
A Multi-modal AI Approach for Intuitively Instructable Autonomous Systems

Ferran Gebellí Guinjoan1, Erwin Rademakers, Anil

Kumar Chavali, Abdellatif Bey Temsamani

Flanders Make

Lommel, Belgium
1 email: ferran.gebelli@flandersmake.be

Gorjan Radevski3, Tinne Tuytelaars

KU Leuven, ESAT

Leuven, Belgium
3 email: gorjan.radevski@esat.kuleuven.be

Matthias Hutsebaut-Buysse2, Kevin Mets, Tom De

Schepper, Steven Latré, Erik Mannens

University Of Antwerp - imec

Antwerpen, Belgium
2 email: matthias.hutsebaut-buysse@uantwerpen.be

Hugo Van hamme4

KU Leuven, ESAT

Leuven, Belgium
4 email: hugo.vanhamme@esat.kuleuven.be

Abstract— We present a multi-modal AI framework to

intuitively instruct and control Automated Guided Vehicles. We

define a general multi-modal AI architecture, which has a loose

coupling between three different AI modules, including spoken

language understanding, visual perception and Reinforcement

Learning navigation. We use the same multi-modal architecture

for two different use cases implemented in two different

platforms: an off-road vehicle, which can pick objects, and an

indoor forklift that performs automated warehouse inventory.

We show how the proposed architecture can be used for a wide

range of tasks and can be implemented in different hardware,

demonstrating a high degree of modularity.

Keywords - AI based autonomous systems; Multi-modal AI;

Natural language processing; deep learning; neural networks;

reinforcement learning

I. INTRODUCTION

Autonomous Guided Vehicles (AGVs), which are often
also referred as Autonomous Mobile Robots (AMRs), are
becoming more and more popular in industrial applications.
In previous works [1] [2] we presented two particular use
cases where multi-modal AI leverages AGV tasks. In this
paper, we propose a multi-modal AI framework that allows to
intuitively and easily (re-)configure an AGV to perform
different and variable tasks. The proposed multi-modal
software architecture has a loose coupling between the
different modules, which allows to easily exchange the
components and deploy them in different hardware units.

AGVs can pick up and deliver materials around a
manufacturing facility or warehouse [3]. However, with the
continuously increase of mass customization [4], a return on
investment of production AGVs can only be obtained if these
AGVs can easily perform large variability of tasks and / or
deal with large variability of products.

Task scheduling has been done by a central entity for a
fleet of AGVs following predefined configurations. But
driven by flexibility, robustness and scalability requirements,
the current trends in AGV systems are customization and
decentralization [5]. In a decentralized architecture, an AGV
broadcasts the information about its states in a local way and
decides which actions to take [6].

Although new generations of AGVs are highly
instrumented with different sensors, they are more suited for

long-distance transportation of materials between multiple
destinations, and tuned for repetitive and predictable tasks [7].

(Re-)configurating AGVs to perform multiple tasks in a
non-predictable environment remains, however, a challenge
today in industrial settings due to dynamically changing
environments. Classic navigation pipelines typically need to
construct a map by scanning the environment with sensors,
such as lidars [8], while manually driving the AGV.
Sometimes the usage of floor markings or fiducial landmarks
(e.g., reflectors) are used as well. These approaches do not
only require an updated map, but also require a different
module to set destinations or missions with waypoints,
meaning that a high set-up time for new or modified
environments is needed. Because of the increasing variability
in industry settings, it is common that the environment is
modified after short periods of time. This exposes the need for
an increased flexibility in the whole navigation approach.

Research on a voice controlled AGV remains in the level
of performing basic operations (e.g., moving with constant
speed) in a prescribed path [9].

In this work we show how a general multi-modal
architecture can be applied on two different use cases, which
run on two different platforms (Figure 1). On the one hand,
we implement an application on an off-road vehicle where the
main task is to pick certain objects. On the other hand, we
deploy an automated inventory monitoring on a forklift. In
both cases, an operator can intuitively instruct the AGV by
speech interaction that can be done locally or remotely.

In Section II, the common multi-modal AI architecture is
presented. Section III explains the off-road vehicle use case,
while Section IV describes the forklift use case. Finally,
Section V contains the conclusions.

Figure 1. Platforms used for off-road vehicle picking objects (left) and

forklift warehouse automated inventory (right) use cases.

1

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. General architecture for a multi-modal AI autonomous platform.

II. MULTI-MODAL AI ARCHITECTURE

The presented multi-modal AI architecture (Figure 2) is a

general software architecture for the implementation of

autonomous vehicles that based on AI can perform a

particular set of tasks, instructed by speech. The architecture

defines the different modules and interface, and can be

implemented in different platforms with different hardware

typologies. Even within the same implementation, different

modules can run in different hardware units. Because the

architecture exhibits a loose coupling, the modules can be

easily exchanged for other models or algorithms, as far as

they share the same interface. The proposed interface has

human-understandable signals, which helps to improve the

explainability of the system. The suggested architecture has

a directed flow of information between the modules, which is

represented by arrows in Figure 2. This defines and constrains

the exchange of information between the different modules.

The architecture has 4 main building modules: (i) Spoken

Language Understanding (SLU), (ii) association between

speech cues with sensor data for objects detection and

localization, (iii) RL for navigation, which uses information

from, speech, vision and sensor data and (iv) vehicle

platform, which receives motion commands and sends

processed sensor data.
(i) Spoken interaction offers fast and natural interaction

with machines and AGVs, while operators keep their hands
and eyes free for other tasks. The task of a SLU component is
to map speech onto an interpretation of the meaning of a
command, while taking the variability in the input signal into
account: differences in voice, dialect, language, acoustic
environment (noise, reverberation), hesitation, filled pauses
and pure linguistic variation. Traditionally, SLU is
approached as a cascade of Automatic Speech Recognition
(ASR) mapping speech into text followed by Natural
Language Understanding (NLU) mapping text onto meaning.
This cascaded approach tends to propagate and inflate ASR
errors and requires application-specific textual data, which is
unnatural to acquire. Instead, this work uses End-to-End SLU
(E2E SLU), where spoken instructions are directly mapped
onto meaning without textual intermediate representations.
The output of the speech module is a semantic definition of

the task, which is then used by all the other modules. This
module provides the unique interface where the user can
provide inputs.

(ii) For agents to interact with the environment, they must
process and understand visual input, i.e., extract the
semantically relevant cues from the environment in order to
execute the desired task. Should the input be provided from an
RGB camera, a plethora of Deep Learning techniques could
be leveraged to achieve visual understanding. Deep Learning
techniques rely on Neural Networks, commonly (pre-)trained
on large-scale general-purpose datasets, e.g., for visual
recognition [10] such as object detection [11]. Since our goal
is to interpret a language-based instruction, we need to locate
the object(s) in the environment. To this end, we build on
state-of-the-art object detection methods. Given an RGB
input, the object detector’s role is to locate (detect) the
relevant objects. This serves as a backbone to perform multi-
modal interaction by associating the representation of the
language-based instruction with the representation of the
spatial layout of the scene (2D location and categories of the
detected objects). The RGB can be enhanced with depth
information (RGBD camera or lidar) and vehicle localization
for precise 3D location of the detections in world coordinates.
The output of the vision module is used by the navigation
module. However, for some tasks (e.g., automated inventory,
finding/locating an object, getting attributes of an object, etc.)
the output of the vision module is itself the principal result of
the task, and is saved in a database, which the user can access.

(iii) Egocentric navigation is one of the core problems
intelligent systems need to master. An agent needs this skill
not only to execute the task at hand, but also to navigate, in
order to collect experience that can be used to learn from. In
the presented approach we have chosen for an end-to-end
learning-based navigation approach. Such an approach is able
to outperform Simultaneous Localization and Mapping
(SLAM) based approaches [12], it does not suffer from
propagation errors due to mapping errors, and excels in
visually sparse environments [13]. In our architecture, we
foresee several available RL agents, each one trained for a
specific set of tasks. The navigation module receives the task
directly form the speech module, and switches to the
appropriate RL agent. Sensor data coming directly from the
platform is used for dynamic obstacle avoidance and general

SLU

voice
instruction

Object
detection

task

RL
navigation

Real AGV /
simulator

speed +
steering

command

detections

sensor data

2

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exploration. Finally, the output of the vision module is used to
direct the navigation to ensure that the exploration is done
considering the relevant objects. As we need to train the RL
agent in a simulation environment due to the large amount of
required interactions, it is very important to couple the RL
agent with a simulator that has the same interface as the real
platform. Therefore, it is necessary to bridge the sim-2-real
gap in two points: the acting gap and the observation gap. On
the one hand, the acting gap refers to the interaction of the
agent into the environment. For our architecture, this means
making sure that the speed and steering commands have
similar effects both in the real world and simulator. On the
other hand, bridging the observation gap requires not only that
the sensor data is similar in simulation and reality, but also
that the simulator is able to produce similar object information
as it would come from the real object detection.

(iv) The vehicle platform receives the control commands
(set speed and steering wheel angle) from the navigation
module. However, it can also be controlled directly by speed
in case the speech task is directly affecting only navigation
(e.g., “move slightly to the right slow”). The platform
provides sensor data from the environment (camera, lidar and
localization data) to the vision and navigation modules.

III. CASE STUDY – AUTONOMOUS OFF-HIGHWAY VEHICLE

In this case study, the vehicle is able to navigate towards a
specific object, which is in the field of view, given a speech
command [1]. The AGV used in this case study consists of the
off-highway tractor developed at Flanders Make [14]. To
perceive the environment we use cameras, lidars, a GNSS
system and a microphone. The sensors data is then processed
in separate computing platforms and stored on middleware
(ROS), from where the Speech and Vision units send the
information to the control block. This later is divided in two
levels, (i) a High-level controller that controls the tractor via a
state machine and (ii) a Low-level controller, built in a dSpace
platform [15], that controls the trajectory such that velocity
and heading can be followed. The output signals are sent to
different actuators that consist of the brakes, throttle, steering
and fork implement that are controlled via servo motors.
Autonomous vehicle upgrades to deal with Multi-modal AI

An example of intuitive instructions given by an operator
to the AGV to execute a task and their high level
interpretations by the Multi-modal AI framework, described
in this paper, is illustrated in Figure 3.

The instruction: ‘Pick up the red pallet and put it on the
truck’, needs first to be communicated to the computer that
runs the speech AI module (described in Section A). In the
next level, a vision module, where real time 2d vision data is
processed and fed to a pretrained NN, allows objects
classification and their association to different attributes such
as object’s type, color, etc. (as described in Section B). The
AGV should then move towards the recognized object. This
step is supported by the association made so far between
speech and vision data as well as the navigation data. This
later makes use of the cartesian coordinates of the AGV in the
navigation space and the reinforcement learning module (as
described in Section III.C) that allows to estimate the optimal
trajectory between the AGV and the object of interest.

Figure 3. Example of speech-based instruction and multi-modal mapping.

In order to implement and demonstrate the Multi-modal
AI framework, The AGV is updated by a newly installed
system for interfacing through speech with a dedicated PC.
This PC is also used for developing and testing the neural
networks. It is equipped with a powerful Nvidia GPU and a
new headset microphone for giving audio commands. The
autonomous tractor internally uses ROS to communicate
between the different sub-systems. Originally it was only used
sparingly in the autonomous tractor, mainly to communicate
lidar sensor data. After the system upgrade, also the control
unit, the dedicated PC and the Nvidia Drive platform have a
ROS interface. While the Nvidia Drive could technically runs
the neural networks, for more convenience, during testing we
installed the neural networks on the dedicated PC. Data from
the cameras on the Nvidia Drive, LiDAR and navigation all
come in as ROS messages while for speech a simple
microphone is connected to the PC. The output of the multi-
modal setup is the location of a specific object together with
the task the tractor must complete. This information can be
communicated through ROS to the navigation module.

A. Spoken language understanding

1) Speech data generation
To train the SLU model, training dataset with audio

fragments is made. It is important that the recorded speech
seems natural, as if the participants are really interacting with
the AGV. To this end, we believe that a visual feedback to the
participant would be very useful. Therefore, a simple
automotive simulator called Webots [16] was used and a set
of API calls were written in order to control the simulated
tractor in the simulated environment (Figure 4).

Figure 4. Simulator that provides visual feedbacks to participants for

speech recording.

3

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The participants are given some high-level objectives and
it is up to them to control the tractor with speech commands
in order to fulfil these tasks. With the ‘high-level’ objectives
(in contrast with explicitly providing the primitive commands
to the participants) we aim to improve the variability of
commands that participant's would naturally choose to control
the tractor. Every time the participants speak a relevant
command, the experiment supervisor presses a button to
invoke the correct API call. This way, we already have some
automatically generated annotations linking the participant's
speech command to the supervisor's API call invocation. We
recorded the audio in Audacity in WAV format using a
headset microphone and a separate standalone microphone.
The commands were mainly basic control commands like
turning a direction or driving speed. A total of 14 people who
speak Dutch language (different dialects) were recorded with
mixed female and male voices.

2) SLU model architecture & training
Classical semantic frames are used for representing the

semantics of an utterance. A semantic frame is composed of
slots (e.g., “direction”) that take one of multiple slot values
(e.g., “forward” or “backward”). This encoding represents the
affordances of the AGV and corresponds to API calls with
parameters filled in. The task of the SLU component is to map
an utterance (spoken command) to a completed semantic
frame. The SLU architecture follows the encoder-decoder
structure first described in [17] and later refined in [18] to
allow for encoder pretraining for ASR targets on generic
Dutch data. The decoder is trained on the task-specific data.
The encoder encodes an utterance in a single high-
dimensional embedding in two steps. The first step maps
MEL-filterbank speech representations to letter probabilities
using a transformer network [19] preceded by a down
sampling CNN, trained maximal cross-entropy between
predicted and ground truth transcriptions in a 37-letter
vocabulary. The training data consist of 200 hours of Flemish
speech with its textual transcription from the CGN corpus
[20], fourfold augmented with noise (0-15 dB) and
reverberation (sampled from [21]) to achieve acoustic
robustness. The second step counts bigram occurrence
frequencies of all letter pairs across the utterance and repeats
the same while skipping one position in the bigram, resulting
in a 2(372) = 2738 dimensional utterance embedding.

The decoder maps the utterance embedding onto a multi-
hot encoding of the slot values via non-negative matrix
factorization (NMF) [22] as described in [17]. Other than in
the pretraining stage, the training pairs here do not require
textual transcription, but are pairs of speech with the
completed semantic frame. Here, a neural network could be
taken as well, but the chosen decoder has several advantages:
(1) it requires few training data, (2) it retrains in a fraction of
a second when user interaction data becomes available and (3)
it establishes a bag-of-words model making the SLU system
less sensitive to the rather free word order in Dutch (at least
compared to English). Learning a stricter word order would
require more task-specific training data exhibiting the word
order variability.

The approach is evaluated on the Grabo corpus [23],
which contains a total of 6000 commands to a robot spoken

by ten Flemish speakers and one English speaker. The
commands were recorded with the participants’ own hardware
in a quiet room at their homes. The semantics are described in
eight different semantic frames describing driving, turning,
grabbing, pointing, etc. using one (e.g., “close gripper”) to
three (e.g., “quickly drive forward a little bit”) of ten slots
(e.g., angle, direction, etc.), which can take between two and
four different values. In total, 33 different meanings occur in
the data. The accuracy is evaluated as the F1-score for slot
values as a function of the number of task-specific training
examples. The trained decoder is speaker-specific. The
average accuracy over speakers is plotted in Figure 5 and
shows that with the minimal of 33 training utterances, i.e., one
example per meaning, an accuracy of over 98.5% is reached.
The performance saturates around 180 task-specific
utterances.

Figure 5. F1-score as a function of the task-specific training examples.

3) SLU model validation

For deployment we set up a docker container to run all

the code. We developed a user interface to be able to easily

visualize the results of the SLU model and provide training

examples for training the decoder. In this interface, it is

possible to record samples, open the microphone so the

tractor can listen, give feedback to the model and retrain the

model. After each command is given the confidence value of

the prediction is estimated. Commands with sufficient

confidence are forwarded to the tractor through ROS to the

control PC.

The initial accuracy of the model depends a lot on the

person giving the commands and their accent. But we were

able to achieve high levels of accuracy of more than 90

percent in the noisy tractor environment using an active

learning approach. In this approach, the operator can give

feedback samples to retrain the model. In this experimental

set-up, repeating an instruction in 5 instances proved to

achieve high accuracy (90%). The retraining flow is quite

time-efficient and takes less than a second to retrain.

B. Visual perception

1) Vision AI Objects detection and classification

a) Vision data generation

The dataset for training the vision model contains images

with mostly objects that the AGV can pick up. This means

mostly pallets and boxes of varied materials, shape and sizes

containing materials like bobbins and wooden planks. This

data was recorded on the Flanders Make local site, spread

over two occasions: one on an early cloudy morning in spring

4

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE 1. QUANTITATIVE EVALUATION OF THE VISION AI TRAINED MODEL

 Vid. 1 Vid. 2 Vid. 3 Vid. 4 Vid. 5 Vid. 6 Vid. 7 Vid. 8 Vid. 9 Avg.

mAP 55.04 40.90 56.03 66.42 68.35 50.50 65.25 61.9 51.42 57.30

Figure 6. (left) all objects are correctly classified, (right) some objects are not detected.

and one just after noon in summer with sunny weather. Every

image was recorded with a resolution of 960 x 608 pixels.

The entire dataset contained 1100 images, derived from 9

videos. Each of these videos recorded one configuration of

objects from many angles.

b) Vision NN architecture & training

The main building block of the vision pipeline is the object
detector. It gets an RGB image I as input, where I
∈ ℝ3 ∙ 𝐻 ∙ 𝑊 and H and W are the image height and width
respectively. The model we use is a state-of-the-arts two-stage
object detector, where in the first stage, a region proposal
network generates regions of interest for the image, and in the
second stage, bounding boxes and object classes are predicted
for each proposal, which exhibits an objectness score above a
certain threshold. The region proposal network generates
region proposals by sliding a spatial window over features
map obtained from a Convolutional Neural Networks (CNN),
i.e., a backbone. Additionally, the object detector includes a
Feature Pyramid Network [24], a fully-convolutional module,
which generates features maps at different levels, thus
enabling the model to recognize objects at different scales.
The object detector we use is a Faster R-CNN [25], with a
ResNet101 backbone [26], pre-trained for general purpose
object detection on COCO [11].

Even though less resource intensive FasterR-CNN
backbones exist, such as MobileNets [27], given our
computational budget, we find the FasterR-CNN variant we
use to yield the best tradeoff between detection performance
and speed (near real-time).

The model’s outputs are object bounding boxes and
classes with a confidence score for each. The confidence score
for the predicted class is obtained as the Softmax probability
of the highest scoring class.

We perform fine-tuning of the Faster R-CNN on images
consisting of scenes from the environment, where the objects
of interest are annotated with bounding boxes and classes. The
images we use are video frames, extracted from 9 videos of
the AGV navigating the environment while encountering the
objects. Considering that the amount of data at our disposal is

limited, we determine the optimal hyperparameters by
training the object detector in a leave-one-out fashion, such
that we train on a subset of 8 videos and perform evaluation
on the remaining one. We iterate this process until we train a
separate model on all unique subsets. The final model
performance is averaged over each of the videos. We evaluate
the model’s performance using the standard COCO [11] mean
average precision (mAP). The final model, i.e., the model used
in the AGV, is trained on all 9 videos using the
hyperparameters determined during the leave-one-out
training/evaluation process.

We train the model for 5 epochs with a learning rate of 1e-
4. We perform random horizontal flip data augmentation,
enabling us to synthetically increase the dataset size and make
the detector invariant to such transformations of the data. We
sample a subset of 128 region proposals to estimate the
regression and classification loss of the region proposal
network.

We quantitatively evaluate each of the trained models on
the videos, which were held-out during training. In TABLE 1
the lowest score is highlighted in red, while the highest
scoring one is green. Overall, we observe that the performance
is relatively high across all different videos (57.3 mAP). We
further observe that the performance on Video 2 (Vid. 2), is
significantly lower compared to the average performance. To
inspect the reason for the lower performance, we qualitatively
inspect the samples from Video 2 as discussed below.

We qualitatively evaluate the object detector’s
performance by visualizing the predictions on the held-out
videos during training. In Figure 6 (left), we observe that the
model correctly predicts all objects, which is in line with our
expectations as the objects are fully visible and of a reasonable
size. On the other hand, in Figure 6 (right) we observe several
mis-detected objects of a frame from Video 2. We conclude
that even though the model performs well, it struggles to
recognize objects, which are (1) far from the camera (small
size), and (2) occluded in the environment – both of which are
active areas of object detection research.

5

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Visual grounded SLU
To deal with the data sparsity, and to be able to ground

(localize) the speech model output in the image, we perform
discretization of the spatial layout (the bounding boxes and
classes obtained as output from the object detector). To be
specific, we perform mapping of both modalities to a
canonical space, where we later measure the similarity
between the output of the speech model and each of the
detected objects in the image. To that end, we encode each
detected object as a collection of one-out-of-k encodings of its
label (box, pallet, etc.), material (wooden, plastic, etc.), size
(regular or small), and location in the image. Note that the
object category, material and size are jointly predicted by the
object detector as object class. Lastly, we quantize the location
of the object, i.e., we represent the object’s location based on
the object’s horizontal and the lower vertical position. We
showcase the grid over the image including the spatial
references according to the x and y axes in Figure 7.

Finally, we represent each detected object as a vector of
size 12, where we allocate 3, 2, 3, 3, 1 indices for the object’s
class, material, x-location, y-location and size respectively.
When measuring the similarity between the speech model
output (a vector of size 12 as well) and each encoded object
detection, we explore different weighting strategies for each
object attributes, which we discuss next.

Figure 7. Grid over image with object’s spatial reference.

3) Adding Spatial relations
We evaluate different strategies for measuring the

similarity between each (discretized) object detection and the
speech model output. The output is a bounding box, which
represents the grounding location of the instruction. We
evaluate each grounding strategy on two variants of the
dataset, namely (1) a descriptive variant, where the objects are
commonly described based on their attributes, e.g., pick up the
wooden box, and (2) a spatial variant, where the referred
object is described based on its location in the frame, e.g., pick
up the box furthest on the left. The grounding strategies we
evaluate are:
1. Random matching (RM): A naïve baseline, where we

ground the speech given instruction to a randomly selected
bounding box. We establish a lower bound on the
grounding performance with this baseline.

2. Basic matching (BM): We obtain the dot-product between
the one-hot encodings of speech instruction and each
object detection, representing the similarity.

3. Weighted matching (WM): We (re-)scale the contributions
of the individual elements in the dot-product with pre-
defined weights.

4. Confidence matching (CM): We represent the speech
model with the confidence scores.

5. Weighted confidence matching (WCM): We use
confidence scores for the speech model output and
additionally weight the individual contributions using the
pre-determined weights.

We perform evaluation using the standard grounding
accuracy metric, where we score a hit if the predicted
grounding bounding box has intersection over union
(IoU)>0.5 with the ground truth box. For the random baseline,
we perform inference 5 times and report the average
performance. Through grid-search, for the weighted modules
(WM, WCM) we use a weight of 0.1, 0.7, 0.2, and 0.05 for the
spatial indicators, the object class, the object material and the
object size respectively. We report the results in TABLE 2.

We observe consistent gains when we weigh (WM) or use
the speech model confidence scores (CM) in the grounding,
compared to the baseline basic matching (BM) method.
Additionally, a combination of the weight and confidence
matching (WCM) yields superior results across the different
data (descriptive, spatial) and significantly outperforms the
other methods. Lastly, even though the spatial data is more
challenging than the descriptive data, the WCM module
performs well, indicating that by re-weighting and adding
confidence scores, we can ground spatial speech data
reasonably well.

C. Reiforcement learning based navigation

In this section, the navigation part of the Multi-modal AI

and its association with the speech-vision data is described.

The currently developed proof of concept consists of a

simulation environment with the hardware in the loop.
To make this simulator as close to real life as possible, a

3-D scan of the test environment by using an aerial scanning
using a drone with photogrammetry capabilities that allows us
to map images to a high fidelity 3-D twin of the area. This
twin was then imported to the simulator for the purpose of
reinforcement learning.

1) RL archiecture & training

The presented Reinforcement Learning (RL) approach

makes use of the DD-PPO (Decentralized Distributed

Proximal Policy Optimization) architecture [28] (Figure 8).

The Reinforcement Learning (RL) approach is able to map

high dimensional inputs to discrete actions. The DD-PPO

model consists of a visual pipeline, for which in our case we

use a ResNet18 [26].

Figure 8. DD-PPO architecture overview.

6

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE 2. EVALUATION OF THE AI MODEL WITH SPATIAL RELATIONS

Method Dataset type

 Descriptive Spatial

RM 25.91 17.14

BM 65.91 59.52

WM 70.45 57.94

CM 76.14 62.70

WCM 79.55 65.87

The resulting learned visual representation is

concatenated together with a GNSS sensor. This output is

then passed onto a recurring policy consisting of 2 Long

short-term memory (LSTM) [29] layers. The final outputs of

the model consists of a state value estimation, and an action

distribution from which actions (move forward, turn left, turn

right and stop) can be sampled. The stop-action should be

executed by the agent when positioned less than 2 meters of

the goal position. As inputs for the model we tested a single

depth camera, a single RGB camera, or a combination of both

RGB and depth. We use these sensors as they are cheap and

widely available. The camera is positioned on the front of the

AGV.

Figure 9. Training performance. The blind agent can perform basic
navigation by relying on the GNSS sensor, however to further improve to

near perfect results an additional RGB of depth sensor is required to detect

and avoid collisions.

To train the agent we use the improvement in geodesic

distance between the agent and the goal position as a dense

reward signal. A slack penalty of -0.01 is subtracted on each

step, and a termination bonus of 2.5 is awarded upon

successfully utilizing the done action. We train the agent

entirely in the Habitat simulator [12] where a photorealistic

scan of the environment is used. This allows the agent to

interact with the terrain in a safe way. While in this case we

trained the agent to specifically work on a single

environment, DD-PPO also allows generalization to unseen

environments, given enough different training environments

and training samples. Figure 9 shows the required number of

interactions with the environment. These results indicate that

in this setting the agent relies mostly on the GNSS sensor, as

the blind agent performs reasonably (60% success rate after

5M training interactions). However, by adding either a depth

or RGB sensor the agent achieves near perfect navigation

capabilities on the training set after 5M interactions with the

simulated environment.

2) RL validation
Realizing Reinforcement learning on a large autonomous

platform brings in multiple challenges to the board. For safety
concerns, the approach to validate the system was to use a
Hardware-in-loop setup (Figure 9) along with the digital twin
of the environment. The main input from the real world was
the signal from the GNSS receiver (Septentrio AsteRx-U) on
the AGV, which was then mapped to the digital twin
coordinates system. The GNSS had a dual antenna setup,
which could then provide the heading of the platform as well.
Using a cloud-based service updates were provided in real
time to the simulator/digital twin environment to position the
simulated tractor same as the one in real world. The output
from the simulator was the suggested trajectory to the goal
pose.

Figure 10. Hardware In Loop setup (overview).

To evaluate the navigation capabilities of the agent, we
created a holdout dataset. This holdout dataset contains goal
positions the agent did not see during training. TABLE 3
contains the results of 100 tested episodes. In TABLE 3, the
success rate indicates the amount of episodes the agent could
complete successfully. The Success weighted by Path Length
(SPL) measurement also considers the length of the path
taken.

TABLE 3. SUMMARY OF TESTED EPISODES

Sensors Success
Rate

SPL Avg.
Collisions

RGB 100% 0.9454 0.4355

Depth 100% 0.8882 0.1129

RGBD 100% 0.9272 0.5161

Blind 91.94% 0.7294 4.3548

7

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Snapshot of the demonstrator of the AGV Multi-modal AI framework: (top left), the Speech model interface, (bottom left), the Vision model

interface, (right), the Navigation digital twin interface, (bottom middle), the estimated trajectory between the AGV.

D. AGV Multi-modal AI Demonstration

To demonstrate the full methodology, we combined the

methods respectively described in Sections A, B and C in one

demonstrator implemented in the AGV. We added all the

information in a new docker environment to be able to run on

the dedicated PC in the AGV. There is a similar user interface

compared to the SLU model where you can record your voice

and use the NLP model to predict the voice commands. These

commands consist of the description of the object and the task

the AGV should do. Then the fusion model uses this

information to link an object description with a detection

from the vision model to predict the location of the describer

object on the image. As a last step the lidar data is used to

link the 2D location on the image to a 3D location of the

object in the world coordinate space. This location can then

be sent further as a goal to the control systems together with

the described task from the NLP model. A significant

improvement could be made in the parameters of the fusion

model. There was a bias against using spatial information in

the voice command. The material of the object is more

difficult to extract on the image than its location, so using the

location for finding the correct object is more reliable. Hence,

we tuned some of the weights to have a bigger focus on this

kind of information. Another small improvement could be

made to the audio side. The person dedicated to controlling

the AGV added some voice samples and gave feedback to the

model through the user interface. This way the model was

more confident in recognizing their accent and way of talking.

With regards Navigation, although the approach is not fully

implemented in the rea system, the approach can already be

demonstrated by Hardware-In-the-Loop. In this setting an

instance of the simulator is constantly synchronized with the

AGV. This is done by using the GNSS position from the real-

world AGV to set the position of the agent in the simulator.

We can use the digital twin to generate trajectory paths. These

generated trajectories can then be used in the real-world by the

AGV. A snapshot from the full demonstrator is depicted in

Figure 11.

IV. CASE STUDY – INDOOR AUTOMATED INVENTORY

The second case focuses on the task of automated
inventory of unknown warehouse settings [2]. The goal is to
explore with a good tradeoff between navigation time and
inventory accuracy. An open experimental platform has been
built on top of an AGV, automating a standard pallet forklift
[30]. Localization is provided by a commercial system with
reflector landmarks with known positions across the
warehouse. Triangulation allows to get the AGV position with
an accuracy of the order of few centimeters.

Two Ouster OS1 lidar with 64 vertical layers have been
used. They have a vertical field of view of 45° and a maximum
range of 120 m. They are placed in the front and the back of
the AGV, and they are merged into a single point cloud that
has a full 360-degree coverage. A camera (Zed mini) is used
for inventory detection and is placed at the front of the forklift.

ROS is used as a middleware to provide communication
between the different perception modules. Then, control
commands are sent to a motion module via ethernet, which is
responsible for executing the actions on the AGV. There is a
safety system mainly based on safety scanners that stops the
forklift in case of an expected imminent collision.

The dynamics of the forklift can be summarized in the

kinematic bicycle model [31]. This model is used in the RL

training bridge the sim2real gap in the actuation. In Figure 12

the vehicle model can be seen.

 The kinematics for a forklift AGV are defined by the

following equations [32]:

�̇� = 𝑉(𝑡) 𝑐𝑜𝑠 𝜃(𝑡)

�̇� = 𝑉(𝑡) 𝑠𝑖𝑛 𝜃(𝑡)

�̇� =
𝑉(𝑡) 𝑡𝑎𝑛 𝛿(𝑡)

𝑙 − 𝑎 𝑡𝑎𝑛 𝛿(𝑡)

The following values apply for this work AGV: l = 1.5m,

a = 0:15m The forward velocity is denoted as V and 𝛿 is the

steering angle in radians.

8

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Bicycle kinematic model for AGV.

A. Spoken language understanding

We have used the same SLU module than the one from the
previous use case and we have retrained it to work for a new
set of tasks. For this use case we have trained the model in
English, showing that the speech recognition can work well in
different languages given pairs of audio signals and tasks.

If the operator wants to give a speech command, he/she
can either press a button and then start talking, or enable the
open microphone feature and say a pre-defined keyword to
indicate that an instruction will be given. Three different kind
of possible tasks have been selected for this use case. First, a
command is available to start a new inventory session
(“count”). Then, there are 3 options available: steer the AGV
manually, trigger the RL autonomous exploration (“explore”),
or further give speech instructions to control the movement of
the AGV (“move”), such as “forward”, “a little bit to the left”,
or “stop”.

B. Visual Perception

1) Object Detection and tracking

The detector uses an RGB image as input and produces

bounding boxes with associated confidence scores. We do not

use depth sensors or lidar. The reason is that training models

which use these sensors would require 3D annotations,

generally not available in industrial datasets. An alternative

is to label point clouds, which is prohibitive, and therefore we

opt only for 2D object detection applied on RGB images.

We use the 3D lidar sensor, available in the navigation

module, to obtain depth information which is pixel-by-pixel

aligned with the RGB images. This approach provides better

depth accuracy than depth cameras. The point cloud from the

lidar is projected on the camera plane, with some inflation

proportional to the depth value, leading to higher inflation for

closer points. This provides a richer depth image, as

illustrated in Figure 13. The projection of a point cloud into

a camera plane only works well only if the two sensors are

mounted close enough, which is the case for our platform.

Figure 13. Depth image from the point cloud without inflation (left) and

with inflation (right).

We choose the Yolov7 detector [33], as it is one of the

latest open-source detectors with a better trade-off between

accuracy and real time performance. Starting from a pre-

trained version on COCO dataset [11], 4 videos recorded in

the test warehouse have been annotated, making a total of

around 1500 frames. The detector is trained to detect only one

class, which is the cardboard box.

We select BYTETrack [34] as an object tracker, because

it can be easily coupled with any other detector and yields to

good accuracy in the MOT20 [35] benchmark. The main

building block is a Kalman filter [36] with a constant speed

model for the bounding box position and size of the

detections. In most cases, trackers are employed in

applications with a static camera and moving objects, while

we use a moving camera with static objects. We have slightly

modified the default version to be able to tune the covariance

matrices Q and R of the Kalman filter in order to put a higher

confidence on the detections (measurements) than in the

model (constant speed motion). Especially when the camera

is turning, the model will be less reliable, so we want to give

higher importance to the new detections. Tracking provides

unique IDs across frames, but does not solve the problem of

tracking objects when they re-enter the camera FOV after

some time. This will be addressed in the 3D map creator.

2) 3D map creator

The individual 2D detections, the generated depth image

and the AGV location in the warehouse are inputs to the 3D

map creator, which is responsible to merge new detections to

the ones in the map. This way, it keeps an updated version of

the counted items locations, which are represented as cuboids

with an ID, confidence score, internal point cloud, center,

width, height and depth. The 3D map also keeps track of the

uncertain areas, which are represented in the same way but

with a negative value for the ID. Algorithm 1 shows the

pseudo-code of the map creator, including also the object

detector and tracker.

For each new frame the algorithm iterates over the

bounding boxes from the tracker. For each track, the

corresponding depth pixel values are retrieved with a padding

to discard pixels that may belong to the background. Then,

depth values are converted back to a point cloud per

detection. This point cloud goes through a filtering process

that includes a Statistical Outlier Removal (SOR), a

passthrough filter to remove far points and a SAmple

Consensus (SAC) test: using the domain knowledge that

boxes have flat surfaces and that they are never seen from

above, we fit a plane and require it to be vertical in the world

coordinate system.

At this point, we have for each detected object a point

cloud, which generally contains points on the main surface of

the box. There are two reasons to consider it uncertain:

• Uncertainty in the detector output: If the confidence

score provided by the detector is below a certain

threshold, then the corresponding object is marked

as uncertain in detection.

9

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1: Pseudo-code of the inventory monitoring

 Input: sequence S with image I, lidar point cloud L and vehicle

position P ; threshold for tracking Tt ; detection confidence threshold

for counting Td ; position confidence threshold for counting Tp

 Output: goods map M (list of objects with ID, confidence score,

point cloud and 3D cuboid)
1 Initialization: M 0
2 for I, L, P in S do
3 Dets = detector(I)
4 Tracks = tracker(Dets, Tt) % Tracks contain an ID, confidence

score and bounding box
5 Depth = project_pointcloud(L)
6 for Track in Tracks do
7 Depthfiltered = filter_depth(Depth, Track) % Depth with padding
8 Otrack = to_pointcloud_object(Depthfiltered, Td) % object with

point cloud, ID (<0 for uncertain) and confidence fields
9 Ofiltered = filter_poitcloud(Otrack, Tp) % SOR, passthrough, SAC

filters + ID becomes <0 if uncertain position
10 Oworld = to_world(Ofiltered, P) % transform from ego view
11 Ocurrent = compute_cuboid(Oworld) % add 3D box to object
12 Test = overlap_test(Ocurrent, M) % compare to all map objects
13 if Test then
14 M = merge_to_map(Ocurrent, M) % discard new ID & merge
15 else
16 M = add_to_map(Ocurrent, M) % new detection added to map
17 end
18 M = voxel_grid_filter(M)
19 M = delete_uncertain_areas(M)
20 end
21 end
22 Return M

Figure 14. Algorithm for inventory monitoring

• Uncertainty in the object location: In case the SAC

plane is too far away, has a low number of inliers, or

is not seen frontally (the boxes are too much at the

side of the image), then the corresponding object is

marked as uncertain in position.

The point cloud is finally transformed using the vehicle

location into world coordinates, and a 3D cuboid that

encloses the point cloud is computed.

Then, all the detections are merged with the map. There

are two possibilities:

• The ID of the current detection is already in the map.

In that case, the default option is to merge it with the

map’s object with the same ID. However, it could

be the case that the 2D tracker fails, so an

overlapping volume comparison is done with all the

other detections already in the map, and if there is

enough overlapping, the current detection is merged

with the map object with more overlapping volume.

• The current detection is not in the map. The same

overlapping test is done as in the case above. If there

is not enough overlapping, it is a new detection, and

a new object is initialized in the map. Otherwise, the

new detection is merged into the matched object in

the map.

 When a detection is merged to one in the map, the point

clouds are concatenated and then reduced using a voxel grid

filter. The confidence is updated to the maximum of the ones

being merged, and the centroid and vertex locations are

updated fitting a cuboid to the point cloud. Since only one

surface per box is considered, the cuboid corners are

extended so each dimension is bigger than a user defined

minimum object size. The current vehicle position and

relative viewpoint respect the detection are used to know the

direction of the extension.

 Uncertain detections are merged in a similar way as certain

ones. Certain and uncertain detections are never merged

between them. When an uncertain detection with a particular

ID becomes certain, all the uncertain data is deleted.

Moreover, whenever there is a certain detection being added

or merged to the map, nearby uncertain detections are

deleted. Finally, in case that the AGV gets close enough to an

uncertain detection and it remains uncertain, the object is

completely discarded, since after having a good viewpoint the

certainty did not increase enough, so it is assumed to be a

detection false positive.

C. Reiforcement learning based navigation

We address the sim-2-real gap in the sensing part by using
lidars, which are more robust to sensor noise. While lidar-
based simulations are often very compute-intensive, our
approach allows fast simulations by rendering obstacles into
top-down images containing the lidar data, without any need
for ray casting. Rack locations are similarly added as a second
image channel, and a third channel contains past vehicle
positions. This 3-channel image in the ego view (see Figure
15) determines the only input of the RL agent. The same 3-
channel image is created in the real setup:

• The obstacles channel comes from a projection of the
3D lidar point cloud to the plane parallel to the floor.

• The second channel contains the areas to direct the
exploration, which come from the detection module.
A 3D point cloud is projected as in the first channel.

• The third channel contains the past trajectory, which
is obtained by concatenating the last positions given
by the AGV positioning system.

Figure 15. Input image to the RL agent. Blue are obstacles, green

represents uncertain areas and red is the past trajectory

Simulations use a kinematic model of the AGV to bridge
the sim-2-real gap in the acting part. The RL policy utilizes a
discrete set of 15 actions, that map to specific steering angles
and forward speeds. At a low speed (0.3 m/s) the vehicle can
turn at 3 different angles (small, medium and large) to the left,

10

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and 3 to the right. The vehicle can also go straight. This makes
a total of 7 actions, which are also available for backward
moving. The 15th action allows to go forward straight at a
higher speed (0.5 m/s). The simulation environments are
randomly generated to create several rack configurations and
generalize to any warehouse setting. We use Proximal Policy
Optimization (PPO) [37] to train the agent.

D. AGV Multi-modal AI Demonstration

We have integrated all the algorithms in the forklift AGV
platform and performed several online real-time experiments.
Figure 16 shows the available inventory visualization in an
experiment sequence. The locations of the racks are provided
by the user and are only employed to improve the
visualization, as they are not part of the algorithm. In the
Figure 16 top image it is seen how several boxes in the middle
rack have already been detected while in another rack there
are uncertain detections. White points denote areas with low
detection certainty, while grey points correspond to low
certainty in location. Those areas direct the navigation to
move closer, and once better viewpoints are obtained, they
become certain detections that are added to the inventory, as
seen in the middle image. Finally, in the bottom image it is
seen how after performing a loop around the middle rack, the
previous 2 racks are seen again, but only new objects are
added to the inventory count. Detections that are assigned to
an object already in the map are merged, and the object
location is slightly adjusted accordingly if necessary.

TABLE 4 contains the results for object detection. We
have used a test subset of 188 frames of around 30 seconds
where the vehicle goes towards a rack and then performs a
turn. The “Detector alone” row contains the results of the
detector without any tracking or merging on the map. Then,
the following rows represent the results for different ablations
on the map creator, where the thresholds to track (Tt) and to
count (Td, Tp) are modified. H represents a version where the
several thresholds for the position certainty are high, while L
is for low values. We denote as Tt=0 the case where the 2D
tracker is not used. The results include the precision and recall
values, as well as the number of detected uncertain objects
that are remaining in the map at the end of the sequence. A
distinction is done between remaining uncertain objects that
would become true and false positives if added to the count.

Although accuracy values in the “Detector alone” are high,

all versions with the 3D map creator have a higher precision

and similar or higher recall. Depending on the thresholds to

track the objects and to count them in the inventory, the trade-

off between precision and recall changes. In our application

a high precision would be desired, while we expect to

improve the recall by the active navigation. Results show

there is still room for improvement in the directed

exploration, since there are several true positive uncertain

detections that were not yet included in the map.

Alternatively, counting and position thresholds could be

further reduced to count those uncertain detections and

increase the recall, but that would reduce precision. Results

show how the usage of a 2D tracker (Tt ≠ 0) helps to avoid

false positives, as seen in the TABLE 4.

Figure 16. Sequence of the forklift around some racks in a warehouse.

TABLE 4. RESULTS OF THE OBJECT DETECTION

 Precision Recall Uncertain (T/F)

Detector alone 0.89 0.85 -

Tt=0.3, Td=0.9, Tp=H 1 0.76 9/0

Tt=0.3, Td=0.5, Tp=H 1 0.81 7/0

Tt=0, Td=0.5, Tp=H 1 0.81 7/7

Tt=0.3, Td=0.9, Tp=L 0.96 0.86 5/0

Tt=0.3, Td=0.5, Tp=L 0.97 0.89 3/0

Tt=0, Td=0.5, Tp=L 0.94 0.86 3/8

11

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Results show how, by using spatial-temporal information
of the same object while actively navigating to obtain better
viewpoints, we can rely in a less accurate detector and achieve
higher accuracy results on the high-level task of inventory
count. This directly translates into a faster set up of the
detector (less required labeled data, less time doing
hyperparameter tuning, etc.), which is critical to reduce the
implementation time of the solution in a new or modified
warehouse. In this direction, the usage of an instance
segmentation detector would have provided pixel level
detections, which could be better matched to depth
information leading to better position accuracy in the map.
However, this would have increased the inference rate and the
labeling effort. Our results show, how by post-processing the
lidar data and registering to the inventory only detections with
high position accuracy, a bounding box detector is enough
instead of a more advanced pixel level instance segmentation
detector.

V. CONCLUSION

In this work, we developed and demonstrated a multi-

modal AI framework that allows to intuitively instruct

production AGVs to perform multiple tasks. The interface

with operators is allowed by speech interaction that is

decoded through an AI NLP model to translate speech

commands to interpretable instructions by all the components

of the AI Framework. Associations with vision and

navigation data are done to be able to perform a wide range

of tasks. We show how the loose coupling between the

modalities creates a an architecture which is general enough

to be applied in a wide set of tasks for two different use cases,

which run on very different hardware platforms. Moreover,

the loose coupling of the modules provides a clear interface

between the modalities (e.g., task, object detections, motion

commands) which is interpretable by humans, thus

leveraging the explainability. The main outputs of the system

are the control commands that enable the vehicle navigation,

and relevant task information (e.g., location of objects) which

is provided to the user. The demonstrators remain, however,

a research proof of concept (to demonstrate the approach) and

require different improvements before effective industrial

usage. This includes, amongst others, training with larger

datasets (speech, vision, navigation) and evaluation in an

extended number of scenarios. Moreover, bridging the sim-

2-real gap for the RL navigation is still a challenge in terms

of achieving the necessary robustness for industrial

applications.

ACKNOWLEDGMENT

This research is done in the framework of Flanders AI
Research Program (https://www.flandersairesearch.be/en)
that is financed by EWI (Economie Wetenschap & Innovatie),
and Flanders Make (https://www.flandersmake.be/en), the
strategic research Centre for the Manufacturing Industry who
owns the AGV infrastructure. The authors would like to thank
everybody who contributed with any inputs to make this
publication.

REFERENCES

[1] A. B. Temsamani et al., "A multimodal AI approach for

intuitively instructable autonomous systems : a case study of

an autonomous off-highway vehicle," The Eighteenth

International Conference on Autonomic and Autonomous

Systems, pp. 31-39, 2022.

[2] F. Gebelli Guinjoan et al., "A Multi-modal AI Approach For

AGVs: A Case Study On Warehouse Automated Inventory,"

The Nineteenth International Conference on Autonomic and

Autonomous Systems, pp. 25-33, 2023.

[3] D. Li, B. Ouyang, D. Wu and Y. Wang, "Artificial

intelligence empowered multi-AGVs in manufacturing

systems," in ArXiv abs/1909.03373, 2019.

[4] L. Radder and L. Louw, "Mass customization and mass

production," The TQM magazine, vol. 11, pp. 35-40, 1999.

[5] M. De Ryck, M. Versteyhe and F. Debrouwere, "Automated

guided vehicle systems, state-of-the-art control algorithms

and techniques," Journal of Manufacturing Systems, vol. 54,

pp. 152-173, 2020.

[6] D. Herrero-Perez and H. Martinez-Barbera, "Decentralized

coordination of automated guided vehicles," Proceedings of

the 7th international joint conference on Autonomous agents

and multiagent systems, vol. 3, pp. 1195-1198, 2008.

[7] M. Mousavi, H. J. Yap, S. N. Musa, F. Tahriri and S. Z. Md

Dawal, "Multi-objective AGV scheduling in an FMS using a

hybrid of genetic algorithm and particle swarm optimization,"

PloS one, vol. 12, p. 12(3): e0169817, 2017.

[8] C. Stachniss, J. J. Leonard and S. Thrun, "Simultaneous

localization and mapping," Springer Handbook of Robotic,

no. Springer, pp. 1153-1176, 2016.

[9] S. HT and C. Arjun, "Design of Voice Controlled Automated

Guided Vehicle," International Journal of Science

Technology & Engineering, vol. 3, pp. 90-93, 2017.

[10] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet

classification with deep convolutional neural networks,"

Communications of the ACM, vol. 6, pp. 84-90, 2017.

[11] T.-Y. Lin et al., "Microsoft COCO: Commeon objects in

Context," 13th European Conference in Computer Vision, pp.

740-755, 2014.

[12] M. Savva et al., "Habitat: A platform for embodied ai

research," Proceedings of the IEEE/CVF international

conference on computer vision, pp. 9339-9347, 2019.

[13] D. Mishkin, A. Dosovitskiy and V. Koltun, "Benchmarking

classic and learned navigation in complex 3d environments,"

in arXiv preprint arXiv:1901.10915, 2019.

[14] Flanders Make, "Automated off-highway vehicle test

platform," [Online]. Available:

https://www.flandersmake.be/en/testing-validation/product-

validation/automated-off-highway-vehicle-test-platform.

[Accessed 10 2 2023].

[15] dSpace, "Real-time testing system (dSpace)," [Online].

Available: https://www.dspace.com/en/pub/home.cfm.

[Accessed 10 2 2023].

[16] Cyberbotics, "Webots - Open source robot simulator,"

[Online]. Available: https://cyberbotics.com/. [Accessed 2 10

2023].

12

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[17] B. Ons, J. F. Gemmeke and H. Van hamme, "Fast vocabulary

acquisition in an NMF-based self-learning vocal user

interface," Computer Speech & Language, vol. 28, pp. 997-

1017, 2014.

[18] P. Wang and H. Van hamme, "Pre-training for low resource

speech-to-intent applications," in arXiv preprint

arXiv:2103.16674, 2021.

[19] A. Vaswani et al., "Attention is all you need.," Advances in

neural information processing systems, vol. 30, 2017.

[20] N. Oostdijk, "The Spoken Dutch Corpus. Overview and First

Evaluation," in Proceedings of LREC, 2000.

[21] RWTH Aachen, "Aachen Impulse Response Database,"

[Online]. Available: https://www.iks.rwth-

aachen.de/en/research/tools-downloads/databases/aachen-

impulse-response-database/. [Accessed 10 2 2023].

[22] D. Lee and H. S. Seung, "Algorithms for non-negative matrix

factorization," Advances in neural information processing

systems, vol. 13, 2000.

[23] KU Leuven, "ALADIN: Adaptation and Learning for

Assistive Domestic Vocal Interfaces," [Online]. Available:

https://www.esat.kuleuven.be/psi/spraak/downloads/.

[Accessed 10 2 2023].

[24] T.-Y. Lin et al., "Feature Pyramid Networks for Object

Detection," Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 2117-2125, 2017.

[25] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks," in Advances in neural information processing

systems 28, 2015.

[26] K. He, X. Zhang and J. Sun, "Deep Residual Learning for

Image Recognition," in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016.

[27] A. G. Howard et al., "Mobilenets: Efficient convolutional

neural networks for mobile vision applications," arXiv

preprint arXiv:1704.04861, 2017.

[28] E. Wijmans et al., "Dd-ppo: Learning near-perfect pointgoal

navigators from 2.5 billion frames," arXiv preprint

arXiv:1911.00357, 2019.

[29] S. Hochreiter and J. Schmidhuber, "Long Short-Term

Memory," Neural computation, vol. 9, pp. 1735-1780, 1997.

[30] A. Bartic, "Autonomous vehicles can perform an increasing

array of tasks all by themselves," Flanders Make, 28 April

2020. [Online]. Available:

https://www.flandersmake.be/en/blog/autonomous-vehicles-

can-perform-increasing-array-tasks-all-themselves.

[Accessed 1 February 2023].

[31] P. Polack, F. Altche, B. d'Andrea-Novel and A. de La Fortelle,

"The kinematic bicycle model: A consistent model for

planning feasible trajectories for autonomous vehicles?,"

IEEE intelligent vehicles symposium (IV), pp. 812-818, 2017.

[32] K. Jung, J. Kim, J. Kim, E. Jung and K. Sungshin,

"Positioning accuracy improvement of laser navigation using

UKF and FIS," Robotics and Autonomous Systems, vol. 62,

pp. 1241-1247, 2014.

[33] C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, "YOLOv7:

Trainable bag-of-freebies sets new state-of-the-art for real-

time object detectors," in arXiv preprint arXiv:2207.02696,

2022.

[34] Y. Zhang et al., "ByteTrack: Multi-object Tracking by

Associating Every Detection Box," European Conference on

Computer Vision, pp. 1-20, 2022.

[35] P. Dendorfer et al., "Mot20: A benchmark for multi object

tracking in crowded scenes," in arXiv preprint

arXiv:2003.09003, 2020.

[36] R. E. Kalman, "A new approach to linear filtering and

prediction problems," J. Fluids Eng, vol. 82, pp. 35-45, 1960.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O.

Klimov, "Proximal Policy Optimization Algorithms," in

arXiv:1707.06347, 2017.

13

International Journal on Advances in Systems and Measurements, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/systems_and_measurements/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

