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Abstract—As the Internet becomes a social infrastructure,
a network design method that has adaptability against the
failure of network equipment and has sustainability against
changes of traffic demand is becoming important. Since we
do not know in advance when the environmental changes
occur and how large the changes are, it is preferable to have
heterogeneity in topological structures so that the network
can evolve more easily. In this paper, we investigate the
heterogeneity of topological structures by using mutual infor-
mation of remaining degree distribution. We discuss and show
that the mutual information represents the heterogeneity of
topological structure through illustrative examples. Our results
show that the mutual information is high at most of router-
level topologies, which indicate that the route-level topologies
are highly designed by, e.g., the network operators. We also
compared topologies with different mutual information, and
show that, when node failures occur, the alternative paths will
less converge on some of the links in topology having low
mutual information.

Keywords-power-law network; router-level topology; topologi-
cal structure; mutual information; network heterogeneity; degree
distribution; node failure.

I. I NTRODUCTION

As the Internet becomes the social infrastructure, it
is important to design the Internet that has adaptability
and sustainability against environmental changes [1], [2].
However, dynamic interactions of various network-related
protocols make the Internet into a complicated system. For
example, it is shown that interactions between routing at
the network layer and overlay routing at the application
layer degrade the network performance [2]. Therefore, a new
network design method which has the adaptability against
the failure of network equipment and has the sustainability
against changes of traffic demand is becoming important.
Since complex networks display heterogeneous structures
that result from different mechanisms of evolution [3], one
of the key properties to focus on is the network heterogeneity
where, for example, the network is structured heterogeneous
rather than homogeneous by some design principles of
information networks.

Recent measurement studies on the Internet topology
show that the degree distribution exhibits a power-law
attribute [4]. That is, the probabilityPx, that a node is

connected tox other nodes, followsPx ∝ x−γ , where
γ is a constant value called scaling exponent. Generating
methods of models that obey power-law degree distribution
are studied widely, and Barabáshi-Albert (BA) model is one
of it [5]. In BA model, nodes are added incrementally and
links are placed based on the connectivity of topologies in
order to form power-law degree distribution. The resulting
topology has a large number of nodes connected with a
few links, while a small number of nodes connected with
numerous links. Topologies generated by BA model are used
to evaluate various kinds of network performance [6], [7].

However, it is not enough to explain topological char-
acteristics of router-level topologies by such models. It is
because topological characteristics are hardly determined
only by degree distribution [8], [9]. Li et al. [8] enumerated
several different topologies with power-law, but identical
degree distribution, and showed the relation between their
structural properties and performance. They pointed out that,
even though topologies have a same degree distribution,
the network throughput highly depends on the structure of
a topology. The lessons from this work suggest us that
the heterogeneity of the degree distribution is insufficient
to discuss the topological characteristics and the network
performance of router-level topologies.

In this paper, we focus on the property, diversity. It is a
property studied in biological systems. Biological systems
are systems that evolve robustly under many kinds of en-
vironmental changes. They often studied with information
networks in complex system field [10]–[13]. Many of their
networks also exhibit power-law attribute. A study of a
key mechanism for adapting to environment changes in
biological systems [10] explained that, because the system
components can contribute to required traits diversely, the
system can getting traits required in a new environment
by changing their contribution adaptively. Prokopenko et
al. [14] considered the diversity changes in growing process
of some complex systems. They said that an organized sys-
tem, which we consider as a less diverse system here, with
effectively less configurations available. They also said that
the system configurations may be have and look more com-
plex than a disorganized system, a diverse system, to which
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more configurations are available. From their words, we
considered that a diverse system which more configurations
are available to is easy to adapt to different environment.
Therefore, we think that diversity is an interesting property
to focus on in router-level topologies.

In [14], they used mutual information to measure the
complexity, which we consider as diversity here. Inspired
from their work, we investigate the topological diversity
of router-level topologies by using mutual information.
Here, the topological diversity means how diverse the inter-
connections are in any sub graphs chosen from the topology.
Mutual information yields the amount of information that
can obtain about one random variableX by observing an-
other variableY . The topological diversity can be measured
by consideringY as some random variable of a part of the
topology andX as the rest of it. Solé et al. [3] studied
complex networks by using remaining degree distribution as
the random variable. They calculated the mutual information
of remaining degree distribution of biological networks and
artificial networks such as software networks and electronic
networks, and shown that both of them have higher mutual
information than randomly connected networks. In this pa-
per, we evaluate the mutual information of some router-level
topologies, and show that the mutual information represents
the topological diversity.

Heterogeneity of structures have also been studied by
Milo et al. [15]. They have introduced a concept called
Network Motif. The basic idea is to find several simple
sub graphs in complex networks. Arakawa et al. [16] shows
the characteristic of router-level topologies by counting the
number of each kind of sub graph which consists of 4 nodes
respectively. They conclude that router-level topologies have
more sub graphs called “sector”, that is removing one link
from 4 nodes complete graph, than other networks. However,
Network Motif is expected to evaluate the frequency of
appearance of simple structure in a topology, and is not
expected to measure the diversity of topology.

The rest of this paper is organized as follows. The
definition of remaining degree and mutual information is ex-
plained in Section II. We investigate the topological charac-
teristic and give some illustrative examples by changing the
mutual information through a rewiring process in Section III.
In Section IV, mutual information of several router-level
topologies are calculated, and shown. Another topological
characteristic, which is from the information network aspect,
is shown in there too. Finally, we conclude this paper in
Section V.

II. D EFINITIONS

Information theory was originally developed by Shannon
for reliable information transmission from a source to a
receiver. Mutual information measures the amount of in-
formation that can be obtained about one random variable
by observing another. Solé et al. [3] used remaining degree

distribution as the random variable to analysis complex
networks. In this section, we explain the definitions of the
mutual information of remaining degree with some example
topologies shown in Table I.

Remaining degreek is defined as the number of edges
leaving the vertex other than the one we arrived along, so
that it is one less than the ordinary degree. The example is
shown in Figure 1, where the remaining degree is set to two
for the left node and three for the right node.

The distribution of remaining degreeq(k) is obtained
from:

q(k) =
(k + 1)Pk+1

ΣkkPk
, (1)

where P (P1, ... , Px, ... , PK) is the ordinary degree
distribution, andK is the maximum degree.

The mutual information of remaining degree distribution,
I(q), is

I(q) = H(q)−Hc(q|q’), (2)

where q=(q(1), ... , q(i), ... , q(N)) is the remaining degree
distribution, andN is the number of nodes.

The first term H(q) is entropy of remaining degree
distribution:

H(q) = −
N∑

k=1

q(k) log(q(k)), (3)

and the range of entropy is0 ≤ H(q). Within the context
of complex networks, it provides an average measure of
network’s heterogeneity, since it measures the dispersion
of the degree distribution of nodes attached to every link.
H is 0 in homogeneous networks such as ring topologies.
As a network become more heterogeneous, the entropyH
gets higher. Abilene inspired topology [8], that is shown
in Figure 2, is heterogeneous in its degree distribution, as
shown in Figure 3. Therefore, it has higher entropy as shown
in Table I.

Figure 1. Example of remaining degree

Table I
MUTUAL INFORMATION OF EXAMPLE TOPOLOGIES

Topology H Hc I
Ring topologies 0 0 0
Star topologies 1 0 1

Abilene-inspired topology 3.27 2.25 1.02
A random topology 3.22 3.15 0.07
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The second termHc(q|q’) is the conditional entropy of
the remaining degree distribution:

Hc(q|q’) = −
N∑

k=1

N∑
k′=1

q(k′)π(k|k′) log π(k|k′), (4)

whereπ(k|k′) are conditional probability:

π(k|k′) = qc(k, k
′)

q(k′)
. (5)

π(k|k′) give the probability of observing a vertex withk′

edges leaving it provided that the vertex at the other end of
the chosen edge hask leaving edges. Here,qc(k, k′) is the
joint probability, which gives the probability of existence of
a link that connects a node withk edges and a node with
k′ edges, and it is normalized as:

N∑
k=1

N∑
k′=1

qc(k, k
′) = 1. (6)

The range of conditional entropy is0 ≤ Hc(q|q’) ≤ H(q).
Ring topologies and star topologies have the lowestHc,
because, when knowing the degree of one side of a link, the
degree of the node on the other side is always determined.
For Abilene inspired topology, because of its heterogeneous
degree distribution, it is hard to determine the degree of the
other side of a link than ring topologies or star topologies.
Therefore, the conditional entropyHc(q|q’) is higher than
them. However, to compare with a random topology that
have almost the sameH(q) as Abilene-inspired topology, the
Hc(q|q’) of Abilene-inspired topology is lower than that of
the random topology. That means the degree combination
of a pair of nodes connected to a link is more biased in
Abilene-inspired topology than in the random topology.

Finally, using the distribution and probability explained
above, mutual information of the remaining degree distribu-
tion can also be expressed as follow:

I(q) = −
N∑

k=1

N∑
k′=1

qc(k, k
′) log

qc(k, k
′)

q(k)q(k′)
. (7)

The range of mutual information is0 ≤ I(q) ≤ H(q). It
is higher in star topologies and Abilene-inspired topology,
since it can get more information about the degree of a node
by observing the node connected to it. AndI(q) of ring
topologies and the random topology is low, but the reason is
different because of the difference in theirH. In ring topolo-
gies, because of the homogeneous degree distribution, no
information can be obtained. On the contrast, in the random
topology, though the degree distribution is heterogeneous,
because of the random connections, less information can be
obtained. As we can see from these example topologies,
I(q) is hard to discuss without considering aboutH(q).
Hereafter in this paper, we mainly useH(q) and I(q) to
discuss topologies.

Figure 2. Abilene-inspired topology [8]
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Figure 3. Degree distribution of Abilene-inspired topology

III. M UTUAL INFORMATION AND THE CHARACTERISTIC

OF TOPOLOGIES

In this section, we explore the relationship between en-
tropy and average hop distance. Then, we show some illus-
trative examples of some topologies with different mutual
information.

A. EntropyH and average hop distance

To show the relationship between entropy and the char-
acteristic of topologies, we generate topologies having dif-
ferent entropy, and compared their average hop distance and
degree distribution.

Topologies are generated by simulated annealing that
looks for a candidate network that minimize the potential
function U(G). Here, the temperature is set to 0.01, and
the cooling rate is set to 0.0001. The simulation searched
450000 steps. The initial topology is set to a topology
obtained by BA model which has 523 nodes and 1304 links,
that is as same as AT&T explained in Section IV. Topologies
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Figure 4. Average hop distance
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Figure 5. Degree distribution (H = Hc = 2.2)

are changed by random rewiring, and try to minimize the
following potential function:

U(G) =
√

(H −H(G))2 + (Hc −Hc(G))2. (8)

Here H and Hc are pre-specified value of entropy and
conditional entropy respectively.H(G) andHc(G) are en-
tropy and conditional entropy calculated by the topologyG
generated in the optimizing search process. We generated
topologies by settingH, Hc as H = Hc from 1 to
5. Every time in the search process,U(G) converge to
approximately 0. Therefore, entropy and conditional entropy
of the generated topologies are almost equal, and theirI are
approximately 0.

Figure 4 shows the average hop distance of topologies we
generated. Degree distribution of a topology generated by
settingH = Hc = 2.2 is shown in Figure 5,H = Hc = 4.2
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Figure 6. Degree distribution (H = Hc = 4.2)

Degree 2 Degree 3

Degree 4 Degree 5

Figure 7. Rewiring method to leave the degree distribution unchanged

is shown in Figure 6. Here, average hop distance is defined
as the average of hop distance between every node pairs. We
calculate the hop distance by assuming the minimum hop
routing. From the result, we can see that, whenH increases
higher than3, the average hop distance decreases. This is
because, asH increases, the degree distribution become
biased, and it gets close to power-law aroundH = 4.

B. Mutual informationI and topological diversity

Next, we show some illustrative examples of topolo-
gies with different mutual information. Because router-level
topologies obey power-law, we compare topologies having
high H.

Topologies are again generated by the simulated anneal-
ing. We set the same parameter and the same initial topology
as we have used in the previous section. The different points
are the way to rewire the topology and the potential function
U I(G). For the first point, topology is changed by a rewiring
method [17] that leaves the degree distribution unchanged,
i.e., by exchanging the nodes attached to any randomly
selected two links (Figure 7). For the second point, the
potential function we used to minimize isU I(G) defined
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Figure 8. TImin with minimum mutual information Figure 9. TImax with maximum mutual information

Table II
TOPOLOGIES OBTAINED BY SIMULATED ANNEALING

Topology Nodes Links H(G) Hc(G) I(G)
BA 523 1304 4.24 3.98 0.26

TImin 523 1304 4.24 4.13 0.12
TImax 523 1304 4.24 1.54 2.70

as,

U I(G) = |I − I(G)|, (9)

where I is pre-specified mutual information, andI(G) is
mutual information calculated by the topologyG generated
in the optimizing search process. Note that looking for
a pre-specified mutual informationI is as the same as
looking for a pre-specified conditional entropyHc under
the same entropyH. Because the entropy is same when the
degree distribution unchanged, minimizing mutual entropy
is identical to maximize conditional entropy.

To show the relationship between mutual information and
topological diversity, we use two topologies: topologyTImin

with minimum mutual information and topologyTImax with
maximum mutual information.TImin is generated by setting
I = 0.0 for simulated annealing, and the resulting mutual
information is 0.12. The topology is shown in Figure 8.
TImax is generated by settingI = 3.0 for simulated
annealing, and the resulting mutual information is2.70.
The topology is shown in Figure 9. In both figures, colors
represent node degrees. Nodes which have the same color
have the same node degree. Topological characteristics of
the initial topology,TImin and TImax are summarized in
Table II.

From Figures 8 and 9, we can see that topology with high
mutual information is less diverse, and have more regularity
than the one with low mutual information. From Figure 10 to
Figure 13, we showπ(k|k′) dependent on remaining degree
k. π(k|k′) is defined as the probability that observing a
vertex withk′ edges leaving it provided that the vertex at the
other end of the chosen edge hask leaving edges. Figures 10
and 11 showπ(k|k′) of nodes with the largest remaining
degree and nodes with the smallest remaining degree in
TImin, respectively. Figures 12 and 13 showπ(k|k′) of
nodes with the largest remaining degree and nodes with
the smallest remaining degree inTImax, respectively. We
can see thatπ(k|k′) of TImax is more biased than that
of TImin. This also represents that the topology with high
mutual information is less diverse than the one with low
mutual information.

IV. TOPOLOGICAL DIVERSITY IN ROUTER-LEVEL

TOPOLOGIES

In this section, we calculate the measurement for some
router-level topologies. According to those measurements,
we discuss the topological diversity of the router-level
topologies. Next, we evaluate topologies with different mu-
tual information from an information network aspect. We
evaluate the amount of increment of the edge betweenness
centrality under some node failure occurring situation, and
evaluate the link capacity needed to deal with it.

A. Mutual information of router-level topologies

In this section, we show the mutual information of some
router-level topologies. We calculated mutual information
for topologies: Level3, Verio, AT&T, Sprint and Telstra. The
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Figure 12. π(k|k′) of nodes with the largest remaining degree inTImax
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Figure 11. π(k|k′) of nodes with the smallest remaining degree inTImin
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Figure 13. π(k|k′) of nodes with the smallest remaining degree inTImax

Table III
MUTUAL INFORMATION OF ROUTER-LEVEL TOPOLOGIES

Topology Nodes Links H(G) Hc(G) I(G)
Level3 623 5298 6.04 5.42 0.61
Verio 839 1885 4.65 4.32 0.33
ATT 523 1304 4.46 3.58 0.88

Sprint 467 1280 4.74 3.84 0.90
Telstra 329 615 4.24 3.11 1.13

BA 523 1304 4.24 3.98 0.26

router-level topologies are measured by Rocketfuel tool [18].
To compare with those router-level topologies, a topology
made by BA model [5] which has the same number of
nodes and links with AT&T is also calculated. The results
are summarized in Table III and Figure 14.

From Table III, we can see that, all the router-level topolo-
gies have highH, which means they have heterogeneous
degree distribution. Level3 topology has higherH than
others. This is because the measured topology includes many
MPLS paths. These paths made the topology having high
heterogeneity in degree distribution. Except Level3 topology,
other router-level topologies shown in Table III has almost

the sameH.
Comparing those topologies with BA topology that also

have almost the sameH, we can see that, the mutual
information of router-level topologies are higher than that of
the model-based topology. This can be explained by a design
principle of router-level topologies. Because router-level
topologies are designed under the physical and technological
constraints such as the number of switching ports and/or
maximum switching capacity of routers, there are some
restrictions and a kind of regulations on constructing the
topologies, so that they are less diverse. Note, however,
that of Verio topology is low. This can be explained by
its growing history. Because Verio grows big with small
ISPs [19], it contains various kinds of design principles
conducted in each ISP. Therefore, Verio topology is more
diverse than other router-level topologies.

B. Link capacity needed for topologies with different mutual
information

In this section, we generated several topologies with
different mutual information, but having the same entropy,
and compared their characteristics in an information network
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Table IV
MUTUAL INFORMATION OF TOPOLOGIES REWIRED FROMAT&T

Topology AT&T 0.3 AT&T 0.4 AT&T 0.5 AT&T 0.6 AT&T 0.7 AT&T 0.8 AT&T
H 4.45583 4.45583 4.455834 4.45583 4.45583 4.45583 4.45583
Hc 4.17594 4.07697 3.97701 3.87589 3.77558 3.67903 3.57515
I 0.27989 0.37886 0.47882 0.57994 0.68025 0.77680 0.88068

Average hop distance 3.57439 3.56669 3.64005 3.74615 3.92027 4.18759 5.06338

aspect. To investigate the adaptability against environmental
changes, we evaluate changes in edge betweenness centrality
under some node failures occurring situation. When con-
sidering about the information network, it is preferable to
have fewer changes in load on links even when node failures
occur, because the load increment would lead to high link
usage, that would increase delay, or high link capacity cost,
that is needed to deal with it. To evaluate it simply, we
regard edge betweenness centrality as load on links, and
evaluate the minimum link capacity needed to cover node
failures. Note that the edge betweenness centrality does not
reflect the actual load on links. Nevertheless, we use the
edge betweenness centrality to characterize ISP topologies
because it gives a fundamental characteristic to identify the
amount of traffic flow on topologies.

Topologies we used to compare this time are generated
by rewiring AT&T randomly. The rewiring method leaves
the degree distribution unchanged, which is as same as
explained in Section III-B. Because the topological diversity

become lower as the rewiring proceed, we calculated mutual
information for every topology, and pick out topologies
every time when the mutual information decreases 1 than the
previous picked out one. The entropy, conditional entropy
and mutual information of all the selected topologies are
summarized in Table IV. AT&T0.3 is the last topology
possible to generate by this method with a long time of
simulation. The average hop distance of each topology is
also shown in it.

The failure we consider here is a single node failure. First,
we evaluate the minimum link capacity needed to cover
every pattern of single node failures. The link capacityC(i)
on link i is calculated as follow:

• Step 0: For all linksi, set the initial edge betweenness
centralityE(i) as the link capacityC(i):

C(i) = E(i). (10)

• Step 1: When nodej fails, calculate the new edge
betweenness centralityEj(i) for every link. Renew the
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link capacity as (11) for every link:{
C(i) = Ej(i) if (Ej(i) > C(i))
C(i) = C(i) otherwise.

(11)

• Step 2: Go back to Step1, select a newj until every
node has been selected.

The total of edge betweenness centralityΣiE(i) and the
total of link capacity needed to cover every pattern of single
node failureΣiC(i) is shown in Figure 15. BecauseΣiE(i)
is directly affected by average hop distance, the difference
of ΣiE(i) in each topology is not important. What we want
to see from this figure is, the extra amount of link capacity
needed to cover the node failures, which is not needed in
normal condition. We can see that for the original AT&T,
about twice as much asΣiE(i) is needed forΣiC(i). When
mutual information of the topology decrease,ΣiC(i) tends

to decrease.
We next evaluate the changes of edge betweenness cen-

trality on each link. The increment in edge betweenness
centrality is also calculated for every failure nodej :{

Aj(i) = Ej(i)− E(i) if (Ej(i) > E(i))
Ci = 0 otherwise.

(12)

Aj(i) for all the j sorted by link indexi is shown in
Figures 16 and 17. Figure 16 is calculated for original AT&T,
and Figure 17 is calculated for AT&T0.3. We can see that, in
AT&T, load in some of the links are highly increased com-
pared to AT&T0.3. This means many alternative paths tend
to converge on some of the links when node failures occur.
In the contrast, for AT&T0.3, the variation of increment of
edge betweenness centrality on every link is small. This can
be considered because the alternative paths are balanced on
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many links.
From these evaluations, we conclude that link capac-

ity needed to deal with node failures decrease when the
topology becomes diverse because alternative paths less
convergences in such topology.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the network heterogeneity
of router-level topologies by using mutual information. We
mainly discussed topologies using entropyH and mutual
informationI.

In Section II, we used ring topologies, star topologies,
Abilene-inspired topology and a random topology for ex-
amples to explain the measurements.H indicates the het-
erogeneity of degree distribution in complex networks, and
I indicates the amount of information about the node degree
that can be obtain by observing a node connected to it.

In Section III, we generated topologies between(H, I) =
(1, 0) and (H, I) = (5, 0), and showed that, whenH
increases higher than3, the average hop distance decreases.
We also generated topologies that having the sameH with
BA model but with differentI, and showed that the topology
is diverse when mutual information is high, and the topology
has regularity when mutual information is low.

In Section IV, from calculating mutual information of
some router-level topologies, we found that most of the
router-level topologies have higher mutual information than
a model-based topology. From comparing the topology with
different mutual information generated from AT&T, we find
that link capacity needed to deal with node failures decrease
when the topology becomes diverse because alternative paths
less convergences in the topology with high topological
diversity.

Our next work is to evaluate network performance of
topologies with different mutual information also consider-
ing physical distance, and to apply this measure to designing
information network that has adaptability and sustainability
against environmental changes.
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