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Abstract— We present a multi-modal AI framework to 

intuitively instruct and control Automated Guided Vehicles. We 

define a general multi-modal AI architecture, which has a loose 

coupling between three different AI modules, including spoken 

language understanding, visual perception and Reinforcement 

Learning navigation. We use the same multi-modal architecture 

for two different use cases implemented in two different 

platforms: an off-road vehicle, which can pick objects, and an 

indoor forklift that performs automated warehouse inventory. 

We show how the proposed architecture can be used for a wide 

range of tasks and can be implemented in different hardware, 

demonstrating a high degree of modularity. 

Keywords - AI based autonomous systems; Multi-modal AI; 

Natural language processing; deep learning; neural networks; 

reinforcement learning 

I.  INTRODUCTION 

Autonomous Guided Vehicles (AGVs), which are often 
also referred as Autonomous Mobile Robots (AMRs), are 
becoming more and more popular in industrial applications. 
In previous works [1] [2] we presented two particular use 
cases where multi-modal AI leverages AGV tasks. In this 
paper, we propose a multi-modal AI framework that allows to 
intuitively and easily (re-)configure an AGV to perform 
different and variable tasks. The proposed multi-modal 
software architecture has a loose coupling between the 
different modules, which allows to easily exchange the 
components and deploy them in different hardware units. 

AGVs can pick up and deliver materials around a 
manufacturing facility or warehouse  [3]. However, with the 
continuously increase of mass customization [4], a return on 
investment of production AGVs can only be obtained if these 
AGVs can easily perform large variability of tasks and / or 
deal with large variability of products.  

Task scheduling has been done by a central entity for a 
fleet of AGVs following predefined configurations. But 
driven by flexibility, robustness and scalability requirements, 
the current trends in AGV systems are customization and 
decentralization [5]. In a decentralized architecture, an AGV 
broadcasts the information about its states in a local way and 
decides which actions to take [6]. 

Although new generations of AGVs are highly 
instrumented with different sensors, they are more suited for 

long-distance transportation of materials between multiple 
destinations, and tuned for repetitive and predictable tasks [7].  

(Re-)configurating AGVs to perform multiple tasks in a 
non-predictable environment remains, however, a challenge 
today in industrial settings due to dynamically changing 
environments. Classic navigation pipelines typically need to 
construct a map by scanning the environment with sensors, 
such as lidars [8], while manually driving the AGV. 
Sometimes the usage of floor markings or fiducial landmarks 
(e.g., reflectors) are used as well. These approaches do not 
only require an updated map, but also require a different 
module to set destinations or missions with waypoints, 
meaning that a high set-up time for new or modified 
environments is needed.  Because of the increasing variability 
in industry settings, it is common that the environment is 
modified after short periods of time. This exposes the need for 
an increased flexibility in the whole navigation approach. 

Research on a voice controlled AGV remains in the level 
of performing basic operations (e.g., moving with constant 
speed) in a prescribed path [9].  

In this work we show how a general multi-modal 
architecture can be applied on two different use cases, which 
run on two different platforms (Figure 1). On the one hand, 
we implement an application on an off-road vehicle where the 
main task is to pick certain objects. On the other hand, we 
deploy an automated inventory monitoring on a forklift. In 
both cases, an operator can intuitively instruct the AGV by 
speech interaction that can be done locally or remotely.  

In Section II, the common multi-modal AI architecture is 
presented. Section III explains the off-road vehicle use case, 
while Section IV describes the forklift use case. Finally, 
Section V contains the conclusions. 

 
Figure 1. Platforms used for off-road vehicle picking objects (left) and 

forklift warehouse automated inventory (right) use cases. 
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Figure 2. General architecture for a multi-modal AI autonomous platform. 

 

II. MULTI-MODAL AI ARCHITECTURE 

The presented multi-modal AI architecture (Figure 2) is a 

general software architecture for the implementation of 

autonomous vehicles that based on AI can perform a 

particular set of tasks, instructed by speech. The architecture 

defines the different modules and interface, and can be 

implemented in different platforms with different hardware 

typologies. Even within the same implementation, different 

modules can run in different hardware units. Because the 

architecture exhibits a loose coupling, the modules can be 

easily exchanged for other models or algorithms, as far as 

they share the same interface. The proposed interface has 

human-understandable signals, which helps to improve the 

explainability of the system. The suggested architecture has 

a directed flow of information between the modules, which is 

represented by arrows in Figure 2. This defines and constrains 

the exchange of information between the different modules. 

The architecture has 4 main building modules: (i) Spoken 

Language Understanding (SLU), (ii) association between 

speech cues with sensor data for objects detection and 

localization, (iii) RL for navigation, which uses information 

from, speech, vision and sensor data and (iv) vehicle 

platform, which receives motion commands and sends 

processed sensor data.  
(i) Spoken interaction offers fast and natural interaction 

with machines and AGVs, while operators keep their hands 
and eyes free for other tasks. The task of a SLU component is 
to map speech onto an interpretation of the meaning of a 
command, while taking the variability in the input signal into 
account: differences in voice, dialect, language, acoustic 
environment (noise, reverberation), hesitation, filled pauses 
and pure linguistic variation. Traditionally, SLU is 
approached as a cascade of Automatic Speech Recognition 
(ASR) mapping speech into text followed by Natural 
Language Understanding (NLU) mapping text onto meaning. 
This cascaded approach tends to propagate and inflate ASR 
errors and requires application-specific textual data, which is 
unnatural to acquire. Instead, this work uses End-to-End SLU 
(E2E SLU), where spoken instructions are directly mapped 
onto meaning without textual intermediate representations. 
The output of the speech module is a semantic definition of 

the task, which is then used by all the other modules. This 
module provides the unique interface where the user can 
provide inputs. 

(ii) For agents to interact with the environment, they must 
process and understand visual input, i.e., extract the 
semantically relevant cues from the environment in order to 
execute the desired task. Should the input be provided from an 
RGB camera, a plethora of Deep Learning techniques could 
be leveraged to achieve visual understanding. Deep Learning 
techniques rely on Neural Networks, commonly (pre-)trained 
on large-scale general-purpose datasets, e.g., for visual 
recognition [10] such as object detection [11]. Since our goal 
is to interpret a language-based instruction, we need to locate 
the object(s) in the environment. To this end, we build on 
state-of-the-art object detection methods. Given an RGB 
input, the object detector’s role is to locate (detect) the 
relevant objects. This serves as a backbone to perform multi-
modal interaction by associating the representation of the 
language-based instruction with the representation of the 
spatial layout of the scene (2D location and categories of the 
detected objects). The RGB can be enhanced with depth 
information (RGBD camera or lidar) and vehicle localization 
for precise 3D location of the detections in world coordinates. 
The output of the vision module is used by the navigation 
module. However, for some tasks (e.g., automated inventory, 
finding/locating an object, getting attributes of an object, etc.) 
the output of the vision module is itself the principal result of 
the task, and is saved in a database, which the user can access. 

(iii) Egocentric navigation is one of the core problems 
intelligent systems need to master. An agent needs this skill 
not only to execute the task at hand, but also to navigate, in 
order to collect experience that can be used to learn from. In 
the presented approach we have chosen for an end-to-end 
learning-based navigation approach. Such an approach is able 
to outperform Simultaneous Localization and Mapping 
(SLAM) based approaches [12], it does not suffer from 
propagation errors due to mapping errors, and excels in 
visually sparse environments [13]. In our architecture, we 
foresee several available RL agents, each one trained for a 
specific set of tasks. The navigation module receives the task 
directly form the speech module, and switches to the 
appropriate RL agent. Sensor data coming directly from the 
platform is used for dynamic obstacle avoidance and general 
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exploration. Finally, the output of the vision module is used to 
direct the navigation to ensure that the exploration is done 
considering the relevant objects. As we need to train the RL 
agent in a simulation environment due to the large amount of 
required interactions, it is very important to couple the RL 
agent with a simulator that has the same interface as the real 
platform. Therefore, it is necessary to bridge the sim-2-real 
gap in two points: the acting gap and the observation gap. On 
the one hand, the acting gap refers to the interaction of the 
agent into the environment. For our architecture, this means 
making sure that the speed and steering commands have 
similar effects both in the real world and simulator. On the 
other hand, bridging the observation gap requires not only that 
the sensor data is similar in simulation and reality, but also 
that the simulator is able to produce similar object information 
as it would come from the real object detection. 

(iv) The vehicle platform receives the control commands 
(set speed and steering wheel angle) from the navigation 
module. However, it can also be controlled directly by speed 
in case the speech task is directly affecting only navigation 
(e.g., “move slightly to the right slow”). The platform 
provides sensor data from the environment (camera, lidar and 
localization data) to the vision and navigation modules. 

III.  CASE STUDY – AUTONOMOUS OFF-HIGHWAY VEHICLE 

In this case study, the vehicle is able to navigate towards a 
specific object, which is in the field of view, given a speech 
command [1]. The AGV used in this case study consists of the 
off-highway tractor developed at Flanders Make [14]. To 
perceive the environment we use cameras, lidars, a GNSS 
system and a microphone. The sensors data is then processed 
in separate computing platforms and stored on middleware 
(ROS), from where the Speech and Vision units send the 
information to the control block. This later is divided in two 
levels, (i) a High-level controller that controls the tractor via a 
state machine and (ii) a Low-level controller, built in a dSpace 
platform [15], that controls the trajectory such that velocity 
and heading can be followed. The output signals are sent to 
different actuators that consist of the brakes, throttle, steering 
and fork implement that are controlled via servo motors. 
Autonomous vehicle upgrades to deal with Multi-modal AI 

An example of intuitive instructions given by an operator 
to the AGV to execute a task and their high level 
interpretations by the Multi-modal AI framework, described 
in this paper, is illustrated in Figure 3. 

The instruction: ‘Pick up the red pallet and put it on the 
truck’, needs first to be communicated to the computer that 
runs the speech AI module (described in Section A). In the 
next level, a vision module, where real time 2d vision data is 
processed and fed to a pretrained NN, allows objects 
classification and their association to different attributes such 
as object’s type, color, etc. (as described in Section B). The 
AGV should then move towards the recognized object. This 
step is supported by the association made so far between 
speech and vision data as well as the navigation data. This 
later makes use of the cartesian coordinates of the AGV in the 
navigation space and the reinforcement learning module (as 
described in Section III.C) that allows to estimate the optimal 
trajectory between the AGV and the object of interest. 

 
Figure 3. Example of speech-based instruction and multi-modal mapping. 

 

In order to implement and demonstrate the Multi-modal 
AI framework, The AGV is updated by a newly installed 
system for interfacing through speech with a dedicated PC. 
This PC is also used for developing and testing the neural 
networks. It is equipped with a powerful Nvidia GPU and a 
new headset microphone for giving audio commands. The 
autonomous tractor internally uses ROS to communicate 
between the different sub-systems. Originally it was only used 
sparingly in the autonomous tractor, mainly to communicate 
lidar sensor data. After the system upgrade, also the control 
unit, the dedicated PC and the Nvidia Drive platform have a 
ROS interface. While the Nvidia Drive could technically runs 
the neural networks, for more convenience, during testing we 
installed the neural networks on the dedicated PC. Data from 
the cameras on the Nvidia Drive, LiDAR and navigation all 
come in as ROS messages while for speech a simple 
microphone is connected to the PC. The output of the multi-
modal setup is the location of a specific object together with 
the task the tractor must complete. This information can be 
communicated through ROS to the navigation module. 

A. Spoken language understanding 

1) Speech data generation  
To train the SLU model, training dataset with audio 

fragments is made. It is important that the recorded speech 
seems natural, as if the participants are really interacting with 
the AGV. To this end, we believe that a visual feedback to the 
participant would be very useful. Therefore, a simple 
automotive simulator called Webots [16] was used and a set 
of API calls were written in order to control the simulated 
tractor in the simulated environment (Figure 4).  

 
Figure 4. Simulator that provides visual feedbacks to participants for 

speech recording. 
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The participants are given some high-level objectives and 
it is up to them to control the tractor with speech commands 
in order to fulfil these tasks. With the ‘high-level’ objectives 
(in contrast with explicitly providing the primitive commands 
to the participants) we aim to improve the variability of 
commands that participant's would naturally choose to control 
the tractor. Every time the participants speak a relevant 
command, the experiment supervisor presses a button to 
invoke the correct API call. This way, we already have some 
automatically generated annotations linking the participant's 
speech command to the supervisor's API call invocation. We 
recorded the audio in Audacity in WAV format using a 
headset microphone and a separate standalone microphone. 
The commands were mainly basic control commands like 
turning a direction or driving speed. A total of 14 people who 
speak Dutch language (different dialects) were recorded with 
mixed female and male voices. 

2) SLU model architecture & training  
Classical semantic frames are used for representing the 

semantics of an utterance. A semantic frame is composed of 
slots (e.g., “direction”) that take one of multiple slot values 
(e.g., “forward” or “backward”). This encoding represents the 
affordances of the AGV and corresponds to API calls with 
parameters filled in. The task of the SLU component is to map 
an utterance (spoken command) to a completed semantic 
frame. The SLU architecture follows the encoder-decoder 
structure first described in [17] and later refined in [18] to 
allow for encoder pretraining for ASR targets on generic 
Dutch data. The decoder is trained on the task-specific data. 
The encoder encodes an utterance in a single high-
dimensional embedding in two steps. The first step maps 
MEL-filterbank speech representations to letter probabilities 
using a transformer network [19] preceded by a down 
sampling CNN, trained maximal cross-entropy between 
predicted and ground truth transcriptions in a 37-letter 
vocabulary. The training data consist of 200 hours of Flemish 
speech with its textual transcription from the CGN corpus 
[20], fourfold augmented with noise (0-15 dB) and 
reverberation (sampled from [21]) to achieve acoustic 
robustness. The second step counts bigram occurrence 
frequencies of all letter pairs across the utterance and repeats 
the same while skipping one position in the bigram, resulting 
in a 2(372) =  2738 dimensional utterance embedding.  

The decoder maps the utterance embedding onto a multi-
hot encoding of the slot values via non-negative matrix 
factorization (NMF) [22] as described in [17]. Other than in 
the pretraining stage, the training pairs here do not require 
textual transcription, but are pairs of speech with the 
completed semantic frame. Here, a neural network could be 
taken as well, but the chosen decoder has several advantages: 
(1) it requires few training data, (2) it retrains in a fraction of 
a second when user interaction data becomes available and (3) 
it establishes a bag-of-words model making the SLU system 
less sensitive to the rather free word order in Dutch (at least 
compared to English). Learning a stricter word order would 
require more task-specific training data exhibiting the word 
order variability. 

The approach is evaluated on the Grabo corpus [23], 
which contains a total of 6000 commands to a robot spoken 

by ten Flemish speakers and one English speaker. The 
commands were recorded with the participants’ own hardware 
in a quiet room at their homes. The semantics are described in 
eight different semantic frames describing driving, turning, 
grabbing, pointing, etc. using one (e.g., “close gripper”) to 
three (e.g., “quickly drive forward a little bit”) of ten slots 
(e.g., angle, direction, etc.), which can take between two and 
four different values. In total, 33 different meanings occur in 
the data. The accuracy is evaluated as the F1-score for slot 
values as a function of the number of task-specific training 
examples. The trained decoder is speaker-specific. The 
average accuracy over speakers is plotted in Figure 5 and 
shows that with the minimal of 33 training utterances, i.e., one 
example per meaning, an accuracy of over 98.5% is reached. 
The performance saturates around 180 task-specific 
utterances. 

 
Figure 5. F1-score as a function of the task-specific training examples. 

3) SLU model validation  

For deployment we set up a docker container to run all 

the code. We developed a user interface to be able to easily 

visualize the results of the SLU model and provide training 

examples for training the decoder. In this interface, it is 

possible to record samples, open the microphone so the 

tractor can listen, give feedback to the model and retrain the 

model. After each command is given the confidence value of 

the prediction is estimated. Commands with sufficient 

confidence are forwarded to the tractor through ROS to the 

control PC. 

The initial accuracy of the model depends a lot on the 

person giving the commands and their accent. But we were 

able to achieve high levels of accuracy of more than 90 

percent in the noisy tractor environment using an active 

learning approach. In this approach, the operator can give 

feedback samples to retrain the model. In this experimental 

set-up, repeating an instruction in 5 instances proved to 

achieve high accuracy (90%). The retraining flow is quite 

time-efficient and takes less than a second to retrain. 

 

B. Visual perception 

1) Vision AI Objects detection and classification  

a) Vision data generation  

The dataset for training the vision model contains images 

with mostly objects that the AGV can pick up. This means 

mostly pallets and boxes of varied materials, shape and sizes 

containing materials like bobbins and wooden planks. This 

data was recorded on the Flanders Make local site, spread 

over two occasions: one on an early cloudy morning in spring 
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TABLE 1. QUANTITATIVE EVALUATION OF THE VISION AI TRAINED MODEL  

 Vid. 1 Vid. 2 Vid. 3 Vid. 4 Vid. 5 Vid. 6 Vid. 7 Vid. 8 Vid. 9 Avg. 

mAP 55.04 40.90 56.03 66.42 68.35 50.50 65.25 61.9 51.42 57.30 

 

   
Figure 6. (left) all objects are correctly classified, (right) some objects are not detected. 

 

and one just after noon in summer with sunny weather. Every 

image was recorded with a resolution of 960 x 608 pixels. 

The entire dataset contained 1100 images, derived from 9 

videos. Each of these videos recorded one configuration of 

objects from many angles.  

b) Vision NN architecture & training  

The main building block of the vision pipeline is the object 
detector. It gets an RGB image I as input, where I 
∈  ℝ3 ∙ 𝐻 ∙ 𝑊 and H and W are the image height and width 
respectively. The model we use is a state-of-the-arts two-stage 
object detector, where in the first stage, a region proposal 
network generates regions of interest for the image, and in the 
second stage, bounding boxes and object classes are predicted 
for each proposal, which exhibits an objectness score above a 
certain threshold. The region proposal network generates 
region proposals by sliding a spatial window over features 
map obtained from a Convolutional Neural Networks (CNN), 
i.e., a backbone. Additionally, the object detector includes a 
Feature Pyramid Network [24], a fully-convolutional module, 
which generates features maps at different levels, thus 
enabling the model to recognize objects at different scales. 
The object detector we use is a Faster R-CNN [25], with a 
ResNet101 backbone [26], pre-trained for general purpose 
object detection on COCO [11]. 

Even though less resource intensive FasterR-CNN 
backbones exist, such as MobileNets [27], given our 
computational budget, we find the FasterR-CNN variant we 
use to yield the best tradeoff between detection performance 
and speed (near real-time). 

The model’s outputs are object bounding boxes and 
classes with a confidence score for each. The confidence score 
for the predicted class is obtained as the Softmax probability 
of the highest scoring class. 

We perform fine-tuning of the Faster R-CNN on images 
consisting of scenes from the environment, where the objects 
of interest are annotated with bounding boxes and classes. The 
images we use are video frames, extracted from 9 videos of 
the AGV navigating the environment while encountering the 
objects. Considering that the amount of data at our disposal is 

limited, we determine the optimal hyperparameters by 
training the object detector in a leave-one-out fashion, such 
that we train on a subset of 8 videos and perform evaluation 
on the remaining one. We iterate this process until we train a 
separate model on all unique subsets. The final model 
performance is averaged over each of the videos. We evaluate 
the model’s performance using the standard COCO [11] mean 
average precision (mAP). The final model, i.e., the model used 
in the AGV, is trained on all 9 videos using the 
hyperparameters determined during the leave-one-out 
training/evaluation process. 

We train the model for 5 epochs with a learning rate of 1e-
4. We perform random horizontal flip data augmentation, 
enabling us to synthetically increase the dataset size and make 
the detector invariant to such transformations of the data. We 
sample a subset of 128 region proposals to estimate the 
regression and classification loss of the region proposal 
network. 

We quantitatively evaluate each of the trained models on 
the videos, which were held-out during training. In TABLE 1 
the lowest score is highlighted in red, while the highest 
scoring one is green. Overall, we observe that the performance 
is relatively high across all different videos (57.3 mAP). We 
further observe that the performance on Video 2 (Vid. 2), is 
significantly lower compared to the average performance. To 
inspect the reason for the lower performance, we qualitatively 
inspect the samples from Video 2 as discussed below. 

We qualitatively evaluate the object detector’s 
performance by visualizing the predictions on the held-out 
videos during training. In Figure 6 (left), we observe that the 
model correctly predicts all objects, which is in line with our 
expectations as the objects are fully visible and of a reasonable 
size. On the other hand, in Figure 6 (right) we observe several 
mis-detected objects of a frame from Video 2. We conclude 
that even though the model performs well, it struggles to 
recognize objects, which are (1) far from the camera (small 
size), and (2) occluded in the environment – both of which are 
active areas of object detection research. 
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2) Visual grounded SLU 
To deal with the data sparsity, and to be able to ground 

(localize) the speech model output in the image, we perform 
discretization of the spatial layout (the bounding boxes and 
classes obtained as output from the object detector). To be 
specific, we perform mapping of both modalities to a 
canonical space, where we later measure the similarity 
between the output of the speech model and each of the 
detected objects in the image. To that end, we encode each 
detected object as a collection of one-out-of-k encodings of its 
label (box, pallet, etc.), material (wooden, plastic, etc.), size 
(regular or small), and location in the image. Note that the 
object category, material and size are jointly predicted by the 
object detector as object class. Lastly, we quantize the location 
of the object, i.e., we represent the object’s location based on 
the object’s horizontal and the lower vertical position. We 
showcase the grid over the image including the spatial 
references according to the x and y axes in Figure 7. 

Finally, we represent each detected object as a vector of 
size 12, where we allocate 3, 2, 3, 3, 1 indices for the object’s 
class, material, x-location, y-location and size respectively. 
When measuring the similarity between the speech model 
output (a vector of size 12 as well) and each encoded object 
detection, we explore different weighting strategies for each 
object attributes, which we discuss next. 

 
Figure 7. Grid over image with object’s spatial reference.  

 

3) Adding Spatial relations  
We evaluate different strategies for measuring the 

similarity between each (discretized) object detection and the 
speech model output. The output is a bounding box, which 
represents the grounding location of the instruction. We 
evaluate each grounding strategy on two variants of the 
dataset, namely (1) a descriptive variant, where the objects are 
commonly described based on their attributes, e.g., pick up the 
wooden box, and (2) a spatial variant, where the referred 
object is described based on its location in the frame, e.g., pick 
up the box furthest on the left. The grounding strategies we 
evaluate are: 
1. Random matching (RM): A naïve baseline, where we 

ground the speech given instruction to a randomly selected 
bounding box. We establish a lower bound on the 
grounding performance with this baseline. 

2. Basic matching (BM): We obtain the dot-product between 
the one-hot encodings of speech instruction and each 
object detection, representing the similarity. 

3. Weighted matching (WM): We (re-)scale the contributions 
of the individual elements in the dot-product with pre-
defined weights. 

4. Confidence matching (CM): We represent the speech 
model with the confidence scores.    

5. Weighted confidence matching (WCM): We use 
confidence scores for the speech model output and 
additionally weight the individual contributions using the 
pre-determined weights. 

We perform evaluation using the standard grounding 
accuracy metric, where we score a hit if the predicted 
grounding bounding box has intersection over union 
(IoU)>0.5 with the ground truth box. For the random baseline, 
we perform inference 5 times and report the average 
performance. Through grid-search, for the weighted modules 
(WM, WCM) we use a weight of 0.1, 0.7, 0.2, and 0.05 for the 
spatial indicators, the object class, the object material and the 
object size respectively. We report the results in TABLE 2. 

We observe consistent gains when we weigh (WM) or use 
the speech model confidence scores (CM) in the grounding, 
compared to the baseline basic matching (BM) method. 
Additionally, a combination of the weight and confidence 
matching (WCM) yields superior results across the different 
data (descriptive, spatial) and significantly outperforms the 
other methods.  Lastly, even though the spatial data is more 
challenging than the descriptive data, the WCM module 
performs well, indicating that by re-weighting and adding 
confidence scores, we can ground spatial speech data 
reasonably well. 

C. Reiforcement learning based navigation 

In this section, the navigation part of the Multi-modal AI 

and its association with the speech-vision data is described. 

The currently developed proof of concept consists of a 

simulation environment with the hardware in the loop.  
To make this simulator as close to real life as possible, a 

3-D scan of the test environment by using an aerial scanning 
using a drone with photogrammetry capabilities that allows us 
to map images to a high fidelity 3-D twin of the area. This 
twin was then imported to the simulator for the purpose of 
reinforcement learning. 

1) RL archiecture & training  

The presented Reinforcement Learning (RL) approach 

makes use of the DD-PPO (Decentralized Distributed 

Proximal Policy Optimization) architecture [28] (Figure 8). 

The Reinforcement Learning (RL) approach is able to map 

high dimensional inputs to discrete actions. The DD-PPO 

model consists of a visual pipeline, for which in our case we 

use a ResNet18 [26]. 

 
Figure 8. DD-PPO architecture overview. 
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TABLE 2. EVALUATION OF THE AI MODEL WITH SPATIAL RELATIONS 

Method Dataset type 

 Descriptive Spatial 

RM 25.91 17.14 

BM 65.91 59.52 

WM 70.45 57.94 

CM 76.14 62.70 

WCM 79.55 65.87 

 

The resulting learned visual representation is 

concatenated together with a GNSS sensor. This output is 

then passed onto a recurring policy consisting of 2 Long 

short-term memory (LSTM) [29] layers. The final outputs of 

the model consists of a state value estimation, and an action 

distribution from which actions (move forward, turn left, turn 

right and stop) can be sampled. The stop-action should be 

executed by the agent when positioned less than 2 meters of 

the goal position. As inputs for the model we tested a single 

depth camera, a single RGB camera, or a combination of both 

RGB and depth. We use these sensors as they are cheap and 

widely available. The camera is positioned on the front of the 

AGV. 

 

Figure 9. Training performance. The blind agent can perform basic 
navigation by relying on the GNSS sensor, however to further improve to 

near perfect results an additional RGB of depth sensor is required to detect 

and avoid collisions. 

To train the agent we use the improvement in geodesic 

distance between the agent and the goal position as a dense 

reward signal. A slack penalty of -0.01 is subtracted on each 

step, and a termination bonus of 2.5 is awarded upon 

successfully utilizing the done action. We train the agent 

entirely in the Habitat simulator [12] where a photorealistic 

scan of the environment is used. This allows the agent to 

interact with the terrain in a safe way. While in this case we 

trained the agent to specifically work on a single 

environment, DD-PPO also allows generalization to unseen 

environments, given enough different training environments 

and training samples. Figure 9 shows the required number of 

interactions with the environment. These results indicate that 

in this setting the agent relies mostly on the GNSS sensor, as 

the blind agent performs reasonably (60% success rate after 

5M training interactions). However, by adding either a depth 

or RGB sensor the agent achieves near perfect navigation 

capabilities on the training set after 5M interactions with the 

simulated environment. 

2) RL validation   
Realizing Reinforcement learning on a large autonomous 

platform brings in multiple challenges to the board. For safety 
concerns, the approach to validate the system was to use a 
Hardware-in-loop setup (Figure 9) along with the digital twin 
of the environment. The main input from the real world was 
the signal from the GNSS receiver (Septentrio AsteRx-U) on 
the AGV, which was then mapped to the digital twin 
coordinates system. The GNSS had a dual antenna setup, 
which could then provide the heading of the platform as well. 
Using a cloud-based service updates were provided in real 
time to the simulator/digital twin environment to position the 
simulated tractor same as the one in real world. The output 
from the simulator was the suggested trajectory to the goal 
pose. 

 
Figure 10. Hardware In Loop setup (overview). 

To evaluate the navigation capabilities of the agent, we 
created a holdout dataset. This holdout dataset contains goal 
positions the agent did not see during training. TABLE 3 
contains the results of 100 tested episodes. In TABLE 3, the 
success rate indicates the amount of episodes the agent could 
complete successfully. The Success weighted by Path Length 
(SPL) measurement also considers the length of the path 
taken. 

 
TABLE 3. SUMMARY OF TESTED EPISODES 

Sensors Success 
Rate 

SPL Avg. 
Collisions 

RGB 100% 0.9454 0.4355 

Depth 100% 0.8882 0.1129 

RGBD 100% 0.9272 0.5161 

Blind 91.94% 0.7294 4.3548 
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Figure 11. Snapshot of the demonstrator of the AGV Multi-modal AI framework: (top left), the Speech model interface, (bottom left), the Vision model 

interface, (right), the Navigation digital twin interface, (bottom middle), the estimated trajectory between the AGV. 

 

D. AGV Multi-modal AI Demonstration 

To demonstrate the full methodology, we combined the 

methods respectively described in Sections A, B and C in one 

demonstrator implemented in the AGV. We added all the 

information in a new docker environment to be able to run on 

the dedicated PC in the AGV. There is a similar user interface 

compared to the SLU model where you can record your voice 

and use the NLP model to predict the voice commands. These 

commands consist of the description of the object and the task 

the AGV should do. Then the fusion model uses this 

information to link an object description with a detection 

from the vision model to predict the location of the describer 

object on the image. As a last step the lidar data is used to 

link the 2D location on the image to a 3D location of the 

object in the world coordinate space. This location can then 

be sent further as a goal to the control systems together with 

the described task from the NLP model. A significant 

improvement could be made in the parameters of the fusion 

model. There was a bias against using spatial information in 

the voice command. The material of the object is more 

difficult to extract on the image than its location, so using the 

location for finding the correct object is more reliable. Hence, 

we tuned some of the weights to have a bigger focus on this 

kind of information. Another small improvement could be 

made to the audio side. The person dedicated to controlling 

the AGV added some voice samples and gave feedback to the 

model through the user interface. This way the model was 

more confident in recognizing their accent and way of talking. 

With regards Navigation, although the approach is not fully 

implemented in the rea system, the approach can already be 

demonstrated by Hardware-In-the-Loop. In this setting an 

instance of the simulator is constantly synchronized with the 

AGV. This is done by using the GNSS position from the real-

world AGV to set the position of the agent in the simulator. 

We can use the digital twin to generate trajectory paths. These 

generated trajectories can then be used in the real-world by the 

AGV. A snapshot from the full demonstrator is depicted in 

Figure 11. 

IV. CASE STUDY – INDOOR AUTOMATED INVENTORY 

The second case focuses on the task of automated 
inventory of unknown warehouse settings [2]. The goal is to 
explore with a good tradeoff between navigation time and 
inventory accuracy. An open experimental platform has been 
built on top of an AGV, automating a standard pallet forklift 
[30]. Localization is provided by a commercial system with 
reflector landmarks with known positions across the 
warehouse. Triangulation allows to get the AGV position with 
an accuracy of the order of few centimeters.  

Two Ouster OS1 lidar with 64 vertical layers have been 
used. They have a vertical field of view of 45° and a maximum 
range of 120 m. They are placed in the front and the back of 
the AGV, and they are merged into a single point cloud that 
has a full 360-degree coverage. A camera (Zed mini) is used 
for inventory detection and is placed at the front of the forklift.  

ROS is used as a middleware to provide communication 
between the different perception modules. Then, control 
commands are sent to a motion module via ethernet, which is 
responsible for executing the actions on the AGV. There is a 
safety system mainly based on safety scanners that stops the 
forklift in case of an expected imminent collision. 

The dynamics of the forklift can be summarized in the 

kinematic bicycle model [31]. This model is used in the RL 

training bridge the sim2real gap in the actuation. In Figure 12 

the vehicle model can be seen. 

 The kinematics for a forklift AGV are defined by the 

following equations  [32]: 

 

𝑥̇ = 𝑉(𝑡) 𝑐𝑜𝑠 𝜃(𝑡) 

𝑦̇ = 𝑉(𝑡) 𝑠𝑖𝑛 𝜃(𝑡) 

𝜃̇ =
𝑉(𝑡) 𝑡𝑎𝑛 𝛿(𝑡)

𝑙 − 𝑎 𝑡𝑎𝑛 𝛿(𝑡)
 

 

The following values apply for this work AGV:  l = 1.5m, 

a = 0:15m The forward velocity is denoted as V and 𝛿 is the 

steering angle in radians. 
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Figure 12. Bicycle kinematic model for AGV. 

A. Spoken language understanding 

We have used the same SLU module than the one from the 
previous use case  and we have retrained it to work for a new 
set of tasks. For this use case we have trained the model in 
English, showing that the speech recognition can work well in 
different languages given pairs of audio signals and tasks. 

If the operator wants to give a speech command, he/she 
can either press a button and then start talking, or enable the 
open microphone feature and say a pre-defined keyword to 
indicate that an instruction will be given. Three different kind 
of possible tasks have been selected for this use case. First, a 
command is available to start a new inventory session 
(“count”). Then, there are 3 options available: steer the AGV 
manually, trigger the RL autonomous exploration (“explore”), 
or further give speech instructions to control the movement of 
the AGV (“move”), such as “forward”, “a little bit to the left”, 
or “stop”. 

B. Visual Perception 

1) Object Detection and tracking 

The detector uses an RGB image as input and produces 

bounding boxes with associated confidence scores. We do not 

use depth sensors or lidar. The reason is that training models 

which use these sensors would require 3D annotations, 

generally not available in industrial datasets. An alternative 

is to label point clouds, which is prohibitive, and therefore we 

opt only for 2D object detection applied on RGB images.  

We use the 3D lidar sensor, available in the navigation 

module, to obtain depth information which is pixel-by-pixel 

aligned with the RGB images. This approach provides better 

depth accuracy than depth cameras. The point cloud from the 

lidar is projected on the camera plane, with some inflation 

proportional to the depth value, leading to higher inflation for 

closer points. This provides a richer depth image, as 

illustrated in Figure 13. The projection of a point cloud into 

a camera plane only works well only if the two sensors are 

mounted close enough, which is the case for our platform. 

 
Figure 13. Depth image from the point cloud without inflation (left) and 

with inflation (right). 

We choose the Yolov7 detector [33], as it is one of the 

latest open-source detectors with a better trade-off between 

accuracy and real time performance. Starting from a pre-

trained version on COCO dataset [11], 4 videos recorded in 

the test warehouse have been annotated, making a total of 

around 1500 frames. The detector is trained to detect only one 

class, which is the cardboard box. 

We select BYTETrack [34] as an object tracker, because 

it can be easily coupled with any other detector and yields to 

good accuracy in the MOT20 [35] benchmark. The main 

building block is a Kalman filter [36] with a constant speed 

model for the bounding box position and size of the 

detections. In most cases, trackers are employed in 

applications with a static camera and moving objects, while 

we use a moving camera with static objects. We have slightly 

modified the default version to be able to tune the covariance 

matrices Q and R of the Kalman filter in order to put a higher 

confidence on the detections (measurements) than in the 

model (constant speed motion). Especially when the camera 

is turning, the model will be less reliable, so we want to give 

higher importance to the new detections. Tracking provides 

unique IDs across frames, but does not solve the problem of 

tracking objects when they re-enter the camera FOV after 

some time. This will be addressed in the 3D map creator. 
 

2) 3D map creator 

The individual 2D detections, the generated depth image 

and the AGV location in the warehouse are inputs to the 3D 

map creator, which is responsible to merge new detections to 

the ones in the map. This way, it keeps an updated version of 

the counted items locations, which are represented as cuboids 

with an ID, confidence score, internal point cloud, center, 

width, height and depth. The 3D map also keeps track of the 

uncertain areas, which are represented in the same way but 

with a negative value for the ID. Algorithm 1 shows the 

pseudo-code of the map creator, including also the object 

detector and tracker. 

For each new frame the algorithm iterates over the 

bounding boxes from the tracker. For each track, the 

corresponding depth pixel values are retrieved with a padding 

to discard pixels that may belong to the background. Then, 

depth values are converted back to a point cloud per 

detection. This point cloud goes through a filtering process 

that includes a Statistical Outlier Removal (SOR), a 

passthrough filter to remove far points and a SAmple 

Consensus (SAC) test: using the domain knowledge that 

boxes have flat surfaces and that they are never seen from 

above, we fit a plane and require it to be vertical in the world 

coordinate system.  

At this point, we have for each detected object a point 

cloud, which generally contains points on the main surface of 

the box. There are two reasons to consider it uncertain: 

• Uncertainty in the detector output: If the confidence 

score provided by the detector is below a certain 

threshold, then the corresponding object is marked 

as uncertain in detection. 
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Algorithm 1: Pseudo-code of the inventory monitoring 

 Input: sequence S with image I, lidar point cloud L and vehicle 

position P ; threshold for tracking Tt ; detection confidence threshold 

for counting Td ; position confidence threshold for counting Tp 

 Output: goods map M (list of objects with ID, confidence score, 

point cloud and 3D cuboid)  
1 Initialization: M  0 
2 for I, L, P in S do 
3  Dets = detector(I) 
4  Tracks = tracker(Dets, Tt) % Tracks contain an ID, confidence 

score and bounding box 
5  Depth = project_pointcloud(L) 
6  for Track in Tracks do 
7   Depthfiltered = filter_depth(Depth, Track) % Depth with padding 
8   Otrack = to_pointcloud_object(Depthfiltered, Td)  % object with 

point cloud, ID (<0 for uncertain) and confidence fields 
9   Ofiltered = filter_poitcloud(Otrack, Tp)  % SOR, passthrough, SAC 

filters + ID becomes <0 if uncertain position 
10   Oworld = to_world(Ofiltered, P) % transform from ego view 
11   Ocurrent = compute_cuboid(Oworld) % add 3D box to object 
12   Test = overlap_test(Ocurrent, M) % compare to all map objects 
13   if Test then 
14    M = merge_to_map(Ocurrent, M) % discard new ID & merge 
15   else 
16    M = add_to_map(Ocurrent, M) % new detection added to map 
17   end 
18   M = voxel_grid_filter(M) 
19   M = delete_uncertain_areas(M) 
20  end 
21 end 
22 Return M 

Figure 14. Algorithm for inventory monitoring 

 

• Uncertainty in the object location: In case the SAC 

plane is too far away, has a low number of inliers, or 

is not seen frontally (the boxes are too much at the 

side of the image), then the corresponding object is 

marked as uncertain in position. 

The point cloud is finally transformed using the vehicle 

location into world coordinates, and a 3D cuboid that 

encloses the point cloud is computed. 

Then, all the detections are merged with the map. There 

are two possibilities: 

• The ID of the current detection is already in the map. 

In that case, the default option is to merge it with the 

map’s object with the same ID. However, it could 

be the case that the 2D tracker fails, so an 

overlapping volume comparison is done with all the 

other detections already in the map, and if there is 

enough overlapping, the current detection is merged 

with the map object with more overlapping volume. 

• The current detection is not in the map. The same 

overlapping test is done as in the case above. If there 

is not enough overlapping, it is a new detection, and 

a new object is initialized in the map. Otherwise, the 

new detection is merged into the matched object in 

the map. 

    When a detection is merged to one in the map, the point 

clouds are concatenated and then reduced using a voxel grid 

filter. The confidence is updated to the maximum of the ones 

being merged, and the centroid and vertex locations are 

updated fitting a cuboid to the point cloud. Since only one 

surface per box is considered, the cuboid corners are 

extended so each dimension is bigger than a user defined 

minimum object size. The current vehicle position and 

relative viewpoint respect the detection are used to know the 

direction of the extension. 

    Uncertain detections are merged in a similar way as certain 

ones. Certain and uncertain detections are never merged 

between them. When an uncertain detection with a particular 

ID becomes certain, all the uncertain data is deleted. 

Moreover, whenever there is a certain detection being added 

or merged to the map, nearby uncertain detections are 

deleted. Finally, in case that the AGV gets close enough to an 

uncertain detection and it remains uncertain, the object is 

completely discarded, since after having a good viewpoint the 

certainty did not increase enough, so it is assumed to be a 

detection false positive. 

C. Reiforcement learning based navigation 

We address the sim-2-real gap in the sensing part by using 
lidars, which are more robust to sensor noise. While lidar-
based simulations are often very compute-intensive, our 
approach allows fast simulations by rendering obstacles into 
top-down images containing the lidar data, without any need 
for ray casting. Rack locations are similarly added as a second 
image channel, and a third channel contains past vehicle 
positions. This 3-channel image in the ego view (see Figure 
15) determines the only input of the RL agent. The same 3-
channel image is created in the real setup: 

• The obstacles channel comes from a projection of the 
3D lidar point cloud to the plane parallel to the floor. 

• The second channel contains the areas to direct the 
exploration, which come from the detection module. 
A 3D point cloud is projected as in the first channel. 

• The third channel contains the past trajectory, which 
is obtained by concatenating the last positions given 
by the AGV positioning system. 

 

 
Figure 15. Input image to the RL agent. Blue are obstacles, green 

represents uncertain areas and red is the past trajectory 
 

Simulations use a kinematic model of the AGV to bridge 
the sim-2-real gap in the acting part. The RL policy utilizes a 
discrete set of 15 actions, that map to specific steering angles 
and forward speeds. At a low speed (0.3 m/s) the vehicle can 
turn at 3 different angles (small, medium and large) to the left, 
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and 3 to the right. The vehicle can also go straight. This makes 
a total of 7 actions, which are also available for backward 
moving. The 15th action allows to go forward straight at a 
higher speed (0.5 m/s). The simulation environments are 
randomly generated to create several rack configurations and 
generalize to any warehouse setting. We use Proximal Policy 
Optimization (PPO) [37] to train the agent. 

D. AGV Multi-modal AI Demonstration 

We have integrated all the algorithms in the forklift AGV 
platform and performed several online real-time experiments. 
Figure 16 shows the available inventory visualization in an 
experiment sequence. The locations of the racks are provided 
by the user and are only employed to improve the 
visualization, as they are not part of the algorithm. In the 
Figure 16 top image it is seen how several boxes in the middle 
rack have already been detected while in another rack there 
are uncertain detections. White points denote areas with low 
detection certainty, while grey points correspond to low 
certainty in location. Those areas direct the navigation to 
move closer, and once better viewpoints are obtained, they 
become certain detections that are added to the inventory, as 
seen in the middle image. Finally, in the bottom image it is 
seen how after performing a loop around the middle rack, the 
previous 2 racks are seen again, but only new objects are 
added to the inventory count. Detections that are assigned to 
an object already in the map are merged, and the object 
location is slightly adjusted accordingly if necessary. 

TABLE 4 contains the results for object detection. We 
have used a test subset of 188 frames of around 30 seconds 
where the vehicle goes towards a rack and then performs a 
turn. The “Detector alone” row contains the results of the 
detector without any tracking or merging on the map. Then, 
the following rows represent the results for different ablations 
on the map creator, where the thresholds to track (Tt) and to 
count (Td, Tp) are modified. H represents a version where the 
several thresholds for the position certainty are high, while L 
is for low values. We denote as Tt=0 the case where the 2D 
tracker is not used. The results include the precision and recall 
values, as well as the number of detected uncertain objects 
that are remaining in the map at the end of the sequence. A 
distinction is done between remaining uncertain objects that 
would become true and false positives if added to the count. 

Although accuracy values in the “Detector alone” are high, 

all versions with the 3D map creator have a higher precision 

and similar or higher recall. Depending on the thresholds to 

track the objects and to count them in the inventory, the trade-

off between precision and recall changes. In our application 

a high precision would be desired, while we expect to 

improve the recall by the active navigation. Results show 

there is still room for improvement in the directed 

exploration, since there are several true positive uncertain 

detections that were not yet included in the map. 

Alternatively, counting and position thresholds could be 

further reduced to count those uncertain detections and 

increase the recall, but that would reduce precision. Results 

show how the usage of a 2D tracker (Tt ≠ 0) helps to avoid 

false positives, as seen in the TABLE 4. 

 
Figure 16. Sequence of the forklift around some racks in a warehouse. 

 

 
TABLE 4. RESULTS OF THE OBJECT DETECTION 

 Precision Recall Uncertain (T/F) 

Detector alone 0.89 0.85 - 

Tt=0.3, Td=0.9, Tp=H 1 0.76 9/0 

Tt=0.3, Td=0.5, Tp=H 1 0.81 7/0 

Tt=0, Td=0.5, Tp=H 1 0.81 7/7 

Tt=0.3, Td=0.9, Tp=L 0.96 0.86 5/0 

Tt=0.3, Td=0.5, Tp=L 0.97 0.89 3/0 

Tt=0, Td=0.5, Tp=L 0.94 0.86 3/8 
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Results show how, by using spatial-temporal information 
of the same object while actively navigating to obtain better 
viewpoints, we can rely in a less accurate detector and achieve 
higher accuracy results on the high-level task of inventory 
count. This directly translates into a faster set up of the 
detector (less required labeled data, less time doing 
hyperparameter tuning, etc.), which is critical to reduce the 
implementation time of the solution in a new or modified 
warehouse. In this direction, the usage of an instance 
segmentation detector would have provided pixel level 
detections, which could be better matched to depth 
information leading to better position accuracy in the map. 
However, this would have increased the inference rate and the 
labeling effort. Our results show, how by post-processing the 
lidar data and registering to the inventory only detections with 
high position accuracy, a bounding box detector is enough 
instead of a more advanced pixel level instance segmentation 
detector.  

V. CONCLUSION 

In this work, we developed and demonstrated a multi-

modal AI framework that allows to intuitively instruct 

production AGVs to perform multiple tasks. The interface 

with operators is allowed by speech interaction that is 

decoded through an AI NLP model to translate speech 

commands to interpretable instructions by all the components 

of the AI Framework. Associations with vision and 

navigation data are done to be able to perform a wide range 

of tasks. We show how the loose coupling between the 

modalities creates a an architecture which is general enough 

to be applied in a wide set of tasks for two different use cases, 

which run on very different hardware platforms. Moreover, 

the loose coupling of the modules provides a clear interface 

between the modalities (e.g., task, object detections, motion 

commands) which is interpretable by humans, thus 

leveraging the explainability. The main outputs of the system 

are the control commands that enable the vehicle navigation, 

and relevant task information (e.g., location of objects) which 

is provided to the user. The demonstrators remain, however, 

a research proof of concept (to demonstrate the approach) and 

require different improvements before effective industrial 

usage. This includes, amongst others, training with larger 

datasets (speech, vision, navigation) and evaluation in an 

extended number of scenarios. Moreover, bridging the sim-

2-real gap for the RL navigation is still a challenge in terms 

of achieving the necessary robustness for industrial 

applications. 
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