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Abstract— Walking on a computed path is a fundamental task 
for mobile robots. Due to error effects such as slippage or 
imprecise mechanics, motion commands usually cannot exactly 
be executed. Thus, resulting positions and orientations may 
differ from the expectations. A robot has to compensate motion 
errors and should create a continuous movement that mini-
mizes the difference between planned and real positions. This 
problem becomes even more difficult in case we have legged 
mobile robots instead of wheeled robots. In this paper, we pre-
sent different mechanisms to regulate walking for multipod ro-
bots such as hexapods. They are based on virtual odometry, 
slippage detection and compensation as well as different types 
of regulation trajectories. These mechanisms are implemented 
and tested on the Bugbot hexapod robot. 

Keywords – Multipods; Hexapod; Autonomous Walking; 
Path-Following; Trajectory Regulation. 

I. INTRODUCTION  

A significant task of mobile robots is to navigate and 
move to a target position. The navigation in partly unknown 
environments is well-understood – we know numerous ap-
proaches to generate paths based on environment maps, cre-
ated from sensor input. For the actual moving task, however, 
there is the problem of imprecise execution of movement 
commands. The problem is even more difficult, if we have 
walking robots such as hexapods as the movement consists 
of several phases with different motor actions. This is a ma-
jor difference to driving robots, as their wheel-based move-
ment typically can be fully controlled by steering angles or 
motor revolutions per time. 

Figure 1 illustrates the problem. A hexapod should walk 
on a straight line. A slippery area on the ground (not known 
by the robot) has a lower traction because of, e.g., ice. If the 
robot walks without considering this area, the right feet pro-
vide smaller propulsion. As a result, the real trajectory is a 
curve to the right, not straight as intended. 

As a desired behaviour, the robot should automatically 
adapt to the respective ground and execute a left curve to 
move back to the planned trajectory. On the first view, this 
problem is a typical regulation problem addressed by control 
theory. We could consider the joint angles (e.g., 18 for a 6-
legged hexapod with 3 servos per leg) as the system output 
and want to minimize the difference of real and desired loca-
tion and orientation. However, we have two significant dif-
ferences to the classical problem. 

Figure 1.  Illustration of the regulation problem 

First, the regulation task is heavily influenced by non-
holonomic walking constraints and obstacles in the environ-
ment. Second, the control output is not a set of joint angles, 
but a sequence of different joint angles, i.e., a function of an-
gles over time (i.e., the gait). As a result, traditional tools to 
relate the joints speed and the resulting robot location (e.g., 
Jacobian matrices) are not suitable. 

This paper presents a regulation approach based on the 
following ideas: 

 We introduce the concept of virtual odometry to ab-
stract from complex walking gaits. 

 We measure and compensate slippage as main 
source of disturbance. 

 We periodically compute regulation trajectories to a 
pose ahead on the formerly planned path. 

 As the regulation trajectories are not computed in 
zero-time, we introduce micro regulation to compen-
sate the delay. 

 
This paper is an extended version of a shorter publication 

presented at the ADAPTIVE 2019 [1]. It extends the original 
paper in the following ways: First, we demonstrate the ap-
proach in more depth, in particular the mathematics behind 
it. Second, we introduce the concept of micro regulation to 
address the delay problem. Third, we provide a more detailed 
evaluation of the overall approach. 

In Section II, we present related work. Section III de-
scribes our regulation approach. Experiments are presented 
in Section IV. Section V concludes the paper. 
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II. RELATED WORK 

Research on path following and trajectory tracking has a 
long tradition in control theory [2][3][4]. The basic goal is to 
provide a formal representation of the so-called control law 
[5]. Both, the vehicle and trajectories are strongly formalized 
in order to derive quality statements, in particular regarding 
the controller's stability [6]. 

Model Predictive Control (MPC) [7][8] is based on a fi-
nite-horizon continuous time minimization of predicted 
tracking errors. At each sampling time, the controller gener-
ates an optimal control sequence by solving an optimization 
problem. The first element of this sequence is applied to the 
system. The problem is solved again at the next sampling 
time using the updated process measurements and a shifted 
horizon. 

Sliding Mode Control (SMC) is a nonlinear controller 
that drives system states onto a sliding surface in the state 
space [9][10]. Once the sliding surface is reached, sliding 
mode control keeps the states on the close neighbourhood of 
the sliding surface. Its benefits are accuracy, robustness, easy 
tuning and easy implementation. 

The Line-of-Sight path following principle leads a robot 
towards a point ahead on the desired path. It is often used for 
vessels [11] or underwater vehicles [12]. The approaches dif-
fer how to reach the point ahead. Examples are arcs, straight 
lines or Dubins paths [13]. 

Another approach explicitly measures and predicts slip-
page, in particular of wheeled robots. As this is often a main 
source of disturbance to follow a path, it is reasonable to 
model it explicitly. In [14], effects on motors are measured 
for this. [15] uses GPS and inertial sensors and applies a Kal-
man filter to estimate slippage. 

The majority of vehicles that are considered for the path 
following problem are wheeled robots, because their behav-
iour can be formalized easily. Multipods are only rarely 
taken into account. [16] presents trajectory planning and con-
trol for a hexapod that mainly keeps the robot balanced in 
rough terrain. 

Pure Pursuit describes a class of algorithms that project a 
position ahead on the planned trajectory and create a regula-
tion path (e.g., an arc) to reach this position. Early work 
about Pure Pursuit is [17]. The basic version only tries to 
reach a position ahead without considering the robot's 
orientation [18]. Improvements dynamically adapt the look-
ahead distance [19]. 

Only rare approaches directly address the regulation 
problem of multipods. [20][21] consider the influence of 
disturbances such as grip on a climbing surface. The regula-
tion is more fine-grained, i.e., on motor-level. As a result, the 
joint angles are controlled to execute a desired gait. The ap-
proach does not intend to regulate the robot movement to 
hold a certain trajectory or pose. 

III. THE REGULATION APPROACH 

Our regulation approach is embedded into the larger Bug-
bot project [22][23] (Figure 2). Bugbot is a hexapod robot, 
created to explore motion, navigation, world modelling and 
action planning for walking robots. 

 
Figure 2.  The Bugbot 

The platform is an 18-DOF hexapod based on Trossen 
PhantomX Mark III. We added a Lidar device (light detec-
tion and ranging) and further sensors for collision detection 
and falling prevention. A Raspberry PI 3B is used for main 
computations, e.g., route and trajectory planning, SLAM and 
trajectory regulation. 

Even though the Bugbot is fixed to six legs, the regula-
tion approach is suitable for all multipods with statically sta-
ble gaits [24], e.g., spider-like octopods, but also robots with 
odd leg numbers, maybe mounted circular around the centre. 

The Bugbot also comes along with a software stack (Fig-
ure 3). We have the following major components: 

The Robot Application contains the actual task code for 
the robot's mission, e.g., to explore the environment, to carry 
things or to move to a target location. 

Navigation provides a point-to-point route planning in 
the workspace (i.e., without dealing with the robot's orienta-
tion). This component does not consider non-holonomic con-
straints – these are shifted to lower components. It computes 
a line string of minimal costs that avoids obstacles. This 
component is useful to segment the overall path planning 
task into subtasks with lower complexity. 
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Figure 3.  Data flow to execute walking tasks 
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Trajectory Planning computes a walkable sequence of 
trajectories according to the formerly computed route points 
and now considers non-holonomic constraints. The trajecto-
ries are taken from a set of primitive trajectories such as 
straight forward or arc. We consider primitive trajectories as 
directly executable by the Motion System. 

Trajectory Regulation permanently tries to hold the plan-
ned trajectories, even if the position drifts off. It contains the 
sub-components Regulation Trajectories, Slippage Detection 
and Micro Regulation that are described in the next sections. 

Simultaneous Localization and Mapping (SLAM) con-
stantly observes the environment and computes the most pro-
bable own location and locations of obstacles with the help 
of, e.g., ultrasonic sensors or Lidar. The current error-correc-
ted configuration is passed to all planning components. Ob-
served and error-corrected obstacle positions are stored in an 
Obstacle Map for further planning tasks. 

The Evaluator computes costs of routes and trajectories 
based on the obstacle map and the desired properties. Cost 
values may take into account the path length, walking time, 
or expected energy consumption. In addition, the distance to 
obstacles could be considered, if, e.g., we want the robot to 
keep a safety distance whenever possible. 

The Motion System is able to execute and supervise walk-
ing commands by formalized gaits. It considers slippage and 
provides Virtual Odometry. These concepts are also descri-
bed in the next sections.  

In this paper, we assume that Navigation, Trajectory 
Planning and SLAM already exist. We may use an approach 
as described in [22] for this. We here focus on the compo-
nent Trajectory Regulation.  

When starting with the Bugbot project in 2017, we al-
ready had long-term experience with a former robot, the 
wheeled Carbot [25]. Carbot also provided navigation, tra-
jectory planning and motion components. However, the leg-
ged Bugbot was not as easy to formalize as a wheeled robot. 
Moreover, we had to face issues that made it difficult to ap-
ply traditional approaches based on control theory. Walking 
is in general more error-prone than driving. As a result, we 
cannot execute regulation trajectories as precisely as ex-
pected. As different multipods may be different in the capa-
bilities to execute certain gaits, our goal was to consider the 
set of possible walking commands as black box. In particu-
lar, we did not want to restrict our general regulation mecha-
nism by specific kinematic properties, e.g., by certain gaits 
or leg configurations.  

Our approach should directly consider obstacles and arbi-
trary cost functions, again given as black boxes. A certain 
regulation trajectory may not only be based on regulation pa-
rameters, but also on the environment. 

The resulting approach was inspired by the pure pursuit 
idea. We project the current position ahead to the target and 
try to get there. But we extended the basic idea in two ways: 

 We try to reach a planned configuration, i.e., posi-
tion and orientation. This is much more difficult than 
only to reach a planned position, but as a benefit, fu-
ture configurations are much closer to the intended 
path. 

 We are not restricted to a certain primitive trajectory 
(e.g., single arc) to reach the configuration ahead, 
but execute a full trajectory planning step that may 
result in multiple primitive trajectories. 

 
We use the trajectory planning both to compute a full 

path to the final target, as well as for the regulation approach. 
As a benefit, both components produce output that the Mo-
tion System directly accepts as walking commands. More-
over, the motion capabilities are modeled in one place in the 
system. However, we have to face the following issues: 

 As we do not explicitly model a control law, we 
have to consider sources of disturbance, foremost the 
slippage effect. 

 As the regulation component permanently calls a tra-
jectory planning, we have to consider execution 
time. In our approach, we thus apply an efficient tra-
jectory planning approach. 

 Even though executed fast, the trajectory planning is 
not performed in zero time. Thus, the robot slightly 
has moved, before the next trajectory is computed. 
We need a further mechanism, we call micro regula-
tion, to compensate this effect. 

 
In Figure 3, we also see a facility to report errors to the 

components above. If planned and real pose deviate too 
much, we consider the regulation as failed and restart naviga-
tion. With a newly planned route, the first deviations are 
small. With this facility, actually even naïve implementations 
of the Trajectory Regulation would work in theory, but may 
have bad performance in reality. In particular, we then had to 
face the cascading failure problem as described in Section 
III.E. 

Before we describe the regulation approach in detail, we 
start with the motion model and mathematical foundations. 

A. The Motion Model 

Multipod robots often have legs as shown in Figure 4. 
Legs must have at last 3 degrees of freedom to freely place 
and move the foot during gait execution. The leg segments 
usually are called Coxa, Femur and Tibia based on insect 
anatomy naming. Robot legs with more degrees may provide 
redundancy in leg positioning, but are not generally capable 
to execute more gaits. In this paper, we abstract from inverse 
kinematics questions and assume the controlling mechanism 
is capable to place the feet as required by a movement. 

 
Figure 4.  Typical construction of a multipod leg 
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Figure 5.  Structure of a multipod gait (top and left),  
vi and arc trajectory (bottom right) 

Multipods can walk in different ways. First, we can look 
at the actual trajectory, e.g., straight forward, sideways (i.e., 
crab gait), arc or turn in place. Second, we can distinguish 
the gait that defines the time sequence of moving legs. 

We start with the trajectory. Each leg moves through two 
phases when walking: 

 In the stance phase, the foot touches the ground. 
This phase is important for the robot's static stability. 
Always at least three feet must be in the stance 
phase, whereas the feet's convex hull must enclose 
the point below the centre of gravity. 

 In the swing phase, the foot is lifted and moved to 
the start of the stance phase. During the swing phase, 
the leg can move over small obstacles. 

 
Figure 5 shows the two phases for a specific leg. Let 

(fxi, fyi) denote the neutral foot position of leg i. It marks the 
centre of a stance movement vector vi in local robot coordi-
nates. In world coordinates, the foot remains on the ground at 
the same position (in the absence of slippage). We assume 
the stance movement is linear or can at least be linearly 
approximated.  

In the swing phase, the leg is lifted and moved in walking 
direction, whereas the ground projection may reside on vi. 
The swing phase has a polygonal representation in three di-
mensions, but can be defined by a 2D polygon roto-trans-
lated to be aligned to vi. 

The second facet of multipod walking is the gait. Gaits 
define the cooperation of legs in the respective phases. Fig-
ure 6 shows the example of the Ripple gait, a gait that always 
has two lifted legs. Many further gaits are known, e.g., Tri-
pod or Wave that differ in stability and propulsion [24]. A 
gait is fully described by a gait matrix that specifies per leg 
(row) and step (column) whether a leg is in swing phase (1) 
or stance phase (0). For the Ripple gait, we get the matrix 

LEFT FRONT

LEFT MIDDLE

LEFT REAR

RIGHT FRONT

RIGHT MIDDLE

RIGHT REAR

Stance Phase Swing Phase

Figure 6.  Gait pattern for the Ripple gait of hexapods 
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We assume that gait execution and the choice for a cer-
tain gait are encapsulated in the Motion System component. 
For this, it receives the gait matrix and stance vectors vi and 
is able to autonomously execute a gait as long as required by 
the respective trajectory. 

An important observation: we can deal with movement 
trajectory and gait independently. This means that the 
respective trajectory shape is not influenced by the gait se-
quence pattern. The gait only affects the movement speed 
and stability. 

B. Mathematical Foundations 

For the intended approach, we need mathematical an-
swers for three questions: 

(A) Given a primitive trajectory, what are the stance vec-
tors vi to move along the required trajectory? 

(B) Given two robot poses, what is the primitive trajec-
tory that connects these poses? 

(C) Given stance vectors vi, what is the primitive trajec-
tory the robot walks? 

 
(A) and (C) are reverse questions. (B) and (C) are simi-

lar, but base on different input variables. We additionally 
could ask for the pose after walking a primitive trajectory. 
This would be the reverse of (B). However, this usually has a 
simple solution. 

In the following, we consider two primitive trajectories: 
moving straight to target (tx, ty) and moving along an arc with 
centre cx, cy and curve radius r. More trajectories are con-
ceivable, e.g., moving along clothoids. However, these have 
certain properties that are more suitable for driving robots. 
We also consider turning in place as primitive, but subsume 
it under the arc trajectory (whereas the arc centre is the robot 
centre). 

We further assume that there exists a maximum stance 
vector length vmax. The maximum length is a result of the re-
spective leg mechanics, e.g., leg segment lengths, servo an-
gle limits and collision areas between the legs. 
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The solution (A) for straight trajectories is 
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For arcs, we have the following constraints. First, the 
stance vector must be orthogonal to the line between neutral 
position and arc centre. Second, the ratio of stance vector 
lengths of two legs must be equal to the ratio of the distances 
between the respective neutral positions and arc centre. 
Third: the largest stance vector must have length vmax. More 
formally: 

0











yiy

xix
i cf

cf
v ,

























yjy

xjx

yiy

xix

j

i

cf
cf

cf
cf

v

v
 

max)max( vvi   

(3) 

With these equations, we can easily construct the vi: we 
turn the line between neutral position and arc centre by 90°. 
Then we identify leg i that has the largest distance to the arc 
centre – this must receive the stance vector length vmax. Fi-
nally, we rescale the stance vector lengths according to the 
required relation, i.e., 
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For (B) we want to connect the current pose with a target 
pose (tx, ty, t). For t=0 we get a straight trajectory to (tx, ty). 
For t≠0 we get an arc with angle t. Figure 7 shows the de-
tails. 

 
Figure 7.  Construction of the arc geometry from two poses 

We get the arc centre, if we add vectors (tx, ty)/2 and e, 
whereas e has the length 
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for f=1/(2tan(t/2)) we thus get 

 

























ft
ft

t
t

c
c

x

y

y

x

y

x
2/
2/

 (6) 

or  

 













 








y

x

y

x
t
t

t
t

c
c

1)2/tan(/1
)2/tan(/11

2

1


  (7) 

From (cx, cy), we finally get r. 
Problem (C) is the hardest to solve. We first compute the 

amount of propulsion in a small time interval t. Even 
though a foot in stance phase remains on the ground, in local 
robot coordinates it moves along vi. In turn, the neutral foot 
position (fix, fiy) moves along –vi in world coordinates. When 
a foot remains in the stance phase during the time tst, the foot 
moves during t 

 i
st

v
t

t
  (8) 

The time tst depends on the respective gait (e.g., Tripod 
or Wave) and can be derived from the gait matrix: it is the 
ratio of zeros in a row, multiplied by total cycle time. Note: 
even though a foot in swing phase provides no actual propul-
sion to the robot, the respective (fix, fiy) virtually move 
continuously, also for t>tst. As a result, we have a constant 
speed over all steps.  

Viewed from the first position, the feet virtually move 
from fi=(fix, fiy) to f'i=(f'ix, f'iy) whereas 
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To find the respective primitive trajectory, we need a 
function  that computes  

     nny
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fffft
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 (10) 

 denotes a function to compute a roto-translation, 
which maps all positions of the first list to positions of a sec-
ond list, meanwhile minimizing the mean square error. We 
apply an approach based on Gibbs vectors [26] for : We 
look for a rotation matrix R and translation t with 

 tfRf ii   (11) 

According to the Cayley transform [27], we are able to 
replace the rotation matrix as follows 
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 tfQIQIf ii   )()( 1  (12) 

where I is the unity matrix and Q=[q] with q the vector of 
Rodriguez parameters (Gibbs vector), where [] denotes the 
cross product operation by a matrix, i.e., ab=[a]  b. 

We can rewrite this to 
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where t*=t(I+Q). We get 
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For two dimensions we get 

 





























































































*

*

*

*

11

11

11

11

10)(
01

...
10)(
01

...

y

x

y

x

nxnx

yy

nxnx

yy

nyny

nxnx

yy

xx

t

t

g

H

t

t

g

ff
ff

ff
ff

ff
ff

fy
ff

y





 (15) 

This is an overdetermined linear equation system. We 
minimize least squares with 
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We finally get the roto-translation (tx, ty, ) with 
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where  = )2/tan( . 

C. Computing Trajectories 

A basic building block for the trajectory regulation is to 
compute regulation trajectories, i.e., such trajectories that 
bring the robot back to a planned path. As a basic idea, we 
use for regulation trajectories and long-range paths the same 
approach [22]. We adapted the original approach that was 
optimized for a wheeled robot [25] to a walking robot. It is 
based on the following ideas: 

 The navigation component (Figure 3) solely operates 
on workspace W and computes a sequence of colli-

sion-free lines of sight (with respect to the robot's 
width) that minimize the costs. 

 As the navigation only computes route points in W, 
we have to specify additional variables in C (here 
orientation ). From the infinite assignments, we 
only consider a small finite set. 

 From the infinite set of trajectories between two 
route points, we only consider a finite set of maneu-
vers. Maneuvers are sequences of primitive trajecto-
ries, for which we know formulas that derive the 
respective parameters (e.g., curve radii) from start 
and target configurations. 

 Even though these concepts reduce the problem 
space to a finite set of variations, this set would by 
far be too large for complete checks. We thus apply 
a Viterbi-like approach that significantly reduces the 
number of checked variations to find an optimum. 

 
We carefully separated the cost function (component 

Evaluator, Figure 3) from planning components. We assume 
that there is a mapping from a route or trajectory sequence to 
a cost value according to two rules: first, we have to assign a 
single, scalar value to a trajectory sequence that indicates its 
costs. If costs cover multiple attributes (e.g., walking time 
and battery consumption), the cost function has to weight 
these attributes and create a single cost value. Second, a 
collision with obstacles has to result in infinite costs. 

The basic capabilities of movement are defined by the 
supported set of primitive trajectories. The respective set can 
vary between different robots. A walking robot should sup-
port: 

 L(): linear (straight) walking over a distance of ; 
 T(): turn in place over ; 
 A(, r): move a circular arc with radius r (sign distin-

guishes left/right) over a distance of  
 
We are able to map primitive trajectories directly to 

walking commands that are natively executed by the robot's 
Motion System (Figure 3).  

A certain multipod may also support holonomic locomo-
tion, e.g., walk straight and turn the viewing direction during 
a single motion command. In this case, however, we have 
changing stance vectors over time, what complicates the gait 
formalism. Moreover, for a certain walking scenario not all 
trajectories may be reasonable. E.g., we may expect a cam-
era, an ultrasonic sensor or the sensors that prevent from fal-
ling downstairs to always point in walking direction. Thus, 
we require identical viewing and walking directions for all 
trajectories of type A or L, i.e., the robot only moves in the 
direction, it also views. Considering these constraints, it is 
not possible to reach a certain pose with a single primitive 
trajectory. At this point, we introduce maneuvers. Maneuvers 
are small sequences of primitive trajectories (usually 2-3 ele-
ments) that are able to map given start and target configura-
tions cs, ctC. More specifically: 

 A maneuver is defined by a sequence of primitive 
trajectories (e.g., denoted ALA or AA) and further 
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constraints. Constraints may relate or restrict the 
respective primitive trajectory parameters. 

 For given cs, ctC there exist formulas that specify 
the parameters of the involved primitive trajectories, 
e.g.,  for L, A and , r for A. 

 Sometimes, the respective equations are underdeter-
mined. As a result, multiple maneuvers of a certain 
type (sometimes an infinite number) map cs to ct. 
Thus, we need further parameters, we call free para-
meters to get a unique maneuver. 

 
Figure 8 shows three example maneuvers: S-Arcs (AA), 

Wing-Arc (LAL) and -Arcs (ALA). For, e.g., S-Arcs we have 
to set up equations to get the respective free parameters 1, 
2, r. To simplify the computation, we first roto-translate 
start and target to move the start to (0, 0, 0) and target to 
(xt', yt', t'). We get 
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where st=sin(t'), ct=cos(t'). We identified a total of 8 ma-
neuvers so far (Table I). We assigned names that illustrate 
the maneuver's shape, e.g., the J-Bow goes through a path 
that looks like the letter 'J'. The Dubins-Arcs correspond to 
the combination with three arcs of Dubins original approach 
[13]. From all maneuvers, -Arcs can be considered as a 
'Swiss knife': it allows reaching any target configuration 
without a turn in place whereas the middle linear trajectory 
spans a reasonable distance to the target. 

We also may invent new maneuvers to increase the over-
all walking capabilities. For a new maneuver, we only have 
to set up equations that derive the respective trajectory para-
meters from start and target configuration. 

To find a trajectory sequence of maneuvers is an optimi-
zation problem. For a given start and target pose in C and a 
list of route points in W we have to find a sequence of ma-
neuvers (and thus primitive trajectories) that 

TABLE I.  AVAILABLE MANEUVER TYPES 

Maneuver Pattern Free Parameters 
1-Turn LTL no 
2-Turns TLT no 
J-Bow LA arc radius 
J-Bow2 AL arc radius 
-Arcs ALA two arc radii 
S-Arcs AA no 

Wing-Arc LAL arc radius 
Dubins-Arcs AAA (same) arc radius for all three arcs 

 
 connect start pose, route points and target pose, 
 minimizes the costs, computed by the Evaluator. 
 
The controllable variables are: the maneuver types, their 

free parameters and the orientation angles at the route points. 
From the infinite set of the respective variations, we choose a 
finite promising set of candidates. Even though finite, the 
number of variations still is by far too large for a complete 
check. To give an impression: for 5 route points we get a to-
tal number of 20 million, for 20 route points 21037 permuta-
tions. Obviously, we need an approach that computes an ap-
propriate result without iterating through all permutations. 

Our approach is inspired by the Viterbi algorithm that 
tries to find the most likely path through hidden states. To 
make use of this approach, we replace 'most likely' by 'least 
costs', and 'hidden states' by 'unknown parameters'. We thus 
look for a sequence of maneuvers/orientations/free parame-
ters that connect them with minimal costs. Details of the 
underlying algorithm can be found in [22]. 

This approach is suitable, because optimal paths have a 
property: the interference between two primitive trajectories 
in that path depends on their distance. If they are close, a 
change of one usually also causes a change of the other, in 
particular, if they are connected. If they are far, we may 
change one trajectory of the sequence, without affecting the 
other. Viterbi reflects these characteristics, as it checks all 
combinations of neighbouring (i.e., close) maneuvers to get 
the optimum. We can reduce the number of variations to 
check for a complete route to some thousands. 

As a further benefit of the approach: The first primitive 
trajectory of the final path converges very fast. If fixed, the 
robot can start walking, while further trajectories are com-
puted during the movement. This property makes our trajec-
tory planning as an ideal candidate for regulation trajectories: 
The regulation trajectory is frequently computed in the back-
ground, each of it only, until the first primitive trajectory is 
fixed. During walking, the next primitive trajectory can be 
computed by following iterations. 

D. Virtual Odometry 

Leg movement with a complex timing pattern is difficult 
to handle in the context of trajectory planning and regulation. 
For geometric computations the model of turning wheels is 
more convenient, because we have a simple relation between 
motor revolutions and odometry. This leads to the idea of 
virtual odometry: We transform walking to corresponding 
wheeled movement. We could think of roller skates attached 

S-Arcs
Wing-Arc

A( 1, r)
A( 2, -r)

A( 2, r)

L( 1)
L( 3)

-Arcs L( 2) A( 1, r1)

A( 3, r2)

Figure 8.  Example maneuvers 
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to the multipod's legs while the legs remain in neutral posi-
tion (fxi, fyi). 

To compute virtual odometry, we intercept the formal 
gait description that is passed to the Motion System, namely: 

 the neutral position (fxi, fyi) for each leg i, 
 the stance vector vi for each leg i, 
 the time tst that the gait resides in stance phase for a 

complete cycle of one stance and one swing phase. 
 
According to formulas (10)-(17) we are able to compute 

a roto-translation (tx, ty, ) that maps the neutral leg positions 
to the moved neutral positions meanwhile minimizing mean 
squares. We further get (cx, cy) in case of an arc from formula 
(7). 

We now assume in a small time interval the robot either 
only moves an arc (respectively turn in place) or linear tra-
jectory. For small intervals and thus small running lengths, 
this is a reasonable approximation. We further consider the 
angular velocity and absolute speed as constant in a small 
time interval. If we consider both arc and straight movement, 
we get the moving distance for a leg i over time t as 

 
   












0 if

0 if
)(

22

22





yx

yyixxi
i

tt

cfcf
tt  (19)

We call i(t) the virtual odometry. It represents the ex-
pected portion of the overall moving distance of each foot 
when walking. 

E. Slippage Detection and Compensation 

With the help of virtual odometry we now are able to 
compute the expected run length and expected location. If 
they deviate from the planned trajectory, we try to walk 
back, using regulation trajectories (see below). 

If we did not take into account slippage, the regulation 
trajectories will not be executed as expected, thus the devia-
tion may increase (Figure 9). Even though the robot perma-
nently tries to go back on the planned path, the distance gets 
larger, because the regulation trajectories were also executed 
with a drift (here, to the left). In this case, we get what we 
call the cascading failure problem: at a certain point, the 
regulation fails and triggers a new route planning by the 
navigation component. This however, can only fix the prob-
lem for a certain time, as also further routes are not executed 
as expected. Finally, the robot, e.g., moves too close to a 
wall and the entire movement is stopped with an error. 

In addition to the expected walking distances, we now 
need the real distances. We assume that the robot owns sen-
sors (e.g., Lidar) and respective SLAM mechanisms that 
permanently estimate the robot's real position. We consider 
these mechanisms as black box, but expect, they detect the 
real pose change (tx', ty', ') after walking a time t. We again 
assume that during t, only a single movement pattern is 
executed. This obviously is wrong, if there is a change in the 
trajectory (e.g., changing from arc to straight). However, for 

small t, we can model both patterns by a single ('average') 
pattern, thus receive only small errors. 

For given (tx', ty', ') we can apply formulas (7) and (19) 
to get the real walking distances i'(t). We define 
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as the leg-specific slippage factor and 

 
i

iS
L

S
1

 (21)

as the general slippage factor, where L is the number of legs. 
Obviously S1 in reality. S describes the slippage property of 
the current bottom's pavement. E.g., S=2 means that the ro-
bot walks half as far as expected when executing a certain 
trajectory. The Si describe slippage per leg and could indi-
cate malfunctioning leg servos or feet that do not properly 
touch the ground. 

We are able to compensate slippage in two ways: 
 only compensate the general slippage; 
 also compensate leg-specific slippage. 
 
The assumption is: what we measured recently is a good 

estimation for the nearer future. If, e.g., we walk on a slip-
pery floor, we can consider the respective slippage factor 
when executing next trajectories, because it is likely to reside 
on the same floor for a certain time. To consider the general 
slippage factor, we have to extend the respective trajectory 
by the discovered factor: 

 Walking straight over a certain distance, we have to 
multiply the planned distance by S. 

 Walking on an arc, we have to multiply the planned 
arc angle by S. 

 
To consider the leg-specific slippage is more difficult. 

The problem: these factors do not only affect the trajectory 
length, but also its shape. E.g., if we want to walk straight 

Figure 9.  Problem of missing slippage compensation 
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with different factors Si for left and right legs, the robot ef-
fectively walks on an arc instead. A first approach would be 
to extend the respective stance vectors. E.g., if we got Si=2 
for a specific leg (i.e., the leg produces only half of the ex-
pected propulsion), we could enlarge vi by 2 to compensate 
this effect. However, this is not always possible, because the 
stance vector lengths are limited to vmax – either by the me-
chanics, or because neighbour legs should not collide during 
walking. Thus, we usually are only able to shorten the stance 
vectors. Our approach is to compute 

 )max(max iSS  , max/
~

SSS ii  , iii Svv
~~   (22) 

We use Smax as the general factor to extend the trajectory 
and multiply each leg's stance vector by iS

~
. Note that iS

~
1, 

thus a stance vector only can get smaller. 
It depends on the respective scenario, whether the com-

pensation only should consider the general slippage or 
should also apply a leg-specific compensation. The latter is 
only reasonable, if we expect a leg-specific slippage that may 
be result of malfunctioned legs or different pavement for 
different legs. 

F. Regulation Trajectories 

The task to compensate the drift during walking and to 
meet the planned trajectories is related to control theory, 
where a system tries to produce a desired output with the 
help of controllable input values. In the case of trajectory 
regulation, however, the desired output is a pose that usually 
cannot directly be achieved by adapting current joint angles 
or by a primitive walking operation. Due to non-holonomic 
constraints, we usually require a sequence of trajectories, i.e., 
our maneuvers. 

To explain our approach, we need some definitions. First, 
we need a function TP that provides a trajectory planning 
from start pose s to target pose t based on Section III.C. 

  ),,(),,,()(  tttsssTPT yxyxi   (23) 

The (Ti) is a sequence of primitive trajectories. We furt-
her need to identify an expected pose e of a current pose c. 

  ),,(),(),,(  cccTEeee yxiyx   (24) 

Expected means: the intended pose on the planned path 
for a given pose. If the multipod remains on the planned 
path, c and e are identical. If the pose leaves the planned 
path, we have to introduce a notion of 'nearest pose on the 
trajectory', whereas we may have different definitions for 
this. The function E may be stateful or stateless. A stateful 
implementation observes the current walking task and identi-
fies the expected pose based on walking time or virtual 
odometry. As an example: we could measure the walking 
distance from the start of walking on (Ti) and identify the 
pose that has the same distance from the start. A stateless im-
plementation only identifies the nearest trajectory point 

based on geometric distances. In our experiments (Section 
IV), we implemented the stateless version. 

We finally need a function A that projects the current ex-
pected pose ahead. 

  deTAaaa iyx ,),(),,(   (25) 

Here, d describes how much the current expected pose is 
projected ahead in target direction. We assume d to be con-
stant. Figure 10 illustrates the idea. 

We now compute a trajectory sequence (Ri) that brings 
the robot back to the originally planned trajectory. Our ap-
proach is to compute 

    dcccTETAcccTPR yxiiyxi ,),,(),(),(),,,()(  (26) 

The major benefit: we do not have to introduce a new 
mechanism to plan regulation trajectories, but re-use the 
function TP. One could suggest to bypass regulation trajecto-
ries and directly compute TP(c, t). However, the pose ahead 
is much closer to the current pose, thus a planning is much 
more efficient. Furthermore, we do not expect obstacles be-
tween current and ahead pose, as the original path already is 
planned to be obstacle-free. 

We finally have to think about d: 
 For a small d, we force the robot to walk on sharp 

turns to restore the planned trajectory sequence. 

 
Figure 10.  Idea of regulation-ahead 
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 For a large d, the robot walks a long time parallel to 
the planned trajectory before it reaches the meeting 
point. 

 
Both effects lead to higher costs – either because the path 

gets significantly longer or because the robot walks on posi-
tions with higher costs, only nearby the planned trajectory. 

Figure 11 illustrates these effects. In this example, we 
planned a linear trajectory and the real position is besides the 
linear trajectory with distance p, but with correct orientation 
angle. 

If both p and d are large, usual regulation trajectories 
contain two arcs. If p and d are small (Figure 11 right), the 
regulation trajectory may be a spiral that starts in opposite 
direction. This situation is unwanted, as the regulation first 
enlarges the distance to the planned trajectory. 

We want to investigate this effect. As a first observation, 
it heavily depends on the walking capabilities, in particular 
the set of primitive trajectories and minimal arc radii, in 
addition the cost function. We thus cannot give a general 
specification of a 'good' d. However, we can provide an idea 
to discover d for a respective scenario. 

Let |(Ri)| be the length of the regulation trajectories. We 
define 

 
d

R
q i )(
  (27) 

as the stretch factor. It specifies how much longer the regula-
tion path is compared to the way on the planned path. Figure 
12 shows typical curves of q. 

Due to the effect presented in Figure 11 (right), small d 
result in high q. At a certain point (here at d=40 cm) q is 
close to 1.0. For d>40 cm, we get only minor improvements 

of q. As a result, d=40 cm is a good choice for our scenario. 
This is only an example for a certain scenario. If we want 

to discover an appropriate d for other scenarios, we have to 
consider the range of expected position errors (here p), but 
also the expected orientation errors. 

G. Micro Regulation 

We can compute (Ri) with the function TP periodically, 
e.g., every few seconds without considerable stressing the 
CPU. However, on very small mobile platforms that also 
execute additional tasks (e.g., image processing), the corre-
sponding planning process may be delayed. This may cause 
a problem: TP is executed for a specific pose, but when TP 
finished, the robot has slightly moved to another pose. If the 
computed regulation trajectory then is applied to the new 
position, the endpoint does not reside on the originally 
planned trajectory. This in particular is a problem, if the 
orientation angle differs from the expectation. 

It is not reasonable to stop the movement during TP 
computation as this would seriously disturb the continuous 
movement of legs. This forms the idea of another type of 
regulation – the micro regulation: We compute a short path 
that moves back to the regulation trajectory with a single 
primitive trajectory. Usually, it is not possible to reach a 
position and orientation with a single trajectory without to 
relax some constraints.  

The idea of maneuvers (i.e., multiple primitive trajecto-
ries) respects the requirement to always walk in forward-
direction and considers the non-holonomic constraint not to 
move side-ways. However, a walking robot is able to move 
sideways (like a crab). The idea of micro regulation is to cre-
ate arc trajectories that cautiously make use of this possibil-
ity. To respect sensors that only scan in forward-direction, 
the amount of side-ways movement should be very small 
compared to forward movement. 

Planned Trajectories

Regulation-ahead Trajectories

Micro Regulation
cµx, cµy

rµ dµ

 
Figure 13.  Idea of combined micro regulation and regulation-ahead 

Figure 13 shows the idea: according to the solution of 
problem (B) (Section III.B), we compute a single trajectory 
(usually an arc) that brings the robot back to the regulation 
trajectory. This arc is not like the A trajectory (Section III.C) 
as the corresponding arc centre does not necessarily resides 
±90° to the viewing angle. As a result, the walking direction 
slightly goes sideways. 

Micro regulation requires fewer computation power as 
TP, as only a single trajectory has to be computed. Because 
we only slightly leave the regulation trajectory, we addition-
ally may ignore obstacles. As a result, we have two back-
ground loops with different cycle times: one loop that com-

d

p(Ti)

(R
i)

d

p

e

Planned Trajectories
Regulation Trajectories

 
Figure 11.  Effects of large and small d, p 
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Figure 12.  Typical stretch factors (d, p in cm) 
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putes a regulation trajectory (e.g., every 4 s) and one loop 
that computes a micro regulation trajectory (e.g., every 2 s). 
In addition, the micro regulation loop has a smaller ahead 
distance d, e.g., 20 cm. For a certain robot, the cycle time 
and ahead distance again must be subject to experimental 
optimization. 

We can even go one step further (Figure 14): We do not 
necessarily have to compute a micro regulation trajectory to 
the regulation trajectory (Ri). We instead could try to reach to 
planned trajectory (Ti). We call the approach in Figure 14 
pure micro regulation, in contrast to ahead micro (Figure 
13). In case of pure micro, however, we expect a larger 
amount of sideways walking, as there is a greater distance 
between real pose and desired target pose. This effect is 
investigated with experiments in the next section. 

IV. EXPERIMENTS 

We implemented our trajectory regulation approach on 
the Bugbot platform. Even though we fully tested the ap-
proach on this platform, it was difficult to create a huge num-
ber of different experiments in reality. E.g., it is costly to test 
the slippage detection for different floors and different slip-
page factors. It is even a problem to create pavements with a 
very specific constant slippage factor. It is also a problem to 
adjust leg-specific slippage in reality in a fine-granular man-

ner. Moreover, it is very difficult to create reproducible test 
runs as slippage and traction vary over time, even for the 
same pavement. This makes it difficult to compare results. 
We thus created a simulation environment that simulates the 
Bugbot on hardware- and physical level. A physical simula-
tion component is able to compute gravitation, any form of 
slippage and collision effects. The control software is the 
same as on the real hardware, i.e., the simulator's Bugbot 
model is able to create sensor values and carries out native 
servo commands. 

We divided the experiments in two groups. The first 
group shows the effects of regulation vs. no regulation and 
slippage compensation vs. no compensation. The second 
group shows the effect of the different regulation ap-
proaches. 

A. Regulation and Compensation 

Figure 15 shows an example to illustrate the effects of 
slippage compensation and regulation. For regulation, we ap-
plied the regulation-ahead approach as described in Section 
III.C. We simulated a leg-specific slippage of 2.0 for the 
three left legs. This means that without any compensation, 
the robot walks a left arc when planned to walk right (Figure 
15 top, left). With slippage detection and compensation, the 
shape of the planned path is mainly represented. But because 
the compensation is applied not before a small learning 
phase, the shape is rotated at the beginning (Figure 15 top, 
right).  

Figure 15 bottom shows the regulation. On the left we 
see an effect when the regulation tries to meet the planned 
path. Because the regulation trajectories are not executed 
properly, we see a constant offset. On the right, we finally 
see both mechanisms – after a learning phase, the planned 
trajectory is reproduced very precisely. 

Figure 16 shows a more complex example. Here, we 
again assigned a leg-specific slippage of 2.0 (only left legs) 
and in addition a general slippage of 2.0. This represents a 
very difficult scenario. If regulation and slippage compensa-
tion were applied, we can see a high congruence of planned 
and walked path. 

B. Comparison of Regulation Approaches 

The second group of experiments investigates the proper-
ties of regulation-ahead, pure micro and ahead micro. For 
this, we modified the complex walking scenario above and 
added different zones of slippage (Figure 17).  

 
Figure 14.  Idea of pure micro regulation  

Figure 15.  Simple walking scenario 

Figure 16.  Complex walking scenario (regulated, slippage compensation)
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Figure 17.  Walking scenario with changing slippage 

We again assigned a general slippage of 2.0, but alterna-
ted the leg-specific slippage (again 2.0) every 2 m between 
left to right legs. This stressed the regulation mechanism: af-
ter adapting to a certain slippage, it significantly changes and 
the mechanism first has to learn the new situation. 

We applied slippage detection and compensation and 
only changed to way to compute regulation trajectories. We 
tested the three types as shown in Table II. 

TABLE II.  PARAMETERS FOR THE TEST CASES 

Regulation  
approach 

d 
(ahead) 

cycle 
time 

(ahead) 

d cycle 
time  

(micro) 
regulation-ahead 40 cm 4 s n/a n/a 

micro (pure) n/a n/a 20 cm 2 s 
micro (ahead) 40 cm 4 s 20 cm 2 s 

 
For the ahead distance d, we selected the value from Sec-

tion III.F. As we have a maximum speed of approx. 9 cm/s, a 
cycle time of 4 s is sufficient. For the micro regulation we 
choose half values, both for the ahead distance d and cycle 
time. For the three test runs we measured three values: 

 The distance derr between real position and the near-
est position on the planned path. 

 The absolute angle error err between real orienta-
tion and the trajectory direction of the nearest plan-
ned path point. 

 The absolute heading error herr: it is the difference 
between viewing direction and walking direction. 
E.g., 0° means walking strictly forward, 90° means 
walking sideways in crab gait. 

 
Figure 18 shows the results. We can easily see the de-

crease of errors derr and err after adapting to the slippage. 
Whenever the robot enters a new area of slippage, we can see 
increasing errors. The errors are considerable low, even in 
worst case. The characteristics of herr are different whether 
micro regulation is applied or not. If not, herr is always zero. 
This is because TP already ensures that (Ri) only contains 
trajectories with forward heading. Micro regulation tries to 
compensate angle errors with trajectories that continuously 
change the heading with arcs. Not surprisingly, we thus can 
see a strong correlation of err and herr. 

Table III shows the averages of the respective values. In 
addition, we measured the computation time to compute 
regulation trajectories (Ri), micro regulation, or both in % of 
the overall CPU time. As we have a considerably long time 
between the respective computations (2 or 4 s), the total 
amount of time is very low. 

TABLE III.  TEST RESULTS 

Regulation ap-
proach 

CPU load 
in % 

avg(derr) 
in cm 

avg(err)
in ° 

avg(herr) 
in ° 

regulation-ahead 0.00855 2.9 4.6 0 
micro (pure) 0.00550 1.5 7.9 8.2 

micro (ahead) 0.0131 1.9 4.5 3.5 

 
Looking at the error values for all three types, the dis-

tance of real and planned position is very small. The angle 
errors err and herr are more significant. If we have strong de-
mands according the orientation, pure micro is not recom-
mended as we have a maximum of 8° both for orientation 
and heading error. In summary, ahead micro provides the 
best results, but slightly requires more CPU load than regula-
tion-ahead. 

V. CONCLUSIONS 

This paper presented different mechanisms to the path 
following problem for multipods. We formalized gaits and 
introduced virtual odometry to abstract from the respective 
leg configuration. Slippage detection and compensation is 
used to map planned trajectories to movement commands 
that are executed more precisely. We compute regulation 
trajectories with the help of efficient trajectory planning al-
ready used for long-range path planning to the final target. 
We also suggest micro regulation in case when some non-
holonomic constraints can be relaxed. 

The look-ahead distances currently are based on the de-
veloper's experience and experiments. Whereas small dis-
tances may lead to instabilities, larger distances increase the 
time to meet the planned path and moderately increase the 
cost value, thus are less critical. However, in the future we 
also want to make the ahead-distance as part of the controlla-
ble state. 
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