is: how should this
be done? In principle, there are two possible approaches: or
we exchange data by way of global variables, or we use
a modular interface, which consists of input- and output
parameters or arguments.

Figure 4. Function machine with parameters and arguments [20]

The terms parameter and argument are sometimes easily
used interchangeably. Nevertheless, there is a difference.
We use the function machine metaphor to discuss how
functionality can depend on parameters (Figure 4) [20]. The
influence of parameters should be seen as a configuration
of the functionality, while the arguments are, following this
metaphor, the material flow. This can also be exemplified
with a proportional-integral-derivative (PID) controller. A
PID controller calculates an ‘error’ value as the difference
between a measured process variable and a desired setpoint.
The controller attempts to minimize the error by adjusting
the process control inputs. The proportional, the integral
and derivative values, denoted P, I, and D, are parameters,
while the measured process value and the setpoint are the
arguments.

From a software technical point of view, it is not important
to treat parameters and arguments different when these
values are exchanged between modules. However, from
an application point of view, they should be aggregated
differently. Like discussed in Section II, the functionality
and data should be encapsulated as action entities and
data entities, respectively. Since it is imaginable that the
configuration of functionality (parameters) changes inde-
pendently of a potential change of, e.g., the data type of
the arguments, these data constructs should be separated
following the separation of concerns principle. Also, the
action entities, which manipulate configuration data entities,
should be separated from action entities, which manipulate
process data entities. Besides, the user access rights might
be different, e.g., adjusting the configuration should be done
by maintenance engineers, while process data might be
manipulated by system operators. For simplicity reasons,
in what follows, we use the term ‘data passing’ for both
cases, in the assumption that the manipulation of arguments
and parameters is separated in different modules. These
separated submodules should collaborate based on stamp
coupling. In its simplest form, the data structures which can
be used for stamp coupling are called structs, records, tuples,
or compound data. Conceptually, such data structures have a
name and several data fields. In the next section, data objects
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will be discussed.
To come back on our discussion about module dependen-

cies, data passing can be based on a shared data memory
address space between the calling and the called module
(i.e., via global variables), or on the module’s interface (i.e.,
via in/out variables). When we put ourselves into the position
of a software engineer, who want to reuse a module, both the
module and the definition of the global variables should be
copied before the module can be reused. More specifically,
to not create unused global variables in the target system (or
to minimize potential name conflicts), the software engineer
should only copy the global variable definitions, which are
used in the module. It is imaginable that this is not in
all situations straightforward, unless we provide a list or
declaration of all used global variables as a documentation
of the module. When the software engineer, into the process
of module evolution, considers to change the module, any
change on one or more of the used global variables, requires
a corresponding change in the global variable definitions of
the system. In case the global variables are also used in
other modules, the need to perform a corresponding change
in each of these modules is an occurrence of a combinatorial
effect. In terms of Normalized Systems, passing data by way
of global variables (common coupling) is a violation of the
separation of concerns principle. Adding a global variable
could be deemed to comply with the version transparency
theorems, but this could be not so convenient if more
engineers are working on the same project, and the chance
on naming conflicts increases compared to the potential
addition of a local variable.

To prevent these disadvantages, passing data by way
of in/out variables, i.e., the module’s interface, is more
convenient and increases maintainability. The module as a
construct is a way to separate the address space of the
module with the address space of the ‘outside’, and the
module’s interface performs the function of a managed
gateway for data passing. The reusability of the module
is improved when strictly using local variables or in/out
variables. However, other dependencies are still a point of
interest, which will be discussed in the next section.

D. Pass by value or by reference?

Data passing by value means that an input variable is
copied to an internal register of the module, and return by
value means that a produced value is stored in an internal
register, and copied to an output variable at the end of
the processed functionality. In contrast, passing and return
by reference means that the in/out variable is stored in a
memory space outside the module, while only a reference
or address to this memory space is used in the module. The
in/out variable is never copied because the link with the
memory outside the module remains available during the
processing of the functionality.

It is not too surprising that, following our evaluation, data
passing by value is isolating and separating the inside of the
module better from the outside than if the same set of in/out
variables would be passed by reference. In other words, in
the case of pass by reference, the memory address space,
which is surrounding the module, is a dependency of the
module. To eliminate combinatorial effects, any dependency
needs some attention. However, in this case, the depen-
dency of memory address space is not necessarily causing
combinatorial effects. In case the coupled modules reside
in the same memory address space, passing parameters by
reference does not cause combinatorial effects. In other
words, one must make sure that the coupling is not crossing
the borders of the memory address space of the considered
system, which is ‘hosting’ the coupled modules. In case
the coupling is crossing the borders of the memory address
space, it has to be combined with message coupling, which
implies data passing by value.

In an IEC 61131-3 environment, the length of arrays and
strings are explicitly defined. This is safer in comparison
with systems where this length is flexible at runtime. Note
that a ‘by reference’ in/out variable is a pointer to the start
memory address of a variable. When there is flexibility about
the end address of this memory variable —e.g., an array with
no explicit defined length— the pointer+index might refer
to an address outside the scope of the intended variable.
There is a risk that this situation becomes similar to content
coupling. However, a lot of software systems tackle this
problem by means of exception handling.

When we evaluate the choice between ‘pass by value’
or ‘pass by reference’ based on the Normalized System
theorems, ‘pass by value’ contributes better towards the
separation of concerns principle, by copying in-variables
from the ‘outside’ to internal registers, and copying internal
registers to out-variables after processing the functionality.
In/out variables which are passed by reference always main-
tain a reference in the external address space, which can
be seen as a dependency. Since this type of dependency
can be automatically managed for every individual variable
by the compiler —by way of memory (re)mapping during
compilation— we do not call this dependency a violation of
the separation of concerns principle from the point of view
of the application software engineer. However, the approach
has its limitations.

Kuhl and Fay emphasized that a static reconfiguration,
which requires a complete shutdown of a system, is more
costly than a dynamic reconfiguration, which can be per-
formed without a complete shutdown [21]. Since we do not
have control about how a compiler is doing the memory
(re)mapping of (the reference address of) in/out variables
which are passed by reference, we should assume that a
dynamic configuration is limited by the data memory address
space. More specifically, when a change is introduced in
a module which processes in/out variables by reference, a
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Figure 5. Different levels of modularity [22]

memory remapping of the surrounding system is necessary,
and thus requires a shutdown of this system.

It is important that the application engineer is aware of
this discussed limitation, especially when the choice has
to be made to pass by reference or not. One should be
aware that copying pass-by-value-variables costs processor
time and memory space (which can be even more than
strictly required when applying stamp coupling). Remember
that the Normalized Systems authors advocate a higher
granularity, i.e., smaller modules with the consequence that –
for the same functionality– the amount of modules increases,
including the (amount of) modular interfaces.

The definition of the theorem ‘separation of concerns’ has
a focus on separation of ‘tasks’ (Section II), which might
be interpreted as a separation of functionality. However, a
concern can also be interpreted as a data memory address
space, let it be on a different level of aggregation. More
specifically, separation of functionality is advantageously on
the lowest level of modularity, —decisions are supported
with the concept of change drivers— but on a higher level
the technical environment, e.g., the data memory address
space, might be considered a concern. In other words, we
propose that higher level constructs (aggregating one or
more entities) can use the concept of passing by reference
internally to let entities communicate mutually by way of
stamp coupling, reusing the same interface for every entity.
This might limit the consequences of the higher granularity
by enabling the reuse of modular interfaces. More levels of
this design might be possible in cascade, like suggested in
the migration scenario’s in Figure 5 [22].

E. Static and external variables

In his thinking on the recursive procedure, Dijkstra praised
the concept of local variables, but he also mentioned the
shortcoming of life-time of local variables. Local variables
are ‘created’ upon procedure entry, and cease to exist when
the procedure ends. The fact that local variables relate to
an instantiation and only exist during that specific instan-
tiation makes it impossible for the procedure to transmit

information behind the scenes from one instantiation to
the next ([16], p. 48). In this paper, we do not wish to
advocate recursive procedures, but we do emphasize that the
concept of static local variables (i.e., local variables which
can remember their state of the previous run or incarnation)
is advantageous towards the separation of states principle.
The term static refers to the fact that the memory for
these variables are allocated statically –at compile time– in
contrast to the local variables, whose memory is allocated
and deallocated during runtime. This concept is clearly
exemplified in [18], where local (temporal) variables in a
module of the form FC (Function) cannot remember their
previous state, and local (static) variables in a module of the
form FB (Function Block) can. For storing static variables,
this type of PLCs use dedicated data memory constructs they
call Data Blocks (DBs). In the case they connect such a DB
to an FB they call it an instance DB.

The concept of external variables requires some expla-
nation concerning definition and declaration. The definition
of global variables decides in which memory address space
they can be used, and the declaration of these global
variables in the documentation of a module informs the
potential user of the module that these global variables are
needed to be able to use the module. The definition of a
variable triggers the compiler to allocate memory for that
variable and possibly also initializes its contents to some
value. A declaration however, tells the compiler that the
variable should be defined elsewhere, which the compiler
should check. In the case of a declaration there is no need
for memory allocation, because this is done elsewhere. The
VAR EXTERNAL keyword in an IEC 61131-3 environment
indicates that the following variable is declared for the
module where this keyword is used, and defined elsewhere
(probably global).

Unfortunately, following a study of de Sousa, the details
of defining global variables and declaring external variables
are discussable to the letter of the IEC 61131-3 standard
[23]. This author even doubt whether it is advantageous
to have the possibility of external variable declarations
within function block declarations, because passing a global
variable via the keyword VAR IN OUT has a similar effect.
In earlier work, we also advocated the use of in/out variables
in an IEC 61131-3 project [9], but still, when we evaluate
the concept of external variables based on the Normalized
Systems theory, the explicit declaration of the use of global
variables in a module eliminates potential combinatorial
effects caused by common coupling. In this context, it
is interesting that de Sousa considered VAR EXTERNAL
variables as belonging to the interface ([23] p. 317).

V. CONSTRUCTS FOR FUNCTIONALITY

In the previous section, we discussed mainly the concerns
of data memory, and also how data memory relates to
the first type of software modules, ‘closed subroutines’,
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and its successor ‘procedures’. The latter can have local
variables, and an interface. The modular interface consists
of a name for the procedure, and the input and output
data variables, which are preferably data structures. We
now discuss some other types of modules, which can be
considered as extensions of the concept of the procedure
and its interface.

A. Object-Oriented programming

The main new construct for implementing modules in
object-oriented languages is the class. A class consists of
both data variables (member variables) and functionality
(methods). Methods can have their own local variables, but
can also access the member variables and other methods of
the class it belongs to. To allocate data memory and enable
the methods to really work, a class needs to be instantiated
or constructed to make an object. Objects of the same class
can co-exist. Data and functionality are tightly coupled in
an instance (object). Methods which are declared as public,
are visible for other objects. Memory variables are normally
considered as private to the class and, therefore, invisible
for other objects. The interface of a method consists of
a name for the method, and input and output variables.
An object-oriented design consists of a network of objects
calling methods of other objects, which can be implemented
as data coupling or stamp coupling.

Since each method has its own interface, and a class can
contain multiple methods, an object as a module can have
multiple interfaces. Classes can be extended with the concept
of inheritance. This concept envisaged to mimic the concept
of ontological refinement. Just like a bird is a special type
of animal, and a sparrow a special type of bird, inheritance
was created to define classes as refinements of other classes.
Such a subclass would inherit the member variables and
methods of a superclass, and extend it. However, Mannaert
and Verelst state that in practice, very few programming
classes are in line with the assumption that object-oriented
inheritance is based on ontological refinements ([2], p. 29).
If we cannot count on ontological refinements, a class can
also be seen as just an amount of methods, grouped together
based on the intuition of the programmer, and sharing the
same set of member variables. When the size of such a
class grows, the situation becomes comparable with a system
based on procedures, having their own local variables, but
sharing the system’s global variables.

In terms of Normalized Systems, we evaluate that the
object-oriented programming paradigm is not guaranteeing
compliance with the separation of concerns principle. First,
in case the data type or data representation can change
independently from the functionality, the tight coupling be-
tween data and functionality makes version transparency not
straightforward. For example, consider that in an application,
a house-number-field changes its data type from numeric to
alpha-numeric, without any functional change. The datatype

change might require the functionality to change, too. As
such, it seems possible that combinatorial effects occur,
which makes version transparency infeasible when the size
of a system grows. Second, when the size of a class grows,
the member variables are similar with (class-wide) global
variables. Consequently, common coupling between methods
is imaginable and combinatorial effects can occur. As a
remedy, this dependency could be made explicit by declaring
the use of every member variable in a method by way of
declaration concept similar to the the declaration of external
variables. Indeed, from the point of view of a method, a
class member variable can be seen as ‘external’.

Public methods can be called via their interface, as if they
make part of the programming environment. However, they
belong to a class. If someone wants to reuse such a method in
another system, at least the ‘hosting’ class should be copied
as well. In addition, other classes which contain coupled
methods should be copied, too (note that a class can contain
methods, from which the code include the construction of
objects, based on other classes). In other words, public
methods, which reside in classes, are available in a flat name
space. Any public method can call any other public method,
which can result in a complex network of calling and called
method, residing in the same or different objects. In an
evolving system, the required version management between
the calling and called (public) methods (with additionally
tightly coupled data), is not straightforward. To be able to
keep track of all couplings, including the versions of these
methods, we propose a similar explicitation like we did for
memory variables. The method interface should include a
declaration or documentation part, which informs the user
of all methods which are called inside the method, including
the object and class version to which they belong. This
declaration might be done in a similar way as the declaration
of external variables, i.e., the announcement that one or
more functional constructs are used or called in the code
of the concerning method. In terms of Normalized Systems,
we evaluate that methods and classes might comply with
the separation of concerns principle, but extra constraints
are necessary. There should be only one ‘core’-method
containing the core functionality of the class, surrounded by
supporting methods like cross-cutting concerns. Also version
transparency should be an extra constraint when using the
object oriented paradigm.

The concept of inheritance does not guarantee version
transparency, because it is based on an anthropomorphical
assumption, which is not realistic in all cases. It would be
better to implement explicit version management, based on
version IDs. This version management should be twofold:
first, the versions of data memory entities (including type
or representation) should be made explicit, and second,
the versions of the functionality, how the versions of data
memory entities relate to the versions of functionality and
vice versa should be made explicit as well.
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Figure 6. The concept of version wrapping

We do discuss some potential drawbacks of the object-
oriented paradigm, but we emphasize that it is possible
to build evolvable systems, based on the object-oriented
paradigm, complying the Normalized Systems theorems.
However, the object oriented paradigm itself does not guar-
antee the property of evolvability. Additional constraints
are necessary to eliminate combinatorial effects. One of
the key remarks is that an object should not contain more
than one core functionality, and functionality should be
separated from data representation. One of the possibilities
is the introduction of data objects and functional objects.
In addition, the use of memory variables and methods in a
method should be declared on a similar way like the concept
of external variables. We also think that polymorphism,
combined with explicit version management might be an
alternative for inheritance. This alternative could exhibit
version transparency, but more elaboration and future work
is needed to figure this out.

B. Modules in IEC 61131-3

In an IEC 61131-3 environment, we have Functions (FCs),
which have in addition to the input and output variables only
temporary local variables. The Function Block (FB) con-
struct can have static local variables, too. More general, these
constructs are called Program Organization Units (POU),
and are stored in a flat program memory space. On the same
level global variables and derived data types are defined
(in IEC 61131-3 terms, as a configuration definition). Note
that, besides the functionality, FBs need data memory before
they can actually run. Several FB instances can co-exist
with separated data memory. This concept is very similar
to the object-oriented paradigm. Indeed, Thramboulidis and
Frey state that the Function Block concept has introduced
in the industrial automation domain basic concepts of the
object oriented paradigm [24]. There is a restriction in the
behavior definition of the FB: only one method can be
defined. There are no method signatures as in common
object oriented languages; actually there is no signature even
for this one method defined by the FB body. This method
is executed when the FB instance is called [24][4]. Note
that the object oriented extension of the FB construct that is
under discussion in IEC is not considered in this paper.

Polymorphism is not supported in version two of the IEC
61131-3 standard, nor is inheritance [4]. In a commercial

IEC 61131-3 environment, the only way to implement
version management is doing this explicitly. In earlier work,
we proposed the concepts Transparent Coding and Wrapping
Functionality [9]. Transparent coding is defined as the writ-
ing of internal code in a module which is not affecting the
functionality of previous versions. When Transparent Coding
is not possible (e.g., because of conflicting functionality of
the versions, or when the combination of the functionality
of different versions requires too complex code), Version
Wrapping can be applied. Following this principle, different
versions of a module co-exist in parallel, and a wrapping
module selects the desired version based on the version ID
(see Figure 6).

As a reflection with regard to the general object oriented
paradigm, it is straightforward to implement only one core
functionality in an (IEC 61131-3) FB, because following the
analysis of Thramboulidis and Frey only one method is de-
fined in a FB [24]. However, software application engineers
tend to extend the possibilities of FBs by way of control
coupling. In other words, it is possible to select different
functionality based on parameters. In terms of Normalized
Systems reasoning, control coupling should be restricted to
version selection only. In this way, several versions can co-
exist, but still not more than one core functionality resides
in one module.

We also reflect on the issue of separation of data and
functionality. If we would do this rigorously and strict, we
would abandon the use of FBs and stick to the use of FCs
only, because FBs can have static variables, and FCs cannot.
This also implies that FBs can call other FBs, but FCs cannot
call FBs. Indeed, FCs cannot instantiate FBs because they
can not allocate the static memory FBs require in syntactical
sense. However, we do advocate the use of FBs, because we
think it is advantageous to separate technical data, which can
be tightly coupled with the functionality, and content data,
which has a meaning with regard to the algorithm which is
processed in the functionality. For example, to detect the so-
called rising or falling edges, e.g., the arriving of a bottle on
a filling location, we need to remember the previous state of
a sensor. The memory needed to detect these rising or falling
edges is a technical matter, of which we might desire to be
hidden. In contrast, the information that the event of arrival
occurred, is something important for the process algorithm,
e.g., to trigger the filling process of the arrived bottle.
Another example is the case of the control of a valve, which
includes an alarm state. The valve is operational when the
feedback sensors (i.e., open or closed sensors) correspond to
the output control (i.e., open or closed commands). However,
the valve has a mechanical inertia, i.e., it needs some time
to open or close, so having a discrepancy between feedback
and control is temporary normal. Typically, a timer construct
is used to temporary allow a discrepancy, while not entering
the alarm state. The data needed for the technical instance
of the timer construct is data we call a technical data entity,
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which can be hidden and tightly coupled to the module
which is performing the alarming algorithm. The result of
the decision whether the valve is in the alarm state or not, is
related to the control algorithm of the valve, and should be
stored in a separated data entity, or more specifically, passed
via the modular interface.

C. Libraries and packages

Libraries are collections of compiled modules, which can
be shared among various application programs. In an IEC
61131-3 environment, they can also include the definition
of the so-called derived data types, i.e., user defined data
types, such as structs. Some libraries are called ‘standard’
libraries, because the content is specified in a standard (this
kind of library functionality is also specified in IEC 61131-
3). The functionality offered in a standard library is assumed
to be widely known, and application engineers should be
able to treat them as if they make part of the programming
environment. However, in an IEC 61131-3 environment, the
details of standard constructs might slightly differ from one
brand to another, because this standard allows the so-called
implementation-dependent parameters ([4], annex D).

At first sight, the concept of adding ‘standard’ or other
constructs with a reuse potential by way of libraries sounds
interesting. Indeed, when the set of shared functionality is
small enough, this concept looks great. However, like Dijk-
stra already recognized back in 1972, one of the important
weaknesses in software programs is an underestimation of
the specific difficulties of size ([16], p. 2). Remember that
the Normalized Systems theory emphasize the importance
of separation of concerns. When we interpret a concern
as a module or user defined data type, we can count on
an unique identification of these constructs into the name-
space borders of an individual library or package. However,
when these libraries are selected in the library management
tool of a programming environment, these constructs end up
in a common flat name space. In other words, name space
conflicts can occur when constructs of different libraries end
up in the same flat module name space.

This might result in a so-called dependency-hell. This is
a colloquial term for the frustration of some software users
who have installed software packages, which depend on
specific versions of other software packages. It involves for
example package A needing package B & C, and package
B needing package F, while package C is incompatible with
package F. Again, when the amount of selected libraries
is limited, one could avoid a dependency-hell. However,
when constructs are shared between different developers,
who perform maintenance activities or make extension of
the same application over time, they might use constructs
of the same library, but from a different library version. If
it is desired that one construct of a library is used from a
early version, and another construct of the same library is
used from a recent version, it looks impossible to prevent

dependency problems in a flat name space. Also, in [18] the
modules have a number and a symbol. This number might
conflict with existing modules, or with modules from another
library.

To come back on the separation of concerns principle,
let us interpret a concern as a library. When different
libraries are selected in a programming environment, and
all constructs of these libraries end up in the same construct
name space, we evaluate this as a violation of the separation
of concerns principle. This violation is even worse when
two versions of the same library would be selected. If
the name of the library is not including the version, it
might be even impossible to select both. Having functional
constructs or data type definitions in a flat name space is
similar to common coupling. The use of a library construct
in a module should be documented in order to make an
evaluation whether the construct can be used in the con-
cerning module or not. The addition of a module, which
is using a conflicting name, indicates a bad separation of
the constructs available in the used libraries. We derive
that using modules from a library should be restricted to
standardized functionality and constructs. The designers of
the standard should prevent name conflicts in a similar way
how keywords are reserved in a programming language. One
should avoid to configure library constructs, dedicated for
reuse in specific applications, in a flat name space.

As a remedy, constructs belonging to a specific library
could be selected on the level of the module, not on the level
of the programming environment. This would mean a kind
of localization of library constructs. The declaration part of
a module could include a library browser, to select a desired
functionality or data type from that library. In addition, the
version of constructs and libraries should always be included
in the declaration part of the module. In this declaration,
the ‘hosting’ library of a construct, accompanied with its
version, should be included as a kind of path. As such,
it would be even possible to use co-existing versions of a
library construct in the same module, because the concerning
constructs are well separated.

D. Distributed calling via messages

In an IEC 61131-3 environment or in truly object oriented
languages, a module can only call other ‘local’ modules.
Local means that they need to be available within the same
program address space. Libraries are deployed locally in
the sense that they are compiled and linked into the same
program and memory address space. The concept of inter-
process communication allows remote calls to a library or
system, which is ‘hosted’ in another program and memory
address space. Following a paper of Birrel and Nelson,
remote procedure calls (RPC) appear to be a useful paradigm
for providing communication across a network between pro-
grams written in a high-level language [26]. The idea of RPC
is quite simple. When a remote procedure is invoked, the
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Figure 7. Principle of RPC between client and server [25]

calling environment is suspended, the parameters are passed
across the network to the environment where the procedure
is to be executed, and the desired procedure is executed
there (Figure 7). The idea of RPC was older, but Birrel and
Nelson were one of the first who implemented it [26]. This
concept is further elaborated with the standards CORBA
(Common Object Request Broker Architecture [27]) and
DCOM (Distributed Component Object Model [28]). Also,
the OPC Foundation based its first interoperability standard
for industrial automation on DCOM. This first family of
specifications is referred to as ‘the classic OPC specifica-
tions’ [29].

The ignorance on the part of the client about the fact
that the server is located in a remote address space, was
considered advantageous [25]. The client made use of a
(local) library, which is dedicated for making a connection
with a remote library, which was performing some tasks
on the server side. Both libraries collaborate on a rather
complicated mechanism to convert the client call to a
message, and unpacking this message at the server side and
convert it to a (local) call at the server side. All the details
of the message passing are hidden away in the two libraries.
Because of the message passing, this is message coupling,
but for the user it looks like data or stamp coupling. Since
the user cannot know whether there is a message coupling
behind the data or stamp coupling, using or not using the
concerned module cannot be a well considered choice or
decision.

We evaluate that on top of the problems explained in the
previous subsection about libraries and packages (subsection
V-C) this concept, shown in Figure 7, is a violation of the
separation of states theorem. Remember that a local module
call is based on and thus dependent on the local address
space. Hiding this dependency for the user also hinders
the potential control over this dependency or assumption.
For a local call, a fast reaction of the called module is
assumed. For a remote call, the extra transfer time is not
always negligible. Consequently, the suspension of the client
during the call might be unfeasibly long. Also, when a
communication failure occurs, the reply will not come at all,

Figure 8. Deferred synchronous RPC [25]

and the client will wait forever. In addition, the ‘assumption’
of the client that the call is local, does not discourages the
user to pass variables by reference. While passing variables
by reference assumes a local address space, this concept is
not ideal in a remote call. When crossing the borders of
a memory address space, each side of the coupling has to
keep its own state. In other words, a reference to an item in
an address space will become meaningless if the reference
address is moved to another address space (and similar
to content coupling). This would be an occurrence of a
violation of the separation of concerns principle. In addition,
because the value behind the reference is not copied in
the respectively address spaces, we have a violation of the
separation of states principle.

E. Synchronous versus asynchronous message passing

The concept of Figure 7, i.e., the client waits until the
server replies before carrying on with its task, is called
synchronous RPC. The action of communication on the
client side can be summarized in one single line of pro-
gramming code, there is a synchronization point between
sender and receiver on message transfer. To minimize the
‘wait for result’ time, the concept of asynchronous RPC is
introduced, where the client is not waiting for the reply, but
only on an ‘acceptance request’ message. In combination
with a similar call coming from the server (a so-called
‘callback’), the client can receive the return results from the
remote procedure in a comparable time frame as with syn-
chronous RPC, but then without being blocked all the time
(Figure 8). In comparison with synchronous communication,
asynchronous communicates requires buffering to enable the
program proceeding at the client side between request and
reply. Before indicating this as an disadvantage, one should
be aware that this buffering is exactly what the separation
of states principle calls for. However, this principle is still
not totally met, because the program at the client side can
still hang when the ‘acceptance request’ message does not
come, e.g., because of a network failure.

In the classic OPC specifications, both synchronous
and asynchronous reading/writing functionality is available.
However, experts indicated as a heuristic rule that asyn-
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chronous communication is preferable. Indeed, the authors
of the new family of interoperability standards for industrial
automation, i.e., the OPC Unified Architecture (OPC UA),
have abandoned the synchronous communication concept
[30]. Instead, the OPC UA based communication is asyn-
chronous by definition [31]. In terms of Normalized Sys-
tems, asynchronous communication reaches further towards
complying the separation of states principle. In DCOM,
there was an attempt to handle the risk that the client hangs
when the ‘acceptance request’ message does not come by
introducing a time-out mechanism. However, experts of the
OPC Foundation reflected, based on worldwide surveys, that
practitioners still call this an issue (note that classic OPC is
based on DCOM). Lange et al. state that the time-out of
DCOM in case of communication failures is too long, and
not configurable [32].

We evaluate further that RPC, and DCOM, do not exhibit
version transparency. Any change to a server requires all
(remote) clients to have corresponding updates. When the
size of a (distributed) system grows, this becomes infeasible
because of the occurring combinatorial effects.

F. Service based communication

Services are modular constructs for aggregating software.
Internally, they consist of modules, and they have one or
more modular interfaces, that is accessible to the outside
world. The basic idea is that some client application can
call the services as provided by a server application. This
principle is very similar to what was aimed at with remote
procedure calls, except that the message coupling part is not
hidden for the user. Services were first proposed in terms of
web services, as they adhere to a collection of standards
that will allow them to be discovered and accessed over
the Internet. However, the term service has become more
broadly interpreted later on. A service refers to technology-
independent modules, implementable in different ways, in-
cluding web services.

Web services are described by means of the Web Service
Definition Language (WSDL) which is a formal language,
comparable with the interface definition languages used
to support RPC-based communication. A core element of
a web service is the specification of how communication
takes place. To this end, the Simple Object Access Protocol
(SOAP) is used, which is essentially a framework in which
much of the communication between two processes can be
standardized [25]. Strange as it may seem, a SOAP envelope
does not contain the address of the recipient. Instead, SOAP
specifies bindings to underlying transfer protocols. In prac-
tice, most SOAP messages are sent over HyperText Transfer
Protocol (HTTP). All communication between a client and
server takes place through messages. HTTP recognizes only
request and response messages. For our evaluation, a key
field in the request line of the request message and sta-
tus line of the response message is the version field. In

other words, HTTP exhibits version transparency. Client and
server can negotiate with the ‘upgrade’ message header on
which version they will proceed. SOAP is designed with
the assumption that client and server know very little of
each other. Therefore, SOAP messages are largely based
on the Extensible Markup Language (XML), which is on
top of a markup language also a meta-markup language. In
other words, in an XML description the syntax as used for
a message is part of that message. This makes XML more
flexible than the fixed markup language HyperText Markup
Language (HTML), which is the most widely-used markup
language in the Web.

Web services can be considered as a successor to RPC,
like OPC UA (based on services) is a platform- and tech-
nology independent ‘alternative’ for classic OPC (based on
DCOM). We doubt to use the word ‘alternative’ here, be-
cause classic OPC and OPC UA are complementary. Indeed,
services can internally consist of classes or components,
including DCOM based constructs. Web services separate
software components from each other. They enable self-
describing, modular applications to be published, located,
and invoked across the web. Being a standardized interface,
OPC UA enables interoperability between automation sys-
tems of different vendors. The industrial working groups
of the OPC Foundation introduced a mechanism to bring
interoperability on an abstract level, without leaving the
practical implementability. To achieve this ambitious goal,
they emphasized the importance of a communication con-
text, and made a connection management concept between
clients and servers mandatory. Probably OPC UA is also
implementable for interoperability in other sectors than
industrial automation [31].

The concept of asynchronous web-based messaging al-
lows clients to proceed functioning, even if the server does
not respond. From a technical point of view, a client can just
carry on based on its own state. From a functional point of
view, OPC UA incorporated mechanisms of notification and
keep-alive messages to enable handling communication or
remote system failures. This complies with the separation
of states principle. The version tag in the HTTP messages
enables compliance with the version transparency theorems.

VI. SUMMARY OF EVALUATIONS AND GUIDELINES

The core recommendation of this paper is making hidden
dependencies explicit in the module’s interface. In other
words, safe black box (re)use requires that a developer is
able to anticipate which conditions are necessary for (re)use.
A self-explaining interface is a good start, but typically
dependencies like packages, libraries, global variables,
implicitly used communication technologies, references to
a local address space, are not included in the interface. We
conclude that it should, and phrase the following rule.
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In order to design safe black box (re)useable software
components, every (re)use of a library, package, global
variable or implicitly use of a communication technology in
a module, should include a declaration, reference, path or
link to the identification of the dependency, accompanied
with the used version.

We make the reflection that there is a similarity between
global variables, which are not declared with the ‘external’
keyword and other dependencies, which are not declared
in the module’s interface. It can be interpreted that these
dependencies can cause common coupling. Hiding these
dependencies makes it impossible to evaluate them and let
the user decide whether these dependencies can or cannot
be made available in the environment in which the user is
considering them to (re)use. Note that declarations to make
these dependencies visible should include the versions of
the external constructs, to prevent combinatorial effects in
case of updates, and to enable the co-existence of different
versions of the same core constructs in a library or external
technology.

In addition to our rather general rule, we define some
explicit guidelines:

1) Explicitation of global variables: Global variables
should be treated as local variables of the main program,
and passed to called modules by reference or via the in/out
variables in an IEC 61131-3 environment. These variables
could be passed further in cascade to submodules called
by modules, where they are locally always treated as in/out
variables.

Application example: Consider an IEC 61131-3 Function
Block which is controlling a motor. This Function Block
(FB) is calling other FBs on submodular lever, where the
core functionality is a state machine of the motor. In addi-
tion, there are supporting FBs on submodular level, which
provide functionality to manage manual/automatic mode,
alarming, interlocking, hardware connection, and simulation.
The FB on modular level (dispatching task) receives a
data struct, which contains all the states, commands, and
hardware IOs of both core and supporting functionality. This
data struct is a global variable. The dispatching FB calls
FBs on submodular level and passes the data struct to each
of the supporting FBs as an in/out variable. This design
has a modular structure with a high granularity. Since the
functionality of the FBs on submodular level is limited and
generic, the reuse potential is high.

2) Pass by reference should strictly adhere to one single
address space: In/out variables, passed by reference, loose
their meaning in another address space. Therefore, the
pass by reference concept should be limited to the same
environment or address space where the referred variable
is defined. In case it is desired to cross the borders of the
address space, a copy of the concerned variable or a pass
by value is required.

Application example: Consider the same data structure
which contains all the data about a motor. This data structure
is defined as a global construct, and is passed to the
dispatching FB by reference. This reference is passed further
on submodular level to the supporting FBs. Now, outside
the PLC, a low level HMI (Human Machine Interface)
application is used to control the motor on submodular
level on a Windows PC. This Windows PC cannot use the
reference, which is only meaningful in the PLC. Instead, the
entire data structure is copied via an OPC interface (message
coupling) to the HMI application.

3) Explicitation of external modules: Couplings to exter-
nal modules can be (re)used, library modules included, but
they should be declared in a similar way like the ‘external’
keyword for global variables, including the path of the
communication context. In other words, library management
should be done on the level of the module, not on the level
of the programming environment. In addition, the versions
of the called modules should be declared.

Application example: Our data structure is defined as a
global IEC 61131-3 configuration. In the main program, this
is not visible, unless this data structure is declared as an
external defined data structure in the main program (POU).
As such, the data structure can be treated as local for the
main program.

4) Abstraction of external technologies: It is allowed
to hide information about an external technology, but an
abstraction of the core functionality should be declared,
including the fact that this functionality is abstract, and re-
lying on a remote technology. The entity which is managing
the connection with this abstract remote technology should
exhibit state keeping, and notify autonomously unexpected
behavior of the remote technology.

Application example: Suppose the motor is controller with
a frequency drive. We do not have control over potential
firmware updates of this frequency drive. It is also possible
that at some moment in time the frequency drive will be
replaced by another type or brand. Therefore, we include in
data struct fields which are representing the core function-
ality like setpoint, ramp, speed, current, etc. A connection
entity is responsible to convert the representation or data
type of these fields. For every version another connection
entity has to be written. A connection element selects the
appropriate version based on a version ID.

VII. CONCLUSION

The reasons why properties like evolvability, (re)usability,
and safe black box design are difficult to achieve, have most
likely something to do with a lack of making the existing
knowledge and experience-based guidelines on sound modu-
lar design explicit. Undoubtedly, the theorems of Normalized
Systems contribute on this issue by formulating unambigu-
ous design rules at the elementary level of software primi-
tives. On a higher implementation level, it is expected that
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not all implementation questions like those related to, e.g., a
dependency-hell, are easy to answer. Experienced engineers
will find that these are violations of the theorems ‘separation
of concerns’ and ‘separation of states’. However, for less
experienced engineers, more practical oriented examples or
manifestations of violations and how to avoid them, seem
useful as well. We aim that — on top of these fundamental
principles — some derived rules can make these violations
easier to catch, also for less experienced engineers.

In this paper, we introduced the derived rule that any
dependency should be visible in the module’s interface,
accompanied by its state and version. The way how this
information is included in the interface, should be done in
a version transparent way, to prevent violations of the 2nd
and 3rd principle of Normalized Systems.

We made a study of a set of different kind of couplings
on an abstract way, and evaluated these types of couplings
against the Normalized Systems theorems. In addition, im-
plications arise when modules are placed in an address
space, based on a paradigm or construct in a concrete
programming environment. Special attention is needed when
a module, placed in the local address space, is coupled
with another module, which is placed in a remote address
space. After evaluating these implications, we derived four
guidelines towards better controlling dependencies.

We designed the derived rules with the potential to
become generic, independent of the application domain. As
a first start, we exemplified the rules and analyses in a PLC
(IEC 61131-3 based) environment. In future work, our aim is
to investigate to which extent these rules can be implemented
in other technologies and programming environments as
well.
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