
HW/SW Co-Design Approach to Optimize Embedded Systems on Reliability

Andreas Strasser, Philipp Stelzer, Christian Steger

Institute of Technical Informatics
Graz University of Technology

Graz, Austria
Email: {strasser, stelzer, steger}@tugraz.at

Norbert Druml

Infineon Technologies Austria AG
Graz, Austria

Email: norbert.druml@infineon.com

Abstract—Autonomous driving is disruptively changing the au-
tomotive industry. The importance of safety, reliability, and
fault-tolerance is steadily increasing through the complexity and
autonomy of self-driving cars. In the past, developers relied on
the driver as a fail-safe backup to transfer the control and
the responsibility to him in case of unexpected faults. In fully
autonomous vehicles this backup solution will be not available
anymore. This requires novel safety concepts and methodologies
such as an optimization of high reliability of the systems. For op-
timization it is necessary to quantify different algorithm solutions
from a safety point of view because this enables the possibility
of comparing different solutions. In this publication, we are
analyzing the consequences of different hardware and software
algorithm implementations on component reliability. For this
purpose we have designed two novel algorithm safety validation
methodologies that allow the quantification of algorithms from
a safety point of view and applied them to two independent
use cases to evaluate the effects on component reliability. Both
methodologies are used for optimizing the reliability of safety-
critical automotive embedded systems for autonomous driving
during Hardware/Software Co-Design.

Keywords–Safety critical systems; Aging of circuits and systems;
Safety Validation HW/SW; Failure-in-Time Analysis; Algorithm
Safety Evaluation

I. INTRODUCTION

50 years ago started the future about fully autonomous
driving. In the 1960s, Continental tested their driver-less car in
the Contidrom in Germany. It was used as a prototype for tire
testing to ensure constant testing conditions [2]. Nowadays,
50 years later this vision still exists in our society and Tesla
has shown that autonomous driving is possible with their
“Autopilot” [3]. Tesla has triggered the hype about autonomous
driving and has pushed the society into a new era. This new
era is changing the individual’s daily routines about mobility
and enables smart mobility.

Smart mobility will create a fully connected urban envi-
ronment and will bring benefits to cities, better quality of life,
reduced costs and more efficient energy usage [4]. To achieve
the goal of autonomous driving and smart mobility, novel
Advanced Driver-Assistance Systems (ADAS) are necessary.
The two best-known ADAS are the Electronic Stability Control
and the Anti-Lock Braking System, especially for their positive
effect on active safety. Moreover, in the last years, a new

This publication is an extended Version of the “FITness Assessment-
Hardware Algorithm Safety Validation” [1] publication that was presented
at the Ninth International Conference on Performance, Safety and Robustness
in Complex Systems and Applications.

Figure 1. PRYSTINE’s concept view of a fail-operational urban surround
perception system [5].

generation of ADAS such as the Adaptive Cruise Control
(ACC) has been established in middle class cars to avoid
collisions. The next big step is introducing a comprehensive
system enabling the perception of urban environment, which
is one of the main goals of the PRYSTINE project [5].

PRYSTINE stands for Programmable Systems for Intelli-
gence in Automobiles and is based on robust Radar and LiDAR
sensor fusion to enable safe automated driving in urban and
rural environments, as seen in Figure 1. These devices must
be reliable, safe, and fail-operational to handle safety-critical
situations independently [5].

In the past, developers of safety-critical automotive sys-
tems generally integrated the driver as the last safety chain
link by handling over the control and the responsibility to
the driver in unexpected situations or conditions. For fully
autonomous vehicles, this fail-safe backup will not be available
anymore because these vehicles needs to manage all critical
unexpected situations on their own. This requires a rethinking
of traditional safety concepts and methodologies. Novel safety-
critical automotive embedded systems that will be equipped
into autonomous vehicles needs to be high reliable, robust, and
fail-operational [5]. One possibility that have been neglected
in the past is about optimizing current systems from a safety
point of view as increasing the component reliability. For this
purpose, novel safety methodologies need to be developed that
focus on optimizing embedded systems from a safety point of
view.
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Fig. 1.2 Design flow based on HW/SW codesign

that is defined by several axes such as candidate HW architectures and HW/SW
partitioning solutions. This step is called “Design Space Exploration (DSE)” and
aims to explore a set of Pareto-optimal solutions for the system with various design
objective functions. From the DSE step, a target HW architecture and the associated
HW/SW partitioning decision is produced, which would be of better quality than
the one made manually by experts in the traditional design method. Afterward,
the architecture is fine-tuned, which determines the detailed microarchitecture of
the system and allows to verify the system behavior more accurately. HW/SW
cosimulation can be used also for HW/SW coverification with more detailed
modeling of hardware components while sacrificing the simulation performance.
Another popular method for HW/SW coverification is to use an emulation system.
Final implementation is made after the correctness of the design is verified.

An important issue of this methodology is how to specify the system behavior or
algorithm. It is believed that a good specification method should not be biased to any
specific implementation. If a C language program is given as the input specification
model for the HW/SW codesign methodology, the design space to explore will
be severely restricted to a single processor system that has some hardware IPs
to accelerate compute-intensive portions of the algorithm since partitioning a C
program into multiple processors is not an easy task. Thus, the specification model
should be easy to be partitioned into HW and SW components.

HW/SW codesign covers the full spectrum of system design issues from initial
behavior specification to final implementation. In this introductory chapter to
the Handbook of Hardware/Software Codesign, we give the overview of each
design step explaining the research issues and the current status as well as the
future perspective. Section 1.2 explains why various models of computation have
been proposed for behavior specification of applications and introduces some

Figure 2. Overview of the HW/SW Co-Design design flow [6].

For this purpose, we will elaborate on the following two
research questions:

• How can different hardware language description al-
gorithm implementations be validated from a safety
point of view?

• How can different software algorithm implementations
be validated from a safety point of view?

The remainder of the paper is structured as follows. Related
work will be provided in Section II. The method will be
described in detail in Section IV and the results including a
short discussion will be provided in Section VI. A summary
of the findings will conclude this paper in Section VII.

II. RELATED WORK

This section describes the related work in the field of
component reliability considering HW/SW Co-design method-
ologies, software safety, hardware safety and component reli-
ability.

A. Reliability Focused HW/SW Co-Design Methodologies

Schaumont [7] defines that the HW/SW Co-Design that
is depicted in Figure 2 is used to design hardware and
software components in a single design effort considering the
partitioning and design of an application in terms of fixed and

Figure 3. HW/SW Co-Design driving factors [7].

flexible components. In general, the most driving factor for
the usage of the HW/SW Co-Design methodology is about
making trade-offs, as depicted in Figure 3, between conflicting
objectives such as performance, energy efficiency through fixed
hardware implementations and flexibility through the usage of
software implementations [7].

Beside the most common driving factors such as energy
and performance there are also other factors that are more
important in other domains such as the reliability for safety-
critical embedded systems. Vargas et al. [8] introduced a novel
HW/SW Co-Design approach that focus on the reliability of
the overall system. Their approach decides on the basis of
system reliability requirements which parts are partitioned into
hardware or software including a verification of the overall re-
liability of the system. Vargas et al. focused in their publication
on the correct function of the overall system and introduced
primary hardware redundancy. Another work is the publication
of Tosun et al. [9] that focus on soft errors such as bit flips.
Both frameworks clearly shows that the overall reliability of
safety-critical embedded systems are able to be improved by
specific HW/SW Co-Design approaches. Nevertheless, both
frameworks do not consider the component reliability of the
hardware parts that are measured as the Failure in Time (FIT)
Rate.

B. Software Design for Functional Safety

Nancy Leveson is one of the most known safety specialists
and have published a book about software safety [10]. In
1995 Leveson described that in general software developers
threat the computer as a stimulus-response system and that
they seldom look beyond the computer. Consequently, software
engineers usually constructed software without thinking about
effects of the software on system safety [10]. 23 years later
the perception of safety-critical software engineering has been
improved and engineers are aware about the influences of
software on the overall safety level [11]–[15].

Leveson [10] describes two common methodologies to
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ensure run-time safety of safety-critical software systems:
Dynamic and Static Analysis. Dynamic Analysis is a detection
method for software errors or functional errors during run-
time. Static Analysis by contrast focuses on formal errors such
as race conditions or buffer overflows. Nowadays these two
techniques have been advanced to frameworks that enhance
the validation process.

Cruickshank et al. [11] have introduced a novel validation
metrics framework for validating software safety requirements
and have applied the method on a fictitious safety-critical
surface-to-air missile system. Cruickshank et al. described that
their framework supported the early identification of potential
safety problems [11]. Baudin et al. [16] have described their
novel tool for safety validation called ”CAVEAT“. CAVEAT is
a statistical analysis tool to verify safety critical software and
is used by Airbus to validate pieces of code as early as possible
[16]. Michael et al. [15] also introduced a novel Hazard
Analysis and Validation Metrics Framework. This framework
is able to gauge the sufficiency of software safety require-
ments in the early software development process [15]. These
frameworks illustrate the need of advanced methodologies to
support safety-critical software development. However, these
frameworks do not consider a validation of different algorithm
implementations on the affects of component reliability.

Software algorithm validation is widely used to compare
different implementations with respect to power consumption
or run-time. Rashid et al. [17] have compared different sorting
algorithms that are implemented in different programming
languages on mobile devices. Their results clearly show that
different implementations results in different power consump-
tions. Another example is the analysis of energy consumption
of sorting algorithms on smartphones of Verma et al. [18].
Verma et al. have found out that the energy consumption
depends on the data size as well as on the implemented sorting
algorithm [18]. Bunse et al. have explored the energy consump-
tion of data sorting algorithms in embedded environments and
in their work different algorithms resulted in different power
consumption. According to the automotive functional safety
standard ”ISO 26262“ [19] power consumption is related to
component reliability.

C. Hardware Design for Functional Safety

The validation of algorithms is an important method for
achieving certain requirements such as area, power dissipation
or run time. Therefore, there are numerous articles about
enhancing efficiency of fault-tolerant mechanisms through
algorithm substitution [20] [21] [22]. Rossi et al. analyze
the power consumption of fault-tolerant buses by comparing
different Hamming code implementations with their novel
Dual Rail coding scheme [20]. Also, Nayak et al. emphasize
the low power dissipation of their novel Hamming code
components [21]. Another example is the work of Shao et
al. about power dissipation comparison between the novel
adaptive pre-processing approach for convolution codes of
Viterbi decoders with conventional decoders [22]. Khezripour
et al. provide another example for validating different fault-
tolerant multi processor architectures by power dissipation
[23]. Unfortunately, power dissipation is just one factor for
reliability of safety-critical components and insufficient for
safety validation.

The most important indicator for safety at hardware level is

the component reliability, which is measured in failure in time
(FIT) rates [19]. Component reliability is the main indicator
for safe hardware components and describes the quantity of
failures in a specific time interval, mostly one billion hours
[19]. These values can be calculated by specific standards for
electronic component reliability such as the IEC TR 62380 [24]
or statistically collected by field tests. Oftentimes, these field
test have already been conducted by the manufacturers and
are compiled in specific data-sheets for component reliability
[25]. For each component, the data-sheets usually contain the
specific FIT Rate for a certain temperature. To determine the
FIT Rate for other temperatures, the Arrhenius equation as
seen in (1) can be used.

DF = e
Ea
k ·( 1

Tuse
− 1
Tstress

)) (1)

where:

DF De-rating Factor
Ea Activation Energy in eV
k Boltzmann Constant (8.167303 x 10-5 ev/K)
Tuse Use Junction Temperature in K
Tstress Stress Junction Temperature in K

The Arrhenius Equation requires the Junction Temperature
instead of Temperature values. The Junction Temperature rep-
resents the highest operation temperature of the semiconductor
and considers the Ambient Temperature, Thermal Resistance
of the package as well as the Power Dissipation as seen in (2).

Tj = Tamb + Pdis · θja (2)

where:

Tamb Ambient Temperature
Pdis Power Dissipation
θja Package Thermal Resistance Value

III. PROBLEM STATEMENT

The validation of different algorithms is crucial for design-
ers to optimize their systems in terms of component reliability
for highly robust and safe autonomous vehicles. Designers of
safety-critical embedded systems should be able to pick the
most safe algorithm with the advantage of lower FIT Rates.
Especially for automotive Tier-1 companies lower FIT Rates
imply higher component reliability, which is crucial for the
economic success or failure of the whole system as profit
margins are that small that every defect matters. Therefore,
to support designers of safety-critical embedded systems, this
publication’s contributions to existing research are:

1) Developing novel methods for safety validation of
hardware and software algorithms that is based on
the approved ISO 26262 2nd Edition methods.

2) Applying the novel methods to quantify the differ-
ences between different algorithm implementations
from a safety point of view.

IV. COMPONENT RELIABILITY FOCUSED HW/SW
CO-DESIGN METHODOLOGY

This section introduces two novel design processes that
support designers of safety-critical embedded systems to find
the most reliable solution during the HW/SW Co-Design
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Figure 4. HW/SW Co-Design approach for the validation of the FIT Rate of specific hardware and software implementations.

process. The most reliable solution in this case is defined as
the system with the lowest FIT Rate. To compare different
hardware and software solutions it is necessary to measure
the specific FIT Rate of each algorithm implementation. For
this purpose, we need to introduce two novel measurement
methodologies that enable the FIT Rate measurement. These
two measurement methodologies that are presented in this
publication are:

• FITness Assessment - Hardware Reliability Eval-
uation The “FITness Assessment” approach enables
the FIT Rate determination of algorithms that are
implemented in hardware description languages such

as VHDL.

• ProFIT Assessment - Software Reliability Evalua-
tion The “ProFIT Assessment” approach evaluates the
FIT Rate of software implemented algorithms that are
executed on micro-controller.

The FITness Assessment focuses on the estimation and val-
idation of hardware related implementations and the ProFIT
Assessment on software implementations. Both methods can
easily be integrated in common HW/SW Co-Design design
flows as depicted in Figure 4.

The novel HW/SW Co-Design approach that is enabled
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through our two novel FIT Rate measurement approaches
allows the evaluation of the FIT Rate of specific functionalities
that are implemented in hardware or software. On the left side,
a tree diagram of the overall safety-critical embedded system
can be seen. The top leaf of the tree structure represents the
whole embedded system and contains a FIT Rate of X. In
the next hierarchical level the FIT Rate X is separated in the
control system part and the additional hardware part that are
represented with a FIT Rate of Y and X-Y. This strategy can be
continued until we reach the smallest part of the overall system
such as algorithms in software or hardware components. Based
on this FIT Rate separation each designer and programmer is
able to mind the overall FIT Rate of the system by complying
with the given FIT Rate. Any deviance of a software algorithm
can easily be recognized in the early phase of development and
enables an intervention of the project team.

After the separation, each software programmer and hard-
ware designer is able to determine if their solution matches
the requirements of the designer considering the FIT Rate.
Especially, the division of the overall FIT Rate into smaller
sub-parts enables a reliability focused hardware-software de-
velopment. A comparison between the designed reliability and
the indeed reliability is possible through the summarization of
the individual FIT Rates to the overall system. For this purpose,
the individual FIT Rates of the software and hardware units
are summed up to an overall system FIT Rate.

To enable this novel HW/SW Co-Design approach it is
necessary to measure the FIT Rate of specific hardware and
software implementations and this could be achieved by our
novel hardware and software reliability evaluations called
“FITness Assessment” and “ProFIT Assessment”.

A. FITness Assessment - Hardware Reliability Evaluation

To validate different algorithms that are implemented in
hardware description languages such as VHDL or Verilog, it
is necessary to quantify the essential values. Based on the
functional safety standard ISO 26262 2nd Edition’s approved
methods, the FIT Rate is the most important factor for safety-
critical hardware components. As stated in the Related Work
Section II, the De-rating Factor influences the FIT Rate and
is expressed in the Arrhenius equation (1). Combined with
the Temperature Junction equation it is obvious that the
power dissipation is the most significant quantity that can be
influenced by designers of digital circuits (see (3)).

DF = e
Ea
k ·( 1

Tuse
− 1
Tamb+Pdis·θja

))
(3)

Consequently, by decreasing Power Dissipation the de-
signer increases component reliability. For Field Pro-
grammable Gate Array (FPGA), the power dissipation primar-
ily depends on static and dynamic power consumption. Based
on these physical principles, our novel method FITness Assess-
ment for algorithm safety validation on FPGAs is segmented
in the following parts, as seen in Figure 5:

1) Algorithm Implementation
To guarantee similar conditions for different algo-
rithms, it is necessary to implement a generic frame-
work that allows implementing algorithms without
major changes.

2) Power Consumption Measurement
For each algorithm, a particular measurement is
recorded. It is advisable to record the generic frame-
work without any algorithm to be able to determine
the algorithms’ power consumption by subtraction.

3) Determination of Base FIT Rate
The Base FIT Rate may be calculated by using the
IEC TR 62380 [24] standard or analyzed statistically
by field tests. Oftentimes, these field test have already
been conducted by the manufacturers and are com-
piled in specific data-sheets for component reliability.

4) De-rating Factor Calculation
The De-rating Factor can be calculated with the
Arrhenius equation and the related Thermal Junction
equation as seen in (1) and (2).

5) Identification of Effective FIT Rate
The Effective FIT Rate reflects the Base FIT Rate for
a specific temperature and can be calculated with:

FITef = FITbase ·DF (4)

where:

Simulation Process

Algorithm 
Implementation

Power 
Consumption 
Measurement

Determination of 
Base FIT Rate

Derating Factor 
Calculation

Identification of 
Effective FIT Rate

Calculating FIT 
Rate for 

Implementation

Increase 
Temperature 

Value

Validate
Algorithms

Temperature 
Range 

Completed

Figure 5. Workflow overview of our novel method FITness Assessment for
algorithm validation from a safety point of view in Business Process Model

and Notation.
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FITbase Base FIT Rate from FPGA Reliability
Data-sheet

DF De-rating Factor as seen in (1)
6) Calculating FIT Rate of the Implementation

The Effective FIT Rate as seen in (4) represents the
component reliability for the whole FPGA. However,
an FPGA is made up of many different logic ele-
ments. Consequently, the Effective FIT Rate can be
broken down into the amount used by each logical
element as seen in (5).

FITimp =
FITef
Nle

(5)

where:
FITef Effective FIT Rate as seen in (4)
Nle Total Number of Logic Elements of the

specific FPGA taken out from Data-sheet
7) Validate Algorithms

The resulting FIT Rate of the implementation repre-
sents the FIT Rate of the specific algorithm and can
be used for validation. It is advisable to measure each
algorithm once at room temperature conditions and
simulate the rest of the temperature range by starting
with the De-rating Factor Calculation.

B. ProFIT Assessment - Software Reliability Evaluation

Validating software algorithms for safety-critical systems
from a safety point of view can be obtained by using our
novel “ProFIT Assessment”. This method enables the impact
measurement of different software algorithm implementation
on component reliability. Our novel method is using approved
methods from the functional safety standard ISO 26262 2nd

Edition [19] of the automotive industry. As a starting base we
have used equation (3). This equation represents the impacts on
the component FIT Rate as a function of the power consump-
tion. In Related Work we have introduced scientific results
that clearly shows that different software algorithm implemen-
tations results in different power consumption. Therefore, the
De-rating Factor can be used to determine the specific software
algorithm FIT Rate. Our “ProFIT Assessment” is using these
relations and can be separated into five parts:

1) Implementation
Different algorithms will be implemented in software.
For better results and accuracy it is advisable to
implement a general framework where the algorithms
can be exchanged without any major changes. The
framework will be compiled and programmed onto
a specific micro-controller. In general any micro-
controller can be used but it is advisable to look for
public available component reliability data-sheets.

2) Measurement
In this step the software algorithms will be run
on micro-controller and the power dissipation is
recorded. This step will be repeated for each imple-
mentation. As an output result a measurement report
is created, which contains the measurement setup,
the used micro-controller, software algorithm imple-
mentation, power consumption and ambient testing
temperature. These details are necessary for further
analysis.

3) Calculating FIT
The idea behind this step is that each software algo-
rithm needs a specific amount of time and the power
consumption is measured at a specific sampling rate.
For each sample we are calculating the specific Base
FIT Rate and relates it to the sampling duration. Sum-
ming up all the individual FIT Rates of each time-
slice results in the specific FIT Rate of the software
algorithm implementation for a specific temperature.
The impacts of the different implementations over the
whole temperature range will be determined through
the simulation process afterwards.

a) Junction Temperature
At first we are calculating the specific Junc-
tion Temperature for the ambient testing tem-
perature as seen in (2).

b) De-rating Factor
Secondly the specific De-rating Factor is
determined with the Arrhenius equation as
seen in (1).

c) Base FIT Rate
The base FIT Rate can be determined by
multiplying the base FIT Rate from compo-
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nent reliability data-sheet with the De-rating
Factor.

FITBase = DF · FITDs (6)

where:
DF De-rating Factor as seen in (1)
FITDs Base FIT Rate of Component Reli-

ability Data-sheet
d) Determine Time-slices

In this step the Base FIT Rate will be adapted
to the specific run-time.

FITTimeslice = FITBase ·
TSampling

TRuntime
(7)

where:
FITBase Base FIT Rate as seen in (6)
TSampling Measurement Sampling Time
TRun-time Run-time of the Measurement

e) Integrate Delta FIT Rates
To determine the Software FIT Rate it is
necessary to accumulate all individual Time-
slices.

FITAlgorithm =

n∑
1

FITTs (8)

n =
TRuntime

TSamplingRate
(9)

where:
FITTs Time-slice FIT Rate as seen in (7)
TSampling Measurement Sampling Time
TRun-time Run-time of the Measurement

4) Simulation
The simulation step is necessary to determine the
software algorithm FIT Ratio over the whole oper-
ational temperature range. The power consumption
variation will be neglected because it affects all
algorithm implementations equally.

a) Junction Temperatures of Temperature
Range
This step is similar as during the Calculating
FIT Rate step except the use of the whole
operational temperature range.

b) Determine De-rating Factors This step is
equal as seen in (1).

c) Calculate Simulation FIT Rates
This step is equal as seen in (6).

5) Validation
After the simulation there will be a Simulation Report
with the specific FIT Rates for the whole operational
temperature range. This can be used as a decision
support to pick the most reliable software algorithm
implementation.

V. TEST SETUP

This section describes the practical results of this publica-
tion by introducing the testing environment and the final results
of the experiments. The validation of the HW/SW Co-design
approach was divided in a software and hardware part and both
parts have been validated independently.

A. FITness Assessment Evaluation Setup

In our research question, we analyze the differences be-
tween Single Error Correction - Double Error Detection (SEC-
DED) and Double Error Correction (DEC). For this purpose,
we chose the Hamming code for SEC-DED as this code is
recommended in the new ISO 26262 2nd Edition and the BCH-
code for DEC, especially because other ECC algorithms are
often based on this concept and both algorithms fulfill the
following requirements:

• 32 Bit data size

• Combinatorical Logic

• Including Fault Injection Module

• SEC-DED or DEC Functionality

The generic algorithm framework contains a test-bench with
an automatic up-counter as well as a validator (see Figure 8).
Both algorithms can be exchanged in the framework without
any major changes. This enables a precise validation from a
safety point of view.

In our test setup, we use the MAX1000 - IoT Maker
Board by Trenz Electronic. This device is a small maker board
for prototyping with sparse additional components. The main
controller is the MAX10 10M08SAU169C8G, an FPGA device
by Intel. For our research, the main advantages of using this
board are:

• Small amount of additional hardware components

• Availability of Reliability Data-sheet

This board also contains an FTDI chip that draws about 50
mA on average, which we will subtract out for our analysis.
The power consumption measurement is performed by the
Mobile Device Power Monitor of Monsoon Solutions. The big
advantage of this power monitor is the direct measurement
of USB devices. The entire measurement setup is shown in
Figures 7 and 9 and contains the following software and
hardware parts:

• Quartus Prime 18.0 (Intel)

• Power Tool 5.0.0.23 (Monsoon Solutions)

• Mobile Device Power Monitor (Monsoon Solutions)

• MAX1000 - IoT Maker Board (Trenz Electronic)

  Data In

Write Data

32

  Data Out

32

Single Error
Corrected

Double Error
Detected/Corrected

No Error
Encoder

Register

Decoder

32 + p

32 + p

Fault
Injector

Failure Mode

2

32 + p

Figure 7. Pin configuration of both algorithms including an overview of
functional blocks inside.
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Figure 8. General framework for ECC algorithm validation including
test-bench and ECC algorithm.

Software:
 Intel Quartus Prime

 Power Tool

Diagnostic Device:
Power Monitor

Measurements:
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FPGA Board:
MAX1000 – IoT Maker Board

FPGA

Figure 9. Overview of the entire measurement setup including software and
hardware components.

B. ProFIT Assessment Evaluation Setup

For testing purpose we have chosen sorting algorithms as
test candidates. The reasons for us are:

• Very often used

• Easy to understand

• Many different algorithms available

• Comparable results of power consumption available as
seen in Section II-B

The sorting algorithms we chose are widely used and known
and are known as:

• Binary Insertion Sort

• Heapsort

• Insertion Sort

• Mergesort

• Quicksort

• Shell Sort

All sorting algorithms were implemented in C programming
language and programmed onto a micro-controller. For the
micro-controller we have chosen the “MSP430 FR5969” from
Texas Instruments by the following reasons:

• Measure Power Consumption with EnergyTrace++
Technology in “Code Composer Studio”

• Qualified for automotive usage

• Low-Power Device

• FIT Rates publicly available

As a operational temperature range for the simulation part we
have chosen −40◦C up to 140◦C. This range is higher than
the recommended operating conditions from the data-sheet but
for our tests it is not relevant.
Test Setup Summary:

• Code Composer Studio 8.1

• MSP430 FR5969

• 6 different Sorting Algorithms

• 400 Numbers to Sort

• −40◦C up to 140◦C Temperature Range for Simula-
tion

VI. RESULTS

A. FITness Assessment Evaluation

This section summarizes our results of the comparison
of SEC-DED and DEC ECC algorithm. The validation was
performed with our novel FITness Assessment method for
algorithm validation from a safety point of view as described
in Section IV.

The first algorithm we implemented was the Hamming
code, which is a SEC-DED ECC algorithm. The implemen-
tation reserves 45 logic elements of the used FPGA and the
whole board has an average power dissipation of 571.78 mW.
With the second BCH-code DEC ECC algorithm, the board
consumes an average of 599.05 mW and assigns 65 logic
elements. The first result shows a difference between both
algorithms in logic elements as well as in power dissipation
resulting in a varying FIT Rate. The next step is the simulation
process over the whole temperature range. We selected a
temperature range between -40◦C and 125◦C and the values of
Table I were used for the simulation process. In our simulation
we neglected the alteration of power dissipation through tem-
perature because it would affect both ECC implementations
evenly.

Figure 10 points out that both algorithms vary in their FIT
Rate and rise exponentially with increasing temperature. The
FIT Rate may be neglected for temperatures up to 40 ◦C.
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Figure 10. Simulation results of the resulted FIT Rates between -40◦C and
125◦C for both ECC implementations.
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Figure 11. Overview of the FIT Rate overhead between SEC-DED and DEC
ECC algorithm.

TABLE I. RESULTS OF THE RESERVED LOGIC ELEMENTS AND
AVERAGE TOTAL POWER DISSIPATION OF BOTH ECC

IMPLEMENTATIONS.
Hamming Code BCH-Code

Used Logic Elements 45 65
Total Average Power Dissipation 571.78 mW 599.05 mW

The Hamming code with SEC-DED shows a better FIT Rate
indicating more reliability of the hardware components which
results in a higher safety level. The reason for this difference
is the greater number of logic elements used for the DEC ECC
algorithm and the resulting increase of power dissipation. The
higher power dissipation results in a higher Thermal Junction
temperature as seen in (2), which leads to a higher FIT Rate.

Both algorithms were implemented without any safety
measures. This means that any damage to the Logic Element
of the FPGA leads to failure of the whole ECC algorithm and
the safe memory block. The ECC algorithm is the measure
against SEU related altered flip flops inside the memory block,
which decreases the specific FIT Rate of the memory block.
The results of Figure 10 do not represent the FIT Rates
of the memory block but the FIT Rate of the pure ECC
implementation. It is important to understand that the ability
of more bit error correction is not considered for the algorithm
validation because it only positively influences the FIT Rate
of the memory block.

Moreover, it is important to understand that the absolute
values of the FIT Rate always correlate to a specific FPGA.
Consequently, it is advantageous to look at the ratio between
the algorithms because this gives a better overview of the
overhead. The SEC-DED/DEC ECC FIT Ratio is depicted in
Figure 11. The FIT Ratio overhead of the DEC ECC algorithm
is slighly decreasing with increasing temperature, which is
negligible in practice.

We recommend using the Hamming code algorithm for
SEC-DED error correction for 32 bit memory size registers in
automotive LiDAR systems. The SEC-DED algorithm used in
our experiment resulted in a FIT Rate that was at least 52%
lower than the DEC ECC algorithm.
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Figure 12. Power consumption results of the implemented sorting algorithms
at 25◦C ambient temperature.
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Figure 13. Simulation results of the sorting algorithms between −40◦C and
140◦C.

B. ProFIT Assessment Evaluation

In this section we are presenting our results of applying
our novel “ProFIT Assessment” on sorting algorithms. This
method enables the possibility to validate software algorithms
from a safety point of view. It is important to understand
that we are not comparing sorting algorithms instead we are
applying our method on the sorting algorithms.

All algorithms are implemented in C and were tested on
the “MSP430 FR5969” micro-controller board. This board has
the possibility to measure the power consumption of each
algorithm directly in the “Code Composer Studio”. Table II
gives an overview about our power measurement results of the
implemented sorting algorithms. These algorithms were imple-
mented in C and were executed on the “MSP430 FR5969”
micro-controller board. The “Shell Sort” algorithm was in
our test case the fastest at run-time and needed the least
energy during run-time. Figure 12 shows the results of our
power consumption measurements. In our setup “Shell Sort”
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TABLE II. Overview of the Power Consumption measurements of all C
implemented sorting algorithms at 25◦C ambient temperature.

Average Power
in mA

Energy
in uJ

Time
in ms

Binary Insertion Sort 6.18 438.2 77.53
Heapsort 7.72 178.4 31.71
Insertion Sort 5.82 440.0 79.48
Mergesort 7.31 124.8 22.52
Quicksort 6.12 60.7 18.69
Shell Sort 7.30 58.5 15.20

TABLE III. Results of the algorithm FIT Rates calculation of the
implemented sorting algorithms on the MSP430 FR5969

micro-controller board.
FIT Rate in 10−9

Binary Insertion Sort 1.87204922
Heapsort 0.747313371
Insertion Sort 1.865387949
Mergesort 0.529712728
Quicksort 0.438742916
Shell Sort 0.357627573

had the best run-time performance and “Binary Insertion
Sort” had the worst run-time. This result clearly shows that
different algorithm implementations result in different power
consumptions. With these results the specific algorithm FIT
Rates can be determined with the equations that have been
introduced in IV-B.

The provided Table III represents the FIT Rate for a spe-
cific ambient temperature. In our case we have calculated the
FIT Rate for the test ambient temperature of 25◦C. For other
temperatures a simulation over the whole temperature range
is necessary. For this purpose we have used the Arrhenius
equation as seen in (1). In Figure 13 the FIT Rates of the
implemented algorithms is displayed with the behavior over
the whole temperature range. It can be seen that “Shell Sort”
has the best FIT Rate over the whole temperature range and
“Binary Insertion Sort” is the worst. For temperatures up to
50◦C it does not matter what kind of algorithm is used but
afterwards it has an affect on the component reliability and
therefore on the overall safety level.

VII. CONCLUSION

In this publication, we introduced a novel HW/SW Co-
Design approach that is optimizing the reliability of safety-
critical automotive systems. To enable this approach, we have
introduced two novel reliability evaluation methodologies that
are able to analyze the impacts of different hardware and
software algorithms on the component reliability also called
Failure-In-Time Rate.

The hardware related part of the publication introduced the
FITness Assessment, a novel component reliability hardware
evaluation methodology and this was used to evaluate two
different error correction code algorithms (SEC-DED and
DEC ECC) from a safety perspective. The software related
part introduced the ProFIT Assessment, a novel component
reliability software evaluation methodology and this was used
to analyze the impacts of six different sorting algorithms
(Binary Insertion Sort, Heapsort, Insertion Sort, Mergesort,
Quicksort and Shell Sort) to the overall component reliability
of the micro-controller part of the overall embedded system.

Both methods are based on approved methods of the novel
automotive functional safety standard ISO 26262 2nd Edition.
The result clearly shows that different hardware and software
algorithms lead to different FIT Rates.

FITness Assessment allowed the measurement of each
algorithm’s specific FIT Rate, facilitating the selection of the
most reliable ECC algorithm. Our case shows a DEC-ECC
algorithm that has a higher FIT Rate than the SEC-DED ECC
algorithm.

ProFIT Assessment focuses on evaluating component re-
liability of software algorithms on micro-controllers. In our
results we have showed that safety validation of software algo-
rithms is possible and that different algorithm implementations
can result in different component reliability. These differences
should not be neglected because they have an impact from a
safety point of view.

The FIT Rate reflects component reliability, which is an
important hardware indicator for safety. These differences
should not be neglected from a safety as well as from a
business point of view. The FIT Rate also statistically indicates
the amount of defective components, which is an economically
important indicator as lower FIT rates also result in less defect
components.

Fault-tolerance, safety and reliability will become more
and more important in the next years because of autonomous
driving. The novel introduced FITness Assessment enables the
validation of different hardware algorithms to be able to select
the most reliable one, which helps improve the overall safety
level of the automotive vehicle by increasing component relia-
bility. “ProFIT Assessment”, the second method we introduced
in this publication enables the possibility to validate the FIT
Rate of software algorithm implementations and enables the
possibility to choose the most reliable one. Both methodologies
can be used for HW/SW Co-design for optimizing safety-
critical automotive embedded systems from a safety point of
view.
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