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Abstract—Terrorist groups, hijackers, and people hiding guns 

and knives are a constant and increasing threat. Concealed weapon 
detection has become one of the greatest challenges facing the law 
enforcement community today. The fact that most weapons are 
made from metallic materials makes electromagnetic detection 
methods the most prominent and preferred approach for concealed 
weapon detection. Each weapon has a unique electromagnetic 
fingerprint, determined by its size, shape and physical composition. 
A new detection system developed at Newcastle University that uses 
a walk-through metal detector with a Giant Magneto-Resistive 
sensor array has been utilized in this study. The system enables a 
two-dimensional image to be constructed from measured signals 
and used in later image processing. This paper addresses weapon 
detection using time and frequency feature extraction techniques 
based on this new system. The study also employs and compares 
two classification techniques for potential automated classification. 
Experimental results using guns and non-gun objects in controlled 
and non-controlled environments have demonstrated the potential 
and efficiency of the new system. The classification capabilities of 
the system could be developed to the point that individuals could 
pass through the system without the need to take off other metallic 
objects. The proposed techniques have the potential to produce 
major improvements in automatic weapon detection and 
classification. 

Keywords-sensor array; electromagnetic imaging; weapon 

detection; feature extraction; airport security. 

I.  INTRODUCTION  

This paper, based on previous work from Al-Qubaa et al. [1], 
presents new results for the proposed weapon detection and 
classification system. There is a growing need for effective, quick 
and reliable security methods and techniques using new 
screening devices to identify weapon threats. Electromagnetic 
(EM) weapon detection has been used for many years, but object 
identification and discrimination capabilities are limited [2]. 
Many approaches and systems/devices have been proposed and 
realised for security in airports, railway stations, courts, etc. The 
fact that most weapons are made of metallic materials makes EM 
detection methods the most prominent and systems/devices built 
on the principle of EM induction have been prevalent for many 
years for the detection of suspicious metallic items carried 
covertly [3]. Walk-through metal detectors (WTMDs) and hand-
held metal detectors (HHMDs) are commonly used as devices for 
detecting metallic weapons and contraband items using an EM 
field. Most WTMD and HHMD units use active EM techniques 
to detect metal objects [4][5]. Active EM means that the detector 
sets up a field with a source coil and this field is used to probe the 
environment. The applied/primary field induces eddy currents in 

the metal under inspection, which then generate a secondary 
magnetic field that can be sensed by a detector coil. The rate of 
decay and the spatial behaviour of the secondary field are 
determined by the conductivity, magnetic permeability, shape, 
and size of the target. Sets of measurements can then be taken 
and used to recover the position, the size and the shape of the 
objects. 

Many other EM imaging techniques have been used in 
WTMDs. These methods include microwave [6], millimetre 
waves [7], terahertz waves [8], infrared imaging [9], and X-ray 
imaging which has been used for luggage inspections in airports 
[10]. All these approaches have advantages and disadvantages 
linked to operating range, material composition of the weapon, 
penetrability and attenuation factors. 

Weapon detection systems currently available are primarily 
used to detect metal and have a high false alarm rate because they 
work by adjusting a threshold to discriminate between threat 
items and personal items, depending on the mass of the object. 
This leads to an increase in the false alarm level [11] [12]. Also, 
the human body can affect the sensitivity of the detector as when 
dealing with low conductivity or small materials, the human body 
can give a stronger signal than the material. This can cause the 
material to pass undetected, giving poor reliability [13]. 
Advanced signal processing algorithms have been used to 
analyse the magnetic field change generated when a person 
passes through a portal. Then pattern recognition and 
classification techniques can be used to calculate the probability 
that the acquired magnetic signature correlates to a weapon, or 
whether it is a non-weapon response [14]. 

 Extracting distinct features from the EM signal is imperative 
for the proper classification of these signals. Feature extraction 
techniques are transforming the input image into a set of features. 
In other words, feature extraction is the use of a reduced 
representation, not a full representation, of an image to solve 
pattern recognition problems with sufficient accuracy. Extract or 
generate features from the EM signal is common method for 
metal detection and classification to represent the possible targets 
of interest. Feature extraction using Time-Frequency analysis has 
been used for stationary targets of backscattered signal [15]. 
Features are extracted from scattered field of a given candidate 
target from the joint time-frequency plane to obtain a single 
characteristic feature vector that can effectively represent the 
target of concern. Joint time frequency analysis was used to 
overcome the limitation of using the Fourier transform (FT) 
series to represent the EM signals which is require an infinite 
number of sinusoid functions [16]. The sinusoid function 
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provides a feasible way of computing the power spectrum for EM 
signal, which is serves as unique fingerprint of the weapon 
detection response to various targets, i.e., weapons, cell phones, 
etc. [17]. 

The literature review revealed that wavelet transform (WT) 
are a successful method for the signal representation of time 
series data such as EM signals [14][18]. WT has been used to 
represent time series data such as ECG waveforms and mine 
signal detection [19]. The WT can be thought of as an extension 
of the classic FT except operating on a multi-resolution basis. 
The results obtained from [20] verify that the WT based 
technique produces features that are suitable for detect and 
identify metallic targets signal data. 

After Feature extraction step, the images can be displayed for 
operator-assisted weapon detection or fed into a weapon 
detection module for automated weapon detection and 
classification. In [21], authors present an artificial neural network 
(ANN)-based scheme for metal target detection and 
classification. The proposed strategy involved the use of various 
neural networks schemes for performing feature extraction and 
classification tasks. It was shown that the use of an ANN in 
multispectral wavelengths provided a useful tool for target 
detection and classification. In [14], a case study on classifying 
metal detector signal for automated target discrimination is 
conducted. In this research an adaptive resonance theory 
networks was used and the results indicate that ANN has a vital 
role to improve the performance of classification. In [10], 
probabilistic ANN classifier used to classifies the extracted 
weapon candidate regions into threat and non-threat objects. The 
proposed framework is evaluated on a perfect database consisting 
of various weapons in different size, type of gun and real images 
and 96.48% accuracy rate has been obtained. In [22], the ANN 
used to differentiate between different target types such as a 
Glock or a starter pistol. A combination of techniques is 
presented that enables handguns to be effectively detected at 
standoff distances. Late time responses that allow threat from 
innocent objects (e.g., mobile phones, keys, etc.) to be 
distinguished from handguns. Information about the optical depth 
separation of the scattering corners, and the degree and shape of 
cross polarization allows ANN to successfully detect handguns in 
that research. 

Support Vector Machine (SVM) has been used recently as   a 
new machine learning methods. SVM is a concept in statistics 
and computer science for a set of related supervised learning 
methods that analyse data and recognize patterns, used for 
classification and regression analysis [23]. In [24], the authors 
revisit an attractively simple model for EM induction response of 
a metallic object using SVM to train and produce reliable gross 
characterization of objects based on the inferred tensor elements 
as discriminators. They focusing on gross shape and especially 
size to evaluate the classification success of different SVM 
formulations for different kinds of objects, and noticed that SVM 
has an inherent limitation that it takes a very long time to yield an 
answer in some instances. In [25], the problem of classification 
metallic objects using their EM induction response is solved by 
decomposing that response into coefficients and then using SVM 
and ANN to process those coefficients. The performance of each 

method is compared. Since it demonstrate that there is no simple 
relationship between sizes of objects and the overall magnitude 
of their coefficients, learning algorithms are necessary and useful 
in classifying these objects. When trained on all types of objects, 
both the ANN and the SVM are able to classify all objects with a 
good degree of accuracy. In addition, both methods show an 
ability to generalize for noisy test data when trained with noisy 
data.  

A new detection system developed at Newcastle University 

[26] and built in a lab using an ex-service CEIA WTMD, with 

the addition of a Giant Magneto-Resistive (GMR) sensor array 

to capture the EM scattered data from any metallic objects, is 

used in this study.  

The contributions of this paper are: firstly, improve the 

characterization capabilities of the new detection system through 

investigation of the effect of different orientations as well as the 

effect of concealed weapons. Secondly, investigate the 

feasibility of extraction features from WT and FT for weapon 

detection. Thirdly, automatically recognize and classify metallic 

threat objects by using of Support Vector Machine (SVM) and 

Artificial Neural Network (ANN) as classifiers. 
The rest of this paper is organized as follows. Firstly, the 

system design and principles of operation are introduced in 
Section II. Next, system efficiency and test validity are reported 
in Section III, which is followed by details of the feature 
extraction methods used in Section IV. Section V explains the 
classification techniques used. Section VI demonstrates the 
classification test bed setup. Classification results are discussed 
in Sections VII. Finally, the conclusion is outlined in VIII. 

II. SYSTEM DESIGN AND PRINCIPLES OF OPERATION 

In this section, a brief description of the detection system will 

be given with the EM images capturing condition. 

A.  System design 

The system used for the experimental tests is based around an 
array of NVE GMR sensors used in conjunction with the 
excitation coil in an ex-service CEIA (Construction Electronics 
Industrial Automation) WTMD. Figure 1 shows a block diagram 
of the system, the new system being converted from a typical 
walk through metal detector system. The signals from the sensor 
array are amplified using an array of signal amplifiers based on 
an INA111 instrumentation amplifier. Data acquisition is 
performed using an 80 channel PXI based National Instruments 
data acquisition system. The use of the PXI based system allows 
data to be acquired on 40 channels at a rate of 125kS/s, or 80 
channels at a rate of 62.5kS/s. The channel count is further 
increased to a maximum of 160 by the use of multiplexer circuits. 
A variable excitation waveform is provided by a function 
generator, the signal from which is also used for data acquisition 
synchronisation. 

The AAL002-02 GMR sensors were chosen because of their 
sensitivity and noise suppression compared with other common 
sensors such as Hall Effect models. The L in the sensor model 
name indicates that low hysteresis (maximum 2%) GMR material 
has been used to fabricate the sensor. This was chosen because it 
was initially intended to utilise an applied magnetic field varying 
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from 0 to a maximum value and the lower hysteresis would 
minimise errors at low fields. However, after initial tests it was 
found that a more stable signal could be achieved by biasing the 
sensor response into its linear region using a DC offset 
superimposed on the excitation signal.  

After several experimental studies the GMR sensor array was 
superimposed on the coil found inside the arch coil panel. The 
coil was positioned after taking an x-ray of the WTMD panel, 
and making investigation for signal measurements as shown in 
Figure 2. 

 

 
Figure 1. Proposed EM system (a) Block diagram, (b) System setup in the 

laboratory [34]. 

 

 

Figure 2. Coil position inside the WTMD panel. 

B. Electromagnetic field imaging 

Figure 3 illustrates the different metallic objects and their 
equivalent EM field images. The samples represent common 
threats and personal objects carried by people.  

The tests were carried out using a 40 sensor array and a 
sample rate of 125 kHz. Thus, the temporal EM field distribution 
as the object moves past the array can be determined. The sensors 
array is aligned with the coil to pick up any distortions in the 
applied field due to the presence of metallic materials. Five 
experiments were carried out with each item and their capturing 
condition being summarized also in [26]. 

The interaction between the applied field and any sensor in 
the array can be captured and the pulse response from a group of 
sensors can be stored by moving the objects, as shown in Figure 
4. If no object is present in the WTMD, the field measured by the 
sensor is unchanged; the presence of a metallic object causes 
distortion of the field, which can then be measured by the sensor. 
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Figure 3. Samples with the equivalent EM images. 
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Figure 4. Object test set-up. 

In the proposed system, pulsed excitation is applied to the 
coil. Pulsed excitation provides the opportunity to apply an 
interrogating field with rich frequency components in a single 
waveform. In the tests detailed in this paper, a pulse repetition 
frequency of 500Hz was used with a pulse width of 1ms and an 
applied current of 0.5A – 1.5A.  

III. SYSTEM EFFICIENCY AND TEST VALIDITY  

This section explains different experimental setups used 
during tests to improve the ability and efficiency of the detection 
system. Also, repeatability is examined to check the validity and 
to confirm the measurements. 

A. Different orientation experimental setups 

To check validity of the proposed system, experiments were 
carried out to study the reflected signals from objects under 
different orientations. 

Figure 6 shows the test set-up for different orientations. The 
objects were moved past the array dynamically and data were 
taken while the object was moving. Data were taken with the 
samples orientated in three directions.  

The results of the orientation test for the kitchen knife sample 
are shown in Figure 6. It can be seen from the images that the 
feature map follows a fairly predictable evolution with the 
rotation of the object; in the x-direction and y-direction the object 
appears as a dipole distribution, with the rotation of the 
distribution correlating to the rotation of the object. In the z-
direction, only one end of the “dipole” is presented to the array, 
so a uni-polar distribution is observed.  

 

 
Figure 5. Orientation Test set-up 

 
Figure 6. Different orientation results from kitchen knife sample test. 

A similar trend follows for all objects; the object appears as 
two peaks in the feature map and as the object is rotated, this 
distribution is rotated from the x-direction image to the y-
direction image. The z-direction, though, exhibits a clear uni-
polar distribution; this is mainly due to the dimensional 
configuration of the sensor array. 

B. Real weapon experimental setup 

In order to verify the new system effectiveness using real 
threatening items, a series of tests using real handguns was 
carried out. This section reports some of the results from these 
tests. 

Six real handguns are used (borrowed from a police station) 
and the specifications of these handguns are listed in Table 1. 
Figure 7a shows the handguns in the sample holder constructed 
for the tests and there reflected EM images are shown in Figure 
7b. The holder was configured to ensure that the samples retained 
a constant and comparable distance and orientation with respect 
to the array during each pass through the system. 

 
  Table 1. SPECIFICATION FOR THE ALL HANDGUNS. 

Sample Description 

1 Small revolver – 0.38” Smith & Wesson – 
Deactivated. 

2 Revolver – 0.38” Enfield service revolver – 
Deactivated. 

3 Large automatic – 9mm Glock G17 – Live. 

4 Large automatic – 0.45 Colt M1911 – Replica. 

5 Small revolver – Brocock Puma air pistol – Live. 

6 Small automatic – 7.65mm Walther – 
Deactivated. 

 
The test samples were representative of a range of handguns 

which would be of interest for detection. In general, it is unlikely 
that the deactivated weapons would give a drastically different 
response to the same live weapon. Although the presence of 

   x-direction                   y-direction                    z-direction 
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ammunition clearly increases the volume of material within the 
arch, it would not affect results significantly. 

 
 

 
Figure 7. Handgun samples (a) In sample holder, and (b) Reflected EM image 

results. 

The first set of tests was carried out in the same way as the 
previous detection tests (explained in Section II above). Results 
are shown in Figure 7b and are generally good, as would be 
expected for the controlled test setup. The one exception is 
sample 4, the replica gun, which is very difficult to locate in the 
test results. It had the lowest amplitude response and therefore 
the poorest signal to noise ratio. 

It is notable that samples 2 and 3 gave similar results, 
responding to a type of dipole distribution, indicative of a 
ferromagnetic object made predominantly from a single type of 
metal. The simple form of distribution also indicates that there is 
very little metal in the handle of these objects, and the array saw 
them as a simple tube/block of metal. 

Another test setup for the uncontrolled walk-through tests 
using real handguns is shown in Figure 8a. The handguns were 
carried in the inside jacket pocket of an individual walking 

through the arch. Test results are shown in Figure 8b. The EM 
images for the objects are clearly compressed along the x-axis 
compared to the controlled tests, due to the object moving 
through the arch at a greater speed; however, the actual 
distributions remain very similar. 

 

                         

Figure 8. Walk-through test (a) Test set-up, (b) Results for all hand guns from 

the walk-through test. 

Figure 9. EM images for the sample #3 - a) Controlled, b) Uncontrolled tests. 
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Figure 9 shows the EM images for the controlled and walk-
through tests using the handgun sample #3. The results from the 
walk-through test have been expanded along the horizontal axis 
compared to Figure 8b to aid comparison. Comparison of the 
plots shows that although the controlled and walk-through tests 
did not give identical results, the general form of the EM 
signatures was roughly similar. Thus, using appropriate analysis 
techniques it can be ascertained that the signatures are from 
similar, if not the same object. 

C. Measurement Stability  

In this subsection, system stability is checked by examining 
the repeatability of the experimental tests using a simple 
amplitude calculation. The overall amplitude change for each EM 
signal is plotted for five repetitions of the test for all handgun 
samples. The overall amplitude change is computed by 
subtracting the maximum from the minimum value of each EM 
signal received. The results are plotted in Figure 10 for both the 
controlled and walk-through test. It can be seen from Figure 10a 
that, the controlled test has the greatest repeatability. As well as 
the data trend is similar for the walk-through test as showed in 
Figure 10b. 

 

 
Figure 10. Overall amplitude change for (a) Controlled test, (b) Walk-through 

test. 

IV. FEATURE EXTRACTION TECHNIQUES 

Features were extracted from two different techniques (FT 
and WT). A brief background of FT and WT will be provided, 
with the motivation behind their use. In addition to detailed the 
feature extractions algorithm. 

A. Fourier Transform (FT) 

The Fourier series provides an alternative way to represent 

data; instead of representing the signal amplitude as a function 

of time, we represent the signal by how much information is 

contained at different frequencies. Fourier analysis is important 

in data acquisition as it allows one to isolate certain frequency 

ranges. The bridge between time and frequency representation is 

the FT. The signal can be decomposed as a weighted sum of 

sinusoid functions. This provides a feasible way of computing 

the power spectrum for a signal. Fast FT (FFT) is a fast 

algorithm of the discrete FT that represents the signals in the 

frequency domain. The power spectrum serves as the fingerprint 

of the analysed signal [16]. The absolute value will provide the 

total amount of information contained at a given frequency [27], 

and the square of the absolute value is considered the power of 

the signal. In this work the power spectrum (PS) of FFT for each 

EM image using the outcomes from the control test were utilised 

as a feature; each sample gave different PS, as shown in Figure 

11.  

The PS results will be (n*m), so to reduce the data size 

before applied to the classifier, Principle component analysis 

(PCA) techniques [28] was applied and first three PCA 

components were selected as it represent a 99.6% of the data 

variance. Figure 12 shows the behaviour of the PCA feature 

vectors extracted from the FFT process. The test was done using 

the six handguns with the different other not-threat objects. It is 

clear from the figure that the handgun #4 gives very low 

response because it consists of plastic material as well as the 

mobile phone object gives high response because it is full 

charged. Figure 13 shows the flowchart of the gun classification 

procedure using FFT features. 

B. Wavelet Transform (WT) 

In contrast to FFT, Wavelet analysis is useful in 

decomposing a time series into time-frequency space 

simultaneously. The analysis provides information about both 

the amplitude of any "periodic" signals within the series, and 

how this amplitude varies with time. WT can be considered as 

an extension of the classic FFT except that it operates on a 

multi-resolution basis. This multi-resolution property enables a 

signal to be decomposed into a number of different resolutions. 

Each resolution represents a particular coarseness of the signal. 

Preservation of spatial information is another property of WT 

after transformation. This enables the identification of areas in 

the original signal that correspond to particular characteristics 

present in the WT data [29].  
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Figure 11. Part of the power spectrum of (a) Handgun, (b) Mobile Phone. 

 
Figure 12. Feature vector extracted from the FFT process for 10 objects , #1-#6 

are threat items (handgun samples) and the others (#7-#10) are not-threat items 

(Camera, House Key, Phone and Pen) as sorted number in the figure 
respectively. 

 
Figure 13. Flowcharts of the detailed gun classification procedure using FFT 

features. 

The motivation behind using WT came from a preliminary 
analysis of the raw metal detector signal data. Literature proves 
that WT can be applied successfully as a method of signal 
representation of time series data. An example of this, is its 
application to electrocardiogram signals, which share a similar 
resemblance to metal detector signals [30][31]. Previous research 
also verifies that WT can be used to produce suitable features 
from metal detector data for target classification [14][32]. 

In this study, a discrete WT has been used. ‘Discrete’ refers 

to its discrete sets of dilation and translation factors, and discrete 

sampling of the signal. At a given scale, J, a finite number of 

translations were used in applying multi resolution analysis to 

obtain a finite number of scaling and wavelet coefficients. The 

signal can be represented in terms of the following coefficients 

(Eq. 1) [33]: 

 

         (   )  ∑         ( )  ∑ ∑       ( ) 
 
             (1) 

 

where    are the scaling functions, CJk are the scaling 

coefficients,     are the mother wavelets and djk are the wavelet 

coefficients.. The first term in Eq. (1) gives the low resolution 

approximation of the signal, while the second term gives the 

detailed information at resolutions from the original down to the 

current resolution J. Daubechies order 4 has been selected from 

the wavelet family and three levels of wavelet decomposition 

have been computed [32].  
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Three types of statistical operation were selected from the 

wavelet approximation coefficients (LL) domain to be 

considering as a unique feature for each object, namely Entropy, 

standard deviation (STD) and root mean square error (RMSE). 

Figure 14 shows the ENT, STD and RMSE features for the three 

WT levels using same 10 objects in the previous test, the six 

handguns and the others are the not-threat objects. It can be seen 

from the figure that these feature give good indication to identify 

between handguns and the other objects. However, some of the 

not-threat objects are close to the handguns features, such that 

the entropy of the house key for instance. This leads to combine 

wavelet features with the FFT features to give a good 

classification result.   

 

 
Figure 14.Wavelet features for 10 objects, #1-#6 are threat items (handgun 
samples) and the others (#7-#10) are not-threat items (Camera, House Key, 

Phone and Pen) as sorted number in the figure respectively, for one level WT 

analysis. 

As a result, each EM image had three types of features with 

three levels of decompositions. Thus, a feature vector was 

generated consisting of nine values to be fed to the classifiers. A 

flowchart of the gun classification procedure using the control 

test and features obtained from the WT coefficient is shown in 

Figure 15. 

V. CLASSIFICATION TECHNIQUES 

In this work, two different types of classification techniques 

have been applied and compared to evaluate the features which 

extracted from the new system and to adopt the efficient 

classification technique for an automated process. In previous 

work [1], the classification of different objects was performed 

using cross correlation technique. In this work, the classification 

has been performed using ANN and SVM techniques. 

A. Classification using Artificial Neural Network (ANN) 

Neural networks are widely used in pattern recognition and 

classification since they do not need any information about the 

probability distribution and the priori probabilities of different 

classes. In this study, two feature vectors (WT and FFT) were 

used as an input to an ANN classifier alone and in combination 

with each other to find out the most suitable features for 

classification. 

 

 
Figure 15. Flowchart of the gun classification procedure using discrete WT 

features. 

 
 

A three layered ANN classifier was used: input, hidden and 

output layer. The input layer use the input feature vector element 

N, the hidden layer consisted of 2N nodes with the sigmoid 

activation function. The output layer consisted of one node (for 

our study, symbolizing whether it is a gun or not) with a linear 

activation function. The ANN classifier utilized a training 

function based on Levenberg-Marquardt optimization [34]. All 

ANN parameters are summarized in Table 2. 

 
Table 2. ARTIFICIAL NEURAL NETWORK PARAMETERS. 

No. of nodes in Input layer : Same no. of used feature 

vector elements (N). 

No of nodes in Hidden layer : Double no. of used 

feature (2N). 

No of nodes in Output layer : One node (Gun or not). 

Transfer function : ‘logsig’ for hidden layer, 

‘purelin’ for output layer 

Training function : ‘trainlm’ 

Max number of Epochs : 10000 

Min performance gradient : 1e-10 
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B.  Classification using Support Vector Machine (SVM) 

SVM is a concept in statistics and computer science for a set 

of related supervised learning methods that analyse data and 

recognize patterns. It is used for classification and regression 

analysis. SVM tackle classification problems by nonlinearly 

mapping input data into high-dimensional feature spaces, 

wherein a linear decision hyper plane separates the two 

considered classes. Different kernel functions nonlinearly maps 

samples into the higher dimensional space. Among them, the 

RBF Kernel is the most generally used. In many pattern 

recognition applications, SVM generalization performance is 

either similar or significantly better than other competing 

methods. In opposition to ANN, SVM have few hyper 

parameters to be adjusted [35].  

In this work, a SVM based method was used as a second 

classification method to make a comparison with the results of 

ANN. The four feature vectors were normalised to the range [-1, 

+1] in each column first. The advantages of scaling are that it 

avoids attributes in greater numeric ranges dominating those in 

small numeric ranges, and it avoids numerical difficulties during 

calculation. In this work, the Radial Basis Function (RBF) was 

used as a kernel (K), as in Eq. 2 [23]: 

 

 (     )      (         
 )     (2) 

                   

The RBF kernel nonlinearly maps samples into a higher 

dimensional space. Thus, it can handle the case when the 

relation between class labels and attributes is nonlinear. 

Furthermore, the linear kernel is a special case of RBF. Finally, 

the RBF kernel has fewer numerical difficulties. The LIBSVM, 

a library for SVM developed by Chang and Lin [23], was used 

in this work. After training data using SVM, the model was 

obtained for prediction of known objects. The model was tested 

using the training data to identify the classification rate. 
 

VI. CLASSIFICATION TESTBED SETUP 

Experiments were conducted with the new EM system to 

classify between guns and non-gun objects. The sample group 

consisted of twelve different objects. Six of the objects were 

handguns, while the others were commonly used objects that 

contain metallic parts. The specifications of all objects used are 

given in Table 3. 

The handgun samples represent the most common weapons 

seized by the police; of particular interest is sample #5, the blank 

firer, which had been converted to fire live ammunition by the 

welding of another barrel to the existing mechanism, and the 

replica hand gun, sample #6, commonly used by armed robbers 

as a threat.  

All samples constructed for the tests were controlled by a 

sample holder. The holder was configured to ensure that the 

samples retained a constant and comparable distance and 

orientation with respect to the array during each pass through the 

system. All weapon sample compositions included steel, with 

several incorporating other materials such as zinc alloy, 

aluminium, and polymers. 

 
 

Table 3. OBJECTS USED IN EXPERIMENTAL TEST: (A) REAL GUNS 

AND (B) COMMONLY USED OBJECTS. 

      (a) Real Guns  (b) Other Objects  

#1 Small revolver  0.516g #7 Mobile phone  

#2 Small semi-automatic 

0.637g 
#8 wristwatch 

#3 Medium revolver  

0.937g 
#9 House Key 

#4 Medium semi-automatic 

0.689g 
#10 Screwdriver 

#5 Converted blank firer 

0.800g 
#11 Scissors 

#6 Replica1  1.140g #12 Kitchen knife 

 

 

Differences between two EM signals for two different 

objects were found to be close to the differences between two 

EM signals for the same object in two tests [26]. This conclusion 

was used to increase the number of samples; each object was 

tested five times using the new system to generate five EM 

samples for the same object. Hence, for the twelve objects under 

test, six were guns and six were non-gun objects, 60 EM 

samples were generated. Based on this, the classifier was trained 

using 48 samples for all objects (four for each object) while the 

remaining 12 samples were used as test samples as explained in 

Table 4. 

 
Table 4. DATA SET OF THE WORK 

Total No. of Images used= 60 

No. of training images 

= 48 

No. of testing images 

= 12 

   Guns Non-Guns Guns Non-Guns 

24 24 6 6 

 

VII. CLASSIFICATION RESULTS AND DISCUSSION 

In this section, an assessment of the proposed features for 

object classification is carried out using the two classification 

methods.  

Firstly, each type of feature vector individually provides for 

the ANN and SVM as inputs. The results are shown in Table 5 

and 6 respectively. It can be seen from the tables that there is a 

major difference between ANN and SVM, that while the overall 

classification rates are largest when using the ANN classifier, 

the SVM classifier is more sensitive and shows 0% misdetection 

of the guns group. Although both classification methods give a 

high detection rate in terms of handgun objects, both methods 

give a high misdetection rate for non-gun objects. This is 

because training on these objects is not efficient due to the 
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diversity in their sizes, shapes and materials. The classification 

results could be improved using a larger database size [35]. 

 
Table 5. RESULTS OF ANN FOR EACH FEATURE VECTOR. 

Feature 

vector 

Hidden 

layer 

neurons  

Objects Correctly  

classified 

 

Incorrectly 

classified 

 

Classification 

rate 

WT 18 Gun 5 1 83% 

Non-Gun 5 1 83% 

 10 2 83% 

FFT 6 Gun 5 1 83% 

Non-Gun 3 3 50% 

 8 4 67% 

 

Table 6. RESULTS OF SVM FOR EACH FEATURE VECTOR. 

Feature 

vector 

Objects Correctly 

classified 

 

Incorrectly 

classified 

 

Classification 

rate 

WT Gun 6 0 100% 

Non-Gun 2 4 33% 

 8 4 67% 

FFT Gun 6 0 100% 

Non-Gun 1 5 16% 

 7 5 58% 

 

Figure 16 shows the classification results with the average 

error from the ANN and SVM techniques. 

 

 
Figure 16. Classification rate results of ANN and SVM using WT and FFT 

features. 

 

VIII. CONCLUSION AND FUTURE WORK 

This paper has demonstrated an EM metal detector system 

and investigated the feasibility of object identification and 

classification. In comparison with conventional induction based 

WTMDs, the  new GMR array based system has shown great 

potential in objects classification as the samples are made from 

mixed material is identified. Whereas the induction based 

WTMD can only discriminate between metal and non-metal 

object, this system has taken it a step further. Results obtained 

using the WT and FFT-based features have been given in detail 

to show the validity of the new system. The proposed features is 

more advanced in object characterisation as it depends on the 

amplitude distribution of the EM field making training possible 

using a database of objects; unlike traditional thresholding 

adopted in the induction based system, which largely depends on 

material volume. These features were utilized to classify 12 

objects. Six were real handguns and six were different 

commonly used metallic items. The real handguns were 

examined in a controlled and uncontrolled environment such 

that the handguns were either controlled by a holder or carried 

on the inside of a jacket pocket of an individual walking through 

an arch. A comparison between two classification methods, 

ANN and SVM, showed promising results for detecting and 

classifying objects in security applications of EM signal. To 

conclude, WT features, due to their spatial frequency properties, 

showed almost better classification rates than FFT features, 

which have frequency properties. In terms of classifiers, ANN 

classification techniques have a better classification rate in 

general. However, SVM had very high sensitivity and showed 

very low false negative alarm (100% classification rate) in terms 

of handgun samples. These initial results aimed to identify 

possible methodologies for analysis and classify of EM signals.  

For future work, the classification capabilities of the system 

could be developed to the point that individuals pass through the 

system without removing metallic objects from their person. 

This would be realised through “training” the system to identify 

threat objects by presenting the system with a wide variety of 

threat and non-threat objects. Further work can also utilize more 

EM features for accurate detection and classification of threat 

objects. 
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