
154

International Journal on Advances in Systems and Measurements, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Modeling and Simulation of Bacterial Self-Organization inCircular Container
Along Contact Line as Detected by Bioluminescence Imaging

Romas Baronas,̌Zilvinas Ledas
Faculty of Mathematics and Informatics

Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania

Emails: romas.baronas@mif.vu.lt, zilvinas.ledas@mif.vu.lt

RemigijusŠimkus
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Abstract—Mathematical modeling and numerical simulation
of quasi-one dimensional spatiotemporal pattern formation
along the three phase contact line in the fluid cultures of lux-
gene engineeredEscherichia coli is investigated in this paper.
The numerical simulation is based on a one-dimensional-in-
space mathematical model of a bacterial self-organizationas
detected by quasi-one-dimensional bioluminescence imaging.
The pattern formation in a luminous E. coli colony was
mathematically modeled by the nonlinear reaction-diffusion-
chemotaxis equations. The numerical simulation was carried
out using the finite difference technique. Regular oscillations
as well as chaotic fluctuations similar to the experimental ones
were computationally simulated. The influence of the signal-
dependent as well as density-dependent chemotactic sensitivity,
the non-local sampling and the diffusion nonlinearity on the
pattern formation was investigated. The computational simu-
lations showed that a constant chemotactic sensitivity, a local
sampling and a linear diffusion can be applied for modeling
the formation of the bioluminescence patterns in a colony of
luminous E. coli.

Keywords-chemotaxis; reaction-diffusion; pattern formation;
simulation; whole-cell biosensor.

I. I NTRODUCTION

This paper is an extension of work originally reported in
The Third International Conference on Advances in System
Simulation [1].

Various microorganisms respond to certain chemicals
found in their environment by migrating towards higher
(chemoattraction) or lower (chemorepulsion) concentrations
of the substance. The directed movement of microorganisms
in response to chemical gradients is called chemotaxis [2].
Chemotaxis plays a crucial role in a wide range of biological
phenomena, e.g., within the embryo, the chemotaxis affects
avian gastrulation and patterning of the nervous system [3].
Often, microorganisms not only move up chemical gradients
towards a chemoattractant, but they are also able to produce
more of the chemoattractant. This is the effect that produces
the aggregation of the motile microorganisms into local
clusters with high density and hence results in a pattern
formation [4].

Although the chemotaxis has been observed in many
bacterial species,Escherichia coli is one of the mostly

studied examples.E. coli responds to the chemical stimulus
by alternating the rotational direction of their flagella [2],
[3].

Various mathematical models based on the Patlak-Keller-
Segel model have been successfully used as important tools
to study the mechanisms of the chemotaxis [5]. An excellent
review on the mathematical modeling of the chemotaxis has
been presented by Hillen and Painter [6].

Bacterial species includingE. coli have been observed to
form various patterns under different environmental condi-
tions [4], [7], [8]. Bacterial populations are capable of self-
organization into states exhibiting strong inhomogeneities
in density [9], [10]. Recently, the spatiotemporal patterns
in the fluid cultures ofE. coli have been observed by
employing lux-gene engineered cells and a bioluminescence
imaging technique [11], [12]. However, the mechanisms
governing the formation of bioluminescence patterns still
remain unclear.

Over the last two decades, lux-gene engineered bacteria
have been successfully used to develop whole cell-based
biosensors [13]. A whole-cell biosensor is an analyte probe
consisting of a biological element, such as a genetically en-
gineered bacteria, integrated with an electronic component to
yield a measurable signal [14]. Whole-cell biosensors have
been successfully used for the detection of environmental
pollutant bioavailability, various stressors, includingdioxins,
endocrine-disrupting chemicals, and ionizing radiation [15].
To solve the problems currently limiting the practical use of
whole-cell biosensors, the bacterial self-organization within
the biosensors have to be comprehensively investigated.

In this paper, the bacterial self-organization in a small
circular container near the three phase contact line is in-
vestigated [11], [12]. A computational model for efficient
simulating the formation of the spatiotemporal patterns
experimentally detected by quasi-one-dimensional biolumi-
nescence imaging in the fluid cultures ofE. coli has re-
cently been developed [16], [17]. The pattern formation in
a luminousE. coli colony was modeled by the nonlinear
reaction-diffusion-chemotaxis equations. The mathematical
model was formulated in a one-dimensional space. Several
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different model variations were analyzed, and a minimal
model was obtained for simulating the formation of the
bioluminescence patterns representing the self-organization
of luminousE. coli.

The aim of this work was to improve the already existing
computational model by introducing the nonlinear diffusion
of cells, the non-local sampling and several kinds of the
chemotactic sensitivity [6]. By extending the model in this
way, the improvements of the patterns simulated using
extended model were expected. In this paper, the pattern
formation is computationally investigated assuming two
kinds of the chemotactic sensitivity, the signal-dependent
sensitivity and the density-dependent sensitivity. The non-
local sampling and the nonlinear diffusion are investigated
individually and collectively. The numerical simulation at
transient conditions was carried out using the finite dif-
ference technique [18]. The computational model was val-
idated by experimental data. Regular oscillations as well
as chaotic fluctuations similar to experimental ones were
computationally simulated. By varying the input parameters
the output results were analyzed with a special emphasis on
the influence of the model parameters on the spatiotemporal
pattern formation in the luminousE. coli colony.

The rest of the paper is organized as follows. Section
II provides a state of the art on the mathematical mod-
eling of bacterial self-organization. Section III describes
the mathematical model of the bacterial self-organization
in a circular container. The computational modeling of a
physical experiment is discussed in Section IV. Section V is
devoted to the results of the numerical simulation where
the effects of different chemotactic sensitivity functions,
the non-local gradient and the diffusion nonlinearity are
investigated. Finally, the main conclusions are summarized
in Section VI.

II. M ODELS OFBACTERIAL SELF-ORGANIZATION

Different mathematical models based on advection-
reaction-diffusion equations have already been developedfor
computational modeling the pattern formation in bacterial
colonies [7], [8], [19], [20], [21]. The system of coupled
nonlinear partial differential equations introduced by Keller
and Segel are still among the most widely used [5], [6].

According to the Keller and Segel approach, the main
biological processes can be described by a system of two
conservation equations (x ∈ Ω, t > 0),

∂n

∂t
= ∇ (Dn∇n− h(n, c)n∇c) + f(n, c),

∂c

∂t
= ∇ (Dc∇c) + gp(n, c)n− gd(n, c)c,

(1)

wherex and t stand for space and time,n(x, t) is the cell
density,c(x, t) is the chemoattractant concentration,Dn(n)
andDc are the diffusion coefficients,f(n, c) stands for cell

growth and death,h(n, c) stands for the chemotactic sensi-
tivity, gp andgd describe the production and degradation of
the chemoattractant [5], [21].

Both diffusion coefficients,Dn andDc, are usually as-
sumed to be constant. However, the nonlinear cell diffusion
depending on the chemoattractant concentration or/and the
cell density is also considered [6]. In this work, we consider
the nonlinear diffusion of the form

Dn(n) = Dn

(

n

n0

)m

, (2)

where and belown0 is the maximal density (”carrying
capacity”) of the cell population (n < n0) [22]. At m < 0
the rate of diffusion increases with increasing the cell
density, while atm > 0 the rate decreases with increasing
the cell density. Acceptingm = 0 leads to a constant
rate of the cell diffusion. Since the proper form of the
diffusion coefficientDn to be used for the simulation of
the spatiotemporal pattern formation in the fluid cultures of
lux-gene engineeredE. coli is unknown, the simulation was
performed at different vales ofm.

The cell growthf(n, c) is usually assumed to be a logistic
function,

f(n, c) = k1n

(

1−
n

n0

)

, (3)

where k1 is the constant growth rate of the cell popula-
tion [7].

Various chemoattractant production functions have been
used in chemotactic models [6]. Usually, a saturating func-
tion of the cell density is used indicating that, as the cell
density increases, the chemoattractant production decreases.
The Michaelis-Menten function is widely used to express
the production rategp [5], [20], [23],

gp(n, c) =
k2

k3 + n
. (4)

The degradation or consumptiongd of the chemoattractant
is typically constant,

gd(n, c) = k4. (5)

Values ofk2, k3 andk4 are not exactly known yet [21].
The functionh(n, c) controls the chemotactic response

of the cells to the chemoattractant. The signal-dependent
sensitivity and the density-dependent sensitivity are two
main kinds of the chemotactic sensitivityh(n, c) [6]. In
order to reproduce the experimentally observed bands Keller
and Segel introduced a chemotactic (signal-dependent) sen-
sitivity of the following form [24]:

h(n, c) =
k5
c
. (6)
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Since the bacterial current flow declines at low chemical
concentrations and saturates at high concentrations, Lapidus
and Schiller derived the ”receptor” chemotactic (signal-
dependent) sensitivity forE. coli [19],

h(n, c) =
k6

(k7 + c)2
. (7)

Assuming that cells carry a certain finite volume, a
density-dependent chemotactic sensitivity function as well
as volume-filling model were derived by Hillen and
Painter [25],

h(n, c) = k8

(

1−
n

n0

)

. (8)

Another form for the density-dependent chemotactic sen-
sitivity has been introduced by Velazquez [26],

h(n, c) =
k9

k10 + n
. (9)

In the simplest form, the chemotactic sensitivity is as-
sumed to be independent of the chemoattractant concentra-
tion c as well as the cell densityn, i.e.,h(n, c) is constant,
h(n, c) = k8. Since the proper form of the chemotactic
sensitivity functionh(n, c) to be used for the simulation
of the spatiotemporal pattern formation in the fluid cultures
of lux-gene engineeredE. coli remains unknown, all these
four forms of the functionh(n, c) were used to find out the
most useful form.

E. coli is able to detect a gradient by sampling the
chemoattractant concentration over the time and adjusting
their movement accordingly. As a result, the signal detected
by the cell is non-local and the non-local gradient can be
used to model this behaviour [27], [28],

◦

∇ρ c(x, t) =
n

|Sn−1| ρ

∫

Sn−1

σc(x + ρσ, t)dσ, (10)

whereSn−1 denotes the(n− 1)-dimentional unit sphere in
R

n andρ is the sampling radius. Whenρ → 0, this model
collapses to the ordinary model with local sampling.

It was recently shown that the Keller-Segel approach
can be applied to the simulation of the formation of the
spatiotemporal patterns experimentally detected by biolu-
minescence imaging in the fluid cultures ofE. coli [16],
[17]. This work aims to improve the already existing com-
putational model by introducing the nonlinear diffusion (2)
of cells, the non-local sampling (10) and different kinds of
the chemotactic sensitivity (6)-(9). The improvement of the
patterns simulated using the extended model was expected.

III. M ODEL FORLUMINOUS E. Coli

When modeling the self-organization of luminousE. Coli
in a circular container along the three phase contact line [11],
[12], the mathematical model can be defined in one spatial
dimension - on the circumference of the vessel [16], [17].

A. Governing Equations

Replacing f , gp, gd, Dn and ∇c with the concrete
expressions above, the governing equations (1) reduce to
a cell kinetics model with the nonlinear signal kinetics, the
nonlinear cell diffusion, the nonlinear chemotactic sensitivity
and the non-local sampling,

∂n

∂t
= Dn∇

((

n

n0

)m

∇n

)

−

−∇
(

h(n, c)n
◦

∇ρ c
)

+ k1n

(

1−
n

n0

)

,

∂c

∂t
= Dc∆c+

k2n

k3 + n
− k4c, x ∈ (0, l), t > 0,

(11)

where ∆ is the Laplace operator formulated in the one-
dimensional Cartesian coordinate system, andl is the length
of the contact line, i.e., the circumference of the vessel.
AssumingR as the vessel radius,l = 2πR, x ∈ (0, 2πR).

B. Initial and Boundary Conditions

A non-uniform initial distribution of cells and zero con-
centration of the chemoattractant are assumed,

n(x, 0) = n0x(x),

c(x, 0) = 0, x ∈ [0, l],
(12)

wheren0x(x) stands for the initial (t = 0) spatially-varying
cell density.

For the bacterial simulation on a continuous circle of
the lengthl of the circumference, the following periodicity
conditions are applied as the boundary (matching) conditions
(t > 0):

n(0, t) = n(l, t),
∂n

∂x

∣

∣

∣

x=0

=
∂n

∂x

∣

∣

∣

x=l
,

c(0, t) = c(l, t),
∂c

∂x

∣

∣

∣

x=0

=
∂c

∂x

∣

∣

∣

x=l
.

(13)

C. Dimensionless Model

In order to define the main governing parameters of the
mathematical model (11)-(13), a dimensionless mathemat-
ical model has been derived by introducing the following
dimensionless parameters [4], [6], [23]:

u =
n

n0

, v =
k3k4c

k2n0

,

t∗ =
k4t

s
, x∗ =

√

k4
Dcs

x,

D =
Dn

Dc

, r =
k1
k4

, φ =
n0

k3
, ρ∗ =

ρ

l
,

χ(u, v) =
k2n0

k3k4Dc

h(n0u, k2n0c/(k3k4)).

(14)

Dropping the asterisks, the dimensionless governing equa-
tions then become (t > 0)
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∂u

∂t
=

∂

∂x

(

Dum∂u

∂x

)

−
∂

∂x

(

χ(u, v)u
◦

∇ρ v
)

+

+ sru(1− u),

∂v

∂t
=

∂2v

∂x2
+ s

(

u

1 + φu
− v

)

, x ∈ (0, 1),

(15)

where x and t stand for the dimensionless space and
time, respectively,u is the dimensionless cell density,v
is the dimensionless chemoattractant concentration,r is
the dimensionless growth rate of the cell population,φ
stands for saturating of the signal production,χ(u, v) is the
dimensionless chemotactic sensitivity, ands stands for the
spatial and temporal scale.

Assuming the one-dimensional Cartesian coordinate sys-
tem the non-local gradient can be described as

◦

∇ρ v(x, t) =
v(x+ ρ, t)− v(x− ρ, t)

2ρ
. (16)

For the dimensionless simulation of the spatiotemporal
pattern formation in a luminousE. coli colony, four forms
of the chemotactic sensitivity functionχ(u, v) were used to
find out the best fitting pattern for the experimental data [11],
[12], [16],

χ(u, v) =
χ0

(1 + αv)2
, (17a)

χ(u, v) = χ0

1 + β

v + β
, (17b)

χ(u, v) = χ0

(

1−
u

γ

)

, (17c)

χ(u, v) =
χ0

1 + ǫu
. (17d)

The first two forms (17a) and (17b) of the function
χ(u, v) correspond to the signal-dependent sensitivity, while
the other two (17c) and (17d) - for the density-dependent
sensitivity [6]. Acceptingα = 0, β → ∞, γ → ∞ or
ǫ = 0 leads to a constant form of the chemotactic sensitivity,
χ(u, v) = χ0.

The initial conditions (12) take the following dimension-
less form:

u(x, 0) = 1 + ε(x),

v(x, 0) = 0, x ∈ [0, 1],
(18)

whereε(x) is a random spatial perturbation.
The boundary conditions (13) transform to the following

dimensionless equations (t > 0):

u(0, t) = u(1, t),
∂u

∂x

∣

∣

∣

x=0

=
∂u

∂x

∣

∣

∣

x=1

,

v(0, t) = c(1, t),
∂v

∂x

∣

∣

∣

x=0

=
∂v

∂x

∣

∣

∣

x=1

.

(19)

Figure 1. Top view bioluminescence images of the bacterial cultures in
the cylindrical glass vessel. The images were captured at 5 (a), 20 (b), 40
(c), 60 (d) min [12].

According to the classification of chemotaxis models, the
dimensionless model of the pattern formation is a combi-
nation of the signal-dependent sensitivity (M2), the density-
dependent sensitivity (M3), the non-local sampling (M4), the
nonlinear diffusion (M5), the saturating signal production
(M6) and the cell kinetics (M8) models [6]. At certain
values of the model parameters the dimensionless model
(15), (18) and (19) reduces to the minimal model (M1) for
the chemotaxis [6].

IV. N UMERICAL SIMULATION

The mathematical model (11)-(13), as well as the cor-
responding dimensionless model (15), (18), (19), has been
defined as an initial boundary value problem based on
a system of nonlinear partial differential equations. No
analytical solution is possible because of the nonlinearity of
the governing equations of the model [4]. Hence the bacterial
self-organization was simulated numerically.

The numerical simulation was carried out using the finite
difference technique [18]. To find a numerical solution of
the problem a uniform discrete grid with 760 points and
the dimensionless step size1/760 (dimensionless units) in
the space direction was introduced,760 × 1/760 = 1. A
constant dimensionless step size2.5 × 10−7 was also used
in the time direction. An explicit finite difference scheme has
been built as a result of the difference approximation [17],
[18], [29], [30]. The digital simulator has been programmed
by the authors in Free Pascal language [31].

The computational model was applied to the simulation
of bioluminescence patterns observed in a small circular
containers made of glass [12], [16]. Figure 1 shows typi-
cal top view bioluminescence images of bacterial cultures
illustrating an accumulation of luminous bacteria near the
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Figure 2. Space-time plot of bioluminescence measured along the contact
line of the cylindrical vessel [12], [16].

contact line. The images were captured at different times of
the population evolution.

In general, the dynamic processes in unstirred cultures are
rather complicated and need to be modeled in three dimen-
sional space [2], [11], [12]. Since luminous cells concentrate
near the contact line, the three-dimensional processes were
simulated in one dimension (quasi-one dimensional rings in
Figure 1). Figure 2 shows the corresponding space-time plot
of quasi-one-dimensional bioluminescence intensity.

By varying the model parameters the simulation results
were analyzed with a special emphasis to achieving a
spatiotemporal pattern similar to the experimentally obtained
pattern shown in Figure 2. Figure 3 shows the results of the
informal pattern fitting, where Figures 3a and 3b present the
simulated space-time plots of the dimensionless cell density
u and the chemoattractant concentrationv, respectively. The
corresponding values̄u andv̄ averaged on the circumference
of the vessel are depicted in Figure 3c,

ū(t) =

∫ 1

0

u(x, t) dx,

v̄(t) =

∫

1

0

v(x, t) dx .

(20)

Regular oscillations as well as chaotic fluctuations similar
to the experimental ones were computationally simulated.
Accepting the constant form of the chemotactic sensitivity
(χ(u, v) = χ0) and the simple gradient, the dynamics of the
bacterial population was simulated at the following values
of the model parameters [16]:
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Figure 3. Simulated space-time plots of the dimensionless cell densityu
(a) as well as the chemoattractant concentrationv (b) and the dynamics of
the corresponding averaged valuesū and v̄ (c). Values of the parameters
are as defined in (21).

D = 0.1, χ0 = 6.2, ρ = 0, r = 1,

φ = 0.73, s = 625, m = 0.
(21)

A spatially-varying random perturbationε(x) of the di-
mensionless cell densityu of 10% was applied for the initial
distribution of bacteria near the three phase contact line
when simulating the spatiotemporal patterns.

Due to a relatively great number of model parameters,
there is no guarantee that the values (21) mostly approach the
pattern shown in Figure 2. Similar patterns were achieved at
different values of the model parameters. The linearization
and the stability analysis of homogenous solutions of the
Keller-Segel model showed similar effects [32], [33]. An
increase in one parameter can be often compensated by
decreasing or increasing another one. Because of this, it is
important to investigate the influence of the model parame-
ters on the pattern formation and to develop a mathematical
model containing a minimal number of parameters and
ensuring a qualitative analysis of bacterial pattern formation
in a liquid medium [6], [10], [17], [21].

V. RESULTS AND DISCUSSION

By varying the input parameters the output results were
analyzed with a special emphasis on the influence of the
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Figure 4. Spatiotemporal plots of the dimensionless cell density u for
two forms of the signal-dependent chemotactic sensitivityχ(u, v): (17a)
(α = 0.05) (a), (α = 0.07) (b) and (17b) (β = 2) (c), (β = 10) (d).
Values of the other parameters are as defined in (21).

chemotactic sensitivity, the non-local gradient and the dif-
fusion nonlinearity on the spatiotemporal pattern formation
in the luminousE. coli colony. Figure 3a shows the spa-
tiotemporal pattern for the constant form of the chemotactic
sensitivity (χ(u, v) = χ0) applying the simple gradient
(ρ = 0) and the linear diffusion (m = 0).

The effects of the different chemotactic sensitivity func-
tions were investigated assuming the linear diffusion (m =
0) and the simple gradient (ρ → 0). The non-local gradient
and the nonlinear diffusion was analyzed separately and
together assuming the constant chemotactic sensitivity.

A. The Effect of the Signal-Dependent Sensitivity

The signal-dependent sensitivity was computationally
modeled by two forms of the chemotactic sensitivity func-
tion χ(u, v): (17a) and (17b). The spatiotemporal patterns
of the dimensionless cell densityu were simulated at very
different values ofα and β. Figure 4 shows the effect of
the signal-dependence of the chemotactic sensitivity on the
pattern formation.

Accepting α = 0 or β → ∞ leads to a signal-
independence, i.e., a constant form, of the chemotactic
sensitivity,χ(u, v) = χ0. Results of the multiple simulations
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Figure 5. Spatiotemporal plots of the dimensionless cell density u for
two forms of the density-dependent chemotactic sensitivity χ(u, v): (17c)
(γ = 10) (a), (γ = 15) (b) and (17d) (ǫ = 0.05) (c), (ǫ = 0.1) (d). Values
of the other parameters are as defined in (21).

showed that the simulated patterns distinguish from the
experimental one (Figure 2) when increasingα-parameter
(Figures 4a and 4b) or decreasingβ-parameter (Figures 4c
and 4d). Because of this, there is no practical reason for
application of a non-constant form of the signal-dependent
sensitivity to modeling the formation of the bioluminescence
patterns in a colony of luminousE. coli. Consequently,
the signal-dependence of the chemotactic sensitivity can
be ignored when modeling the pattern formation in the
luminousE. coli colony.

B. The Effect of the Density-Dependent Sensitivity

Two forms, (17c) and (17d), of the chemotactic sensitivity
functionχ(u, v) were employed for computational modeling
of the density-dependent chemotactic sensitivity. The spa-
tiotemporal patterns of the cell densityu were simulated at
various values ofγ andǫ. Figure 5 shows how the density-
dependence affects the pattern formation.

Accepting γ → ∞ or ǫ = 0 leads to a density-
independence, i.e., a constant form, of the chemotactic
sensitivity,χ(u, v) = χ0. Multiple simulation showed that
the simulated patterns distinguish from the experimental one
(Figure 2) when decreasingγ-parameter (Figures 5a and 5b)
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Figure 6. Spatiotemporal plots of the dimensionless cell density u when
using the non-local sampling (ρ = 0.008) (a), (ρ = 0.012) (b), (ρ =
0.016) (c). Values of the other parameters are as defined in (21).

or increasingǫ-parameter (Figures 5c and 5d). Because of
this, similarly to the signal-dependent chemotactic sensitiv-
ity, there is no practical reason for application of a non-
constant form also of the density-dependent sensitivity when
modeling the pattern formation in a colony of luminousE.
coli.

A simple constant form (χ(u, v) = χ0) of the chemotactic
sensitivity can be successfully applied to modeling the
formation of the bioluminescence patterns in a colony of
luminousE. coli. Oscillations and fluctuations similar to ex-
perimental ones can be computationally simulated ignoring
the signal-dependence as well as the density-dependence of
the chemotactic sensitivity.

C. The Effect of the Non-Local Sampling

The non-local sampling was modeled by using non-
local gradient (16). The constant chemotactic sensitivity
(χ(u, v) = χ0) was used in these simulations. The spa-
tiotemporal patterns of the dimensionless cell densityu were
simulated at various values of the effective sampling radius
ρ. Figure 6 shows how the non-local sampling affects the
pattern formation in the luminousE. coli colony.

Acceptingρ = 0 leads to a model with the local sampling
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Figure 7. Spatiotemporal plots of the dimensionless cell density u when
using the nonlinear diffusion (m = −0.6) (a), (m = 0.2) (b), (m = 0.6)
(c). Values of the other parameters are as defined in (21).

and the simple gradient, operator
◦

∇ρ approaches∇. The
computational results showed that the simulated patterns
get dissimilar from the experimental one (Figure 2) when
increasingρ-parameter (Figure 6). As it can be seen from
Figure 6c, merging of the different ”branches” in the pattern
is almost gone and this merging behaviour is essential to get
patterns similar to experimental ones. Because of this, there
is no practical reason for application of applying the non-
local gradient to modeling the formation of the patterns in
a colony of luminousE. coli.

D. The Effect of the Nonlinear Diffusion

The nonlinear diffusion was modeled by using the fol-
lowing form of the diffusion function:D(u) = Dum [22].
The chemotactic sensitivity was assumed to be constant
(χ(u, v) = χ0) in these simulations. The spatiotemporal
patterns of the dimensionless cell densityu were simulated
at various values ofm-parameter. Figure 7 shows the effect
of the nonlinearity of the diffusion.

Accepting m = 0 leads to a model with the linear
diffusion. Results of the simulations at differentm values
show that patterns tend to drift away from the experimental
one (Figure 2) when increasing (m → ∞) (Figure 7c)
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or decreasing (m → −∞) (Figure 7a) them-parameter.
The pattern shown in Figure 7a contains less mergers of
different ”branches” (as a result ofm ≪ 0). Figure 7
exhibits the ”branch” movements that are distorted compared
to the experimentally observed ones (as a result ofm ≫ 0).
Therefore, there is no need to use the nonlinear diffusion
for modeling the pattern formation in a colony of luminous
E. coli.

E. The Effect of the Non-Local Sampling With the Nonlinear
Diffusion

From the simulations with the non-local gradient (the
non-local sampling) and the nonlinear diffusion it was seen
that the increasing the non-local gradient parameterρ has
visually opposite effect to the increasing nonlinear diffusion
parameterm (Figure 6c versus Figure 7c). As a result, addi-
tional numerical experiments were carried out to determine
how the non-local sampling combined with the nonlinear
diffusion affects the pattern formation. Various combinations
of ρ- and m-parameter values were used to simulate the
spatiotemporal patterns of the dimensionless cell densityu
along the three phase contact line of the cylindrical vessel.
Figure 8 shows the effects of the non-local sampling and the
diffusion nonlinearity.

From Figure 8 it can be seen that the simulated patterns
(especially Figure 8a) are more similar to the experimentally
observed one (Figure 2) than those shown in Figures 6c and
7c. When analyzing the most distorted case (Figure 6c),
one can see that the merging behaviour can be regained
by using the nonlinear diffusion (Figures 8c and 8d), but
the result is not quite similar to the desired one. However,
if the nonlinear diffusion is added to the case shown in
Figure 6b, the results (Figures 8a and 8b) become much
better than those obtained considering the non-local sam-
pling and the diffusion nonlinearity separately. This means
that when increasingρ, one should consider increasingm,
respectively. On the other hand, the comparison of Figure 8a
with Figure 3a does not confirm that the model with the
non-local sampling and the nonlinear diffusion is capable to
produce a result that better matches experimentally observed
one. Because of this, there is no practical need for applying
the non-local sampling as well as the nonlinear diffusion
for the computational modeling of the pattern formation in
a colony of luminousE. coli.

F. A minimal model

In the previous sections it was shown that the pattern
formation along the contact line in a cellular population can
be modeled at the following values of the model parameters:
m = 0, α = 0, β → ∞, γ → ∞, ǫ = 0. The simulated
patterns at these values tend to have the desired properties
similar to the experimental ones (Figure 2) - emergence and
merging of the strands are present and regular. Accepting
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Figure 8. Spatiotemporal plots of the dimensionless cell density u when
using the non-local sampling and the nonlinear diffusion (ρ = 0.012, m =
0.2) (a), (ρ = 0.012, m = 0.4) (b), (ρ = 0.016, m = 0.2) (c), (ρ =
0.016, m = 0.6) (d). Values of the other parameters are as defined in (21).

theses values leads to a reduction of the governing equations
(15) to the following form:

∂u

∂t
= D

∂2u

∂x2
− χ0

∂

∂x

(

u
∂v

∂x

)

+ sru(1− u),

∂v

∂t
=

∂2v

∂x2
+ s

(

u

1 + φu
− v

)

,

x ∈ (0, 1), t > 0.

(22)

The governing equations (22), the initial (18) and the
boundary (19) conditions form together a minimal mathe-
matical model suitable for simulating the pattern formation
in a colony of luminousE. coli.

According to the classification of the chemotaxis models
introduced by Hillen and Painter [6], the minimal model
(22) is a combination of two models: the nonlinear signal
kinetics model M6 and the cell kinetics model M8. This
combination of the models has comprehensively been ana-
lyzed by Maini and others [4], [20], [23].

The governing equations (22) contain five parameters,
D, χ0, r, φ and s. The diffusion parameterD is neces-
sary because of an inequality of the dimensional diffusion
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coefficientsDn and Dc [4], [21]. The model parameter
s is required to support the spatial and temporal scale
for simulating systems and processes of the interest. The
essential parameterχ0 controls the chemotactic response of
the cells to the concentrations of the attractant and allows
to reproduce the experimentally observed bands. Earlier, it
was shown thatr andφ are also essential for modeling the
pattern formation in a colony of luminousE. coli [17].

VI. CONCLUSIONS

The quasi-one dimensional spatiotemporal pattern forma-
tion along the three phase contact line in the fluid cultures of
lux-gene engineeredEscherichia colican be simulated and
studied on the basis of the Patlak-Keller-Segel model.

The mathematical model (11)-(13) and the corresponding
dimensionless model (15), (18), (19) of the bacterial self-
organization in a circular container as detected by biolumi-
nescence imaging may be successfully used to investigate
the pattern formation in a colony of luminousE. coli.

A constant function (χ(u, v) as well ash(n, c)) of the
chemotactic sensitivity can be used for modeling the forma-
tion of the bioluminescence patterns in a colony of luminous
E. coli (Figures 4 and 5). Oscillations and fluctuations
similar to experimental ones (Figure 2) can be computa-
tionally simulated ignoring the signal-dependence as well
as the density-dependence of the chemotactic sensitivity
(Figure 3a).

The local sampling and the linear diffusion can be suc-
cessfully applied to modeling the formation of the biolu-
minescence patterns in a colony of luminousE. coli. The
influence of the non-local gradient to the pattern formation
can be partially compensated with the nonlinear diffusion
(Figures 6, 7 and 8). However, the non-local sampling and
the nonlinear diffusion do not yield in patterns more similar
to the experimentally observed ones when compared to the
patterns obtained by the corresponding model with the local
sampling and the linear diffusion.

The more precise and sophisticated two- and three-
dimensional computational models implying the formation
of structures observed on bioluminescence images are now
under development and testing.
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