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Abstract—As the Internet becomes a social infrastructure,
a network design method that has adaptability against the
failure of network equipment and has sustainability against
changes of traffic demand is becoming important. Since we
do not know in advance when the environmental changes
occur and how large the changes are, it is preferable to have
heterogeneity in topological structures so that the network
can evolve more easily. In this paper, we investigate the
heterogeneity of topological structures by using mutual infor-
mation of remaining degree distribution. We discuss and show
that the mutual information represents the heterogeneity of
topological structure through illustrative examples. Our results
show that the mutual information is high at most of router-
level topologies, which indicate that the route-level topologies
are highly designed by, e.g., the network operators. We also
compared topologies with different mutual information, and
show that, when node failures occur, the alternative paths will
less converge on some of the links in topology having low
mutual information.

Keywordspower-law network; router-level topology; topologi-
cal structure; mutual information; network heterogeneity; degree
distribution; node failure.

I. INTRODUCTION

connected tor other nodes, followsP, « z~7 , where
~ is a constant value called scaling exponent. Generating
methods of models that obey power-law degree distribution
are studied widely, and Barabhi-Albert (BA) model is one
of it [5]. In BA model, nodes are added incrementally and
links are placed based on the connectivity of topologies in
order to form power-law degree distribution. The resulting
topology has a large number of nodes connected with a
few links, while a small number of nodes connected with
numerous links. Topologies generated by BA model are used
to evaluate various kinds of network performance [6], [7].
However, it is not enough to explain topological char-
acteristics of router-level topologies by such models. It is
because topological characteristics are hardly determined
only by degree distribution [8], [9]. Li et al. [8] enumerated
several different topologies with power-law, but identical
degree distribution, and showed the relation between their
structural properties and performance. They pointed out that,
even though topologies have a same degree distribution,
the network throughput highly depends on the structure of
a topology. The lessons from this work suggest us that

As the Internet becomes the social infrastructure, itthe heterogeneity of the degree distribution is insufficient
is important to design the Internet that has adaptabilityto discuss the topological characteristics and the network
and sustainability against environmental changes [1], [2]performance of router-level topologies.

However, dynamic interactions of various network-related

In this paper, we focus on the property, diversity. It is a

protocols make the Internet into a complicated system. Foproperty studied in biological systems. Biological systems

example, it is shown that interactions between routing atre systems that evolve robustly under many kinds of en-
the network layer and overlay routing at the applicationvironmental changes. They often studied with information
layer degrade the network performance [2]. Therefore, a newetworks in complex system field [10]-[13]. Many of their
network design method which has the adaptability againshetworks also exhibit power-law attribute. A study of a
the failure of network equipment and has the sustainabilittkey mechanism for adapting to environment changes in
against changes of traffic demand is becoming importantiological systems [10] explained that, because the system
Since complex networks display heterogeneous structuresomponents can contribute to required traits diversely, the
that result from different mechanisms of evolution [3], onesystem can getting traits required in a new environment
of the key properties to focus on is the network heterogeneitypy changing their contribution adaptively. Prokopenko et
where, for example, the network is structured heterogeneouws. [14] considered the diversity changes in growing process
rather than homogeneous by some design principles aff some complex systems. They said that an organized sys-
information networks. tem, which we consider as a less diverse system here, with
Recent measurement studies on the Internet topologgffectively less configurations available. They also said that
show that the degree distribution exhibits a power-lawthe system configurations may be have and look more com-
attribute [4]. That is, the probability?,, that a node is plex than a disorganized system, a diverse system, to which
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more configurations are available. From their words, wedistribution as the random variable to analysis complex
considered that a diverse system which more configurationsetworks. In this section, we explain the definitions of the
are available to is easy to adapt to different environmentmutual information of remaining degree with some example
Therefore, we think that diversity is an interesting propertytopologies shown in Table I.
to focus on in router-level topologies. Remaining degreé is defined as the number of edges
In [14], they used mutual information to measure theleaving the vertex other than the one we arrived along, so
complexity, which we consider as diversity here. Inspiredthat it is one less than the ordinary degree. The example is
from their work, we investigate the topological diversity shown in Figure 1, where the remaining degree is set to two
of router-level topologies by using mutual information. for the left node and three for the right node.
Here, the topological diversity means how diverse the inter- The distribution of remaining degreg(k) is obtained
connections are in any sub graphs chosen from the topolog§tom:
Mutual information yields the amount of information that

. . . k+1)P
can obtain about one random variabte by observing an- q(k) = % (1)
other variableY". The topological diversity can be measured REER _
by consideringl” as some random variable of a part of the where P(P1, ... , Py, ... , Pg) is the ordinary degree

topology andX as the rest of it. Sél et al. [3] studied distribution, andK is the maximum degree.
complex networks by using remaining degree distribution as The mutual information of remaining degree distribution,
the random variable. They calculated the mutual informatior! (), is
of remaining degree distribution of biological networks and ,
artificial net%vork% such as software netvx?orks and electronic I(q) = H(q) — He(qlq'), @)
networks, and shown that both of them have higher mutuajyhere gq=¢(1), ... , q(i), ... , g(\V)) is the remaining degree
information than randomly connected networks. In this paistribution, and is the number of nodes.
per, we evaluate the mutual information of some router-level The first term H(q) is entropy of remaining degree
topologies, and show that the mutual information representgistripution:
the topological diversity.

Heterogeneity of structures have also been studied by
Milo et al. [15]. They have introduced a concept called
Network Motif. The basic idea is to find several simple
sub graphs in complex networks. Arakawa et al. [16] showsnd the range of entropy i < H(q). Within the context
the characteristic of router-level topologies by counting thedf complex networks, it provides an average measure of
number of each kind of sub graph which consists of 4 node§€twork's heterogeneity, since it measures the dispersion
respectively. They conclude that router-level topologies hav®f the degree distribution of nodes attached to every link.
more sub graphs called “sector”, that is removing one link/Z is 0 in homogeneous networks such as ring topologies.
from 4 nodes complete graph, than other networks. HoweveAS @ network become more heterogeneous, the entfdpy
Network Motif is expected to evaluate the frequency ofdets higher. Abilene inspired topology [8], that is shown
appearance of Simp|e structure in a t0p0|ogy, and is noltn Figure 2, is heterogeneous in its degree distribution, as
expected to measure the diversity Of topo|ogy_ ShOWﬂ in Figure 3. Therefore, |t haS h|gher entropy as ShOWI’]

The rest of this paper is organized as follows. Thein Table I.
definition of remaining degree and mutual information is ex-
plained in Section Il. We investigate the topological charac-
teristic and give some illustrative examples by changing the
mutual information through a rewiring process in Section Il
In Section IV, mutual information of several router-level
topologies are calculated, and shown. Another topological
characteristic, which is from the information network aspect,
is shown in there too. Finally, we conclude this paper in

H(q) == q(k)log(q(k)), ®3)

k=1

Figure 1. Example of remaining degree

Section V.
Table |

Il. DEFINITIONS MUTUAL INFORMATION OF EXAMPLE TOPOLOGIES

Information theory was originally developed by Shannon Topology H H. I

for reliable information transmission from a source to a Ring topologies 0 0 0

receiver. Mutual information measures the amount of in- Star topologies ! 0 1
o . . Abilene-inspired topology 3.27 2.25 1.02
formation that can be obtained about one random variable A random topology 322 315 0.07

by observing another. Solet al. [3] used remaining degree
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The second ternf.(qg|g’) is the conditional entropy of
the remaining degree distribution:

H.(q

N N
q) == > ak)m(klk)logm(klK'), 4

k=1k'=1
wherer(k|k’) are conditional probability:

/ CIc(kv kl)

w(k|k") o) (5)
m(k|k") give the probability of observing a vertex witk
edges leaving it provided that the vertex at the other end of
the chosen edge hdsleaving edges. Herey.(k, k') is the
joint probability, which gives the probability of existence of
a link that connects a node with edges and a node with
k' edges, and it is normalized as:

N N
S gk k) =1 )

k=1k'=1

Figure 2. Abilene-inspired topology [8]

10

The range of conditional entropy < H.(q|q’) < H(Qq).
Ring topologies and star topologies have the lowHst
because, when knowing the degree of one side of a link, th
degree of the node on the other side is always determines
For Abilene inspired topology, because of its heterogeneou
degree distribution, it is hard to determine the degree of th
other side of a link than ring topologies or star topologies.
Therefore, the conditional entropi.(qg|q’) is higher than - - *x
them. However, to compare with a random topology that 1573 L oxx xx x| X x
have almost the santé(q) as Abilene-inspired topology, the 10° 10" 10
H.(q|q") of Abilene-inspired topology is lower than that of Node degree d
the random topology. That means the degree combination
of a pair of nodes connected to a link is more biased in
Abilene-inspired topology than in the random topology.
Finally, using the distribution and probability explained
above, mutual information of the remaining degree distribu-11l. M UTUAL INFORMATION AND THE CHARACTERISTIC
tion can also be expressed as follow: OF TOPOLOGIES

10 ¢

-2

10 ¢

Pr {a node has degree d}

2

Figure 3. Degree distribution of Abilene-inspired topology

N N qo(k, &) In this section, we explore the relationship between en-
Q) ==> Y qo(k, k) log == (7)  tropy and average hop distance. Then, we show some illus-
k=1k'=1 q(k)q (k") trative examples of some topologies with different mutual
The range of mutual information 8 < I(q) < H(q). It  information.
is higher in star topologies and Abilene-inspired topology, .
since it can get more information about the degree of a nod@" Entropy H and average hop distance
by observing the node connected to it. Adi¢hy) of ring To show the relationship between entropy and the char-
topologies and the random topology is low, but the reason iscteristic of topologies, we generate topologies having dif-
different because of the difference in théir In ring topolo-  ferent entropy, and compared their average hop distance and
gies, because of the homogeneous degree distribution, riegree distribution.
information can be obtained. On the contrast, in the random Topologies are generated by simulated annealing that
topology, though the degree distribution is heterogeneoudpoks for a candidate network that minimize the potential
because of the random connections, less information can Henction U(G). Here, the temperature is set to 0.01, and
obtained. As we can see from these example topologieshe cooling rate is set to 0.0001. The simulation searched
I(qg) is hard to discuss without considering abadi{g). = 450000 steps. The initial topology is set to a topology
Hereafter in this paper, we mainly udé(q) and I(q) to  obtained by BA model which has 523 nodes and 1304 links,
discuss topologies. that is as same as AT&T explained in Section IV. Topologies
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S, x 5 Figure 7. Rewiring method to leave the degree distribution unchanged
a
10° 5 X ) is shown in Figure 6. Here, average hop distance is defined
10 10 10 as the average of hop distance between every node pairs. We
Node degree d . . .
calculate the hop distance by assuming the minimum hop
Figure 5. Degree distribution{ = H, = 2.2) routing. From the result, we can see that, whérncreases

higher than3, the average hop distance decreases. This is
because, adi increases, the degree distribution become

o . biased, and it gets close to power-law aroutid= 4.
are changed by random rewiring, and try to minimize the

following potential function:

— 2 2
U(G) = V(H ~ H(G))* + (He — H(G))*. ® Next, we show some illustrative examples of topolo-

Here H and H. are pre-specified value of entropy and gies with different mutual information. Because router-level
conditional entropy respectively (G) and H.(G) are en-  topologies obey power-law, we compare topologies having
tropy and conditional entropy calculated by the topoldgy high H.
generated in the optimizing search process. We generated Topologies are again generated by the simulated anneal-
topologies by settingd, H. as H = H. from 1 to  ing. We set the same parameter and the same initial topology
5. Every time in the search procesE,(G) converge to as we have used in the previous section. The different points
approximately 0. Therefore, entropy and conditional entropyare the way to rewire the topology and the potential function
of the generated topologies are almost equal, and theie U’ (G). For the first point, topology is changed by a rewiring
approximately O. method [17] that leaves the degree distribution unchanged,

Figure 4 shows the average hop distance of topologies wee., by exchanging the nodes attached to any randomly
generated. Degree distribution of a topology generated bgelected two links (Figure 7). For the second point, the
settingH = H. = 2.2 is shown in Figure 5H = H. = 4.2 potential function we used to minimize $!(G) defined

B. Mutual information/ and topological diversity
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o o o
Figure 8. T7.in With minimum mutual information Figure 9. Tr.qz With maximum mutual information
Table Il . . .
TOPOLOGIES OBTAINED BY SIMULATED ANNEALING From Flgures_8 a_nd 9, we can see that topology with hlgh
Topology Nodes ks (@) .G 10 mutual mformaﬁon is less dl\{erse, aqd have more regularity
BA 553 1304 4.24 398 026 than the one with low mutual information. From Figure 10 to
Trmin 523 1304  4.24 413 012 Figure 13, we showr(k|k’) dependent on remaining degree
Limax 523 1304 424 154 270 k. w(k|k') is defined as the probability that observing a

vertex withk’ edges leaving it provided that the vertex at the
other end of the chosen edge haegaving edges. Figures 10
and 11 showr(k|k") of nodes with the largest remaining
degree and nodes with the smallest remaining degree in
Ul(G) = |I - I(G)], (9) Trmins re_spectively. Figures 12 and 13 showkl|k’) of _
nodes with the largest remaining degree and nodes with
where I is pre-specified mutual information, andG) is  the smallest remaining degree ¥},,q., respectively. We
mutual information calculated by the topology generated can see thatr(k|k') of Tyq. is more biased than that
in the optimizing search process. Note that looking forof Trmin. This also represents that the topology with high
a pre-specified mutual informatioh is as the same as mutual information is less diverse than the one with low
looking for a pre-specified conditional entrogy, under — Mmutual information.
the same entropyf. Because the entropy is same when the
degree distribution unchanged, minimizing mutual entropy
is identical to maximize conditional entropy.

To show the relationship between mutual information and In this section, we calculate the measurement for some
topological diversity, we use two topologies: topoldfy,.:» router-level topologies. According to those measurements,
with minimum mutual information and topolod¥;..... with ~ we discuss the topological diversity of the router-level
maximum mutual informatioril;,,;,, is generated by setting topologies. Next, we evaluate topologies with different mu-

I = 0.0 for simulated annealing, and the resulting mutualtual information from an information network aspect. We
information is 0.12. The topology is shown in Figure 8. evaluate the amount of increment of the edge betweenness
Trmae 1S generated by setting = 3.0 for simulated centrality under some node failure occurring situation, and
annealing, and the resulting mutual information2g0.  evaluate the link capacity needed to deal with it.

The topology is shown in Figure 9. In both figures, colors
represent node degrees. Nodes which have the same color
have the same node degree. Topological characteristics of In this section, we show the mutual information of some
the initial topology, T and Tr,.. are summarized in router-level topologies. We calculated mutual information
Table II. for topologies: Level3, Verio, AT&T, Sprint and Telstra. The

as,

IV. TOPOLOGICAL DIVERSITY IN ROUTERLEVEL
TOPOLOGIES

Mutual information of router-level topologies
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Figure 11. w(k|k’) of nodes with the smallest remaining degreelin,,;,, Figure 13. = (k|k’) of nodes with the smallest remaining degreelin,, ..

Table Il

MUTUAL INFORMATION OF ROUTER-LEVEL TOPOLOGIES the sameh_[. _ _

TopologyNodesTinks (G T.0) 1@ Comparing those topologies with BA topology that also
Leveld 623 5298 6.0 545 061 _have ah_’nost the samél, we can see that, the mutual
Verio 839 1885  4.65 432 033 information of router-level topologies are higher than that of
ATT 523 1304 446 358 088 the model-based topology. This can be explained by a design
Sprint 467 1280 4.74 3.84 0.90 L. .

Telstra 329 615  4.24 311 113 principle of router-level topologies. Because router-level
BA 523 1304 4.24 398 0.26 topologies are designed under the physical and technological

constraints such as the number of switching ports and/or
maximum switching capacity of routers, there are some
restrictions and a kind of regulations on constructing the
router-level topologies are measured by Rocketfuel tool [18]topologies, so that they are less diverse. Note, however,
To compare with those router-level topologies, a topologythat of Verio topology is low. This can be explained by
made by BA model [5] which has the same number ofits growing history. Because Verio grows big with small
nodes and links with AT&T is also calculated. The resultsISPs [19], it contains various kinds of design principles
are summarized in Table Il and Figure 14. conducted in each ISP. Therefore, Verio topology is more
From Table Ill, we can see that, all the router-level topolo-diverse than other router-level topologies.
gies have highH, which means they have heterogeneous ) ) . o
degree distribution. Level3 topology has high&F than B Link g:apacny needed for topologies with different mutual
others. This is because the measured topology includes matyformation
MPLS paths. These paths made the topology having high In this section, we generated several topologies with
heterogeneity in degree distribution. Except Level3 topologydifferent mutual information, but having the same entropy,
other router-level topologies shown in Table Ill has almostand compared their characteristics in an information network
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Table IV
MUTUAL INFORMATION OF TOPOLOGIES REWIRED FROMAT&T
TOpO|Ogy AT&T 0.3 AT&T g.4 AT&T g 5 AT&T 0.6 AT&T o.7 AT&T 0.8 AT&T

H 4.45583 4.45583  4.455834 4.45583 4.45583 4.45583  4.45583
H. 4.17594 4.07697 3.97701 3.87589 3.77558 3.67903 3.57515
I 0.27989 0.37886 0.47882 0.57994 0.68025 0.77680 0.88068

Average hop distance 3.57439 3.56669 3.64005 3.74615 3.92027 418759  5.06338

aspect. To investigate the adaptability against environmentddecome lower as the rewiring proceed, we calculated mutual
changes, we evaluate changes in edge betweenness centralitiormation for every topology, and pick out topologies
under some node failures occurring situation. When conevery time when the mutual information decreases 1 than the
sidering about the information network, it is preferable toprevious picked out one. The entropy, conditional entropy
have fewer changes in load on links even when node failureand mutual information of all the selected topologies are
occur, because the load increment would lead to high linksummarized in Table IV. AT&§ 3 is the last topology
usage, that would increase delay, or high link capacity costpossible to generate by this method with a long time of
that is needed to deal with it. To evaluate it simply, wesimulation. The average hop distance of each topology is
regard edge betweenness centrality as load on links, amalso shown in it.

evaluate the minimum link capacity needed to cover node The failure we consider here is a single node failure. First,
failures. Note that the edge betweenness centrality does nate evaluate the minimum link capacity needed to cover
reflect the actual load on links. Nevertheless, we use thevery pattern of single node failures. The link capacity)
edge betweenness centrality to characterize ISP topologiem link i is calculated as follow:

because it gives a fundamental characteristic to identify the , step 0: For all links, set the initial edge betweenness
amount of traffic flow on topologies. centrality £(i) as the link capacity(i):

Topologies we used to compare this time are generated C() = B(9). (10)
by rewiring AT&T randomly. The rewiring method leaves
the degree distribution unchanged, which is as same as e« Step 1: When nodg fails, calculate the new edge
explained in Section 111-B. Because the topological diversity betweenness centralitiy;(¢) for every link. Renew the
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Figure 16. Increament of edge betweenness centrality (AT&T) Figure 17. Increament of edge betweenness centrality (AT&T
link capacity as (11) for every link: to decrease.
_ _ . . _ We next evaluate the changes of edge betweenness cen-
{ g(z.) i gj(.z) 1fth(Ej<f) > C(®) (11)  trality on each link. The increment in edge betweenness
(i) = C(0) OLIETWISE. centrality is also calculated for every failure nogle
o Step 2: Go back to Stepl, select a ngwntil every . . . . . .
node has been selected. A;(0) = B;(1) - E(0) if (B .(Z) > E@) (12)
C; =0 otherwise.

The total of edge betweenness centrabity? (i) and the
total of link capacity needed to cover every pattern of singled; (i) for all the j sorted by link index: is shown in
node failureX;C(4) is shown in Figure 15. Becausg (i) Figures 16 and 17. Figure 16 is calculated for original AT&T,
is directly affected by average hop distance, the differencand Figure 17 is calculated for AT&];. We can see that, in
of X; E(7) in each topology is not important. What we want AT&T, load in some of the links are highly increased com-
to see from this figure is, the extra amount of link capacitypared to AT&Ty 3. This means many alternative paths tend
needed to cover the node failures, which is not needed ito converge on some of the links when node failures occur.
normal condition. We can see that for the original AT&T, In the contrast, for AT&T 3, the variation of increment of
about twice as much a5, E (i) is needed fob2;C(i). When  edge betweenness centrality on every link is small. This can
mutual information of the topology decrease,C(i) tends  be considered because the alternative paths are balanced on
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