
Anomaly Detection and Analysis for Reliability Management in Clustered Container
Architectures

Areeg Samir, Nabil El Ioini, Ilenia Fronza, Hamid R. Barzegar, Van Thanh Le and Claus Pahl

Faculty of Computer Science
Free University of Bozen-Bolzano

39100 Bolzano, Italy
Email: firstname.surname@unibz.it

Abstract—Virtualised environments such as cloud and edge
computing architectures allow software to be deployed and
managed through third-party provided services. Here virtualised
resources available can be adjusted, even dynamically to changing
needs. However, the problem is often the boundary between the
service provider and the service consumer. Often there is no direct
access to execution parameters at resource level on the provider’s
side. Generally, only some quality factors can be directly observed
while others remain hidden from the consumer. We propose an
architecture for autonomous anomaly analysis for clustered cloud
or edge resources. The key contribution is that the architecture
determines possible causes of consumer-observed anomalies in
an underlying provider-controlled infrastructure. We use Hidden
Hierarchical Markov Models to map observed performance
anomalies to hidden resources, and to identify the root causes of
the observed anomalies in order to improve reliability. We apply
the model to clustered hierarchically organised cloud computing
resources. We illustrate use cases in the context of container
technologies to show the utility of the proposed architecture.

Index Terms—Cloud Computing; Edge Computing; Container
Technology; Cluster Architectures; Markov Model; Anomaly De-
tection; Performance; Workload.

I. INTRODUCTION

As a consequence of the dynamic nature of cloud and edge
computing environments, users may experience anomalies in
performance caused by the distributed nature of clusters,
heterogeneity, or scale of computation on underlying resources
that may lead to performance degradation and application
failure, for example

• change in a cluster node workload demand or configura-
tion updates may cause dynamic changes,

• reallocation or removal of resources may affect the work-
load of system components.

In principle, application deployments can be adjusted, even
dynamically to changing conditions. A problem, however,
emerges. Cloud and edge computing allow applications to be
deployed in remote environments, but these are managed by
third parties based on provided virtualised resources [1], [2],
[3], [4] which often hides the underlying causes from the
consumers of these services.

In virtualised environments, some factors can be directly
observed (e.g., application performance) while others remain
hidden from the consumer (e.g., reason behind the workload

changes, the possibility of predicting the future load, depen-
dencies between affected nodes and their load). Thus, the
reasons for these anomalies remain unclear. Recent works on
anomaly detection [5], [6], [7] have looked at resource usage,
rejuvenation or analysing the correlation between resource
consumption and abnormal behaviour of applications. How-
ever, more work is needed on identifying the reason behind
observed resource performance degradations.

We here investigate the possible root causes of perfor-
mance anomalies in an underlying provider-controlled cloud
infrastructure. We propose an anomaly detection and analysis
architecture for clustered cloud and edge environments that
aims at automatically detecting possibly workload-induced
performance fluctuations, thus improving the reliability of
these architectures. System workload states that might be
hidden from the consumer may represent anomalous or faulty
behaviour that occurs at a point in time or lasts for a period of
time. An anomaly may represent undesired behaviour such as
overload, or also appreciated positive behaviour like underload
(the latter can be used to reduce the load from overloaded
resources in the cluster). Emissions from those states (i.e.,
observations) indicate the possible occurrence of failure re-
sulting from a hidden anomalous state (e.g., high response
time). In order to link observations and the hidden states, we
use Hierarchical Hidden Markov Models (HHMMs) [10] to
map the observed failure behaviour of a system resource to
its hidden anomaly causes (e.g., overload) in a hierarchically
organised clustered resource configuration. Hierarchies emerge
as a consequence of a layered cluster architecture that we
assume based on a clustered cloud computing environment.
We aim to investigate, how to analyse anomalous resource
behaviour in clusters consisting of nodes with application
containers as their load from a sequence of observations
emitted by the resource.

We focus on a clustered, hierarchically organised envi-
ronment with containers as loads on the individual nodes,
similar to container cluster solutions like Docker Swarm or
Kubernetes [36]. We use a detailed use case discussion in
container technologies to illustrate the applicability of the
proposed solution.

In order to broaden the discussion, we also expand our
anomaly notion. In addition to performance and workload

247

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



anomalies, we introduce trust anomalies and discuss the trans-
ferability of concepts to this trust concern.

This paper is structured as follows. Section II discusses the
state of the art. Section III introduces our wider anomaly man-
agement architecture. Section IV details the anomaly detection
and fault analysis. Section V evaluates the proposed architec-
ture. This is followed by an extended use case discussion in
Section VI that shows the applicability of the results. Section
VII discusses the transferability of concerns to a trust anomaly
context. Section VIII ends the paper with some conclusions
and possible future work.

II. RELATED WORK

This section explores the detection, identification, and re-
covery of anomaly in literature. Moreover, it sheds light on
the literatures that use the Hidden Markov Model to mitigate
the anomalous behavior.

A. Anomaly Detection and Identification

Several studies [11] and [7] have addressed workload anal-
ysis in dynamic environments. Sorkunlu et al. [12] identify
system performance anomalies through analysing the corre-
lations in the resource usage data. Peiris et al. [13] analyse
the root causes of performance anomalies by combining the
correlation and comparative analysis techniques in distributed
environments.

Dullmann et al. [14] provide an online performance anomaly
detection approach that detects anomalies in performance data
based on a discrete time series analysis. Wang et al. [7]
model the correlation between workload and the resource
utilization of applications to characterize the system status.
However, the authors work neither classifies the different types
of workloads, or recovers the anomalous behaviour.

In [26] the author detects the anomalous behaviours (CPU
overload and Denial of Service Attack), and provides an adap-
tation policy using a multi-dimensional utility-based model
and algorithms. The author gives a score and likelihood for
the anomaly detected to select an adaptation policy to be able
to scale compute resources. The author work specifies a node
leader for each microservice cluster. Each node maintains the
cluster state and preserves the cluster logs. The leader also
votes on the adaptation policy action. However, the author
work handles two types of anomalies, and it is limited to
the horizontal and vertical auto-scaling actions to mitigate the
anomalous behaviour. Further, the work does not predict the
future workload.

The work in [46] detects the anomalous behaviour in per-
formance using a forecasting model to estimate the bandwidth,
detect performance changes and to decompose time series into
components. However, the authors use a hard threshold in
all the dataset which may not reflect the actual workloads
in system. In addition, they only detect anomalies without
analysing them, and they use labelled-time which is not good
enough to detect all anomalies as some anomalies could not be

discovered during the detection process and time complexity
in terms of data size may occur.

In [38] the authors focus on detecting anomalous behaviour
of services deployed on VM in a cloud environment. Like our
architecture, different anomaly injection scenarios are created
and a workload is generated to test the impact of anomaly on
the cloud services. The authors emulated different anomalies
with the CPU, memory, disk, and network. However, their
work does not track the cause of anomalous behaviour in a
containerized cluster environment, and it neglects the depen-
dency between nodes.

The work in [50] implements a probabilistic prediction
model based on a supervised learning method. The model
aims at detecting anomalous behaviour in cloud infrastructure
through analysing correlation between different metrics (CPU,
memory, disk, and network) to find the essential metrics that
can characterize the correlation between cloud performance
and anomaly event. The work uses a directed acyclic graph
to analyse the correlation of various performance metrics
with failure events in a virtual and physical machines. The
author computes the conditional probability of every metric
on anomaly occurrences, and selects those metrics whose con-
ditional probabilities are greater than a predefined threshold.
Nevertheless, the results show that the model suffers from
poor prediction efficiency when it is used to predict cloud
anomalies.

The work in [54] presents a general purpose prediction
model to prevent anomalies in cloud environment. The author
uses a supervised learning-based model that combines two
dependent Markov chain models with the tree augmented
Bayesian networks. The work applies statistical learning al-
gorithms over system level metrics (CPU, memory, network
I/O statistics) to predict the anomalous behaviour. However,
the author does not provide information about the prediction
efficiency.

The work in [61] predicts the impact of processor cache
interference among consolidated workloads at application
level. To predict the performance degradation of consolidated
applications, the prediction technique is only linear to the
number of cores sharing the last-level cache. However, the
author limits its discussion to cache contention issues, ignoring
other resource types.

The work in [47] develops a description language ”Per-
formance Problem Diagnostics Description Model” to specify
the information required for conducting an automatic perfor-
mance problem diagnostics. The work analyses the workload
to detect and categorize the faults into three layers namely.
(1) Symptoms, externally visible indicators of a performance
problem, (2) manifestation, internal performance indicators
or evidences, and (3) root-causes, physical factors whose
removal eliminates the manifestations and symptoms of a
performance incident. However, the approach neither considers
the dependency between faults nor avoids human interaction
(i.e., performance experts should provide heuristics to be able
to detect performance problems). The approach is designed to

248

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



apply for a specific domain, it does not provide a recovery
mechanism to the detected faults neither discovers the depen-
dency between anomalies. Further the approach is based on
predefined heuristics (rules) to detect performance problems.
Consequently, applying the approach on a different domain or
changing the fault model requires heuristics update.

The work in [70] proposes an approach for localizing
anomalies at operation time of a target system using the Kieker
monitoring approach. For the localization of anomalies, the
author calculates an anomaly score for an operation through
specifying a threshold. The author specifies a set of rules
to detect performance anomaly. The rules are continuously
evaluated based on the anomaly score through using fore-
casting techniques to predict future values in a time series.
The author evaluates the observed measurement values, (i.e.
response times) with the forecasted values to detect anomalies.
However, the work ignores the type of the performance
anomaly and anomaly dependency.

The work in [39] localizes faulty resources in cloud en-
vironments through modelling correlations among anomalous
resources. The author uses the graph theory to locate the
correlation between pairs of resources. The author focuses on
analysing the amount of occupied memory in a physical server,
the CPU consumption of a virtual machine, and the number of
connections accepted by an application. However, the author
work does not target anomaly in microservice or container.

In [30] the author studies the performance of several ma-
chine learning models to predict attacks on the IoT systems
accurately. The results show that the random forest model
achieves a promising anomaly prediction comparing to the
other machine learning models. Nevertheless, the work only
concentrates on predicting the network anomaly.

In [34] the author proposes an approach to estimate the
capacity of a microservice by measuring the maximal number
of successfully processed user requests per second for a given
service such that no Service Level Objective SLO is violated.
The author conducts a limited set of load tests followed
by fitting an appropriate regression model to the acquired
performance data. The author work examines the impact of
workload on the CPU and memory usage. The author mentions
that changing the number of requests affects the number of
virtual CPU cores but it does not affect the memory utilization
significantly. However, the work does not predict the future
workload. Also, the work neglects the dependency between
the nodes and services.

The work in [42] investigates the network performance
impact of containers deployed on virtual machines. The author
does several experiments to analyse the network performance
of containers considering the horizontal scaling and network
data transfer rate. Nevertheless, the work concentrates only on
network and its impact on container performance.

In [43] the work explores the affect of microservices on each
other on the same host. The author measures the CPU, memory
and network usage metrics of the containers and nodes.

However, the work is limited to evaluate the current failure
prediction methods in Microservice environment. Moreover,
the work does not locate or detect anomalous behaviour, and
it focuses is CPU-bound workload.

B. Hidden Markov Model

Many literatures use the HMM, and its derivations to detect
anomaly. In [17], the author proposes various techniques
implemented for the detection of anomalies and intrusions in
the network using the HMM.

Ge et al. [19] detect faults in real-time embedded systems.
The authors use the HMM to describe the healthy and faulty
states of a systems hardware components. In [22] the HMM
is used to find which anomaly is part of the same anomaly
injection scenarios.

C. Anomaly Recovery

In [28] the author provides a fault tolerance management
mechanism at the Physical Machines and Virtual Machines
levels. the work uses Redundant Array of Independent Disks
(RAID-6) to optimize the space storage and to recover data
in case of machine failure. The author divides a set of VM
and PM into sub-sets of the same size. The author uses two
services to gather information about a resource status and to
manage resources through adding and deleting resources to
mitigate resource failure. Nevertheless, the author only focuses
on two aspects of recovery: handle the storage disk crash, and
deal with the operating system crash.

Maurya and Ahmad [16] propose an algorithm that dy-
namically estimates the load of each node and migrates the
task on the basis of predefined constraint [31]. However, the
algorithm migrates the jobs from the overloaded nodes to the
underloaded one through working on pair of nodes, it uses a
server node as a hub to transfer the load information in the
network which may result in overhead at the node.

In [77] the author presents a control theory-based con-
solidation approach that mitigates the effects of the cache,
memory and hardware contention of coexisting workloads.
The approach manages interference among consolidated VMs
by dynamically allocating the resources to applications based
on the workload SLAs. But, the author focuses is CPU-bound
workload and compute-intensive applications.

III. SELF-ADAPTIVE FAULT MANAGEMENT

Our ultimate goal is a self-adaptive fault management
architecture [9], [8], [23] for cloud and edge computing that
automatically identifies anomalies by locating the reasons for
degradations of performance, and making explicit the depen-
dency between observed failures and possible faults cause by
the underlying cloud resources.

249

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A. The Fault Management Framework

Our complete architecture consists of two models: (1)
Fault management model that detects and identifies anomalies
within the cloud system. (2) Recovery model that applies
a recovery mechanism considering the type of the detected
anomaly and the resource capacity. Figure 1 presents the
overall architecture. The focus in this paper is on the Fault
management model.

The cloud resources consist of a cluster, which composed
of a set of nodes that host application containers as loads
deployed on them. Each node has an agent that can deploy con-
tainers and discover container properties. We use the container
notion to embody some basic principles of container cluster
solutions [15] such as the Docker Swarm or Kubernetes, to
which we aim to apply our architecture ultimately.

We align the architecture with the Monitor, Analysis, Plan,
Execute based on the anomaly detection Knowledge (MAPE-
K) feedback control loop. The Monitor, collects data regarding
the performance of the system as the observable state of each
resource [18]. This can later be used to compare the detected
status with the currently observed one. Each anomalous state
has a weight (probability of occurrence). The identification
step is followed by the detection to locate the root cause of
anomaly (Analysis and Plan). The identified anomalous state
is added to a queue that is ordered based on its assigned
weight to signify urgency of healing. The Knowledge about
anomalous states are kept on record. Different recovery strate-
gies (Execute) can mitigate the detected anomalies. Different
pre-defined thresholds for recovery activities are assigned to
each anomaly category based on the observed response time
failures. Corresponding rules can be updated with the results
from the recovery stage. This update aids in learning our
models and enhancing the future detection.

The detection of an anomaly is based on using historical per-
formance data to determine probabilities. We classify system
data into two categories. The first one reflects observed system
failures (essentially regarding permitted response time), and
the second one indicates the (hidden) system faults related
to workload fluctuations (e.g., by containers consuming a
resource). We further annotate each behavioural category to
reflect the severity of anomalous behaviour within the system,
and the probability of its occurrence. The response time
behaviour captures the amount of time taken from sending a
request until receiving the response (e.g., creating container(s)
within a node). For example, observed response time can
fluctuate. The classified response time should be linked to the
failure behaviour within the system resources (i.e., CPU) to
address unreliable behaviour. We can also classify the resource
workload into normal load (NL), overload (OL), and underload
(UL) categories to capture the workload fluctuations.

B. Anomaly Detection and Identification

Anomaly detection, the Monitoring stage in the MAPE-K,
collects and classifies system data. It compares new collected

data with previous observations based on the specified rules
in the Knowledge component.

Fault identification, the Analysis and Plan stages in the
MAPE-K, identifies the fault type and its root cause to
explain the anomalous behaviour. The main aim of this step is
specifying the dependency between faults (the proliferation of
an anomaly within the managed resources), e.g., an inactive
container can cause another container to wait for input. We
use the Hierarchical Hidden Markov models (HHMM) [10], a
doubly stochastic model for modeling hierarchical structures
of data, to identify the source of anomalies.

Based on the response time emissions, we trace the path
of the observed states in each observation window. Once
we diagnose anomalous behaviour, the affected nodes are
annotated with a weight, which is a probability of fault
occurrence for an observed performance anomaly. Nodes are
addressed based on a first-detected-first-healed basis.

In order to illustrate the usefulness of this analysis, we also
discuss the fault handling and recovery in the next subsection.
Afterwards, we define the HHMM model structure and the
analysis process in detail.

C. Fault Handling and Recovery

After detecting and identifying faults, a recovery mecha-
nism, the Execute stage in the MAPE-K, is applied to carry
out the load balancing or the other suitable remedial actions,
aiming to improve resource utilization. Based on the type
of the fault, we apply a recovery mechanism that considers
the dependency between nodes and containers. The recovery
mechanism is based on current and historic observations of
response time for a container as well as knowledge about
the hidden states (containers or nodes) that might have been
learned.

The objective of this step is to self-heal the affected re-
source. The recovery step receives an ordered weighted list
of faulty states. The assigned probability of each state based
on a predefined threshold is used to identify the right healing
mechanism, e.g., to achieve fair workload distribution. Once
a state has recovered, it is removed from an anomaly queue,
stored it in the recovered list flagged as ’anomaly free’, and the
rules to enhance the future prediction of the model are updated.
If the recovery process does not succeed, a new weight is
assigned.

We specify the recovery mechanism using the following
aspects: Analysis: relies on the current or historic observation.
Observation: indicates the type of observed failure (e.g., low
response time). Anomaly: reflects the kind of fault (e.g.,
overload). Reason: explains the root causes of the problem.
Remedial Action: explains the solution that can be applied to
solve the problem. Requirements: steps and constraints that
should be considered to apply the action(s). We apply this two
sample strategies below.

250

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



FIGURE 1. THE PROPOSED FAULT MANAGEMENT FRAMEWORK.

D. Motivating Failure/Fault Cases and Recovery Strategies

In the following, we present two samples failure-fault situa-
tions, and suitable recovery strategies. The recovery strategies
are applied based on the observed response time (current and
historic observations), and its related hidden fault states. We il-
lustrate two sample cases–overloaded neighbouring container,
and node overload.
1) Container Neighbour Overload (external dependency): this
happens when a container c3 in node N2 is linked to another
container c2 in another node N1. In another case, some
containers c3 and c4 in N2 dependent on each other, and
container c2 in N1 depends on c3. In both cases c2 in N1

is badly affected once c3 or c4 in N2 are heavily loaded. This
results in a low response time observed from those containers.
Analysis: based on the current/historic observations, hidden
states
Observation: low response time at the connected containers
(overall failure to meet performance targets).
Anomaly: overload in one or more containers results in
underload for another container at different node.
Reason: heavily loaded container with external dependent one
(communication)
Remedial Actions:

Option 1: Separate the overloaded container and the external
one depending on it from their nodes. Then, create a new node
containing the separated containers considering the cluster
capacity. Redirect other containers that communicate with
these 2 containers in the new node. Connect current nodes with
the new one, and calculate the probability of the whole model
to know the number of transitions (to avoid the occurrence of
overload), and to predict the future behaviour.

Option 2: For the anomalous container, add a new one to the
node that has the anomalous container to provide fair workload
distribution among containers considering the node resource
limits. Or, if the node does not yet reach the resource limits
available, move the overloaded container to another node with
free resource limits. At the end, update the node.

Option 3: create another node within the node with anoma-
lous container behaviour. Next, direct the communication of
current containers to this node. We need to redetermine the
probability of the whole model to redistribute the load between
containers. Finally, update the cluster and the nodes.

Option 4: distribute load.

Option 5: rescale node.

Option 6: do nothing, if the observed failure relates to
a regular system maintenance/update, then no recovery is
applied.
Requirements: need to consider node capacity.

2) Node overload (self-dependency)

Analysis: current and historic observations
Observation: low response time at node level (a failure).
Anomaly: overloaded node.
Reason: limited node capacity.
Remedial Actions: Option 1: distribute load. Option 2: rescale
node. Option 3: do nothing.
Requirements: collect information regarding containers and
nodes, consider node capacity and rescale node(s).

IV. ANOMALY DETECTION AND ANALYSIS

A failure is the inability of a system to perform its required
functions within specified performance requirements. Faults
(or anomalies) describe an exceptional condition occurring in
the system operation that may cause one or more failures.
It is a manifestation of an error in system [24]. We assume
that a failure is an undesired response time observed during
a system component runtime (i.e., observation). For example,
fluctuations in workload are faults that may cause a slowdown
in system response time (observed failure).

A. Motivation

As an example, Figure 2 shows several observed failures
and related resource faults in a test environment. These failures
occurred either at a specific time (e.g., F1, F9) or over a period

251

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of time (e.g., F2−F8). These failures result from fluctuations
in resource utilization (e.g., CPU). Utilization measures a
resources capacity that is in use. It helps us in knowing the
resource workload, and helps us in reducing the amount of
jobs from the overloaded resources, e.g., a resource is saturated
when its usage is over 50% of its maximum capacity.

The response time varies between high, low and normal
categories. It is associated with (or caused by) resource work-
load fluctuations (e.g., overload, underload or normal load).
The fluctuations in workload shall be categorised into states
that reflect faults. The anomalous response time is the observed
failure that we use initially to identify the type of workload that
causes the anomalies. In more concrete terms, we can classify
the response time by the severity of a usage anomaly on a
resource: low response time (L) varies from 501 − 1000ms,
normal response time (N) reflects the normal operation time
of a resource and varies from 201−500ms, and high response
time (H) occurs when a response time is less than or equal to
200ms, which can be used to transfer the workload from the
heavy loaded resources to the underloaded resources.

As a result, the recovery strategy differs based on the
type of observed failure and the hidden fault. The period
of recovery, which is the amount of time taken to recover,
differs based on: (1) the number of observed failures, (2) the
volume of transferred data (nodes with many tasks require
longer recovery time), and (3) network capacity.

B. Observed Failure to Fault Mapping

The first problem is the association of underlying hidden
faults to the observed failures. For the chosen metrics (e.g.,
resource utilization, response time), we can assume prior
knowledge regarding (1) the dependency between containers,
nodes and clusters; (2) past response time fluctuations for the
executable containers; and (3) workload fluctuations that cause
changes in response time. These can help us in identifying
the mapping between anomalies and failures. An additional
difficulty is the hierarchical organisation of clusters consisting
of nodes, which themselves consist of containers. We associate
an observed container response time to its cause at container,
node, or cluster level, where for instance also a neighbouring
container can cause a container to slow down. We define a
mapping based on an analysis of possible scenarios.

The interaction between the cluster, node and container
components in our architecture is based on the following
assumptions. A cluster, which is the root node, is composed of
multiple nodes, and it is responsible for managing the nodes.
A node, which is a virtual machine, has a capacity (e.g.,
resources available on the node such as memory or CPU).
The main job of the node is to submit requests to its un-
derlying substates (containers). Containers are self-contained,
executable software packages. Multiple containers can run on
the same node, and share the operating environment with other
containers. Observations include the emission of failure from
a state (e.g., high, low, or normal response time may emit
from one or more states). Observation probabilities express the

probability of an observation being generated from a resource
state. We need to estimate the observation probabilities in
order to know under which workloads large response time
fluctuations occur and therefore to efficiently utilize a system
resource while achieving good performance.

We need a mechanism that dynamically detects the type
of anomaly and identifies its causes using this mapping. We
identify different cases that may occur at container, node or
cluster levels as illustrated in Figure 3. These detected cases
serve as a mapping between observable and hidden states, each
annotated with a probability of occurrence that can be learned
from a running system as a cause will often not be identifiable
with certainty.

1) Low Response Time Observed at Container Level: There
are different reasons that may cause this:

• Case 1.1. Container overload (self-dependency): means
that a container is busy, causing low response times, e.g.,
c1 in N1 has entered into load loop as it tries to execute its
processes while N1 keeps sending requests to it, ignoring
its limited capacity.

• Case 1.2. Container sibling overloaded (internal con-
tainer dependency): this indicates another container c2
in N1 is overloaded. This overloaded container indirectly
affects the other container c1 as there is a communica-
tion between them. For example, c2 has an application
that almost consumes its whole resource operation. The
container has a communication with c1. At such situation,
when c2 is overloaded, c1 goes into underload, because
c2 and c1 share the resources of the same node.

• Case 1.3. Container neighbour overload (external con-
tainer dependency): this happens when a container c3
in N2 is linked to another container c2 in another node
N1. In another case, some containers c3, and c4 in N2

dependent on each other and container c2 in N1 depends
on c3. In both cases c2 in N1 is badly affected once c3 or
c4 in N2 are heavily loaded. This results in low response
time observed from those containers.

2) Low Response Time Observed at Node Level: There are
different reasons that cause such observations:

• Case 2.1. Node overload (self-dependency): generally
node overload happens when a node has low capacity,
many jobs waited to be processed, or when there is a
problem in network. Example, N2 has entered into self
load due to its limited capacity, which causes an overload
at the container level as well c3 and c4.

• Case 2.2. External node dependency: occurs when a low
response time is observed at node neighbour level, e.g.,
when N2 is overloaded due to low capacity or network
problem, and N1 depends on N2. Such overload may
cause low response time observed at the node level,
which slows the whole operation of a cluster because of
the communication between the two nodes. The reason
behind that is N1 and N2 share the resources of the same

252

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



FIGURE 2. RESPONSE TIME AND WORKLOAD FLUCTUATIONS.

FIGURE 3. THE INTERACTION BETWEEN CLUSTER, NODES AND
CONTAINER.

cluster. Thus, when N1 shows a heavier load, it would
affect the performance of N2.

3) Low Response Time Observed at Cluster Level (Cluster
Dependency): If a cluster coordinates between all nodes and
containers, we may observe low response time at container
and node levels that cause difficulty at the whole cluster level,
e.g., nodes disconnected or insufficient resources.

• Case 3.1. Communication disconnection may happen due
to problem in the node configuration, e.g., when a node
in the cluster is stopped or disconnected due to failure or
a user disconnect.

• Case 3.2. Resource limitation happens if we create a
cluster with too low capacity which causes low response
time observed at the system level.

This mapping between anomalies and failures across the
three hierarchy layers of the architecture needs to be for-
malised in a model that distinguishes observations and hidden
states, and that allows weight to be attached. Thus, the
HHMMs are used to reflect the system topology.

C. Hierarchical Hidden Markov Model

The Hierarchical Hidden Markov Model (HHMM) is a gen-
eralization of the Hidden Markov Model (HMM) that is used

to model domains with hierarchical structure (e.g., intrusion
detection, plan recognition, visual action recognition). The
HHMM can characterize the dependency of the workload (e.g.,
when at least one of the states is heavy loaded). The states
(cluster, node, container) in the HHMM are hidden from the
observer, and only the observation space is visible (response
time). The states of the HHMM emit sequences rather than
a single observation by a recursive activation of one of the
substates (nodes) of a state (cluster). This substate might also
be hierarchically composed of substates (containers). Each
container has an application that runs on it. In case a node or a
container emit observation, it is considered a production state.
The states that do not emit observations directly are called
internal states. The activation of a substate by an internal state
is a vertical transition that reflects the dependency between
states. The states at the same level have horizontal transitions.
Once the transition reaches to the End state, the control returns
to the root state of the chain as shown in Figure 4. The edge
direction indicates the dependency between states.

The HHMM is identified by HHMM =< λ, θ, π >. The
λ is a set of parameters consisting of horizontal ζ and vertical
χ transitions between states qd, state transition probability A,
observation probability distribution B, initial transition π; d
specifies the number of vertical levels, i the horizontal level
index, the state space SP at each level and the hierarchical
parent-child relationship qdi , qd+1

i . The Σ consists of all
possible observations O. γin is the transition to qdj from any
qdi . γout is the transition of leaving qdj from any qdi .

We choose HHMM as every state can be represented as a
multi-levels HMM in order to:

1) show communication between nodes and containers,
2) demonstrate impact of workloads on the resources,
3) track the anomaly cause,
4) represent the response time variations that emit from

nodes and containers.

253

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



FIGURE 4. HHMM FOR WORKLOAD.

D. Detection and Root Cause Identification using HHMM

Each state may show an overload, underload or normal load
state. Each workload is correlated to the resource utilization
such as the CPU, and it is associated with the response time
observations that are emitted from a container or node through
the above case mapping. The existence of anomalous workload
in one state not only affects the current state, but it may also
affect the other states in the same level or across the levels.
The vertical transitions in Figure 4 trace the fault and identify
the fault-failures relation. The horizontal transitions show the
request/reply transfered between states.

The observation O is denoted by Fi = {f1, f2, ..., fn} to
refer to the response time observations sequence (failures).
The substate and production states are denoted by N and C
respectively. A node space SP containing a set of containers,
N2

1 = {C3
1 , C

3
2}, N2

3 = {C3
3 , C

3
4}. Each container produces

an observation that reflects the response time fluctuation,
C3

1 = {f1}, C3
2 = {f1}, C3

3 = {f2}. A state C starts operation
at time t if the observation sequence (f1, f2, ..., fn−1) is
generated before the activation of its parent state N . A state
ends its operation at time t if the Ft is the last observation
generated by any of the production states C reached from N ,
and the control returns to N from Cend. The state transition
probability A

Nd
i

ij = (aN
d

ij ), aN
d

ij = P (Nd+1
j |Nd+1

i ) indicates
the probability of making a horizontal transition from Nd

i to
Nd

j . Both states are substates of cluster1.
An observed low response time might reflect some overload

(OL). This overload can occur for a period of time or at
a specific time before the state might return to the normal
load (NL) or underload (UL). This fluctuation in workload is
associated with a probability that reflects the state transition
status from the OL to NL (PFOL→NL) at a failure rate <,
which indicates the number of failures for a N , C or cluster
over a period of time. Sometimes, a system resource remains
OL/UL without returning to its NL. We reflect this type of
fault as a self-transition overload/underload with probability
PFOL (PFUL). Further, a self-transition is applied on normal

load PFNL to refer to continuous normal behaviour. In order
to address the reliability of the proposed fault analysis, we
define a fault rate based on the number of faults occurring
during system execution <(FN) and the length of failure
occurrences <(FL) as depicted in ”(1)” and ”(2)”.

<(FN) =
No of Detected Faults

Total No of Faults of Resource
(1)

<(FL) =
Total T ime of Observed Failures

Total T ime of Execution of Resource
(2)

As failure varies over different periods of time, we can
also determine the Average Failure Length (AFL). These
metrics feed later into a proactive recovery mechanism. Pos-
sible observable events can be linked to each state (e.g., low
response time may occur for an overload state or normal load)
to determine the likely number of failures observed for each
state, and to estimate the total failures numbers for all the
states. To estimate the probability of a sequence of failures
(e.g., probability of observing low response time for a given
state). Its sum is based on the probabilities of all failure
sequences that generated by (qd−1), and where (qdi ) is the
last node activated by (qd−1) and ending at the End state.
This is done by moving vertically and horizontally through the
model to detect faulty states. Once the model reaches the end
state, it has recursively moved upward until it reaches the state
that triggered the substates. Then, we sum all possible starting
states called by the cluster and estimate the probability.

We use the generalized Baum-Welch algorithm [10] to
train the model by calculating the probabilities of the model
parameters. As shown in ”(3)” and ”(4)”, first, we calculate
the number of horizontal transitions from a state to another,
which are substates from qd−1, using ξ as depicted in ”(3)”.
The γin refers to the probability that the O is started to be
emitted for statedi at t. statedi refers to container, node, or
cluster. The γout refers to the O of statedi are emitted and

254

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



finished at t. Second, as in ”(4)”, χ(t, Cd
i , Nl) is calculated to

obtain the probability that stated−1 is entered at t before Ot

to activate state statedi . The α and β denote the forward and
backward transition from bottom-up.

ξ(t, Cd
i , C

d
End, Nl) =

1

P (O|λ)[∑t
s=1 γin(Nl, cluster) α(t, Cd

i , Nl)
]

aCl

Endγout(t, Cl, cluster)

(3)

χ(t, Cd
i , Nl) =

γin(t,Nl, cluster)π
Nl(Cd

i )

P (O|λ)[∑T
e=t β(t, e, Cd

i , Nl)γout(e,Nl, cluster)
] (4)

The output of the algorithm is used to train the Viterbi
algorithm to find the anomalous hierarchy of the detected
anomalous states. As shown in ”(5)-(7)”, we recursively calcu-
late = which is the ψ for a time set (t̄ = ψ(t, t+k,Cd

i , C
d−1)),

where ψ is a state list, which is the index of the most
probable production state to be activated by Cd−1 before
activating Cd

i . t̄ is the time when Cd
i is activated by Cd−1.

The δ is the likelihood of the most probable state sequence
generating (Ot, · · · , O(t+k)) by a recursive activation. The τ
is the transition time at which Cd

i is called by Cd−1. Once all
the recursive transitions are finished and returned to cluster
, we get the most probable hierarchies starting from cluster
to the production states at T period through scanning the sate
list ψ, the states likelihood δ, and transition time τ .

L = max
(1≤r≤Nd

i )

{
δ(t̄, t+ k,Nd+1

r , Nd
i ) a

Nd
i

End

}
(5)

= = max
(1≤y≤Nj−1)

{
δ(t, t̄− 1, Nd

i , N
d−1)aN

d−1

End L
}

(6)

stSeq = max
cluster

{
δ(T, cluster), τ(T, cluster), ψ(T, cluster)

}
(7)

Once we have trained the model, we compare the detected
hierarchy against the observed one to detect and identify the
type of workload. If the observed hierarchy and detected one
is similar, and within the specified threshold, then the status of
the observed component is declared as ’Anomaly Free’, and
the architecture returns to gather more data for further investi-
gation. Otherwise, the hierarchy with the lowest probabilities is
considered anomaly. Once we detect and identify the workload
type (e.g., OL), a path of faulty states (e.g., cluster, N2

1 , C3
2

and C3
3 ) is obtained that reflects observed failures. We repeat

these steps until the probability of the model states become
fixed. Each state is correlated with time that indicates: the time
of its activation, its activated substates, and the time at which
the control returns to the calling state. This helps us in the
recovery procedure as the anomalous state is recovered first
come-first heal.

E. Workload and Resource Utilization Correlation

To check if the occurrence of an anomaly at cluster, node,
container resource due to a workload, we calculate the corre-
lation between the workload (user transactions), and resource
utilization to specify thresholds for each resource. The user
transactions refer to the request rate per second. Thus, we
used the Spearman’s rank correlation coefficient to generate
threshold to indicate the occurrence of fault at the monitored
metric in multiple layers.

Our target is to group similar workload for all containers
that run the same application in the same period. So that
the workloads in the same period have the similar user
transactions and resource demand. We add a unique workload
identifier to the group of workloads in the same period to
achieve traceability through the entire system. We utilize the
probabilities of states transitions that we obtain from the
HHMM to describe workload during T period. We transform
the obtained probabilities to get a workload behaviour vector
ω to characterize user transactions behaviours as in ”(8)”.

ω = {Cd=3
i=1 , · · · , Cd=n

j=m, · · · , Nd=2
i=1 , · · · , Nd=n

j=m, · · · , cluster}
(8)

The correlation between the workload and resource utiliza-
tion metric is calculated in the normal load behaviour to be a
baseline. In case the correlation breaks down, then this refers
to the existence of anomalous behaviour (e.g., OL).

V. EVALUATION

The proposed architecture is run on the Kubernetes and
docker containers. We deploy the TPC-W1 benchmark on
the containers to validate the architecture. We focus on three
types of faults the CPU hog, Network packet loss/latency, and
performance anomaly caused by workload congestion.

A. Environment Set-Up

To evaluate the effectiveness of the proposed architecture,
the experiment environment consists of three VMs. Each VM
is equipped with Linux OS, 3 VCPU, 2 GB VRAM, Xen 4.11
2, and an agent. Agents are installed on each VM to collect the
monitoring data from the system (e.g., host metrics, container,
performance metrics, and workloads), and send them to the
storage to be processed. The VMs are connected through a
100 Mbps network. For each VM, we deploy two containers,
and we run into them the TPC-W benchmark.

The TPC-W benchmark is used for resource provisioning,
scalability, and capacity planning for e-commerce websites.
The TPC-W emulates an online bookstore that consists of 3
tiers: client application, web server, and database. Each tier is
installed on VM. We do not consider the database tier in the
anomaly detection and identification, as a powerful VM should
be dedicated to the database. The CPU and Memory utilization

1http://www.tpc.org/tpcw/
2https://xenproject.org/

255

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



are gathered from the web server, while the Response time is
measured from clients end. We run the TPC-W for 300 min.
The number of records that we obtained from the TPC-W is
2000.

We use the docker stats command to obtain a live data
stream for running containers. The SignalFX Smart Agent3

monitoring tool is used and configured to observe the runtime
performance of components and their resources. We also use
the Heapster4 to group the collected data, and store them in
a time series database using the InfluxDB5. The data from
the monitoring and from datasets are stored in the Real-
Time/Historical Data storage to enhance the future anomaly
detection. The gathered datasets are classified into training
and testing datasets 50% for each. The model training lasts
150 minutes.

B. Fault Scenarios

To simulate real anomalies of the system, script is written to
inject different types of anomalies into nodes and containers.
The anomaly injection for each component last 5 minutes to
be in total 30 minutes for all the system components. The
starting and end time of each anomaly is logged.

• CPU Hog: such anomaly is injected to consume all the
CPU cycles by employing infinite loops. The stress6 tool
is used to create pressure on CPU

• Network packet loss/latency: the components are injected
with anomalies to send or accept a large amount of
requests in network. Pumba7 is used to cause network
latency and package loss

• Workload contention: web server is emulated using client
application, which generates workload (using Remote
Browser Emulator) by simulating a number of user re-
quests that is increased iteratively. Since the workload is
always described by the access behaviour, we consider the
container is gradually loaded within [30-2000] emulated
users requests, and the number of requests is changed
periodically. The client application reports response time
metric, and the web server reports CPU and Memory uti-
lization. To measure the number of requests and response
(latency), the HTTPing8 is installed on each node. Also,
the AWS X-Ray9 is used to trace of the request through
the system.

C. Fault-Failure Mapping Detection and Identification

To address the fault-failure cases, the fault injection (CPU
Hog and Network packet loss/latency) is done at two phases:
(1) the system level (nodes), (2) components such as nodes
and containers, one component at a time. The detection and

3https://www.signalfx.com/
4https://github.com/kubernetes-retired/heapster
5https://www.influxdata.com/
6https://linux.die.net/man/1/stress
7https://alexei-led.github.io/post/pumba docker netem/
8https://www.vanheusden.com/httping/
9https://aws.amazon.com/xray/

identification are different as the injection time is varied from
one component to another. The injection pause time between
each injected fault is 180 sec.

a) Low Response Time Observed at Container Level:
Case 1.1. Container overload (self-dependency): here, we add
a new container C3

5 in N2
1 , and we inject it by one anomaly at

a time. For the CPU Hog, the anomaly is injected at 910 sec. It
takes from the model 30 sec to detect the anomaly and 15 sec
to localize it. For the Network packet loss/latency, the injection
of anomaly happens at 1135 sec, and the model detects and
identifies the anomaly at 1145 and 1163 sec respectively as
shown in Table I.

TABLE I. CONTAINER OVERLOAD SELF-DEPENDENCY ANOMALY
SCENARIO.

Container overload
Anomaly

Injection Detection Localization Type
C3

5 910 940 955 CPU hog
1135 1145 1163 Network

Case 1.2. Container sibling overloaded (internal container
dependency): in this case, the injection occurs at C3

3 which
in relation with C3

4 . The CPU injection begin at 700 sec for
C3

3 , the model detects the anomalous behaviour at 710 sec and
localizes it at 725 sec. For Network packet loss/latency, the
injection of anomaly occurs at 905 sec. The model needs 46
sec for the detection and 19 sec for the identification. For the
C3

4 the detection happens 34 sec later the detection of C3
3 for

the CPU Hog and the anomaly is identified at 754 sec. For
the Network, the detection and identification occur at 903 and
990 sec respectively as shown in Table II.

TABLE II. CONTAINER OVERLOAD INTERNAL-DEPENDENCY ANOMALY
SCENARIO.

Container overload
Anomaly

Injection Detection Localization Type
C3

3 700 710 725 CPU hog
905 951 970 Network

C3
4 744 754 CPU hog

903 990 Network

Case 1.3. Container neighbour overload (external container
dependency): at this case, a CPU Hog is injected at C3

1

which in relation with C3
3 . The injection begin at 210 sec.

After training the HHMM, the model detects and localizes
the anomalous behaviour for C3

1 at 225 and 230 sec. For
Network fault, the injection occurs at 415 sec for C3

1 . The
model takes 429 sec for the detection and 450 sec for the
identification. While for C3

3 , the CPU and Network faults are
detected at 215/423 sec and identified at 240/429 sec as shown
in Table III.

b) Low Response Time Observed at Node Level: Case
2.1. Node overload (self-dependency): at this case we create
a new node N2

4 with small application and we inject the node
by one anomaly at a time. For the CPU Hog, the anomaly is
injected at N2

4 . The injection begins at 413 sec. After training
the HHMM, the model detects the anomalous behaviour at

256

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE III. CONTAINER OVERLOAD EXTERNAL-DEPENDENCY ANOMALY
SCENARIO.

Container overload
Anomaly

Injection Detection Localization Type
C3

1 210 225 230 CPU hog
415 429 450 Network

C3
3 215 240 CPU hog

423 429 Network

443 sec and localizes it at 461 sec. For the Network packet
loss/latency, the injection of anomaly happens at 1210 sec, and
the model detects and identifies anomaly at 1260 and 1275 sec
respectively as shown in Table IV.

TABLE IV. NODE OVERLOAD SELF-DEPENDENCY ANOMALY SCENARIO.

Node overload
Anomaly

Injection Detection Localization Type
N2

4 413 443 461 CPU hog
1210 1260 1275 Network

Case 2.2. External node dependency: at such situation, a
CPU Hog anomaly is injected at N2

1 . The injection begins
at 813 sec. After training the HHMM, the model detects the
anomalous behaviour at 846 sec and localizes it at 862 sec. For
Network packet loss/latency, the injection of anomaly occurs
at 1024 sec. The model needs 1084 sec for the detection and
1115 sec for the identification as shown in Table V.

TABLE V. NODE OVERLOAD EXTERNAL-DEPENDENCY ANOMALY
SCENARIO.

Node overload
Anomaly

Injection Detection Localization Type
N2

1 813 846 862 CPU hog
1024 1084 1115 Network

c) Low Response Time Observed at Cluster Level (Clus-
ter Dependency): Case 3.1. Communication disconnection:
at this case, we terminate the containers in N2

3 , and we
send a request to the TPC-W server (N2

3 ). The detection
and identification for each network fault are 585 sec for
the detection and 610 sec for the identification as shown in
Table VI.

TABLE VI. CLUSTER OVERLOAD COMMUNICATION DISCONNECTION
ANOMALY SCENARIO.

Cluster overload
Anomaly

Detection Localization
N2

3 585 610

Case 3.2. Resource limitation: at this case, we inject N2
1 ,

and N2
3 at the same time with the CPU Hog fault to exhaustive

the nodes capacity. The injection, detection, and identification
are 1120, 1181, and 1192 sec. For the Network fault, the injec-
tion happens at 1372 sec, and the detection, and identification
are at 1387, and 1392 sec as shown in Table VII.

TABLE VII. CLUSTER OVERLOAD RESOURCE LIMITATION ANOMALY
SCENARIO.

Cluster overload
Anomaly

Injection Detection Localization Type
N 1120 1181 1192 CPU hog

1372 1387 1392 Network

D. Detection and Identification of Workload Contention

For the workload, to show the influence of workload on
CPU utilization monitored metric, we measure the response
time (i.e., the time required to process requests), and through-
put (i.e., the number of transactions processed during a period).
We first generate gradual requests/sec at the container level.
The number of user requests increases from 30 to 2000 with
a pace of 10 users incrementally, and each workload lasts
for 10 min. As shown in Figure 5, the results show that the
throughput increases when the number of requests increases,
then it remains constant once the number of requests reaches
220 request/sec. This means that when the number of user
requests is reached 220 request/sec, the utilization of CPU
reaches a bottleneck at 90%, and the performance degrades.
On the other hand, the response time keep increasing with
the increasing number of requests as shown in Figure 6.
The result demonstrated that the dynamic workloads have a
noticeable impact on the container metrics as the monitored
containers are unable to process more than those requests.
We also notice that there is a linear relationship between the
number of concurrent users and the CPU utilization before
resource contention in each user transaction behaviour pattern.
We calculate the correlation between the monitored metric, and
the number of user requests. We obtain a strong correlation
between the two measured variables reaches 0.25775 for two
variables. The result concludes that the number of requests
influences the performance of the monitored metrics.

FIGURE 5. WORKLOAD - THROUGHPUT AND NUMBER OF USER
REQUESTS.

E. Assessment of Detection and Identification

The model performance is compared with other techniques
such as the Dynamic Bayesian Network (DBN) and the Hierar-
chical Temporal Memory (HTM). To evaluate the effectiveness

257

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



FIGURE 6. WORKLOAD - RESPONSE TIME AND NUMBER OF USER
REQUESTS.

of anomaly detection, common measures [25] in anomaly
detection are used:
Root Mean Square Error (RMSE) measures the differences
between detected and observed value by the model. A smaller
RMSE value indicates a more effective detection scheme.
Mean Absolute Percentage Error (MAPE) measures the de-
tection accuracy of a model. Both RMSE and MAPE are
negatively-oriented scores, i.e., lower values are better.
Number of Correctly Detected Anomaly (CDA) It measures
percentage of the correctly detected anomalies to the total
number of detected anomalies in a given dataset. High CDA
indicates the model is correctly detected anomalous behaviour.
Recall measures the completeness of the correctly detected
anomalies to the total number of anomalies in a given dataset.
Higher recall means that fewer anomaly cases are undetected.
Number of Correctly Identified Anomaly (CIA) is the number
of correct identified anomalies (NCIA) out of the total set of
identification, which is the number of correct identification
(NCIA) + the number of incorrect identifications (NICI)).
The higher value indicates the model is correctly identified
anomalous component.

CIA =
NCIA

NCIA+NICI
(9)

Number of Incorrectly Identified Anomaly (IIA) is the number
of identified components which represents an anomaly but
misidentified as normal by the model. A lower value indicates
that the model correctly identified anomalies.

IIA =
FN

FN + TP
(10)

FAR is the number of the normal identified component which
has been misclassified as anomalous by the model.

FAR =
FP

TN + FP
(11)

The false positive (FP) means the detection/identification of
anomaly is incorrect as the model detects/identifies the normal

behaviour as anomaly. True negative (TN) means the model
can correctly detect and identify normal behaviour as normal.

TABLE VIII. VALIDATION RESULTS.

Metrics HHMM DBN HTM
RMSE 0.23 0.31 0.26
MAPE 0.14 0.27 0.16
CDA 96.12% 91.38% 94.64%
Recall 0.94 0.84 0.91
CIA 94.73% 87.67% 93.94%
IIA 4.56% 12.33% 6.07%
FAR 0.12 0.26 0.17

The results in Table VIII depict that both the HHMM and
HTM achieve good results for the detection and identification.
While the results of the DBN a little bit decayed for the CDA
with approximately 5% than the HHMM and 3% than the
HTM. The three algorithms can detect obvious anomalies in
the datasets. Both the HHMM and HTM show higher detection
accuracy as they are able to detect temporal anomalies in the
dataset. The result interferes that the HHMM is able to link
the observed failure to its hidden workload.

VI. USE CASE DISCUSSION

In order to illustrate the architecture, we discuss here two
use cases. The first addresses a widely used cloud setting,
where clusters of containers are managed by an orchestration
solution such as the Kubernetes. The second looks at an
edge cloud scenario, where a cluster of constrained hardware
devices hosts container clusters.

A. Use Case: Cloud Container Management

Containers have grown in popularity in recent years and
are now widely used as the unit of software deployment, also
in cloud environments. Many cloud infrastructure (IaaS) and
platform service (PaaS) providers offer container deployment
options. In many cases, an orchestration tool like the Kuber-
netes10, see Figure 7, that supports automated deployment,
scaling and management of containerized applications are used
by the providers, see Figures 8 and 7. These are typically ho-
mogeneous cloud container cluster in terms of the underlying
infrastructure.

A problem that becomes apparent here is that a service
consumer have access to monitoring data at the service level,
but not necessarily at the underlying (physical) infrastructure
level [40]. Nonetheless, service consumer are often given
access to controllers that can for instance auto-scale the
application deployed.

In this case, the user can be provided with a trained HMM
that reflects possible faults for the observed failures.

B. Use Case: Edge Cloud Orchestration

Containers as a more lightweight form of virtualisation
compared to virtual machines (VMs) consume less resources.
They compare favourably to VMs in terms of startup time to

10https://kubernetes.io/

258

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



FIGURE 7. A CLUSTER ARCHITECTURE BASED ON KUBERNETES
ARCHITECTURAL CONCEPTS.

FIGURE 8. A DISTRIBUTED SYSTEM FOR CLOUD AND EDGE COMPUTING
BASED ON CONTAINERS.

memory/storage needs. This makes containers more suitable to
be utilised outside the classical centralised cloud environment.
Here, edge cloud infrastructures that provide computational
capabilities for IoT or other remote application can benefit
from the containers’ lightweightness. This is in particular
useful if the edge infrastructure is limited in terms of its
capabilities.

For the latter situation, we consider here a cluster on
single-board devices as the physical infrastructure to host the

FIGURE 9. KUBERNETES AUTO-SCALING BASED ON THE HPA
HORIZONTAL POD AUTOSCALER.

FIGURE 10. A DOCKER SWARM MANAGED ARCHITECTURE FOR
CONTAINER ORCHESTRATION.

FIGURE 11. A DOCKER CONTAINER ARCHITECTURE FOR DATA STREAM
PROCESSING WITH MONITORING SUPPORT.

container cluster platform. Specifically, we use Raspberry Pi11

devices in this use case. In our experiments, we use the Docker
Swarm12 as the container orchestration tool, see Figure 10.

C. Use Case Scenario: Smart Farming

We categories the fault/failure cases, in which observable
failures (to meet QoS requirements) are mapped to their root
causes, i.e., the faults that have caused them. Examples are
an overloaded container itself or a neighbouring container on
which a container depends (e.g., is waiting for an answer) [23],
[44]. We use the Markov models to reflect the possibility of
several causes and the likelihood of each of these. Typical
fault types are the CPU hog, network latency or workload
contention.

For each of these mapping cases, we associate suitable
remedial actions, such as workload distribution, container
migration or resource rescaling.

These can be illustrated in a smart farming scenario. We as-
sume here three central services: an animal stable in which air
conditioning and feeding are automated, an outdoor irrigation
system and support for tractor and machinery positioning in

11https://www.raspberrypi.org/
12https://docs.docker.com/engine/swarm/

259

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



FIGURE 12. A DOCKER CONTAINER DISTRIBUTION FOR A RASPBERRY PI HOSTED CLUSTER.

remote fields. In particular, the outdoor services rely on low-
power infrastructure to allow battery and/or solar panel driven
energy supply. The indoor service requires reliability based on
robust, but also redundant device infrastructures that can work
in challenging conditions (e.g., dirt). The following problem
situations are possible, and can be supported by our solution:

• Configuration and Testing: during installation or main-
tenance, increased demands on particular devices (e.g.,
CPU hogs) can emerge if data-rich test programs are
run. Here, migrating containers (i.e., repurposing devices
outside the actual service domain) can help.

• Increased Mobility: a higher number of vehicles on the
fields might need to be coordinated, for instance during
harvest time. This increase the latency problems in the
network for both the coordination between vehicles and
also recording of data on a central server. Here, moving
containers for data preprocessing close to the vehicles can
help to reduce the data volume on the network.

Our work in [20], [45] demonstrates how a container cluster
solution implemented on Raspberry Pis can support this type
of scenario. There, the Docker Swarm based management
supports containers for data stream processing (the Apache

Park), supported by the Prometheus as a monitoring tool,
the Grafana for analyse/visualised data and databases like the
InfluxDB to store data, see Figures 11 and 12.

The HMM identifies different anomaly states [1]. These
are dependent on the monitored performance and work-
load/utilisation metrics. In other works [33], [35], we have
used fuzzy logic to map monitored data to so-called member-
ship functions that represent these different states. We refer
the reader to these works for more detail. Here we focus on
the anomaly processing.

VII. DISCUSSION – TRUST ANOMALIES

Anomaly detection and analysis techniques normally ad-
dress performance and resource management in the context of
software systems management. Another quality concern that
is different from performance and resource consumption is the
context of security and trust. Any open software system has a
range of security vulnerabilities. Thus, checking continuously
for anomalies in order to find unusual behaviour that might
indicate attacks or the loss of information in some form is
consequently also a relevant anomaly detection concern.

The concept of trust is here a related aspect that covers
security but also the trust into the measurement and handling

260

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of performance and other technical factors. A trust problem
occurs if providers and consumers of services meet in an
environment where no prior trust relationship exists. A trust
anomaly here is a situation in which the delivery of a pre-
viously guaranteed service (or the promise of its delivered
quality) is in doubt. An anomaly detection solution as the one
presented here can help to proactively invoke a remedial action
or to record more detailed information (in a tamper-proof way
to avoid trust issues to arise). This would allow the analysis
and resolution of disputes at a later stage.

The management of trust regarding the Quality-of-Service
(QoS) compliance using a trust anomaly management solution
shall now be discussed. If a-priori trust does not exist, it
is crucial to capture, collect and store necessary information
in a tamper-proof way that neither party can interfere with.
Distributed ledger technology in the form of blockchains as
mechanism to manage anomalies is a possible solution. A
blockchain is a distributed data store for digital transactions,
ressembling a ledger [55], [48], [48]. The blockchains are
used for various applications [59], [63], [58], [56], [57].
These blocks are connected and secured using cryptographic
mechanisms. Each of the blocks contains a cryptographic hash
of the previous block, and also a timestamp and transaction
data. Thus, a blockchain is inherently tamper-proof by design,
which means it is resistant to modification of stored data.

This blockchain idea applies in case a consumer requires
trustworthy documentation for instance in failure cases, but
these blockchains maybe also always be used if a provider
need assurance about having provided as planned or promised
in a contract. More concretely, an anomaly detection mecha-
nism as we introduced above can now, if the QoS compliance
is for example under threat, switch on blockchain storage
[55], [41], [37]. This could be as remedial supportive action
for later analysis that can provide the required tamper-proof
information for the recovery or dispute solving. This solution
remains a part of the future work on our anomaly management
architecture. However, this short discussion shows that the
architecture presented is not limited to performance concerns
and immediate remedial actions only, but that other quality
concerns can be considered and long-term disputes over the
origin and responsibilities can be solved.

VIII. CONCLUSION AND FUTURE WORK

Cloud environments cause separation between providers and
consumers. The virtualisation in these contexts does anyway
separate the physical view from the logical perspective. Fur-
thermore, only providers have access to the infrastructure,
which means that consumers cannot always accurately inter-
pret observed anomalies in application and service behaviour.
We have introduced a architecture for the detection and
identification of anomalies. The key objective is to provide an
analysis feature that maps observable quality concerns onto
hierarchical hidden resources in a clustered environment and
their operation in order to identify the reason for performance
degradations and other anomalies.

As the formal model, so-called the Hidden Hierarchical
Markov Models (HHMM) are used to represent the hierarchi-
cal nature of the unobservable resources. We have analysed
mappings between observations and resource usage based on
a clustered container scenario. To evaluate the performance of
the proposed architecture, the HHMM is compared with other
machine learning algorithms such as the Dynamic Bayesian
Network (DBN), and the Hierarchical Temporal Memory
(HTM). The results show that the proposed architecture is
able to detect and identify anomalous behaviour with more
than 96%, which demonstrates the suitability of the solution.

We have been focusing specifically on clustered cloud
environments as the architectural setting [52], [49], [69], [68],
ultimately aiming at self-adaptation in the recovery process
[66], [51]. In addition, we have selected the now widely used
container technology as the deployment solution [40], [78].
The use cases that we have discussed here reflect this setting
and show the suitability of the proposed architecture in this
context.

As part of our future work, we are planning to fully imple-
ment the architecture. Also, carrying out further experiments
is expected to fully confirm these given conclusions here is a
wider range of application settings. Furthermore, another aim
is to provide a self-healing mechanism to recover the localized
anomalies detected.

On a more practical side, we want to follow the focus on
containers further and aim to explore concerns from microser-
vice architectures [21], [65], [67] and containers [32], [20] as
their deployment technology in future investigations.

Anomalies are generally considered to be situations that
impact on clearly specified system requirements, like perfor-
mance. These might in turn impact on the user to fulfill her/his
objectives with the system in question. An interesting possible
investigation in the future could approach this more clearly
from the user perspective. Providing a semantic context of
activities would here be a first step [62], [53]. As a concrete
application area where the user objectives are complex is
educational technology systems [71], [72], [73], [74], where
learning activities as cognitive processes need to be facilitated
[75], [76]. This shall be looked at as well.

REFERENCES

[1] A. Samir and C. Pahl, “Anomaly Detection and Analysis
for Clustered Cloud Computing Reliability,” in The Tenth
International Conference on Cloud Computing, GRIDs,
and Virtualization, 110–119. 2019.

[2] C. Pahl, P. Jamshidi, and O. Zimmermann, “Architectural
principles for cloud software,” in ACM Transactions on
Internet Technology (TOIT), 18 (2), 17. 2018.

[3] C. Pahl, I. Fronza, N. El Ioini, and H. Barzegar, “A
Review of Architectural Principles and Patterns for Dis-
tributed Mobile Information Systems,” in 14th Intl Conf
on Web Information Systems and Technologies. 2019.

[4] D. von Leon, L. Miori, J. Sanin, N. El Ioini, S. Helmer,
and C. Pahl, “A Lightweight Container Middleware for

261

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Edge Cloud Architectures,” in Fog and Edge Computing:
Principles and Paradigms, 145–170. 2019.

[5] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure Pre-
diction of Jobs in Compute Clouds: A Google Cluster
Case Study,” in International Symposium on Software
Reliability Engineering, ISSRE, pp. 167–177. 2014.

[6] G. C. Durelli, M. D. Santambrogio, D. Sciuto, and
A. Bonarini, “On the Design of Autonomic Techniques
for Runtime Resource Management in Heterogeneous
Systems,” PhD dissertation, Politecnico di Milano. 2016.

[7] T. Wang, J. Xu, W. Zhang, Z. Gu, and H. Zhong,
“Self-adaptive cloud monitoring with online anomaly
detection,” in Fut Gen Computer Systems, 80:89-101.
2018.

[8] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A. Met-
zger, and G. Estrada, “Fuzzy self-learning controllers for
elasticity management in dynamic cloud architectures,”
in 12th International ACM SIGSOFT Conference on
Quality of Software Architectures, QoSA, 70–79. 2016.

[9] P. Jamshidi, A. Sharifloo, C. Pahl, A. Metzger, and
G. Estrada, “Self-learning cloud controllers: Fuzzy q-
learning for knowledge evolution,” in Intl Conference on
Cloud and Autonomic Computing. 208-211. 2015.

[10] S. Fine, Y. Singer, and N. Tishby, “The hierarchical
hidden markov model: analysis and applications,” in
Machine Learning, vol. 32, no. 1, 41–62. 1998.

[11] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya,
“Workload Prediction Using ARIMA Model and Its
Impact on Cloud Applications,” in IEEE Transactions
on Cloud Computing, 3(4):449–458. 2015.

[12] N. Sorkunlu, V. Chandola, and A. Patra, “Tracking
system behaviour from resource usage data,” in Intl
Conference on Cluster Computing, 410–418. 2017.

[13] M. Peiris, J. H. Hill, J. Thelin, S. Bykov, G. Kliot,
and C. Konig, “PAD: Performance anomaly detection in
multi-server distributed systems,” in International Conf
on Cloud Computing, CLOUD, June, 769–776. 2014.

[14] T. F. Düllmann, “Performance anomaly detection in mi-
croservice architectures under continuous change,” Mas-
ter, U Stuttgart, 2016.

[15] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud
container technologies: a state-of-the-art review,” in IEEE
Transactions on Cloud Computing. 2018.

[16] S. Maurya and K. Ahmad, “Load Balancing in Dis-
tributed System using Genetic Algorithm,” in Intl Journal
of Engineering and Technology, 5(2):139–142. 2013.

[17] H. Sukhwani, “A survey of anomaly detection techniques
and hidden markov model,” in International Journal of
Computer Applications, vol. 93, no. 18, 26–31. 2014.

[18] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E.
Lwakatare, C. Pahl, S. Schulte, and J. Wettinger, “Perfor-
mance engineering for microservices: research challenges
and directions,” in ACM/SPEC International Confer-
ence on Performance Engineering Companion, 223–226.
2017.

[19] N. Ge, S. Nakajima, and M. Pantel, “Online diagnosis of

accidental faults for real-time embedded systems using
a hidden Markov model,” in Simulation 91(19):851-868.
2016.

[20] R. Scolati, I. Fronza, N. El Ioini, A. Samir, and C.
Pahl, “A Containerized Big Data Streaming Architecture
for Edge Cloud Computing on Clustered Single-Board
Devices,” in 10th International Conference on Cloud
Computing and Services Science, 68-80. 2019.

[21] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural Pat-
terns for Microservices: A Systematic Mapping Study,”
in Proceedings CLOSER Conference, 221–232. 2018.

[22] G. Brogi, “Real-time detection of advanced persistent
threats using information flow tracking and hidden
markov,” Doctoral dissertation. 2018.

[23] A. Samir and C. Pahl, “A Controller Architecture for
Anomaly Detection, Root Cause Analysis and Self-
Adaptation for Cluster Architectures,” in The Eleventh
International Conference on Adaptive and Self-Adaptive
Systems and Applications, 75–83. 2019.

[24] IEEE, “IEEE Standard Classification for Software
Anomalies (IEEE 1044 - 2009),” pp. 1–4. 2009.

[25] K. Markham, “Simple guide to confusion matrix termi-
nology,” 2014.

[26] B. Magableh and M. Almiani, “A Self Healing Mi-
croservices Architecture: A Case Study in Docker Swarm
Cluster,” in Intl Conference on Advanced Information
Networking and Applications, 846–858. 2019.

[27] C. Pahl, “An ontology for software component match-
ing,” in International Conference on Fundamental Ap-
proaches to Software Engineering, 6–21. 2003.

[28] A. Khiat, “Cloud-RAIR: A Cloud Redundant Array of
Independent Resources,” in Intl Conference on Cloud
Computing, Grids, and Virtualization, 133–137. 2019.

[29] C. Pahl, N. El Ioini, and S. Helmer, “A Decision
Framework for Blockchain Platforms for IoT and Edge
Computing,” in 3rd International Conference on Internet
of Things, Big Data and Security, 105-113. 2018.

[30] M. Hasan, M. Milon Islam, I. Islam, and M. Hashem,
“Attack and Anomaly Detection in IoT Sensors in IoT
Sites Using Machine Learning Approaches,” in Internet
of Things, vol. 7, 1–14. 2019.

[31] P. Jamshidi, C. Pahl, and N. C. Mendonca, “Pattern-
based multi-cloud architecture migration,” in Software:
Practice and Experience, 47 (9), 1159-1184. 2017.

[32] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S.
Tilkov, “Microservices: The Journey So Far and Chal-
lenges Ahead,” in IEEE Software, 35 (3), 24-35. 2018.

[33] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada,
“A comparison of reinforcement learning techniques for
fuzzy cloud auto-scaling,” in 17th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Comput-
ing. 2017.

[34] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance
modelling for Cloud Microservice Applications,” in
ACM/SPEC International Conference on Performance
Engineering, 25–32. 2019.

262

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[35] P. Jamshidi, C. Pahl, and N. C. Mendonca, “Managing
uncertainty in autonomic cloud elasticity controllers,” in
IEEE Cloud Computing, 50–60. 2016.

[36] C. Pahl and B. Lee, “Containers and clusters for edge
cloud architectures - A technology review,” in IEEE
International Conference on Future Internet of Things
and Cloud, August, 379–386. 2015.

[37] C. Pahl., N. El Ioini, S. Helmer, and B. Lee, “An
architecture pattern for trusted orchestration in IoT edge
clouds,” in The Third International Conference on Fog
and Mobile Edge Computing, FMEC, April, 63–70. 2018.

[38] C. Sauvanaud, M. Kaâniche, K. Kanoun, K. Lazri, and
G. Da Silva Silvestre, “Anomaly detection and diagnosis
for cloud services: Practical experiments and lessons
learned,” in Jrnl of Systems and Software 139:84-106.
2018.

[39] L. Mariani, C. Monni, M. Pezze, O. Riganelli, and
R. Xin, “Localizing Faults in Cloud Systems,” in IEEE
11th International Conference on Software Testing, Ver-
ification and Validation, 262–273. 2018.

[40] F. Ghirardini, A. Samir, I. Fronza, and C. Pahl, “Per-
formance Engineering for Cloud Cluster Architectures
using Model-Driven Simulation,” in ESOCC Workshops
- CloudWays’18. 2019.

[41] C. Pahl, N. El Ioini, S. Helmer, and B. Lee, “A Semantic
Pattern for Trusted Orchestration in IoT Edge Clouds,”
in Internet Technology Letters. 2019.

[42] N. Kratzke, “About Microservices, Containers and their
Underestimated Impact on Network Performance,” in
CoRR, vol. abs/1710.0. 2017.

[43] T. Zwietasch, “Online Failure Prediction for Microser-
vice Architectures,” Master Thesis, U Stuttgart. 2017.

[44] A. Samir and C. Pahl, “Detecting and Predicting Anoma-
lies for Edge Cluster Environments using Hidden Markov
Models,” in IEEE International Conference on Fog and
Mobile Edge Computing, 21–28. 2019.

[45] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, mo-
tivations, and issues for migrating to microservices ar-
chitectures: An empirical investigation,” in IEEE Cloud
Computing, 4 (5), 22-32. 2017.

[46] O. Ibidunmoye, T. Metsch, and E. Elmroth, “Real-time
detection of performance anomalies for cloud services,”
in IEEE/ACM Intl Symposium on Quality of Service.
2016.

[47] A. Wert, “Performance problem diagnostics by system-
atic experimentation,” PhD, KIT. 2015.

[48] N. El Ioini, C. Pahl, and S. Helmer, “A decision frame-
work for blockchain platforms for IoT and edge comput-
ing,” in Proceedings of the 3rd International Conference
on Internet of Things, Big Data and Security. 2018.

[49] D. von Leon, L. Miori, J. Sanin, N. El Ioini, S. Helmer,
and C. Pahl, “A performance exploration of architectural
options for a middleware for decentralised lightweight
edge cloud architectures,” in CLOSER Conference. 2018.

[50] Q. Guan, C. C. Chiu, and S. Fu, “CDA: A cloud de-
pendability analysis framework for characterizing system

dependability in cloud computing infrastructures,” in
Pacific Rim Intl Symp on Dependable Computing, 11–
20. 2012.

[51] H. Arabnejad, C. Pahl, G. Estrada, A. Samir, and F.
Fowley, “A fuzzy load balancer for adaptive fault toler-
ance management in cloud platforms,” in Europ Conf on
Service-Oriented and Cloud Computing, 109-124. 2017.

[52] P. Jamshidi, C. Pahl, S. Chinenyeze, and X. Liu, “Cloud
migration patterns: a multi-cloud service architecture
perspective,” in Service-Oriented Computing ICSOC2014
Workshops, 6-19. 2015.

[53] D. Fang, X. Liu, I. Romdhani, P. Jamshidi, and C. Pahl,
“An agility-oriented and fuzziness-embedded semantic
model for collaborative cloud service search, retrieval
and recommendation,” in Future Generation Computer
Systems 56, 11-26. 2016.

[54] Y. Tan, H. Nguyen, Z. Shen, and X. Gu, “PREPARE :
Predictive Performance Anomaly Prevention for Virtual-
ized Cloud Systems,” in Intl Conference on Distributed
Computing Systems, 285–294. 2012.

[55] N. El Ioini and C. Pahl, “Trustworthy Orchestration of
Container Based Edge Computing Using Permissioned
Blockchain,” in Intl Conference on Internet of Things:
Systems, Management and Security, 147-154. 2018.

[56] C. A. Ardagna, R. Asal, E. Damiani, N. El Ioini,
and C. Pahl, “Trustworthy IoT: An Evidence Collection
Approach Based on Smart Contracts,” in 2019 IEEE
International Conference on Services Computing (SCC),
46–50. 2019.

[57] V. T. Le, C. Pahl, and N. El Ioini, “Blockchain Based
Service Continuity in Mobile Edge Computing,” in 6th
International Conference on Internet of Things: Systems,
Management and Security, 2019.

[58] C. A. Ardagna, R. Asal, E. Damiani, T. Dimitrakos, N. El
Ioini, and C. Pahl, “Certification-based cloud adaptation,”
in IEEE Transactions on Services Computing. 2018.

[59] G. D’Atri, V.T. Le, C. Pahl, and N. El Ioini, “Towards
Trustworthy Financial Reports Using Blockchain,” in
Proceedings Tenth International Conference on Cloud
Computing, GRIDs, and Virtualization. 2019.

[60] N. El Ioini and C. Pahl, “A Review of Distributed Ledger
Technologies,” in On the Move to Meaningful Internet
Systems. OTM 2018 Conferences, 227-288. 2018.

[61] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam,
“Cuanta: Quantifying Effects of Shared On-chip Re-
source Interference for Consolidated Virtual Machines,”
in ACM Symp on Cloud Computing1–14. 2011.

[62] M. Javed, Y. M. Abgaz, and C. Pahl, “Ontology change
management and identification of change patterns,” in
Journal on Data Semantics 2(2-3), 119-143. 2013.

[63] S. Helmer, M. Roggia, N. El Ioini, and C. Pahl,
“EthernityDB - Integrating Database Functionality into
a Blockchain,” in European Conference on Advances in
Databases and Information Systems, 37–44. 2019.

[64] S. Helmer, C. Pahl, J. Sanin, L. Miori, S. Brocanelli, F.
Cardano, D. Gadler, D. Morandini, A. Piccoli, S. Salam,

263

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A. M. Sharear, A. Ventura, P. Abrahamsson, and D.
T. Oyetoyan, “Bringing the cloud to rural and remote
areas via cloudlets,” in Proceedings of the 7th Annual
Symposium on Computing for Development, 14. 2016.

[65] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, “Mi-
croservices in agile software development: a workshop-
based study into issues, advantages, and disadvantages,”
in XP2017 Scientific Workshops, 2017.

[66] N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl,
“Developing Self-Adaptive Microservice Systems: Chal-
lenges and Directions,” in IEEE Software. 2020.

[67] D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices
Anti-Patterns: A Taxonomy,” in Microservices - Science
and Engineering, Springer. 2019.

[68] A. Samir and C. Pahl, “Anomaly Detection and Analysis
for Clustered Cloud Computing Reliability,” in Intl Conf
on Cloud Computing, Grids, and Virtualization. 2019.

[69] A. Samir and C. Pahl, “A Controller Architecture for
Anomaly Detection, Root Cause Analysis and Self-
Adaptation for Cluster Architectures,” in Intl Conf on
Adaptive and Self-Adaptive Systems and Applications.
2019.

[70] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring,
“Self-adaptive software system monitoring for perfor-
mance anomaly localization,” in IEEE International Con-
ference on Autonomic Computing, ICAC, 197–200, 2011.

[71] C. Pahl, “Layered ontological modelling for web service-
oriented model-driven architecture,” in European Con-
ference on Model Driven Architecture-Foundations and
Applications. 2005.

[72] S. Murray, J. Ryan, and C. Pahl, “A tool-mediated
cognitive apprenticeship approach for a computer engi-
neering course,” in Proceedings 3rd IEEE International
Conference on Advanced Technologies, 2-6. 2003.

[73] C. Pahl, R. Barrett, and C. Kenny, “Supporting active
database learning and training through interactive multi-
media,” in ACM SIGCSE Bulletin 36 (3), 27-31. 2004.

[74] C. Kenny and C. Pahl, “Automated tutoring for a database
skills training environment,” in ACM SIGCSE Symposium
2005, 58-64. 2003.

[75] X. Lei, C. Pahl, and D. Donnellan, “An evaluation
technique for content interaction in web-based teaching
and learning environments,” in IEEE International Con-
ference on Advanced Technologies, 294-295. 2003.

[76] M. Melia and C. Pahl, “Constraint-based validation of
adaptive e-learning courseware,” in IEEE Transactions
on Learning Technologies 2(1), 37-49. 2009.

[77] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds:
Managing performance interference effects for QoS-
aware clouds,” in European Conference on Computer
Systems, 237–250. 2010.

[78] F. Ghirardini, A. Samir, I. Fronza, and C. Pahl, “Model-
Driven Simulation for Performance Engineering of
Kubernetes-style Cloud Cluster Architectures,” in ES-
OCC 2018 Workshops, PhD Symposium, EU-Projects,
2019.

264

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


