
Towards an Automated Printed Circuit Board
Generation Concept for Embedded Systems

Tobias Scheipel and Marcel Baunach

Institute of Technical Informatics
Graz University of Technology

Graz, Austria
E-mail: {tobias.scheipel, baunach}@tugraz.at

Abstract—Future embedded systems will need to be generic,
reusable and automatically adaptable for the rapid advance
development of a multitude of different scenarios. Such sys-
tems must be versatile regarding the interfacing of electronic
components, sensors, actuators, and communication networks.
Both the software and the hardware might undergo a certain
evolution during the development process of each system, and will
significantly change between projects and use cases. Requirements
on future embedded systems thus demand revolutionary changes
in the development process. Today these processes start with the
hardware development (bottom-up). In the future, it shall be
possible to only develop application software and generate all
lower layers of the system automatically (top-down). To enable
automatic Printed Circuit Board (PCB) generation, the present
work deals mainly with the question “How to automatically
generate the hardware platform of an embedded system from its
application software?”. To tackle this question, we propose an
approach termed papagenoPCB, which is a part of a holistic
approach known as papagenoX. This approach provides a way to
automatically generate schematics and layouts for printed circuit
boards using an intermediate system description format. Hence,
a system description shall form the output of application software
analysis and can be used to automatically generate the schematics
and board layouts based on predefined hardware modules and
connection interfaces. To be able to edit and reuse the plans after
the generation process, a file format for common electronic design
automation applications, based on Extensible Markup Language
(XML), was used to provide the final output files.

Keywords–embedded systems; printed circuit board; design au-
tomation; hardware/software codesign; systems engineering.

I. INTRODUCTION

Embedded systems are of relevance in virtually every area
of our society. From the simple electronics in dishwashers
to the highly complex electronic control units in modern
and autonomous cars – daily life today is nearly inconceiv-
able without those systems. As the technology improves,
the complexity of embedded systems inevitably and steadily
increases. A whole team of engineers usually plans, designs,
and implements a novel system in several iteration steps. An
example of such a process in the automotive industry is shown
in Figure 1.

Designing an embedded system can be prone to errors due
to a multitude of possible error sources. This presents one
major challenge when designing such a system: The challenge
of how to eliminate error sources and make design processes
more reliable and, therefore, cheaper. Most design paradigms
today choose a bottom-up approach. This means that a suitable

computing platform is chosen after defining all requirements
with respect to these explicit requirements, prior experience, or
educated guesses. Then, software development can either start
based on an application kit of a computing platform, or some
prototyping hardware must be built beforehand. If the require-
ments change during the development process, major problems
could possibly arise, e.g., new software features cannot be
implemented due to computing power restrictions or additional
devices cannot be interfaced because of hardware limitations.
Another problem could arise if connection interfaces or buses
become overloaded with too much communication traffic after
the hardware has already been manufactured.

To tackle these problems, we already proposed a holistic
approach, papagenoX, and a sub-approach, papagenoPCB
in [1]. In the course of this work, we intend to further
discuss and extend our approach in more detail in the fol-
lowing sections. papagenoX is a novel approach that has
been developed for use while creating embedded systems
with a top-down view. Therefore, it uses application source
code to automatically generate the whole embedded system
in hardware and software. One part of the concept behind
this approach is papagenoPCB. This concept handles the
automatic generation of schematics and board layouts for
PCB design with standardized XML-based [2] output from
intermediate system description models. To do so, a module-
based description of the system hardware and software needs
to be made. Furthermore, connections between the hardware
modules on wire level are done automatically. The concept
and its related challenges were the main topics of the work
described in this paper, whereas software analysis and model
generation is part of work that will be conducted in the future
with papagenoX.

The paper is organized as follows: Section II includes a
summary of related work. The rough idea of the holistic vision
of papagenoX (this paper includes a detailed description of
the first part of this concept) is illustrated in Section III,
whereas Section IV starts with the system description format
within papagenoPCB. In Section V, an explanation is given
of the necessary steps taken to create the final output, and
Section VI includes a proof of concept example, an analysis
of the scalability and performance for the developed generator
and a use case with a manufactured prototype. The paper
concludes with Section VII, in which the steps that need to be
taken to achieve a final version of papagenoX are described.

236

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Specification,
Implementation and Test
of Software Components

System
Integration and Test

Creation of
System Architecture

Software
Integration and Test

Analysis and Specification
of SW-Architecture

on error

Figure 1. Automotive design process according to the V-Model [3].

II. STATE OF THE ART AND RELATED WORK

This section gives an overview on how embedded systems
are developed nowadays and how hardware can be generated
automatically in different types of systems. Additionally, some
approaches towards software annotations and design space
exploration are shown to provide an overview.

A. Embedded Systems Prototyping Approaches
Conventional embedded systems prototyping makes use of

very specialized hardware platforms, capable of executing a
vast variety of use cases typical for the field of deployment
(e.g., an automotive Electronic Control Unit (ECU), a Cyber-
Physical System (CPS), an Internet-of-Things (IoT) device).

In the context of ECU prototyping platforms, one approach
is rCube2 [4], based on two powerful independent TC1797 [5]
Microcontroller Units (MCUs). The two processors can in-
teract via shared memory, but are completely isolated during
execution. AVL RPEMS [6] is a generic engine control plat-
form provided as a highly flexible and configurable engine
management system for the development and optimization of
conventional and new combustion engines, power and emis-
sions optimization, and the realization of hybrid and electric
powertrains. The current version consists of a single-core
automotive MCU (TC1796 [7] or TC1798 [8]) with different
variants for diesel and gasoline engine control applications.
These different PCBs are equipped with automotive-compliant
Application-specific Integrated Circuits (ASICs) and a head-
mounted MCU board, which allows prototyping as close as
possible to series production. It was designed to offer engineers
utmost flexibility when developing new control algorithms for
non-standard engines, or standard engines with new compo-
nents.

There are other similar prototyping platforms from com-
mercial suppliers, but they also lack in flexibility and adapt-
ability when it comes to hardware changes. The main problem
of those commercial solutions is that even though they offer
high performance and come with complete toolchains, their
hardware is very different from a series device, as overcom-
pensation takes place. Since the components cannot be easily
changed when a prototype is turned into a commercial product,
a complete redesign has to take place.

When the need for hardware changes after deployment is
taken into account, reconfigurable logic is mostly mentioned in
literature. This can reach from pure Field Programmable Gate

Arrays (FPGAs) to System on Chips (SoCs), which include
an FPGA alongside other MCU cores (e.g., Zynq-7000 [9]).
The main advantage of those systems is that one does not
have to change the physical hardware, but can easily adapt
features like on-chip peripherals within the logic without the
need of manufacturing an ASIC. However, it is not possible
to change physical hardware features after deployment with
those devices.

B. Automatic Hardware Generation
As this work is concerned with the automatic generation of

hardware and extensively utilized hardware definition models,
it was influenced by existing solutions such as devicetree,
which is used, e.g., within Linux [10]. The devicetree data
structure is used by the target Operating System’s (OS) kernel
to handle hardware components. The handled components can
comprise processors and memories, but also the internal or
external buses and peripherals of the system. As the data
structure is a description of the overall system, it must be
created manually and cannot be generated in a modular way.
It is mostly used with SoCs and enables the usage of one
compiled OS kernel with several hardware configurations.
As far as automatic generation of schematics from software
is concerned (top-down), there are a few solutions towards
design automation. Some papers deal with the question, how
to generate schematics, so that these look nice for a human
reader by using expert systems [11]. Some work on the gen-
eration of circuit schematics has even been done by extracting
connectivity data from net lists [12]. These approaches all have
some kind of network information as a basis and do not extract
system data out of – or are even aware of – application source
code or system descriptions.

C. Annotations and Design Space Exploration
Different approaches have been taken to use annotated

source code to extract information about the underlying sys-
tem. Annotations can be used to analyze the worst-case exe-
cution times [13][14] of software in embedded systems. Other
approaches that have been taken have used back-annotations
to optimize the power consumption simulation [15]. These
annotations have allowed researchers to gain a better idea of
how the system works in a real-world application, meaning
that the annotated information is based on estimations or
measurements. Introduction of annotations can be achieved by
simple source code analysis or more sophisticated approaches
such as, e.g., creating add-ons or introducing new features into
source code compilers.

To generate systems out of application software, annota-
tions can be used to extract requirements. These requirements
can then be utilized to apply design space exploration [16]
by, e.g., modeling constraints [17]. In [18], different types
for design space explorations are shown and categorized, also
mentioning language-based constraint solvers featuring, e.g.,
MiniZinc [19]. By using approaches like these, a design space
model can easily be translated into a mathematical model for
optimization.

All the approaches and concepts mentioned above have
some advantages and inspired this work, as no solution has
yet been proposed for how to automatically generate PCBs
from source code.

237

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. MAIN IDEA OF papagenoX
The main idea of papagenoX consists of an application

driven electronics generation and the inversion of the state of
the art “software follows or adjusts to hardware” paradigm in
embedded systems development, where the design starts with
the hardware architecture. Software is then built on selected
components (e.g., automotive grade MCUs and PCBs).

Even when hardware deficits become visible during the
software development process, the hardware is unlikely to see
significant changes due to the high cost and many people or
even companies involved. Thus, software developers try to
compensate, e.g., by manual tuning and workarounds beyond
automotive standards (e.g., AUTOSAR [20]). This violates
compliance and is one reason why prototypes differ signifi-
cantly from series devices, also complicating the transition and
the subsequent maintenance in the field. Apart from this, future
embedded systems will contain reconfigurable logic which is
scarcely supported in current development processes due to
both the lack of support and a fear of even more complex-
ity (in addition to the software, electronics, and networks).
This is why papagenoX is an abbreviation for Prototyping
APplication-based with Automatic GENeration Of X. The
envisioned concept of it will prospectively contain a set of
tools that can be used to automatically generate the software,
reconfigurable logic, and hardware of the final prototype of
system X by simply using application software source code.
In this context, system X could be an automotive ECU, a
CPS, an IoT device or some other embedded system. The goal
is to support frequent changes to the Application Software
(ASW) requirements by immediately reflecting them in the
Basic Software (BSW), logic, and electronics – reducing time
to market and efforts in development and maintenance. During
development, the process will optimize the selection and con-
figuration of BSW, on-board components, network interfaces,
etc. for simplified transition to series production (“perfect fit”).
After deployment, the process will help in the assessment of
intended ASW chances to quantify the consequences on lower
layers and thus to evaluate their feasibility and cost.

BSW FPGA PCB

ASW

(I)

(II) (III) (IV)

Figure 2. The main idea behind the papagenoX approach.

As depicted in Figure 2, the starting point of papagenoX

is some application as a model or in source code. This ASW is
analyzed in order to get to know all necessary requirements for
the underlying system layers. These requirements are then used
to generate software code that includes BSW and an executable
ASW, reconfigurable logic code in a hardware description
language (e.g., VHDL [21], Verilog [22]) for FPGAs, as well
as schematics and layouts for PCBs. In this context, the term
BSW subsumes operating systems with, e.g., drivers, services,
hardware abstraction. Even though the papagenoX approach
envisions the generation of reconfigurable logic, it differs from,
e.g., SystemC [23], because it also generates hardware on the
PCB level.

The following steps are envisioned within papagenoX:
1) application software development
2) in-depth analysis of ASW with respect to functional and

non-functional requirements (NFRs)
3) creation of a selection space over potential components
4) filtering of the selection space with respect to general

design decisions (e.g., data retention time)
5) generation of potential configurations from components
6) evaluation and optimization towards NFRs to select a

single or several final, best fitting configuration(s)
7) mapping of functions or algorithms to reconfigurable

logic (FPGAs)
To get a simple overview, the following example sketches the
envisioned process while developing an embedded system with
our novel approach: a user wants to store data somewhere
permanently; with a data rate ≥ 5MB/s by writing this line
of code in the ASW:

store_data(&data, StoreType.Permanent, 5000000);

The follow-up analysis of the ASW yields in an exemplary
selection space as depicted in Figure 3. The green filled boxes
illustrate the final configuration selected by the concept.

So, apart from the running application on the topmost level,
a BSW must be generated, supporting a FAT16 [24] file system
on top of a SD card driver and its underlying Serial Peripheral
Interface (SPI, [25]) module driver. But even more important
for this work, the final embedded system must be composed
of a computing platform and a storage device, interconnected
with each other. Finally, the generated system structure must
be manufactured on a PCB, still matching all requirements
with its properties.

Based on this overview, papagenoX will contain four major
parts (also depicted in Figure 2):

(I) ASW analysis → creates selection space
(II) BSW generation → derives, e.g., needed components,

drivers, OS features
(III) FPGA generation → maps functions to reconfigurable

logic
(IV) PCB generation → module-based generation of suit-

able PCBs
In this paper, however, the main focus is on (IV), where a very
first step is taken to generate a PCB from an intermediate
system model (prospectively extracted from source code).
The attempt is made to answer the research questions “What
information is needed to automatically generate PCBs from
ASW?” and “How can this information be used to generate
a PCB prototype matching all ASW requirements?”. It is
henceforth named papagenoPCB.

238

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Application

NTFS

SD Card

Driver

SPI Module

Driver

FAT16ReiserFS

HDD Driver
EEPROM

Driver

…

…

…

8
M

B
/s

6
M

B
/s

1
6
K

B
/s

File System

Hardware

Connection

4
0
M

B
/s

Figure 3. A system’s requirements mapped to a corresponding exemplary selection space.

IV. SYSTEM DESCRIPTION FORMAT

The system description format in papagenoPCB is module-
based. This means that every possible module, e.g., a MCU
board or different peripherals must be defined before they
are connected with each other. The whole description and
modeling approach taken is generic, which enables its easy
adaptation to different use cases. The structure was defined
according to a JavaScript Object Notation (JSON) [26] format,
and three different kinds of definition files were established:

A. Module Definition: One single file that defines the hard-
ware module, its interfaces and its pins, and a second file
that contains the design block for creating schematics and
board layouts concerning this module.

B. Interface Definition: Generic definition of several differ-
ent interface types to interconnect modules with each
other; new types can be easily implemented and included
within this file.

C. System Definition: Contains modules and connections
between these; is abstractly wired with certain interface
types.

All three types will be explained below. The example modules
show footprints of (1) a Texas Instruments (TI) LaunchPadTM

[27] with a 16-bit, ultra-low-power MSP430F5529 MCU [28]
and (2) MicroSD card module of type ”MicroSD Breakout
Board” [29].

A. Module Definitions and Design Blocks

The module definition of (1) a TI LaunchPadTM is shown
in Figure 4, whereas the definition of (2) a MicroSD Breakout
Board can be seen in Figure 5. Apart from a name and a
design block file property, this definition consists of an array
of interfaces and pins. The design block file property refers to
an EAGLE [30] design block file, comprised of a schematic
placeholder (cf. Figures 6 and 7, respectively), and a board
layout placeholder (cf. Figures 8 and 9, respectively). These
placeholders will later be placed on the output schematics and
board layouts. The array of interfaces may contain several
different interface types of which the module is capable. The
property type determines the corresponding interface type. In
module (1) in Figure 4, two SPIs and two Inter-Integrated
Circuit (I2C, [31]) interfaces are present. Both contain a name,
the type (SPI, I2C), and several pins. Module (2) in Figure 5,

1 {
2 name: "MSP430F5529_LaunchPad",
3 design: "MSP430F5529_LaunchPad.dbl",
4 interfaces: [{
5 name: "SPI0",
6 type: "SPI",
7 pins: { MISO: "P3.1", MOSI: "P3.0",
8 SCLK: "P3.2", CS: ’any@["P2.0", "P2.2"]’ }
9 }, {

10 name: "SPI1",
11 type: "SPI",
12 pins: { MISO: "P4.5", MOSI: "P4.4",
13 SCLK: "P4.0", CS: any }
14 } , {
15 name: "I2C0",
16 type: "I2C",
17 pins: { SDA: "P3.0", SCL: "P3.1" }
18 }, {
19 name: "I2C1",
20 type: "I2C",
21 pins: { SDA: "P4.1", SCL: "P4.2" }
22 }
23],
24 pins: ["P6.5", "P3.4", "P3.3", "P1.6",
25 "P6.6", "P3.2", "P2.7", "P4.2", "P4.1",
26 "P6.0", "P6.1", "P6.2", "P6.3", "P6.4",
27 "P7.0", "P3.6", "P3.5", "P2.5", "P2.4",
28 "P1.5", "P1.4", "P1.3", "P1.2", "P4.3",
29 "P4.0", "P3.7", "P8.2", "P2.0", "P2.2",
30 "P7.4", "RST" , "P3.0", "P3.1", "P2.6",
31 "P2.3", "P8.1"]
32 }

Figure 4. Module definition of a TI LaunchPadTMwith two SPI and
two I2C interfaces, both overlapping.

on the contrary, is very simple, with only one SPI interface in
total.

Pins within interfaces can either be directly assigned to
hardware pins (e.g., MISO: "P3.1" in line 7, Figure 4)
or left for automatic assignment (e.g., CS: any in line 13,
Figure 4). It is also possible to automatically assign a wire
from a dedicated pool by using any@somearray (cf. line 8,
Figure 4) syntax. This syntax enables the placing of so-called
Chip Select (CS) wires in a more detailed way, e.g., based
on needs for shorter connection wires, module specifications
or other PCB properties. In this case, somearray must, of
course, be replaced by a JSON-compliant array of strings,
being a subset of the pins of the module, cf. Equation (1).

somearray ⊆ pins (1)

239

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 {
2 name: "MicroSD_BreakoutBoard",
3 design: "MicroSD_BreakoutBoard.dbl",
4 interfaces: [
5 {
6 name: "SPI1",
7 type: "SPI",
8 pins: { MISO: "DO", MOSI: "DI",
9 SCLK: "CLK", CS: "CS" }

10 }
11],
12 pins: ["CLK", "DO", "DI", "CS", "CD"]
13 }

Figure 5. Module definition of a MicroSD Breakout Board with an SPI
interface.

+
3V

3

+
5V

GND

GND

TI Launchpad Placeholder

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

J1

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

J5

STAND1

STAND2

STAND3

STAND4

P6.5
P3.4
P3.3
P1.6
P6.6
P3.2
P2.7
P4.2
P4.1

P6.0
P6.1
P6.2
P6.3
P6.4
P7.0
P3.6
P3.5

P2.5
P2.4
P1.5
P1.4
P1.3
P1.2
P4.3
P4.0
P3.7
P8.2 P8.1

P2.3

P3.1
P2.6

P3.0
RST
P7.4
P2.2
P2.0

Figure 6. Schematics of a placeholder design block for a
TI LaunchPadTM [27].

Each module definition file is associated with its corre-
sponding design block. It is of utmost importance that pin
names are coherent in both module representations, as the
naming coherence later ensures that proper interconnections
are made between modules. Furthermore, a standard format
for power supply connections must be used to avoid creating
discrepancies between modules. The bus speed of the SPI
and the I2C was not considered in this work and will be
addressed in future developments towards NFRs. As depicted
in Figures 8 and 9, the board layout of a module only
consists of its pins. The main idea here was to create a
motherboard upon which modules can be placed using their
exterior connections (e.g., pin headers or similar connectors).
Therefore, the placeholder serves as interface layout between
fully assembled PCB modules, such as the LaunchPadTMor the
Breakout Board, and can then be connected to other modules
through interfaces.

B. Interface Definitions
After defining the modules, the generic interfaces must be

defined. The interface definition collection is centralized in

+
5

V

+
3

V
3

GND

MicroSD Breakout Board

1
2
3
4
5
6
7
8

JP1

CLK
DO
DI

CS
CD

Figure 7. Schematics of a placeholder design block for a
MicroSD Breakout Board [29].

Figure 8. Board layout of a placeholder design block for a
TI LaunchPadTM [27].

a single file, and its structure is shown in Figure 10. In this
example, only SPI and I2C have been defined with its standard
connections. As the format is generic, other interface types,
e.g. Controller Area Network (CAN, [32]) or even Advanced
eXtensible Interface Bus (AXI, [33]), are also feasible. It
also shows how masters and slaves within this communication
protocol are connected to the bus wires. As the SPI also has CS
wires for every slave selection, special treatment must be used
here: A slave only has one CS wire, which is marked with
wiresingle (cf. line 14, Figure 10), whereas a master has as
many CS wires as it has slaves connected to it (marked with
wiremultiple; cf. line 13, Figure 10). Compared to SPI, the
shown example of I2C is rather simple, as it only consists of
two wires, with a master/slave concept as well. All participants
are simply connected to the corresponding bus wires.

C. System Definition
The final step taken was to define the system itself, which

was built from modules and the connections between them.
To do so, a single project file must be created, as illustrated
in Figure 11. Initially, all necessary modules are imported and
named accordingly within the modules array. Once defined,
they can be interconnected using the previously defined in-
terface definitions. In our example, LaunchPadTM MSP1 was
connected to a MicroSD Breakout Board SD1 via SPI. This
particular SPI connection is called SPI Connection1 of type
SPI and has two participants with different roles: MSP1 as

240

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

JP
1

Figure 9. Board layout of a placeholder design block for a
MicroSD Breakout Board [29].

1 {
2 interfaces: [
3 {
4 type: "SPI",
5 connections: [
6 { "master.MOSI" : "bus.MOSI" },
7 { "master.MISO" : "bus.MISO" },
8 { "master.SCLK" : "bus.SCLK" },
9 { "slave.MOSI" : "bus.MOSI" },

10 { "slave.MISO" : "bus.MISO" },
11 { "slave.SCLK" : "bus.SCLK" },
12
13 { "master.CS" : "wiremultiple" },
14 { "slave.CS" : "wiresingle" }
15]
16 },
17 {
18 type: "I2C",
19 connections: [
20 { "master.SDA" : "bus.SDA" },
21 { "master.SCL" : "bus.SCL" },
22 { "slave.SDA" : "bus.SDA" },
23 { "slave.SCL" : "bus.SCL" }
24]
25 }
26]
27 }

Figure 10. Interface definition containing SPI and I2C.

a master and SD1 as a slave. This system definition will
prospectively be generated and extracted out of the ASW
code by the analysis step in papagenoX. The papagenoPCB
approach is taken to generate PCBs only.

V. IMPLEMENTATION OF PCB GENERATION

After having defined the modules, interfaces, and im-
plemented a system definition, PCB generation can start.
The generation consists of two major steps: (A.) establishing
connection wires based on predefined module and system
definitions, and assigning dedicated pins and (B.) generating

1 {
2 modules: [
3 { name: "MSP1",
4 type: "MSP430F5529_LaunchPad"},
5 { name: "SD1",
6 type: "MicroSD_BreakoutBoard"}
7],
8 connections: [
9 {

10 name: "SPI_Connection1",
11 type: "SPI",
12 participants: [
13 { name: "MSP1", role: "master" },
14 { name: "SD1", role: "slave" }
15]
16 }
17]
18 }

Figure 11. A system model containing two modules connected via SPI.

XML-based schematic files from its output. The final step
(C.), which is carried out to deal with the final layout of the
schematics, must be done subsequently (in part manually). The
generator is developed as a Java command line application
to maintain platform-independence and ensure that it can be
integrated into standard tool chains and build management
tools.

A. Connection Establishment and Pin Assignment

During this first step, JSON data structure analysis presents
the main challenge. The whole system must be interconnected
appropriately using the previously explained definition files.
To do so, all connections within the system definition must be
matched at the beginning of the process. This task subsumes
the discovery of connections between modules, their mapping
to certain interface types, and the final wire allocation required
to interconnect all participants. Specifically, each connection
has a type and a finite number of participants with different
roles, interfaces, and pins. These pins must then be connected
to the newly introduced wires, belonging to the communica-
tion. Several different types of wires can be used to connect
the participants with each other:

The easiest wires to use are common wires, which can be
assigned to a pool of free pins of the module. These wires are
marked with wiresingle within the interface definition. Due to
the fact that all unused General-Purpose Input/Output (GPIO)
pins of a module can be used for this purpose, they need to
be assigned last.

Furthermore, every participant can connect itself directly to
bus wires via its dedicated pins, depending on, e.g., the type of
MCU used. In the case of an MSP430 MCU, certain pins are
electrically connected to an interface circuit, as defined in its
module definition (cf. Figure 4). These pins must, therefore,
be matched with the connection’s wires (cf. Figure 10). The
interface definition must match roles and pins accordingly to
correctly interconnect the participants of each connection.

Another type of wires that can be used are multiple wires.
If we take SPI as an example, the master needs to have
as many chip-select wires as slaves with which it wants to
communicate. Therefore, this type of wire – marked with
wiremultiple, as previously defined – must clone itself to obtain
the number of wires needed.

These different types of wires must be connected to the
pins of the modules to establish a proper connection or
net according to the interface definition. The interconnected
modules with their nets form a holistic JSON-based description
of the system.

B. Schematic and Board Layout Generation

Utilizing the interconnected system description, schematics
and board layouts can be generated. In our case, EAGLE’s
XML data structure [2] was used to form a dedicated output
file for schematics and board layouts. To generate those plans,
(1) design blocks for each module must be loaded, (2) the
previously found connections must be applied and (3) the
connected design blocks must be placed on an empty schematic
plan or board layout. The basis of every schematic and board
plan forms an empty EAGLE plan, on which the explained
actions are performed.

241

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

J
1

J
1

J
5

J
5

J
P
1

J
P
1

Figure 12. Raw output of the board layout generated as displayed in EAGLE.

(1) Instantiation: In this step, each module must be in-
stantiated by loading the corresponding design block
of its type. To avoid overlapping of signal names and,
therefore, unwanted connections between modules of the
same type, suffixes are added according to the instance’s
name. For readability purposes, these suffixes are equal
to the instance’s name defined in the system definition
file (e.g., * MSP1). This can be easily seen when com-
paring, e.g., Figures 6/7 and 14.

(2) Interconnection: This step must be carried out to form
the whole system according to the JSON-based holistic
description. Therefore, pins of each module must be
assigned to the wires of a connection within the sys-
tem. To do so, each connection again must be applied
separately to each participant. As the system description
already contains information, as to which pin of a module
must be connected to which wire, this can be done quite
easily. In this case, to avoid overlapping of signals, a dot
notation style is used do distinguish between wires of dif-
ferent connection instances (e.g., SPI CONNECTION1.*
in Figure 14).

(3) Placement: This step, which is the computationally
most expensive step, must be carried out to merge the
connected instances of each module into an empty plan,
as a great deal of XML parsing is required here. To create
consistent plans, the design blocks must be prepared well
beforehand to avoid, e.g., inconsistencies within board
layers or signal names. To keep the modules from over-
lapping, a two-dimensional translation of each module
must be executed as part of each merge procedure as
well. In total, two merging steps are required for each
module – one for the schematic and one for the board
layout. As this approach generates connection PCBs
(”motherboards”) where one can plug in modules, only
placeholders are used.

Finally, the two generated XML structures are exported and
saved into different files (one for the schematics, one for the
board layout) for further usage.

Figure 13. Board layout after auto-routing in EAGLE.

C. Routing Generated Schematics and Board Layouts
As layouting and routing of PCBs is a non-trivial task, and

engineers need a great deal of experience when performing a
task like this, papagenoPCB cannot be used to produce final
variants of a board. It is recommended to use EAGLE’s auto-
routing functionality or manual routing to finalize the already
well-prepared layouts.

VI. EXPERIMENTS AND EVALUATION

Within this section, the previously explained concept on
how to define and create PCBs from a definition language is
shown in different examples and evaluation. At first, a simple
proof of concept is presented in Section VI-A, followed by
some analysis and evaluation on scalability and performance of
the algorithms in Section VI-B. Section VI-C shows a use case
with a corresponding manufactured and equipped prototype
PCB. In this case, a comparison with other approaches is not
executed, as all related works go in different directions. Hence,
there are no acceptable metrics for comparison provided.

A. Proof of Concept
The proof of concept comprises the generation of the

system definition as shown in Figure 11. As mentioned above,
the system created consists of two modules interconnected with
one SPI bus, whereas the processor board serves as master. The
schematics generation step yields in the drawing depicted in
Figure 14. Compared with the LaunchPadTM’s design block
shown in Figure 6, one can see the differences in the net
names. As examples, P2.0 has been replaced with WIRE0, and
P3.0 is now assigned to SPI CONNECTION1.MOSI. These
wires connect to pins 7 and 6 of the MicroSD Breakout
Board on the left, respectively. Also, each unconnected pin is
given a suffix describing its module (cf. MSP1). These newly
introduced net names are the results of the wire generation
explained in Section V-A. As the reusability of schematic plans
is an important aspect, the feature of non-overlapping module
placement can be emphasized as well. The result of the board
layout generation step is shown in Figure 12, as described
in Section V-B. The fine lines show non-routed connections
between the pins. As the generated plan will, of course, be

242

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

+
5V

+
3V

3

GND

+
3V

3

+
5V

GND

GND

MicroSD Breakout Board

TI Launchpad Placeholder

1
2
3
4
5
6
7
8

JP1

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

J1

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

J5

STAND1

STAND2

STAND3

STAND4

SPI_CONNECTION1.SCLK

SPI_CONNECTION1.SCLK

SPI_CONNECTION1.MISO
SPI_CONNECTION1.MISO

SPI_CONNECTION1.MOSI

SPI_CONNECTION1.MOSI

WIRE0

WIRE0

CD_SD1

P6.5_MSP1
P3.4_MSP1
P3.3_MSP1
P1.6_MSP1
P6.6_MSP1

P2.7_MSP1
P4.2_MSP1
P4.1_MSP1

P6.0_MSP1
P6.1_MSP1
P6.2_MSP1
P6.3_MSP1
P6.4_MSP1
P7.0_MSP1
P3.6_MSP1
P3.5_MSP1

P2.5_MSP1
P2.4_MSP1
P1.5_MSP1
P1.4_MSP1
P1.3_MSP1
P1.2_MSP1
P4.3_MSP1
P4.0_MSP1
P3.7_MSP1
P8.2_MSP1 P8.1_MSP1

P2.3_MSP1
P2.6_MSP1

RST_MSP1
P7.4_MSP1
P2.2_MSP1

Figure 14. Raw output of the schematics generated as displayed in EAGLE.

manufactured as a real hardware PCB, no single component
can overlap in the final layout. Routing of the board has to be
either performed manually or by using a design tool’s built-in
auto router. A feasible layout variant is presented in Figure 13.
EAGLE can also be used to check the correctness of the XML
file format.

B. Scalability and Performance
In this section, we describe measurements and investi-

gations that concern the performance of the PCB-generating
process. All discussed evaluations use one setup as a reference.
The application was executed with a Java 10 virtual ma-
chine on an Intel Core i7 7500U@2.7GHz with 16 gigabytes
of RAM. Table I shows the mean execution time and the
combined output XML file size of the generation process of
different test case scenarios, which are explained below. All
test cases featured a different number of participants (part.)
which consisted of masters (M) and slaves (S) with different
connection types. The experiment is based on the one presented
in [1], but the generation tool version is more stable and
optimized and the objective differs slightly, yielding different
measurements.

Each test case is based on the example described in
Section VI-A, but with different constellations concerning the
numbers and types of participants and connections. All test
cases were executed 100 times. Four types of test scenarios
with seven test cases each were conducted: Within the first
scenario, just one SPI connection was present, with a vary-
ing number of slaves each test case. The second scenario
comprised two SPI connections with an increasing number of
slaves. Test scenario three had one I2C connection and was
similar to scenario one, whereas scenario four included SPI
and I2C connections to a single master with an increasing
number of slaves. The devolution of the mean execution
time (in ms) in all test scenarios is shown in Figure 15.
When comparing all scenarios, the trend observed is relatively
similar: All performance graphs show a linear devolution with
an additive, logarithmic-like component. The linear component
is due to the linear increase in the complexity of the test
cases. The logarithmic-like growth observed can be explained
by the decreasing, additive overhead of the linear component
when processing similar connection reasoning, as well as the
XML schematic and layout data. This is also the reason why

TABLE I. MEAN EXECUTION TIMES FOR DIFFERENT SCENARIOS.

test scenario description execution time file size
1 SPI conn. (scenario 1)

0 2 part. (1 M, 1 S) 656.22 ms 94 KiB
1 3 part. (1 M, 2 S) 751.98 ms 111 KiB
2 4 part. (1 M, 3 S) 852.95 ms 128 KiB
3 5 part. (1 M, 4 S) 933.71 ms 144 KiB
4 6 part. (1 M, 5 S) 1 013.67 ms 161 KiB
5 7 part. (1 M, 6 S) 1 108.81 ms 178 KiB
6 7 part. (1 M, 7 S) 1 193.25 ms 194 KiB

2 SPI conn. (scenario 2)
0 4 part. (1 M and 1 S each) 890.77 ms 160 KiB
1 6 part. (1 M and 2 S each) 1 060.91 ms 192 KiB
2 8 part. (1 M and 3 S each) 1 234.36 ms 226 KiB
3 10 part. (1 M and 4 S each) 1 398.30 ms 259 KiB
4 12 part. (1 M and 5 S each) 1 557.30 ms 293 KiB
5 14 part. (1 M and 6 S each) 1 731.26 ms 326 KiB
6 14 part. (1 M and 7 S each) 1 879.93 ms 360 KiB

1 I2C conn. (scenario 3)
0 2 part. (1 M, 1 S) 665.61 ms 106 KiB
1 3 part. (1 M, 2 S) 771.77 ms 136 KiB
2 4 part. (1 M, 3 S) 889.56 ms 167 KiB
3 5 part. (1 M, 4 S) 989.33 ms 198 KiB
4 6 part. (1 M, 5 S) 1 106.84 ms 228 KiB
5 7 part. (1 M, 6 S) 1 205.48 ms 259 KiB
6 7 part. (1 M, 7 S) 1 332.82 ms 290 KiB

1 I2C and 1 SPI conn. (scenario 4)
0 3 part. (1 M, 1 S each) 782.70 ms 127 KiB
1 5 part. (1 M, 2 S each) 971.42 ms 174 KiB
2 7 part. (1 M, 3 S each) 1 166.01 ms 222 KiB
3 9 part. (1 M, 4 S each) 1 344.08 ms 269 KiB
4 11 part. (1 M, 5 S each) 1 530.92 ms 317 KiB
5 13 part. (1 M, 6 S each) 1 719.09 ms 364 KiB
6 13 part. (1 M, 7 S each) 1 873.92 ms 411 KiB

doubling the numbers in the first test case resulted in much
higher values than in test case two. Test scenario four is
the only one that displays a steeper curve. This is due to
the combination of different connection types, yielding less-
optimal algorithm executions. As XML processing is quite
costly, some further optimizations are needed. As the overall
file size displayed linear growth, no correlation was observed
between file size and execution time.

C. Simple Use Case and Prototype Manufacturing

The simple use case in this section is a minimalistic,
generic control system. In order to react to its environment,
it must
• read several analog voltage values,
• output analog voltage values, and
• store a data log permanently in two different ways, such

as it is on the one hand side
◦ “detachable”, and on the other hand side
◦ stored with low energy consumption, yet non-volatile

and redundant.
After manually spanning a selection space over the available
equipment in our lab, those requirements yield in a system
configuration with

• an MCU to execute the control algorithms (→ MSP430
on a corresponding LaunchPadTM),

• two 4-channel analog-to-digital converters (ADCs) to read
voltage values (→ Adafruit 4-channel Breakout Board
featuring an ADS1115 ADC [34]),

• a digital-to-analog converter (DAC) to output voltage val-
ues (→ Adafruit 12-bit DAC board featuring a MCP4725
DAC [35]),

243

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 1 2 3 4 5 6
Test Case Number

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900
Ex

ec
ut

io
n

Ti
m

e
/ m

s
scenario 1
scenario 2
scenario 3
scenario 4

Figure 15. Performance graph for different test cases in all four scenarios.

MSP1
SD1

FRAM1

FRAM2

S
P

I

I2
C

ADC1

ADC2

DAC1

Figure 16. The block diagram of all modules in the example use case.

• a MicroSD card module to log data in a detachable way
(→ MicroSD Breakout Board), and

• two Ferroelectric Random Access Memory (FRAM, [36])
modules to store data in a low-power, non-volatile, re-
dundant way (→ Adafruit SPI FRAM Breakout Board
featuring a MB85RS64V FRAM [37]).

The block diagram of this configuration, including its in-
terconnection, is shown in Figure 16. It can be seen that
a total of two different connection types must be used to
interconnect all modules. The corresponding system definition
is presented in Figure 17. It contains all module instances, both
connections with their types, participants, and roles. The result
of running the PCB generation and manually routing the board
layout is depicted in Figure 18. With this result it is possible
to manufacture an actual PCB, equip it with the hardware
modules, flash the control system ASW and BSW, and run
measurements. The software setup in this case consists of our
own real-time operating system MCSmartOS [38][39] enriched
with a modular driver management system and a simple test
application. The equipped and running prototype is shown
in Figure 19, where it is connected to several measurement
devices (e.g., a PicoScope 2205 MSO [40] with digital and
analog inputs) through debug wires and probes to observe and
verify correct functionality.

1 {
2 modules: [
3 { name: "MSP1", type: "MSP430F5529_Launchpad" },
4 { name: "ADC1",
5 type: "Adafruit_ADS1115_16Bit_I2C_ADC" },
6 { name: "ADC2",
7 type: "Adafruit_ADS1115_16Bit_I2C_ADC" },
8 { name: "DAC1",
9 type: "Adafruit_MCP4725_12Bit_I2C_DAC" },

10 { name: "FRAM1", type: "Adafruit_FRAM_SPI" },
11 { name: "FRAM2", type: "Adafruit_FRAM_SPI" },
12 { name: "SD1", type: "MicroSD_BreakoutBoard" }
13],
14
15 connections: [
16 {
17 name: "I2C_Connection1",
18 type: "I2C",
19 participants: [
20 { name: "MSP1", role: "master" },
21 { name: "ADC1", role: "slave" },
22 { name: "ADC2", role: "slave" },
23 { name: "DAC1", role: "slave" }
24]
25 },
26 {
27 name: "SPI_Connection1",
28 type: "SPI",
29 participants: [
30 { name: "MSP1", role: "master" },
31 { name: "FRAM1", role: "slave" },
32 { name: "FRAM2", role: "slave" },
33 { name: "SD1", role: "slave" }
34]
35 }
36]
37 }

Figure 17. The system model of the prototype.

VII. CONCLUSION AND FUTURE WORK

In conclusion, the present work based on the papagenoPCB
approach represents a novel, top-down concept to develop
an embedded system for a multitude of possible application
scopes. Having only a model-based system description at
hand, it is possible to use papagenoPCB to generate hardware
schematics and board layouts accordingly. This opens up nu-
merous new possibilities towards automatic system generation

244

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. Prototype PCB layout with a MSP430 LaunchPadTMconnected to
three SPI and three I2C modules (manually routed).

Figure 19. Fully equipped prototype board with debug wires.

and across several abstraction levels including, e.g., automatic
bus balancing, bandwidth engineering, optimization towards
functional and non-functional hardware requirements. All these
things can be carried out even before building the actual
hardware for the system. The use of these concepts requires
the availability of in-depth information about the electrical
and mechanical characteristics of all parts of a PCB, so that
the hardware can be optimized in terms of non-functional
metrics such as bandwidth or power consumption. Generally
speaking, the presented concept is able to optimize systems
under development regarding different, user-defined metrics
already at design level. Therefore, metrics to measure the
overall improvement in general are hard to define, as they
depend on the actual system’s development process and its
requirements and properties. Due to the generic design, new
models can be integrated easily, and it will be even possible
to take a non-module-based approach on the electrical device
or component level, proper definitions presumed.

Concerning future work, a detailed extraction of system
models from a profound ASW source code analysis is of
utmost importance. Therefore, we are working on introducing
annotations into our operating system environment [39], which
will enable us to automatically generate system definition
files. These annotations can either be introduced into the
code as compiler keywords (e.g., pragmas, defines) or as
comments. As some work is already being done to improve
the automatic portability of real-time operating systems [41],
the proposed approach could be used to build a system for
which only the application code must be programmed. The
rest of the system can then be generated automatically. Even

suitable and application-optimized processor architectures [42]
or application-specific logic components on reconfigurable
computing platforms could be created and included by taking
this approach. The ultimate goal is to establish papagenoX
as a universal embedded systems generator, which uses only
ASW source code or models as an input.

REFERENCES
[1] T. Scheipel and M. Baunach, “papagenoPCB: An Automated Printed

Circuit Board Generation Approach for Embedded Systems Prototyp-
ing,” in ICONS 2019 - The Fourteenth International Conference on
Systems, 3 2019, pp. 20–25.

[2] Autodesk, Inc., EAGLE XML Data Structure 9.1.0, 2018.
[3] J. Schäuffele and T. Zurawka, Automotive Software Engineering, ser.

ATZ/MTZ-Fachbuch. Springer Fachmedien Wiesbaden, 2016.
[4] A. Kouba, J. Navratil, and B. Hnilička, “Engine Control using a Real-

Time 1D Engine Model,” in VPC – Simulation und Test 2015, J. Liebl
and C. Beidl, Eds. Wiesbaden: Springer Fachmedien Wiesbaden, 2018,
pp. 295–309.

[5] Infineon Technologies AG, “TC1797 – 32-Bit Single-Chip Microcon-
troller,” 2014.

[6] B. Eichberger, E. Unger, and M. Oswald, “Design of a versatile rapid
prototyping engine management system,” in Proceedings of the FISITA
2012 World Automotive Congress. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 135–142.

[7] Infineon Technologies AG, “TC1796 – 32-Bit Single-Chip Microcon-
troller,” 2007.

[8] ——, “TC1798 – 32-Bit Single-Chip Microcontroller,” 2014.
[9] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The

Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx
Zynq-7000 All Programmable Soc. UK: Strathclyde Academic Media,
2014.

[10] devicetree.org, Devicetree Specification, Dec. 2017, release v0.2.
[11] G. M. Swinkels and L. Hafer, “Schematic generation with an expert

system,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 9, no. 12, pp. 1289–1306, Dec 1990.

[12] B. Singh, D. O’Riordan, B. G. Arsintescu, A. Goel, and D. R.
Deshpande, “System and method for circuit schematic generation,” US
Patent US7 917 877B2, 2011.

[13] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
performance Timing Simulation of Embedded Software,” in 2008 45th
ACM/IEEE Design Automation Conference, June 2008, pp. 290–295.

[14] B. Schommer, C. Cullmann, G. Gebhard, X. Leroy, M. Schmidt,
and S. Wegener, “Embedded Program Annotations for WCET
Analysis,” in WCET 2018: 18th International Workshop on Worst-Case
Execution Time Analysis. Barcelona, Spain: Dagstuhl Publishing, Jul.
2018, [retrieved: Nov, 2019]. [Online]. Available: https://hal.inria.fr/
hal-01848686

245

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[15] S. Chakravarty, Z. Zhao, and A. Gerstlauer, “Automated, retargetable
back-annotation for host compiled performance and power modeling,”
in 9th Int’l Conference on Hardware/Software Codesign and System
Synthesis, Piscataway, NJ, USA, 2013, pp. 36:1–36:10, [retrieved: Nov,
2019]. [Online]. Available: http://dl.acm.org/citation.cfm?id=2555692.
2555728

[16] A. D. Pimentel, “Exploring Exploration: A Tutorial Introduction to
Embedded Systems Design Space Exploration,” IEEE Design Test,
vol. 34, no. 1, pp. 77–90, Feb 2017.

[17] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero, R. Valencia,
and G. Palermo, “The COMPLEX methodology for UML/MARTE
Modeling and design space exploration of embedded systems,” Journal
of Systems Architecture, vol. 60, no. 1, pp. 55 – 78, 2014, [retrieved:
Nov, 2019]. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S138376211300194X

[18] T. Saxena and G. Karsai, “A meta-framework for design space explo-
ration,” in 2011 18th IEEE International Conference and Workshops on
Engineering of Computer-Based Systems, April 2011, pp. 71–80.

[19] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “MiniZinc: Towards a Standard CP Modelling Language,”
in Principles and Practice of Constraint Programming – CP 2007,
C. Bessière, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 529–543.

[20] AUTOSAR, “Classic platform release 4.3.1,” 2017.
[21] IEEE Standards Association, IEEE 1076-2008 - IEEE Standard VHDL

Language Reference Manual, 2008.
[22] ——, IEEE 1364-2005 - IEEE Standard for Verilog Hardware Descrip-

tion Language, 2005.
[23] ——, IEEE 1666-2011 - IEEE Standard for Standard SystemC Lan-

guage, Sep. 2011.
[24] B. Maes, “Comparison of contemporary file systems,” Citeseer, 2012.
[25] S. C. Hill, J. Jelemensky, M. R. Heene, S. E. Groves, and D. N. Debrito,

“Queued serial peripheral interface for use in a data processing system,”
US Patent US4 816 996, 1989.

[26] ECMA International, ECMA-404: The JSON Data Interchange Syntax,
2nd ed., Dec. 2017.

[27] Texas Instruments, MSP430F5529 LaunchPadTM Development Kit
(MSP--EXP430F5529LP), Apr. 2017.

[28] ——, MSP430x5xx and MSP430x6xx Family User’s Guide, Mar. 2018,
[retrieved: Nov, 2019]. [Online]. Available: http://www.ti.com/lit/ug/
slau208q/slau208q.pdf

[29] Adafruit Industries, Micro SD Card Breakout Board Tutorial, Jan. 2019,
[retrieved: Nov, 2019]. [Online]. Available: https://cdn-learn.adafruit.
com/downloads/pdf/adafruit-micro-sd-breakout-board-card-tutorial.pdf

[30] Autodesk, Inc., “EAGLE,” [retrieved: Nov, 2019]. [Online]. Available:
https://www.autodesk.com/products/eagle/

[31] NXP Semiconductors, Inc., UM10204: I2C-bus specification and user
manual, Apr. 2014, rev. 6.

[32] International Organization for Standardization, ISO 11898: Road vehi-
cles – Controller area network (CAN) , 2nd ed., Dec. 2015.

[33] ARM Ltd., AMBA AXI and ACE Protocol Specification, 2017, [re-
trieved: Jul, 2019].

[34] Texas Instruments, Ultra-Small, Low-Power,16-Bit Analog-to-Digital
Converter with Internal Reference, Oct. 2009, [retrieved: Nov, 2019].
[Online]. Available: http://www.ti.com/lit/ds/symlink/ads1114.pdf

[35] Microchip, 12-Bit Digital-to-Analog Converter with EEPROM Memory
in SOT-23-6, 2009, [retrieved: Nov, 2019]. [Online]. Available:
https://cdn-shop.adafruit.com/datasheets/mcp4725.pdf

[36] H. Ishiwara, M. Okuyama, and Y. Arimoto, Ferroelectric random
access memories: fundamentals and applications. Springer Science
& Business Media, 2004, vol. 93.

[37] Fujitsu Semiconductor, 64KBit SPIMB85RS64V, 2013, [retrieved: Nov,
2019]. [Online]. Available: https://cdn-shop.adafruit.com/datasheets/
MB85RS64V-DS501-00015-4v0-E.pdf

[38] M. Baunach, “Advances in Distributed Real-Time Sensor/Actuator
Systems Operation,” Dissertation, University of Würzburg, Germany,
Feb. 2013. [Online]. Available: http://opus.bibliothek.uni-wuerzburg.
de/frontdoor/index/index/docId/6429

[39] R. Martins Gomes, M. Baunach, M. Malenko, L. Batista Ribeiro,
and F. Mauroner, “A Co-Designed RTOS and MCU Concept for
Dynamically Composed Embedded Systems,” in Proc. of the 13th
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, 2017, pp. 41–46.

[40] PicoScope 2205 MSO Mixed Signal Oscilloscope, Pico Technology,
2016. [Online]. Available: https://www.picotech.com/download/
datasheets/PicoScope2205MSODatasheet-en.pdf

[41] R. Martins Gomes and M. Baunach, “A Model-Based Concept for
RTOS Portability,” in Proc. of the 15th Int’l Conference on Computer
Systems and Applications, Oct. 2018, pp. 1–6.

[42] F. Mauroner and M. Baunach, “mosartMCU: Multi-Core Operating-
System-Aware Real-Time Microcontroller,” in Proc. of the 7th Mediter-
ranean Conference on Embedded Computing, Jun. 2018, pp. 1–4.

246

International Journal on Advances in Systems and Measurements, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

