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Abstract—Taking advantage of Advanced Driver Assistance
Systems (ADAS) testing in simulation and reality, this paper
presents a new approach to using Augmented Reality (AR) to
test ADAS. Our procedure creates a link between simulation and
reality besides existing methods like Vehicle in the Loop (ViL)
and should enable a faster development process for ADAS tests,
which will become increasingly complex. High computer power
is needed for complex automotive environmental conditions,
such as high vehicle speed and fewer orientation points on
a test track compared to AR applications inside a building.
A three-dimensional model with accurate information about
the urban test site is generated based on the combination
of Image Segmentation (IS), Artificial Intelligence (AI) for
object recognition, and Visual Simultaneous Localization and
Mapping (vSLAM). The use of AI and IS aims to significantly
improve performance, such as robustness, calculation speed, and
accuracy for AR applications in complex automobiles. Another
focus of this work is to make the relocalisation stable even in
low-texture environments.

Index Terms—Artificial Intelligence; Augmented Reality; Ad-
vanced Driver Assistance Systems; Visual Simultaneous Localiza-
tion and Mapping; Oriented FAST and BRIEF

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS), such as the
active lane departure warning (LDW)-system and traffic sign
recognition support the driver, offer comfort, and take respon-
sibility for increasing road safety. These complex systems
endure an extensive testing phase resulting in optimization
potential regarding quality, reproducibility, and costs. ADAS
of the future will support ever-larger proportions of driving
situations in increasingly complex scenarios. Due to the in-
creasing complexity of vehicle communication and the rising
demands on these systems in terms of reliability to function
safely even in a complex environment and to support the driver
and increase safety, the test scenarios for ADAS are constantly
further developed and adapted to higher requirements. Eu-
ropean New Car Assessment Programme (Euro NCAP) has
therefore introduced a series of new safety tests for ADAS
into its program and created a road map until the year 2025
[2] [3].

Current testing methods for ADAS can be divided into
simulation and reality. The core concept behind simulation
is to replicate the vehicle behaviour as realistically as pos-
sible in virtual test drives. The goal of this approach is to
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leverage its benefits, such as reproducibility, flexibility, and
cost reduction, by testing and evaluating specifications and
solutions in the early stages of development. Suitable simula-
tion methods allow for the efficient design, development, and
implementation of vehicles and vehicle components. However,
simulation cannot yet completely replace real-world tests.
Physical conditions, such as weather, road surface, and other
variables, play a crucial role in evaluating ADAS road tests
and cannot be fully replicated in a virtual environment [4] [5].

However, the test and evaluation effort correlate with the
complexity of an ADAS. The more complex the system, the
greater the testing effort. The robustness, functional safety,
and reliability of the ADAS must be proven in increasingly
dynamic, complex, and chaotic traffic situations. This also
includes the interaction with different road users, each with
their natural movements, such as, e.g., the interaction of road
users with each other. MAURER and STILLER say ”If testing
and assessment methods cannot keep pace with this functional
growth, they will become the bottleneck of the introduction
of Advanced Driver Assistance Systems to the market.” [2]
Therefore, new and efficient test methods are required to pave
the way for future ADAS [6]. A new approach Vehicle in
the Loop (ViL), which is already being used in the industry
today, combines the advantages of simulation and reality. The
approach in this paper is a new method besides existing ViL-
solutions.

This paper describes the usage of Augmented Reality (AR)
for testing camera-based ADAS. Section II gives an introduc-
tion to the field of AR. Based on this, we describe the different
single modules of Simultaneous Localization and Mapping
(SLAM) to map the environment in Section III. Section IV
gives a short Introduction to ADAS. Section V describes
the current methods used for testing ADASs. In Section VI
we describe a possible usage of AR to test ADAS and its
challenges in detail. The paper concludes with Section VII,
where the research, results, and lessons learned are discussed.

II. AUGMENTED REALITY

According to Azuma’s proposal, AR can be defined as a
combination of three fundamental characteristics: the com-
bination of real and virtual worlds and the precise three-
dimensional registration of real and virtual objects, both in
a real-time interactive environment [7]. The basic principle
of AR is mainly known from the mobile game Pokémon Go
[8]. Within this game, users can interact with digital creatures
through their smartphones. These creatures are placed virtually
in the user’s environment. One such AR application is shown
in Figure 1. Figure 1 shows also a self-created AR-App for
demonstrating a possible scenery with traffic signs and a
pedestrian. The three parts of the algorithms behind AR are
image analysis, 3D modeling, and augmentation [1].

Image analysis serves to identify points or areas of interest
within the given image. Feature detection, such as corner
detection is often used for this step [9]. A three-dimensional
model of the environment is created using the results of the
image analysis. The types of algorithms used for this step vary

Fig. 1. Pokémon Go-App on the left side of the figure [8] and a
self-created Augmented Reality application showing a possible scenery on

the right side of the figure [1].

depending on the type of AR application. SLAM or Structure-
from-Motion (SfM) algorithms are often used for AR in
unknown locations [9]. The augmentation is based on the
results of 3D modelling. The scene model is typically provided
as a positional description of a plane or coordinate system that
represents the real world [9]. With this information, a virtual
object can be placed on the plane or in the coordinate system
with appropriate characteristics, such as size and orientation.
After object placement, the virtual content is combined with
the real image [1] [9].

There are different versions of applications for AR. These
applications are very diverse in their fields, from the use of
AR in psychology [7] to use in hospital operating rooms [9]
to mobile games [9] to military applications [9]. What all
these apps have in common is that human reality is expanded.
With humans as users of AR, there are implications for the
application. One is that, in most cases, the human user is
forgiving of not accurately placed virtual objects, if the error
lies within a small margin. In addition, the speed of human
movement, and therefore the distance covered in a given time,
is limited. Because of these limitations, localization, mapping,
object placement, and runtime requirements are not as strict
and demanding as in the automotive environment given in this
paper [1].

In order to use AR, the entire system must first be able
to orient itself in the environment in order to finally augment
virtual objects on reality. SLAM is a possible approach for
this and is described in more detail in the following section.

III. SIMULTANEOUS LOCALIZATION AND MAPPING

SLAM, or Simultaneous Localization and Mapping, is a
method for determining the 3D structure of an unknown
environment and the movement of sensors within it. Originally
developed for autonomous robot control, the use of SLAM
has since expanded to various applications, such as online 3D
modeling using computer vision, AR visualization, and self-
driving cars [10]. Early SLAM algorithms utilized multiple
sensor types, such as laser range sensors, rotary encoders,
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inertial sensors, GPS, and cameras. However, more recent de-
velopments focus on using only cameras due to the simplicity
of the sensor setup and greater technical challenges. SLAM
systems that still use visual information as input are known as
visual SLAM, or vSLAM.

A. Visual Simultaneous Localization and Mapping

SLAM techniques that rely solely on visual information
are called visual Simultaneous Localization and Mapping
(vSLAM). These algorithms are widely used in computer
vision, robotics, and AR, and are particularly useful for
camera pose estimation in AR systems [10]. Because AR
systems often require real-time processing on light portable
devices, various low-computational vSLAM algorithms have
been developed. These algorithms have applications beyond
AR systems and are also valuable for unmanned autonomous
vehicles in robotics [11]. Most vSLAM approaches are com-
prised of five technical modules: three basic modules and two
additional modules. These modules will be briefly described.

B. Basic Modules of Visual Simultaneous Localization and
Mapping

The basic modules of vSLAM are Initialization, Tracking,
and Mapping and are shortly presented in the following:

• Initialization is a crucial step in vSLAM that involves
defining a coordinate system for estimating camera posi-
tion and reconstructing a 3D environment. During initial-
ization, a global coordinate system must be established,
and a part of the environment is reconstructed as an initial
map in this system [12].

• Tracking is a component of vSLAM that follows the
reconstructed map in an image to continuously estimate
the camera position relative to the map. That is achieved
by determining distinctive matches between the captured
image and the created map using feature matching or
feature tracking [12].

• Mapping involves expanding the map by determining
the 3D structure of an environment when the camera
encounters previously unmapped regions. It involves un-
derstanding and calculating the unknown parts of the
environment [12].

C. Additional Modules of Visual Simultaneous Localization
and Mapping

The basic modules of vSLAM are supplemented by the ad-
ditional modules Relocalization and Global Map Optimization:

• Relocalization refers to determining the current camera
position in a reconstructed map when tracking has failed,
which can occur due to fast camera movements. That
allows the system to recompute the camera’s location
[12].

• Global Map Optimization, which includes Loop Closing,
is a method to refine the map by eliminating cumulative
estimation errors that accumulate with camera movement.
The map is optimized by considering the consistency of
all map information. If previously recorded map elements

are recognized, loops are closed, and the estimation error
is corrected from the beginning to the present. Loop
Closing is used to acquire reference information by com-
paring the current image to previously acquired images.
Relocalization is used to recover the camera position,
and Pose Graph Optimization is employed to suppress
cumulative error by optimizing the camera positions.
Bundle Adjustment (BA) is also used to minimize the
map reprojection error by optimizing both the map and
camera positions. In large environments, this optimization
method is used to effectively minimize estimation errors,
while in small environments, BA can be performed with-
out loop closure as the cumulative error is small [12].

Different sensors, and combinations of sensors, can be used
in vSLAM. These sensors will be described in the following
section.

D. Sensors for Visual Simultaneous Localization and Mapping

We discuss the primary sensors for visual SLAM in this
section.

1) Monocular Camera: Monocular cameras consist pri-
marily of an image sensor and a lens. After removing lens
distortion, the camera can be modeled as a pinhole cam-
era [13], allowing a 3D point in the camera’s coordinate
reference system to be projected into 2D pixel coordinates.
Most industrial cameras are global shutter cameras, which
capture the entire image at once, while consumer cameras
tend to be rolling shutter cameras that capture pixel rows at
different times, which can affect accuracy in visual SLAM
if not adequately modeled. Due to the nature of monocular
cameras, they cannot accurately determine the actual scale of
the world and therefore monocular SLAM can only estimate
the map and camera trajectory up to scale. To resolve this
issue, additional information, such as an Inertial Measurement
Unit (IMU) or known distances in the map, is necessary to
scale the solution correctly [14].

2) Stereo Camera: Stereo cameras consist of two cameras
that are attached rigidly to each other. Ideally, they have
synchronized for simultaneously capturing the images. The
depth of an object can be estimated from a single stereo
frame by finding correspondences between pixels in the left
and right cameras. To achieve this, both cameras must be
calibrated internally and the rotation and translation between
both cameras must be calibrated using several stereo frames
with a calibration pattern. The distance between the cameras,
known as the baseline, along with the focal length and image
resolution, determine the range of depth where depth estima-
tion is accurate. The projection function for a rectified stereo
camera maps a 3D point in the camera coordinate system to
another 3D point [14].

3) RGB-D Camera: Red Green Blue-Depth (RGB-D) cam-
eras consist of a color camera and a depth sensor that uses
structured light or time-of-flight technology. By calibrating the
intrinsic parameters of the camera and the extrinsic parame-
ters between the color camera and depth sensor, the depth
measurements can be transformed into a depth map with a
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1:1 relationship with the color image, eliminating the need for
stereo matching as with a stereo camera. However, their use is
limited to indoor environments due to the nature of the depth
sensor [14].

4) Inertial Measurement Unit: IMUs detect an object’s
motion by combining a gyroscope that measures angular
velocity and an accelerometer that measures linear accelera-
tion. They provide information about the object’s self-motion,
complementing what is seen by vision. IMUs can be used to
determine the motion between camera frames or calculate the
scale of monocular SLAM, and they can also estimate gravity,
allowing for the calculation of absolute pitch and roll. They
typically measure acceleration and angular velocity hundreds
of times per second. To effectively use IMUs with vision, they
should be synchronized and calibrated to match the reference
frame of the camera [15].

E. Solving Visual Simultaneous Localization and Mapping

Exploiting information from a stream of images captured
by a vision sensor is crucial for visual SLAM. There are
two main approaches to this problem: feature-based and direct
methods. When applied to automotive vehicles, vSLAM faces
challenges such as fast scene changes and low environmental
texturing. Several vSLAM algorithms are available and listed
in [16], where they are compared in terms of accuracy and
robustness, among other factors. In the following chapter, a
specific vSLAM approach relevant to our research work is
described.

1) Direct and Feature-Based Simultaneous Localization
and Mapping: Feature-based methods analyze images to iden-
tify and extract unique, recognizable keypoints. These key-
points can be detected repeatedly and consistently in images
of the same scene, even under varying viewpoints and lighting
conditions. Each keypoint is then assigned a descriptor, a nu-
merical representation used to match keypoints across images
by comparing the descriptors. The keypoint and its descriptor
make up a feature. Once features have been extracted, the
original image is no longer necessary as the features are used
for all subsequent processing. That is beneficial as features
are easier to match and manipulate for solving geometry
problems in visual SLAM, such as triangulation, epipolar
geometry, Perspective-n-Point (PnP) problem, and transfor-
mations between reference systems. The direct approach in
SLAM involves utilizing sensor measurements, such as pixel
intensity in an image directly. It can be categorized into
dense (using all pixels) [17], semi-dense (using pixels with
high gradients) [18], or sparse (using only a few pixels) [19]
methods. These direct methods are considered more accurate
and reliable when there is minimal texture or blur in the image,
as they do not depend on keypoint detectors. The objective
of direct SLAM is to determine the depth of each pixel in
selected cameras by minimizing photometric error through
optimization [14].

2) Oriented FAST and Rotated BRIEF (ORB)-SLAM: The
ORB-SLAM algorithm was first presented in 2015 and is
the current state of the art as it has higher accuracy than

comparable SLAM algorithms [20]. ORB-SLAM represents
a complete SLAM system for monocular, stereo, and RGB-
D cameras. The system operates in real-time and achieves
remarkable results in terms of accuracy and robustness in a
variety of different environments. ORB-SLAM is used for
indoor sequences, drones, and cars driving through a city.
The ORB-SLAM consists of three main parallel threads:
Tracking, Local Mapping, and Loop Closing. It is possible
to create a fourth thread to execute the BA after a closed loop.
This algorithm is a feature-based approach that represents the
detected points in a three-dimensional Point Cloud [16]. ORB-
SLAM seems to be the best algorithm for our approach [1]. To
use ORB-SLAM for testing ADAS using AR, the following
chapter first provides an introduction to the topic of ADAS.

IV. ADVANCED DRIVER ASSISTANCE SYSTEMS

ADAS enhances the driving experience by offering assis-
tance to the driver when operating a vehicle. Depending on the
specific system, it can enhance comfort, improve safety, de-
crease energy usage, or streamline traffic flow. The technology
uses sensors to monitor driving conditions, employs powerful
computers to process the collected data, and provides feedback
to the driver through visual, auditory, or touch signals. In
some cases, ADAS can even take control of the vehicle by
accelerating, braking, signaling, or steering, potentially leading
to fully autonomous driving. For ADAS to be effective, it
requires rapid data processing with near real-time response
and a highly dependable system [21] [22]. The proliferation of
environmental sensors, including radio detection and ranging
(radar), cameras, ultrasonic sensors, and Light Detection and
Ranging (LiDAR)-sensors, makes it possible to use ADAS
and related autonomous driving functions in modern vehi-
cles. However, each sensor has its limitations and cannot
provide all of the necessary information about the vehicle’s
surroundings to guarantee safety. Only through the fusion of
data from multiple sensors a complete environment model
can be created, which is crucial for the dependability and
safety of driver assistance systems and autonomous driving
[23]. Both simulation and real-world testing are required for
thoroughly evaluating individual ADAS functions [1]. The
following section outlines the different testing options for
ADAS.

V. TESTING OF ADVANCED DRIVER ASSISTANCE
SYSTEMS

Simulative test procedures during the development process
and test procedures, in reality, are used to evaluate the
functionality of individual ADAS sensors and their joined
interaction in ADAS-relevant scenarios. While in the early
concept stage, all components of the road test are still virtual
and characterized by test procedures such as:

• Model in the Loop (MiL)
• Software in the Loop (SiL) or
• Hardware in the Loop (HiL)
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Through the various stages of development, a gradual ex-
change of virtual for the equivalent physical world test com-
ponents enrolls. By the end, reality replaces the simulated
elements completely [22]. Table I shows an overview of
different stages for testing ADAS in simulation and in reality.
In the following, an overview of the respective possibilities
and the advantages and disadvantages in simulation and in
reality is given.

A. Testing Advanced Driver Assistance Systems in Simulation

The objective of the virtual road test is to recreate the
experience of an actual road test as closely as possible in a
virtual environment. The goal is to take advantage of simula-
tion, such as reproducibility, versatility, and ease of use, and
to evaluate and test vehicle specifications and solutions early
in the development process. By using appropriate simulation
methods, vehicle and component design, development, and
implementation can be made more efficient. These methods
reduce the time it takes for real-world prototypes to be-
come available. Optimizing simulation techniques based on
actual driving tests and actual test results requires balancing
modeling, parameterization, and simulation effort with the
efficiency gained. The approach mainly employs methods from
embedded mechatronic system development, including SiL,
MiL, and HiL methods [4].

B. Testing Advanced Driver Assistance Systems in Reality

Validation of vehicle dynamic control systems, despite their
complexity and wide range of variations, can be expensive
to test in actual driving tests. However, this approach is
not feasible for driver assistance systems with environmental
perception due to the high-level system complexity, the com-
plexity of test cases, and the extent of testing required. Even
if the tests are performed identically, it is impossible to ensure
that the same conditions are being tested, due to the numerous
and unknown factors influencing the results. That makes the
reproducibility of results uncertain. Function-relevant features
may require the involvement of multiple road users and can
also be affected by complex interactions of various conditions,
such as glare from the sun and reflections on a wet road at

TABLE I
OVERVIEW OF DIFFERENT STAGES FOR TESTING ADVANCED DRIVER

ASSISTANCE SYSTEMS IN SIMULATION (VIRTUAL) AND IN REALITY. V:
VIRTUAL, R: REALITY [22].

MiL SiL HiL Chassis
Dynamometer ViL Road

Test

Functional
Code V R R R R R

ECU V V R R R R
System V V R R R R
Vehicle V V V R R R
Driver V V V V/R V/R R

Driving
Dynamics V V V V R R

Perceptibility V V V V R R
Lane V V V V R R

Environment V V V V V R

a certain angle. Current ADAS access information about the
environment, often gathered by multiple sensors with different
functions and processed in an environment representation [5]
[24]. As suggested in literature Euro NCAP is a European
standard for actual ADAS driving tests, which focuses on the
vehicle’s behavior and response in safety-critical scenarios.
Dangerous situations are simulated using dummy vehicles,
pedestrians, and cyclists to evaluate the effectiveness of ADAS
systems. To improve road safety, the requirements for ADAS
are being increased, and as a result, Euro NCAP test proce-
dures will become increasingly complex in the future. The
roadmap for 2025 includes the inclusion of additional road
users, such as scooters, motorcycles, and wild animals [26].
Figure 2 displays a test configuration for pedestrian detection.
In the test, a pedestrian dummy (representing a child) is
crossing the road behind a parked car, and the test vehicle
must detect the pedestrian and apply the brakes to prevent
personal injury or damage to property [25].

It is rarely possible to conduct tests with prototypes in
real road traffic and test persons due to legal and safety
restrictions. The validation of safety-critical functions such as
Automatic Emergency Braking (AEB) for pedestrians cannot
be replicated adequately, even within the framework of NCAP
test scenarios on a test track. As the driving situation becomes
more complex for the assistance system under test, it becomes
increasingly challenging to realistically and reliably assess the
interaction between system behavior and driver experience and
behavior. ViL bridges the gap between driving simulation and
real-world testing. By combining virtual visual representation
with the experienced haptics, kinaesthetics, and acoustics from
actual vehicle movement, ViL provides a new augmented
reality-based approach to efficiently and safely develop and
evaluate ADASs [5]. This approach is described in the fol-
lowing chapter.

C. Combining Virtual and Real Testing

To enable the testing of camera-based assistance systems in
real environments earlier in the development phase and thus

Fig. 2. Test setup for pedestrian detection, where a pedestrian (child as a
dummy) crosses the road behind a parked car in a scenario for testing

Automatic Emergency Braking (AEB) based on Euro NCAP regulations
[25].
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increase the quality of the systems, the use of AR as a link
between virtual and real testing lends itself to this. Using AR
to test camera-based systems combines the advantages of a
virtual environment and these of the real world: Reproducible,
complex scenes with realistic environmental conditions. AR
thus makes it possible to dispense with test dummies or second
vehicles including drivers even in the initial phases of testing.
This reduces the testing costs and increases the safety of the
test engineers. The combination of different test situations is
also possible: The display of several vehicles, lane markings,
and road signs allow the simultaneous testing of all camera-
based driver assistance systems. The unlimited variety of test
scenarios allows a significant increase in the depth of testing
at an early stage of development. This increases the quality of
the testing and the overall system. In 2010, a Swedish team
led by Jonas Nilsson presented a software framework at a
conference that used AR to evaluate a pedestrian detection
system. The framework was able to augment the images
from the vehicle camera to include a walking pedestrian. The
resulting detection system results were comparable to test
results obtained with real obstacles. As summarized in this
paper, deeper investigations are needed further advance an AR
test system [10]. A different method than ours for combining
virtual and reality testing is discussed in the subsection that
follows.

D. Vehicle in the Loop

ViL stands for a newer method to meaningfully complement
and improve the development of the V-Model for driver
assistance systems. It addresses the need for many driver
assistance functions for an elaborate driving test and a high
demand for functional safety. This group of driver assistance
functions will increasingly gain in importance and scope.
One main reason is the ever-growing number of vehicle
derivatives in which driver assistance-functions are offered,
and the accompanying ever-higher level of automation and
networking. The ViL method allows the operation of the test
vehicle in a virtual environment. The coupling between the
vehicle and the virtual environment can be done in two ways.
One way is to replace the physical sensor system with an
interface. At this interface, the simulation environment feeds
in simulated sensor signals which correspond to the sensor
response from a physical environment. The second way is
to retain and artificially stimulate real sensor technology, as
is feasible, for example, with ultrasonic sensor technology
exposed to artificially generated response signals via ultrasonic
transducers [27]. In both variants, the physical test vehicle
reacts to features and events in the virtual environment. Critical
driving manoeuvres towards obstacles or objects on a collision
course can thus be tested safely and reproducibly. The interface
created can also be used to generate the sensor signals in a
way that would occur due to a changed position in a vehicle
derivative or due to different tolerances. Thus, this method
enables testing corresponding derivatives or tolerances with a
test vehicle.

Fig. 3. ViL-architecture as well as the flow of information [22].

In addition to the considerably safer test operation, this
allows effective testing and application of driver assistance-
functions. That results in the considerable economic potential
for driving tests in driver assistance. The use of virtual
integration in conjunction with the ViL method allows ef-
ficient application of the customer function. The efficiency
and reproducibility of the test cases required for this can thus
increase significantly. Figure 3 illustrates the general operating
principle of the ViL by the architecture as well as the flow
of information [22]. The following section describes another
approach besides existing ViL-Solutions using AR.

VI. AUGMENTED REALITY SIMULATION IN ADVANCED
DRIVER ASSISTANCE SYSTEMS

With a focus on the camera-based ADAS sensors, the area
around the test field is recorded, as shown in Figure 4. The
path between the sensor fusion module and the Electronic
Control Unit for Advanced Driver Assistance Systems (ADAS-
ECU), which causes the vehicle to intervene, for example by
braking, has to be disrupted and a new path has to be found
through the Augmented Reality Electronic Control Unit (AR-
ECU). Within the AR-ECU, the captured environmental data
is augmented with virtual objects, such as traffic signs or lane
markings. The aim here, is a realistic and consistent behavior
of the ADAS-ECU as in real object detection. For the final
augmentation of the virtual objects on the real image of the
sensor, a detailed 3D environment of the test environment must
first be created. This section will describe the single steps as
well as the results so far to use AR for testing ADAS.
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Fig. 4. Our approach for using augmented reality in advanced driver
assistance systems.

A. Technical Steps to use Augmented Reality in Advanced
Driver Assistance Systems

Figure 5 shows the technical steps of our approach to
using AR in ADAS. The Sensor Input as a camera stream
is transferred in greyscale to the element function block ORB-
SLAM3. The keypoints are tracked and transferred to relevant
featurepoints. These featurepoints are filtered by the Image
Segmentation (IS) in the function DS-SLAM. The relevant
featurepoints are merged into a Point Cloud in Mapping.
Loop Closing and Bundle Adjustment are further elements of
ORB-SLAM3 to enable corrections of the Point Cloud and
increase accuracy. The next function block is the Point Cloud
Preparation. The first step is a Preparation of the Point Cloud
to identify relevant points for Plane Detection. Based on these
results, a plane is inserted on which virtual objects like e.g., a
cyclist or traffic signs from the Virtual Objects Library can
be placed. These objects can be static or animated. After
the successful placement of the virtual elements, rendering
is carried out in the function block AR Viewer, whereby the
virtual objects are augmented with the real image stream. In
the final step the Output is Prepared and adapted to the target
medium as Augmented Images. The following subsections
describe the single steps in a more detailed way.

B. Mapping of the Environment

The environment mapping is done using different stereo
cameras such as the ZED2i equipped with a polar filter and
a baseline of 120 mm, and the Intel RealSense D455 with a
baseline of 95 mm. The vSLAM approach ORB-SLAM3 is
applied to these cameras. The results presented in the images
were obtained using the Intel Realsense D455. The detected
features are recorded in a three-dimensional Point Cloud. The
test drives were performed on appropriate NCAP test areas,
as shown in Figure 6. The impact of the low texture of the
environment must be taken into consideration. To overcome
the repetition of scene images, pylons are placed along the test
track at intervals of 20 metres, alternating in number on either
side of the track. That ensures that feature matching and proper
orientation in the Point Cloud occur. The camera is mounted
at the rear-view mirror height on the top of the windshield, as
is typical for cars. Figure 6 displays the recorded test track
scene. The rectangles represent the feature points detected

Fig. 5. Technical steps to use augmented reality in advanced driver
assistance systems.

by the ORB-SLAM algorithm. The generated Point Cloud
can be viewed in Figure 7 using the RViz tool. The Point
Cloud depicts a straight road with pylons, road markings,
and other objects such as trees on the left side or a hill on
the right. Stereo-based cameras allow for accurate mapping
of the environment with the correct scale. Approaches that
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Fig. 6. Test area on the top of the figure with pylons and test vehicle as well
as detected feature points using ORB-SLAM (rectangles) on the bottom.

utilize a combination of mono-based cameras and IMUs do
not result in usable outcomes due to the lack of depth and
scale information. As shown in Figure 6, feature points are
detected in the sky as well as on the hood of the ego vehicle,
which hinder the performance of our vSLAM algorithm. To
address this issue, we decided to employ Image Segmentation
(IS) to detect these false feature points.

C. Image Segmentation

We have selected Deeplabv3+ developed by Google as
the model for IS and semantic segmentation after evaluat-
ing various options. The pixellib library, a python tool for
training and testing deep neural networks (NN), was utilized
in conjunction with Deeplabv3+. This choice was based on
Deeplabv3+ delivering the best results for our ORB-SLAM
implementation, as it outperformed most recent NN models
for semantic segmentation. For a comprehensive overview
of different models and their performance, we refer to [28].
The Xception-65 model, with pre-trained weights from the
ADE20k-Dataset, was utilized as the backbone. The pre-
trained model provided 120 labels for indoor and outdoor
environments with a color mapping for each label. The model

Fig. 7. Created three-dimensional Point Cloud based on detected feature
points using ORB-SLAM.

performed so effectively on our test images and videos that
additional custom training was not required, although it could
be easily implemented for further development. As depicted
in Figure 8, relevant feature points were successfully detected
in the testing ground, while false feature points in the sky or
on the car hood were disregarded. The use of this IS led to
an improvement in the robustness of relocalization.

D. Map Preprocessing

The subsequent step is to fit a plane suitable for the
Point Cloud. This plane ensures that virtual objects can be
realistically inserted with the correct height and position in the
scene image. As an initial attempt, we applied the RAndom
SAmple Consensus (RANSAC)-algorithm to determine a
plane on the road surface. Figure 9 illustrates that using the

Fig. 8. Results of our image segmentation to detect feature points in
relevant regions (green area).
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entire Point Cloud results in an inclined plane due to the
abundance of feature points on the hill and the scarcity of
points on the street. To address this issue, we extract only the
relevant feature points from the Point Cloud. That is achieved
by using a cylindrical area around the camera trajectory to
select the feature points on the street and eliminate irrelevant
feature points outside the test track. We can define the
cylinder by specifying 2 points along the axis, and the radius
of the cylinder:

A(x1, y1, z1)
B(x2, y2, z2)
and radius = R

Consider the line coordinates with the direction

e = rB − rA (1)

and moment
m = rA × rB (2)

These two vectors represent the infinite line between A and
B. A point P with position rP lies in the cylinder between
A and B and radius R if:

1. Distance of P to line AB is equal or less than R:

d =
||m+ e× rP ||

||e||
<= R (3)

2. Closest point Q on line to P is:

rQ = rP +
e× (m+ e× rP )

||e||2
(4)

3. The barycentric coordinates of Q(wAwB) such that rQ
= wArA + wBrB are:

wA =
||rQ × rB ||

||m||
(5)

wB =
||rQ × rA||

||m||
(6)

4. Check that point Q lies between A and B by making
sure the barycentric coordinates are between 0 and 1:

inside = (wA >= 0) and (wA >= 1) and (wB >= 0) and
(wB >= 1)

After defining which feature points are included by our
cylinder and which radius is to be used, we applied RANSAC
again. This cylindrical approach is depicted in Figure 10.

Virtual NCAP-relevant objects such as traffic signs, pedes-
trians, and road signs are created using the Blender software.
Figure 11 demonstrates a created cyclist for our approach.
The use of Blender software enables us to design both static
and dynamic objects with intricate details. The virtual objects
can be placed on the plane as shown in Figure 12, with no
restrictions on their placement or orientation. After the virtual

Fig. 9. Incorrectly placed inclined plane using the random sample
consensus algorithm.

Fig. 10. Approach with a cylinder to select the relevant feature points to
place a correct plane on the street.

objects have been placed, the next step is to render them into
the camera stream.

E. Augmentation-Process

Open Graphics Library (OpenGL) is utilized to integrate
virtual objects from Blender into a scene. This tool enables
the rendering process. As depicted in Figure 13, the virtual
cyclist has been added to the scene without material properties
such as color or shadow. The grid displayed on the floor
demonstrates that the cyclist is positioned on a recognized
plane. The final step in our AR-ADAS pipeline involves

Fig. 11. NCAP-testobject cyclist using software Blender.
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Fig. 12. Object placement on the surface in the Point Cloud.

Fig. 13. Augmented cyclist in NCAP-scene.

driving the physical vehicle through the test scene once more.
This time, ORB-SLAM is not utilized in mapping-mode, but
rather in localization mode, which results in a faster vehicle
speed due to reduced computational requirements. The real
camera images are now augmented with virtual objects.

F. Advantages of our Approach

Our approach aims to merge the benefits of testing in simu-
lation, such as reproducibility, flexibility, and efficiency, with
the complexities of the real-world vehicle and environmental
conditions. This approach seeks to bridge the gap between
testing methods and enable the testing of more intricate
scenarios, thus enhancing road safety.

Industry-based ViL-approaches demonstrate the need for
such a method. Unlike conventional ViL-methods, which sim-
ulate a virtual environment to stimulate vehicle sensors while
maintaining the vehicle’s realistic dynamics, our approach
represents a step towards more realistic vehicle testing. By
utilizing AR, our approach allows us to use the real environ-

Fig. 14. Existing ViL-approach on top [22] and our approach of using
augmented reality in advanced driver assistance systems on the bottom.

ment with all its characteristics, eliminating any simplifications
made in simulation. Figure 14 contrasts existing ViL-methods,
represented at the top, with our approach, depicted at the
bottom.

The overlay of lanes allows for independent testing of a lane
departure warning system, regardless of the testing ground.
Scenarios such as the presence of temporary lane markings or
missing sections can be tested in the same area. Variations
in lane width or international differences in lane markings
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can be represented. The camera image can also be augmented
with superimposed vehicles ahead to test congestion assis-
tance systems. That eliminates the need for second vehicles
and drivers in the initial testing phase, reducing costs and
increasing safety for test engineers. Test cases with traffic
signs, pedestrians, and cyclists can be situational and quickly
added, and a combination of different test scenarios is also
possible. The limitless variety of test scenarios allows for a
significant increase in the depth of testing during the early
stages of development, leading to improved testing quality
and overall system. With the increasing number of driver
assistance systems and the move towards autonomous driving,
the application area of the software can be expanded as needed.

G. Challenges for our Approach

Further advancements and optimizations regarding accu-
racy, robustness, and runtime can be seen in developments
based on the ORB-SLAM approach, such as ORB2-SLAM
[20] and ORB3-SLAM [16]. While ORB-SLAM demonstrates
impressive performance in well-structured sequences, it can
encounter errors in poorly structured sequences, such as those
found in Euro NCAP test scenarios, or when feature points
temporarily disappear due to factors like motion blur [29].
Along with accuracy, the runtime of the algorithm is also a
crucial factor. Today, camera systems operate at a frame rate
of 30 to 60 frames per second (fps), and the maximum overall
runtime for processing a single frame can be found in Table
II.

TABLE II
SEVERAL FRAMERATES AND THE ACCORDING MAXIMUM RUNTIME

Framerate Maximum Runtime

10 fps 1
10

s = 0.1000 s

30 fps 1
30

s = 0.0333 s

40 fps 1
40

s = 0.0250 s

45 fps 1
45

s = 0.0222 s

50 fps 1
50

s = 0.0200 s

60 fps 1
60

s = 0.0167 s

For a successful evaluation of ADAS-test scenarios, the AR
system must be able to orient itself in the environment very
accurately [20]. One cause is the missing feedback about the
impact intensity of test dummies when crashing them. For this
reason, it is necessary to know the exact position of the car on
the test track to calculate the intensity of the impact based on
the braking distance. When using Euro NCAP test scenarios,
velocities up to

130
km

h
=̂ 36.111

m

s
(7)

are tested [26]. The AR algorithm must have a faster runtime
compared to the speed of the camera system. The distance d

the vehicle covers within a frame at any given velocity and
framerate can be calculated by:

d =
vV ehicle [

m
s ]

Framerate [ frames
s ]

(8)

At a speed of 130 km
h and a camera framerate of 30 fps, the

vehicle travels

d =
36.111 [ms ]

30 [ frames
s ]

= 1.204
m

frame
. (9)

Accordingly, for a framerate of 60 fps at the same speed, a
distance of

d =
36.111 [ms ]

60 [ frames
s ]

= 0.602
m

frame
(10)

is covered. A deceleration of one frame means a deviation
of the test results of 0.602 to 1.204 metres. Based on the
high speed of the car and the camera, and the high need for
precision in object placement, it is clear that the requirements
for this application of AR are far more strict than for the usual
application for human users. Another task we have to deal with
is the low texture of the environment and the uniformity that
comes with it, so that Image Matching can occur. The use of
multiple objects such as pylons to enrich the texture of the
environment or approaches to Optical Flow can support this.

H. Visualization for the Testdriver

The main task of the Human-Machine-Interface (HMI) is
to make the AR perceptible to the test driver in real time
that the ADAS functions of the test vehicle, as well as the
human interaction, can be evaluated. The acceptance of the
HMI as an interface for the experience plays an important role.
This depends for the most part on the quality of the display,
interaction, and haptics [30]. For our approach, the selection
of a suitable HMI concept focuses on visualization and inter-
action. To display AR visibly, the use of a suitable HMI or a
corresponding display is necessary. Possible screen approaches
are classified into feature classes based on their properties.
Displays that use a medium-direct view through to the real
environment in 3D belong to the class of See-Through (ST)-
displays. Monitor-Based (MB)-displays only allow an indirect
view of the real environment. Live or stored videos (2D) are
used for this technology. Indirect displays (3D objects: video
ST), which visualize AR in 3D using video, also belong to the
group of ST displays. The three-dimensional concept is crucial
here. The processing of the 2D-camera data of the real envi-
ronment used, through 3D-scene modeling, makes it possible
in the first place to integrate the virtual objects in the correct
perspective (2D). Video-based ST displays (video ST) are used
if the recording and playback of this same AR on an indirect
display take place almost simultaneously. Optical ST-displays
(3D-Objects:optical ST) are used when the reproduction of the
virtual objects in combination with the direct view of the real
environment is correctly integrated. The visualization of AR
according to Azuma limits the AR-capable displays to those
that can display virtual three-dimensional objects correctly
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oriented in perspective [7]. For the identification of suitable
HMI approaches for testing camera-based ADAS, only these
ST displays fulfill the necessary criteria. Figure 15 shows a
summary of the different categories for visualization.

HMI approaches in which stationary displays are mechani-
cally fixed to the vehicle for the duration of the test belong to
the Head-Up-Display (HUD) group. Head-Up-Displays used
in automotive vehicles to show the driver the actual speed
or using the display of a smartphone or tablet belong to this
category. Those in which the display is attached to the head
like when using Virtual Reality (VR)-glasses or AR glasses
belong to the Head-Mounted-Display (HMD) group [31]. In
both HMD and HUD, HMI approaches of optical and video-
based ST displays are identified. In the further progress of the
approach to use AR as a visualization for the driver, different
evaluations must be carried out [1].

I. Further Thoughts about Using Augmented Reality Simula-
tion for Testing Advanced Driver Assistance Systems in Future
Automotive Vehicles

In the first step, our approach will be transferred to camera-
based sensors. As already highlighted in the previous chapters,
only a few ADAS functions, such as traffic sign recognition
or LDW, only access the camera. To evaluate further tests
and achieve the equal behavior of the ADAS-ECU (cf. Fig-
ure 4) in reality as in using AR, the integration of further
sensor technology such as radar is needed. It should also
be mentioned that Euro NCAP test scenarios according to
the current state only take place under ideal conditions (sun
position noon - no or only a few shadows and reflections,
no other road users, no rain, etc.) [26]. Using our approach is
intended to further increase the complexity and realism of Euro
NCAP test scenarios. Another aspect is the visualization of the
Augmentation for the driver. Here, one considerable aspect is
the acceptance of the user by AR. Further investigations into
a visualization for the user are being pursued as part of this
project.

VII. CONCLUSION

In this paper, we have proposed an approach using AR in
automotive vehicles. The use of AR in ADAS is intended to
combine the advantages of simulative test procedures, such
as reproducibility and cost savings, with the advantages of
test procedures in reality (complexity of the entire vehicle

Fig. 15. Augmented reality display classes inspired by Milgram [7].

and the environment). We modeled the problem of creating an
urban environment to use AR for testing in high-speed ADAS.
Our approach is based on combining vSLAM-algorithms with
Artificial Intelligence (AI) to use Object Detection. That
should help generate a better overall performance concern-
ing computing speed and accuracy. Creating a virtual three-
dimensional environment with a superior understanding of the
individual objects should, in a further step, make it possible
to augment other sensors such as the car’s radar and LiDAR
with objects in addition to the camera data. That should once
again increase the overall performance of the entire system.
In addition to providing a link between virtual and real test
procedures, this approach intends to increase the complexity
of potential test procedures, accelerate the development speed
of ADAS functions, and improve safety for future mobility
solutions.
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