International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

235

Comparison of Single-Speed GSHP Controllerswith a Calibrated
Semi-Virtual Test Bench

Tristan Salqu¥®, Peter Rieder@r
#Energy-Health-Environment Dept.
CSTB (Scientific and Technical Centre for Building)
Sophia-Antipolis, France
tristan.salque@cstb.fr; peter.riederer@cstb.fr

Abstract — With the recent development of new controllers
for heat pump systems, there is a need to test and compare
these controllers in a realistic and reproducible environment.
This can be done using a semi-virtual test-bench with a
simulation environment that is calibrated with in-situ
measurements. A real ground source heat pump (GSHP) is
connected to the test bench that emulates the building and the
boreholes. The test can thus be carried out under dynamic
conditions: dynamic weather conditions are used as well as
simulated building, floor heating and boreholes. In this study,
the developed neural network-based predictive controller is
compared to a conventional controller during a one-week semi-
virtual test. Test results showed that the predictive controller
can provide up to 40% energy savings in comparison with a
conventional controller.

Keywords - Atrtificial neural networks; Predictiveonitrol; Energy
savings; Geothermal heat pump, Semi-virtual testibb.

l. INTRODUCTION

Important research was conducted on predictivercbnt
strategies during the 1980s and 1990s. More rgcehd use
of artificial neural networks (ANN) has significént
increased the prediction performances of models.NAN
models were successfully applied to the contraksfdential
and small office buildings [1-4]. Other kinds ofepictive
controllers for radiant floor heating systems hais® led to
remarkable results [5-8].

Most of these smart controllers were validated by

simulation, while some were tested on a real bogjdir on a
test cell. Each test technique has its advantages ita
disadvantages. The simulation test is requiregtonize the
controller and to ensure its accurate behavior anious
situations. Nevertheless, a simulated environmeayt mot be
realistic enough to produce reliable results. Besidthis

procedure uses a simulated heat pump. To remedy thQ

situation, the controller can be tested in-situ anreal
building or on a test cell. These approaches att@wse of
a real heat pump and deals with real noisy data. mhin
problem of these tests is the fact that two coletrelcan only
be tested sequentially. Even
techniques can be done, the comparison gener#bysface
the conditions (occupants’ behavior, weather, etrg
different. Another comparison technique, called ssro
comparison, consists in testing two controllerghat same

if weather compensatio
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time but on separate blocks of the same buildirgpi# the
comparison is not accurate since the two blocks lware
different internal and external heat gains, oritoteor wall
composition.

For the purpose of comparing different controllers
sequentially and under identical conditions, theisartual
test bench PEPSY-PAC [9] developed by the CSTBélu
A real GSHP is connected to a test bench that ¢esuthe
building and the boreholes. The test of the colar®lcan
thus be carried out under dynamic conditions: dynam
weather conditions are used as input of a buildingulation
including floor heating and boreholes. This apphoapens a
large variety of possible test schedules sincestirlated
building, the emitter, weather conditions and o@rgy can
be changed easily. Moreover, the semi-virtual aéletvs the
comparison of different controllers with the same
solicitations.

In this paper, the developed ANN predictive corérmis
compared to a conventional controller during twqustial
semi-virtual tests of one week. The simulation ssrvinent
is designed to reproduce all characteristics (mgld
weather, boreholes, etc.) of an in-situ GSHP thais w
monitored during the 2011/2012 heating seasonaémtirth
of France. The system components parameters (Hessho
GSHP, floor heating and building) are first ideietif
separately then the global simulation with all tbenponents
is compared to in-situ measurements.

The paper also includes the description of the ANN
controller. The training process including the deieation

of optimal input data, algorithm, and structuredigailed.
The objective of the controller is to minimize tkeergy
consumption of the GSHP system and maintain a good
comfort level anticipating future disturbances gsoains,
outdoor temperature) and room temperature. ANN nesdu
re used for the prediction of weather data, rcemperature
and temperatures in the floor heating and in thretomes.

The paper is organized as follows. In Section He t
semi-virtual test bench is presented. Section &lg with
the calibration of the simulated part with in-situ
measurements. The ANN controller is detailed intiSedV.

In Section V, the predictive controller is compared a
conventional controller on the bench. The last isect
presents the conclusions of this paper.
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Figure 1: Flowchart of the semi-virtual test ofantroller.

Il.  SEMI-VIRTUAL TEST BENCH
A. Concept of the test-bench

The semi-virtual platform PEPSY-PAC (Platform for

the Evaluation of Performances of dynamic SYstehes
been developed for testing performances of GSHRem\gs
or parts of the system [9]. It also allows the te$ta
controller connected to a real GSHP integrateddimalated
environment, as presented in this paper. This lesich

allows the emulation of any water-based heat emitte

integrated in a building as well as any kind ofgrd heat
exchanger. The outlet temperature and flowrateheftest
bench is controlled by the system simulation.

Matlab is used for the simulated part of the testdh.
Simulation is therefore slowed down to real timel dahe
simulation environment enables at the same timetdke
bench control, system simulation (emulator) andinenl
monitoring of the test.

The operation of the test bench is detailed in fegu
Every thirty seconds, the simulated part sends hmaputs
(outlet temperatures of the floor heating, & and the
boreholes T,.s¢) to the test bench.

Cold primary

\W/j
%, [o2]
e Py N (T8 16
) () () re)

- % % A7, N/ N/
X X X X AKX
Boreholes Building DHW tank

Figure 2: Test bench hydraulic circuit diagram.

The test bench controls the real outlet temperatofe
the GSHP ({, and T, ) to reach these setpoints. At the same
time, the GSHP inlet temperatures;;(@nd T,)) and flow
rates fhyandm,;) are measured and sent to the simulation
environment. Weather data like solar radiationd autside
temperature J as well as room temperature; Bre
transmitted to the tested controller. In-situ measents,
detailed in the next section, are used to fit theukated part.

B. Construction and control

The test bench integrates 6 hydraulic ports fotirtgs
(building, boreholes and Domestic Hot Water tark)weell
as 2 hydraulic ports for the cold primary circdihe DHW
tank ports are not used for this test. The cirdiagram is
presented in Figure 2.

Seven proportional-integral-derivative (PID) cotibs
ensure the continuous control of outlet temperattheough
the action of hydraulic valves and electric heatBrgure 3
shows the temperature step responses on the lyititie
and in the boreholes. Inlet and outlet temperatiass
measured every thirty seconds with a specific dgtmr.
The test bench was designed to consume the lesghlgos
energy: the heat extracted at the building sideséxd to heat
up the boreholes side. Two hydraulic separatorsthen
building side and on the borehole side allow that lpeimp
flowrate to be independent from the bench flowratee
pressures losses of the heat pump circulators luas the
adjusted to correspond to real floor heating aéfales.
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Figure 3: Test-bench response to setpoint stepgeisan

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

237

o

S

T
0 ©)

Poiasp
g Floor heating
@. — & -

J Pel-pump.b Pel-pump,f}“':

.......... Boreholes

Figure 4 : In-situ monitoring of a GSHP system atweelling in Marck (France).

lll.  CALIBRATION OF SIMULATED PART

The building was modeled with the Simbad multizone
model [11] and designed with the associated SimBDI
graphical interface. A simple monozone model hasnbe
chosen.

The floor heating model developed by Salque [12] is
based on finite difference method. It consists &Dagrid of
- Surface area O_f 10_02m . the slab coupled to a pipe model. The floor heaisngnade
- External walls: brick (11 cm), air layer, gellular of four layers (floor covers, slab with pipes, ilaion and

concrete (11 cm), glass-wool (10 cm), air Iayer’concrete floor) with different thermal properties.

plasterboard (1.3 cm). Global U-value of 0.18 W.m- """ 10 heat” hump model is based on experimental data.

A. In-situ measurements

A single family-house located in Marck (France) has
been monitored during the 2011/2012 heating peridtie
dwelling is conform to the 2005 French regulati&T2005)
and has the following characteristics:

2K-1: e =Xperime
. ) The coefficient of performance (COP), which is th&o of
) Do_uble glaz_mg, Ujvalue of 1.5 W.m-2.K-1; the heat produced at the condenser to the elestrérgy
- Windows distribution: North 7%, South 10%, East .ongymed by the compressor, is determined withmisaod
1.7%' West 0% . _ of least squares for a plane equation, dependirayvefage
- Single flow hygro-adjustable ventilation ; temperatures at both condenser and evaporator side.
- Equipped with a 8.5 kW GSHP connected to a floor The boreholes model developed by Partenay [13] is
heating; based on finite difference method. It consists BDagrid of

Double U-pipe vertical boreholes of 100m depth.  ha ground coupled to a pipe model, allowing thenlelmg

The renewable energy monitoring box (REMBO) of single or double U pipes. The heat conductiasbfam is
developed by the CSTB acquires, treats and sendsurezl solveg with a state- spgc?e formulation. fam

data every minute to a server. Flow rates and ¢eatpres

on the building side and on the borehole side szasured
as well as electric consumptions of compressorpmdps. @
Outside and room temperature are also measuredhalGlo =
horizontal solar radiation is obtained from satelimages @
thanks to the SODA service [10].
B. Modeling of the GSHP system @
The whole system model is based on Matlab/Simulink 3
environment using the SIMBAD toolbox (Simbad, 2004) -
The system includes the following components (
Figures): = e | @
- Building part (building, floor heating system, Lol o
occupants, ventilation and equipment); i §
- GSHP; @
- Borehole heat exchanger part. Figure 5 : Modeling of the GSHP system with Mat&ibiulink.
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C. Fitting of simulated part influent layer (slab with pipes) is enough to m#ke model
The objective is to fit the simulated GSHP systerthe fit. Another crucial floor heating parameter thateds to be
measured data to obtain a realistic simulationrenment. ~ adjusted is the pipe spacing that is proportionghe heat-
The system components parameters (boreholes, GigidP, €Xchange surface between fluid and floor heating
heating and building) are identified separatelyr Each Since there are no measurements of surface terperat
component, the physical parameters known a pri@iew the identification of both floor heating and burldi models
fixed, while others were fitted by least squareimimation. ~ has to be made in parallel. The optimal set of paters was
A step by step method for tuning the physical patens of ~found to be:

the different models was proposed by Salque [12Zpécific - Pipe spacing : 0.33 m ;-

iterative process for parameters identificatiowifding and - Floor heating conductivity : 1.9 W/(m.K)
floor heating was developed since these componergs - Floor heating inertia : 8950 kJ/K ;
physically coupled. An overview of this method istalled - Ventilation rate : 0.36 vol/h;

here, for more information please refer to [12]. - Blinds position: 0.8 [-].

» Boreholes parameters identification ) -
) ) . ¢ GSHP parameters identification
Design parameters such as the radius of drilling,

borehole length or pipe diameter are fixed sinazy tare The GSHP model is only required to verify that the
known from in-situ measurements. Modeling paranseterglobal simulation still fits the measured data. Tieat pump
such as the radius of domain and the number ofsnade COP is modeled by the following function, developegd
also fixed to simplify the problem. The unknownsicern  Partenay [13]:

the thermal characteristics of the ground (ground COP = a % Tppqp + b * Teona 1)
conductivity and heat capacity) and the initial wgrd

temperature. These variable parameters were adjista Where T, and Tong are the average temperatures at

physical range of values to best fit the measumd.dThe €vaporator and condenser side. For a given temperat
following values were found to be the optimal sdt o level in the heating floor, COP behaves as a lifigaction

parameters: of the temperature level in the ground. Experimletdsts
- Ground conductivity : 2.2 W/(m.K) revealed that electric power Pel was only a fumctaf
- Ground heat capacity: 2180 kJ/(kg.K) condenser temperature. The chosen model is expresse
- Initial ground temperature : 12.2°C follows:
The Root Mean Square (RMS) error on outlet Py =d*T,yy®—e* Topng + f )

temperature with the optimal set of parameter44 . The

error in terms of energy extracted from the grodadng the  The coefficientss, 5, ¢ d e f are identified using the least

month of March is lower than 1%. squares method#£5.09, 5=0.16, <=-0.05, #=-81.9, e=66.9,
£~-0.55).

e Floor heating and building parameters identifiaatio Global simulation results

The building was modeled with the Simbad multizone  The identified models are now integrated in a globa
model [11] and designed with the associated SimBDkimulation in Matlab/Simulink. The month of Marcls i
graphical interface. Geometry and wall compositiohshe  simulated and compared to the measured data. Theumssl
identified dwelling were read from plans. Due tdaage  heat pump on/off control is applied to the simulateat
number of unknowns related to the occupants’ beavi pump. This way the differences between simulatiod a
(windows opening, internal gains, etc.) and thecelacation  measurements are only due to the modeling and tdmno
of the room temperature sensor, a simple monozamgem attributed to an incorrect estimate of control toggesides,
has been chosen. Design parameters such as buildifge action of the occupants on room temperaturgoset

geometry, wall composition or floor heating surfagee  makes it very difficult to accurately estimate tbentrol
supposed to be perfectly known and fixed. The hggro- logic.

adjustable ventilation is modeled by simple-fluntiation Figure 6 shows the comparison between simulated and
with a constant air flow as humidity ratio of indoair is  real GSHP system. The first graph on top shows Isied
unknown. and measured room temperatures. The identificaifothe

Since internal gains and ventilation parametershermal behavior of the building is satisfactorpdéed,
compensate when trying to fit the building modeteinal  simulated and measured room temperature extremerinar
gains were fixed to a typical value while the viation rate  phase. The RMS error on room temperature over thelew
was estimated. A constant blinds position betweé&lidded) month is 0.63 °C. The RMS error is 26 W for con@ens
and 1 (open) was also estimated to fit the solarsgd’he  power and 18 W for evaporator power. Simulated ihgat
composition of floor heating layers is known inange of energy consumption is 558 kWh while measure
uncertainty. It was found that the adjustment @& thost consumption is 541 kwh.
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Figure 6 : Comparison of global simulation resaltsl in-situ measurements — Month of March.

The last graph shows the SPF, which is the ratidhe radiant floor (), as well as all the possible trajectories of

between heating energy delivered to the buildindyelectric

the GSHP on/off for the next 6 hours. Based on ehes

energy consumed by the compressor. The SPF over tipeedictions, another ANN makes predictions of room

month of March obtained by simulation is 4.28, whihe
real SPF is 4.21.

IV. THE PREDICTIVE CONTROLLER
The objective of the controller is to minimize theergy

temperature ;T The optimization block determines the
optimal trajectory to be applied to the system &adiog to
the various trajectories of @&nd R.

B. Control strategy

consumption of the GSHP system and maintain a good . /he optimization block determines the optimal

temperature level anticipating future disturbanaed room
temperature. The controller is designed to be Isalfring
and easily adaptable in practice.

To be compatible with the developed controller, the

GSHP system must fulfill the following conditions:

* The GSHP is single-speed (only one single-speed

compressor);
e« The GSHP only supplies heating and/or cooling
(no domestic hot water supply);

e« The GSHP is directly connected to the radiant floor

heating, without any storage tank for hydraulic
decoupling.

A. Controller strucutre

The modular structure of the controller is illustchin
Figure 7. The forecasting modules are all basedMN. A
weather module performs predictions of solar ramafl)
and outdoor temperature JJT The heating power produced
(Py) and the electric power consumed by the GSHP &re
predicted by another module. The latter uses astsnghe
supply and returns temperatures in the boreholgsafid in

trajectory that minimizes the following cost furusti

N P 2 —
Y [S(k) (Tl(k)— Tr(k)> +Pe1(k)] -

k=1 ATmaX Pmax

subject to T, < T,(K) < Trax (4)
whereT, (k) andT,(k) are the predicted and the setpoint
temperature, whil®,; (k) andP,,,, are the predicted and the
maximum electric power consumed by the GSHP. The
maximal distance to the setpoiaf,,,, can be adjusted
whether the occupants give more importance to cadnafo

to energy savings AT,.x = 0.5K by default). When the
building is not occupied, the condition (4) main&T;
betweenT,,;, andT,.x. For intermittent control strategy,
6(k) is set to one during the occupancy period and to ze
otherwiseao is a value between zero and one (typically 0.8)
that gives more weight to the first predictiongime, these
being usually more accurate than the distant ptiedi
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Figure 7: Flow chart of the ANN-based predictivatoller. The symbol (") is assigned to the prestictalues.

C. Prediction horizon
The length of the prediction horizon depends oressv

Another key step in the process of ANN buildinghie
choice of inputs and associated time delays. Fotimear
models such as ANN, there is no systematic appr{gh

factors. A large horizon is needed when large roonand the risk of dismissing relevant inputs is higtatistical

temperature or electricity price changes are ergeit the
future [14]. It is the case in an intermittently capied
building. In practice, the horizon length is chosas an
equivalent of the room time constant correspondmghe
first active layers of the walls. For the purpo$¢he present
study, a 6 hours receding horizon is applied aedoitimal
control problem is repeated every 15 minutes.

D. Algorithm

At each time step, the optimal on/off trajectory the
next 6 hours is determined. The discrete naturiefinput
makes it possible to compute all the possible ¢tajees and
chose the one that minimizes the cost functiors(®ject to
constraint (4). Moreover, it allows the use of rioear
models, such as ANN, that usually limit the podiies of
analytical problem solving [15].

E. ANNS training process

The various modules were first optimized via exiens
off-line tests conducted with the neural networ&libox in
Matlab [16]. The objective is to produce a netwtét fits
the data as accurately as possible, but simplegéntutrain
easily and generalize well. Optimization is an dtee
process that consists in finding the ideal ANN e,
algorithm and set of input variables.

The ANNs architecture is a multilayer perceptroim
the present study, one hidden layer was alwaysdfaarbe
the best solution. The number of neurons in tedm layer
was first chosen to be equal to 75% of the numbénputs

methods like auto-correlation criterion or crossreation
give a good insight into the relevance and thesféert of an
input variable on the output. The model has to $simple
as possible while taking into account the most viaié
inputs. Again, optimal sets of inputs and time gglare
obtained by trial-and-error. A hyperbolic tangeignsoid
function was used as the transfer function in thels
hidden layer. The algorithm used for training was a
optimized version of the Levenberg-Marquardt aldponi
that included Bayesian regularization. This aldwnt
minimizes a combination of squared errors and wisjgind
then determines the correct combination so asddyme a
network that generalizes well.

The generalization capability is also improved witle
early stopping feature. With this technique, thikected data
that was first normalized to the range [-1; 1] igidkd into
three subsets: training, validation, and test. niing stops
when validation performance has increased more than
times since the last time it decreased. The teats# is used
to estimate the generalization error of the ANNsdnes not
interfere during the training process.

For online applications, ANNs have to be trained
regularly on new data set to adapt to changesersyistem.
For instance, during the heating season, the btagho
temperature will fall. To take into account thisspbmenon,
studies not presented here showed that the ANKRdm@hole
temperature prediction has to be trained everyals dn the
last 30 days data.

[17] and then optimized by trial-and-error until no

improvement could be seen.
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F. Room temperature prediction

ANN for room temperature prediction is here dethis
this module is of most interest. For more informi@aton the
other ANN modules, please refer to [19].

Choice of inputs

Various input parameters influence the
environment: outdoor temperature, solar
occupation (internal gains, windows opening, etegating
power, wind, humidity, etc. Taking into account Hiese
parameters is not conceivable for two main reasbirst,
regarding the application on a real controller, inenber of
sensors would be too high and some variables #reudtito
measure. Second, a more complicated model is nialy |
to diverge as it is more sensitive to noise in dlaga. The
model has to be as simple as possible while taking
account the most relevant inputs. Among all
meteorological variables, the global horizontal asol
radiation and the outdoor temperature are accdsditige
most influential parameters for the indoor envir@mtn

Optimal structure

The developed ANN provides room temperatuydof
the next time step from current weather data (jTas well as
previous and current values of heating powgrfd room
temperature ;T This ANN making the link between the
heating power delivered to the radiant floor and ithpact
on room temperature, it encapsulates both the #ierm
behavior of the building and the emitter. In patée, the
thermal lag of the radiant floor is taken into agaoin the
ANN using R(k-1). A wide range of current and previous
values of these variables was tested as inputs.optimal
ANN structure and set of inputs for room tempemtur
prediction of the studied building are presenteBigure 8.

Offline tests revealed that the mean value of thtel@or
temperature on the last 24 hours,,(k) contains enough
information to describe the dynamic behavior of tested
building. For less insulated buildings or buildingdéth a
higher ventilation rate, the impact of the outdtsmperature
is higher and the current value ©fis likely to be more
appropriate. The ANN used in this module has 6 tinpu

neurons, one hidden layer of 6 neurons and oneubutp
neuron.

Normalization into [-1;1] |

;(k)ﬁé—>

T024 (k) —
Ph (k) —>CS—»e€
Py (k-1) — > S—re&
Ti k)~
Ti (k-2) t —
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Figure 8: ANN architecture for room temperaturedizton.
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Comparison with ARX model

ANN performances for room temperature prediction ar
compared to linear ARX models, which are commordgdi
for the building model in predictive control. ARXatkels are
Auto Regressive models with eXternal inputs that ba
written as follows:

y() =B * [u(t — 1),u(t —2)...] )

+Ax [yt—1),yt—2)..1+Axe(t)
wherey(t)is the output vectony(t) the input vector and
£(t) a white noise with zero mean.

Three months of simulation were used to train ad t
the models: January and February data are usedafoing
and validation of ANN and ARX models, while March i
used for test. A wide range of inputs were tesiedevaluate
the prediction error of ANN and ARX models, thetraman
square error (RMSE) and the mean error (ME) weesl @s
performance criteria over the 6 hours predictiorizom. The
main results are summarized below:

ANN models clearly outperform ARX models in
terms of ME and RMSE over the whole prediction
horizon. The RMSE is in average 40% lower using
non-linear ANN models. ANN forecasts are less
biased as the ME is smaller in absolute value.

Too complicated models do not give accurate
results.

Previous values of heating powg(l1) as well as
room temperature ;{k-1) and T(k-2) must be
taken into account due to the inertia of the baidi
and the floor heating.

Taking into account previous values further into
the past does not improve the prediction
performances of both types of models.

An example of 3 hours prediction results of ANN2lan

ARX3 models on a representative week of Marchvemiin

Figure 9. ANN model reproduces more accurately the

thermal behavior of the building in comparisonhe tinear
ARX model. ANN is in particular much better whereth

building is subject to strong solar gains (firsy ad Figure
9).
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Figure 9: 3 hours prediction of room temperature.
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V. COMPARISON OF CONTROLLERS ON THE SEMI

VIRTUAL TEST BENCH

A. Conventional controller

For the test, the real measured controller outputsed
as a reference. This on/off signal is applied ®tieat pump
connected to the bench. It can be noticed thah#ia¢ pump
installed in the laboratory is the same heat pufhat in
the monitored dwelling. This reference controller a
Compensated-Open-Loop (COL) controller that isaithetl
by default with most single-speed GSHP systems.d@é
controller is based on the following heating cuthat is
adjusted with the actual value of room temperature:

Tyc=(*T,+b)—cx(T;—T,) (6)
whereT, is the outdoor temperature and; —T7,) the
difference between the actual
temperature. The coefficients a and b are the mgpatirve
parameters while c is the ambient compensatiomifache
COL controller switches on/off the GSHP when theaeawra
supply temperature {J is beyondTy-+2°C. This control
logic requires the pump on the building side toaglsvbe
working to keep the fluid circulating. The COL cuuiter is
represented in Figure 10.

Control [-]

b COL

on

The- 1 The + 1

Tis [°C]

off

Figure 10 : Control logic of the COL conventionahtroller.

B. Experiment process
¢ Test procedure

The ANN controller is compared to the COL controlle
during two sequential tests of one week on the liefibe
complete test procedure is illustrated in Figure The
procedure starts with an initialization phase fréebruary
15th to March 15th that consists in a simulatiohef whole
system. During this phase, the measured on/offaigh
applied to the simulated heat pump. Initializatjperiod is
also required to train the ANN modules of the prtde
controller: the training data set is from Februdth to
February 28th while the validation data set is fieabruary
29th to March 15th. At the end of the initializatjdhe real-
time testing of the controller starts. The simulabeiilding
and boreholes are in the same thermal state dtetfening
of each test to ensure an accurate comparison.

and the setpoint roo
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| Day | ‘ Controller | ‘ Heat pump| | Time | i ANN
Feb. 15

E e

= ; Training set

} . .

§ Feb. 28 MEHSu.red Simulated Slml,“at'o” -

5 On/off signal Titia

g Validation set
Mar. 15

= Tested

& controller Real Real Time Test

- (COL or ANN)

¥ Mar. 22

Figure 11 : Procedure of the semi-virtual testhef ¢ontrollers.

Since the real GSHP has a very small time congtlaat
steady-state of the heat pump is almost immediately

rHs:ached), the real-time testing can in fact be lacated to

significantly reduce the duration of the test. Hoeeleration
factor of real-time depends on the minimum duratdra
compressor cycle during the test as well as theorese time
of the bench. In our case, the bench approximasigs 3
minutes to reach the setpoint + 0.5°C when the cesgor
starts. With the ANN controller, the minimum ducetiof a
compressor cycle is 15 minutes (time lapse betw2en
controller's calls). With the conventional contesll in-situ
measurements showed a minimum of 12 minutes pée.cyc
Based on these durations, the real time has bemtesated
by 2 to ensure the bench to accurately control the
temperatures.

e Heat pump control

The heat pump is controlled via programmable
resistances that replace the heat pump outdoorr@omh
temperature sensors. An outdoor temperature drivpates
the heat pump compressor, and vice versa. This tvay
control of the heat pump is non-intrusive.

C. Controllers’ performances comparison

Room temperature setpoint of ANN controller is et
22.5°C with a comfort paramet&T,,, = 0.5°C. This
temperature corresponds to the mean room temperatur
observed with the conventional COL controller.

A comparison of the controllers on the test week is
depicted in Figure 12. COL controller leads to dmabm
temperature overshoots in the afternoon. It camditeed
that when the GSHP is switched on in the morningaof
sunny day, the dwelling is likely to be overheatedthe
afternoon. This is of course due to the fact tha t
conventional control logic does not integrate adfmtéon of
solar gains.
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Figure 12 : Comparison of the controllers overttst week. % 15-22 March.

ANN controller keeps room temperature in toenfort
range thanks to its prediction capability. Room pgerature
is lowered just before solar gains are expectedhabto identical with both controllers. The ANN compresSRF is
avoid overheating and benefit from free heat gdiemling  slightly higher (4.6) than COL (4.5) as mean daratof
to energy savings. Heating loads are thus shifted tcompressor cycles is lower with ANN. Longer cydledeed
anticipate solar gains. lead to higher temperatures in the floor heatind tus a

Results in terms of energy consumed and heat pumpwer heat pump efficiency. Global SPF with COLoisly
performances over the test week are presentedyimd-il3. 2.5 because of the high consumption of the pumpghen
Thermal energy delivered to the floor heating i2 ¥Vh  building side, while global SPF with ANN is 3.9.
with COL and 147 kWh with ANN, i.e., a gain of 3%wtal
electric energy consumed by the GSHP system isVB@ k
with COL whereas ANN controller only consumes 36HkW
This gain of 40% in energy consumption is mainlg ¢t the
fact that the pump on the floor heating side isstamtly  sequentially and under identical conditions, a peetedure
running with COL. has been developed on a calibrated semi-virtuebtagh. A

Heat pump efficiency is expressed here as a Selason@al GSHP has been connected to the test bench that
Performance Factor (SPF), which is the ratio betwd®  emulates the building and the boreholes.
energy delivered by the heat pump and the eleteivargy

consumed by the compressor or by the compressothand
pumps (global SPF). The compressor SPFs are almost

VI. CONCLUSION
For the purpose of comparing different controllers

155
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Figure 13 : Test results in terms of energy congiom@nd heat pump efficiency SPF% over the testingk.
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The controllers’ tests can thus be carried out unde8]

dynamic conditions: dynamic weather conditionsised as
input of a building simulation including floor hézg and
boreholes. The simulation environment has beergdedito
reproduce all characteristics (building, weathesteholes,
etc.) of an in-situ GSHP that was monitored durthg
2011/2012 heating season in the north of Frances. Why
the tests were carried out under realistic andodkmible
conditions, which is practically impossible withgsential
in-situ tests. Another advantage of the semi-virtigst-
bench is that the real time of the test can belaeted to
significantly reduce the duration of the test (8dys instead
of 7 days).
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C. Verhelst, F. Logist, J. Van Impe, and L. s, “Study of
the optimal control problem formulation for modiiraf air-
to-water heat pumps connected to a residential fheating
system”, Energy and Buildings, vol.45, pp. 43-B312.

[9] Riederer P., Partenay V., and Raguideau O.,ndyic test
method for the determination of the global
performance factor of heat pumps used for heatingling
and domestic hot water preparation.”, Eleventhrirggonal
IBPSA Conference, Glasgow, Scotland, July 27-30920

[10] “Solar Irradiation Database SODA ", www.sodaebm,

[11] El Khoury Z., Riederer P., Couillaud N., Simdn and R. M.,

“A  multizone building model for Matlab/Simulink

environment”, Ninth International IBPSA Conference,

Montreal, Canada, 2005.

The developed ANN predictive controller for single- [12] T. Salque, D. Marchio, and P. Riederer, “Seiriual test

speed GSHP has been detailed including the trapriocess,
the determination of optimal input data, algorithemd
structure.

bench for comparison of GSHP controllers: tuning of
simulated part with measured data ", 11th REHVA Wor
Congress CLIMA 2013, June 16-19 (in press), 2013.

The ANN controller has been compared to the COL[13] V. Partenay, P. Riederer, T. Salque, and E.rtayuThe

conventional controller during two sequential testsone

week on the bench. The ANN controller allows anrgpe
gain of 40%, mainly due to the fact that the punmptioe

floor heating side has to be constantly runninghv@OL.

This also results in a better global SPF with ANN.
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