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Abstract—In the following paper, research about geodetic lines 

as well as about surface duplication is presented. The 

calculation of geodetic lines plays an important role in many 

applications, such as the minimisation of material in 

manufacturing processes. Many manufacturing steps, such as 

cutting or attaching layers on curved surfaces, suffer from loss 

of material. In order to minimise wastage of material, geodetic 

lines can be employed to find a cutting pattern for the given 

material with minimal distortion. This paper presents an 

automatable algorithm that numerically calculates geodetic 

lines on any given surface. The result is evaluated with a 

practical example by comparing the numerical result and the 

analytical solution. The creation of multiple layers serves the 

purpose to reinforce a given structure to increase its stability, 

which is commonly done in manufacturing processes. This 

paper presents an algorithm, which calculates the coordinates 

of multiple attached layers with any given thickness of layers. 

Furthermore, the point of maximum curvature is determined. 

Keywords-Geodetic Line; Surface Analysis; Surface 

Orientation; Surface Curvature. 

I. INTRODUCTION  

This paper is based on the assumptions that the material 

of the given surface is of finite thickness and of low 

elasticity, which leads to the necessity of minimising loss of 

material as well as to the necessity to calculate size and 

coordinates of further layers. The project in which the 

presented research is embedded aims particularly at 

protection gear such as helmets and vests. It is therefore 

presumed that the surfaces which have to be investigated are 

mainly convex. Moreover, it is assumed that the given 

triangulation is so fine that on a convex surface the scalar 

products of the normal vectors of adjacent triangles are 

always positive. For the implementation of the presented 

algorithms the software tool Matlab was used for 

implementation as well as for evaluation.  

A general overview over the research about geodetic 

lines is given in [1], which will be described more in detail 

in the following paper. The starting point of the research on 

the geodetic lines is the approach given in [2] for finding 

geodetic lines between two points. The main idea is to 

successively calculate distances from the starting point 

which is improved by the fast marching method. In [1], an 

algorithm for extracting the geodetic line as well as for 

further improving it is derived, which will be repeated in the 

following as well as deepen.  

For cutting a curved surface either sectional planes or 

geodetic lines can be used. The graphical approximation of 

flattened material stripes of an originally curved surface 

having been cut by the procedures of applying sectional 

planes and calculating geodetic lines clearly show that the 

cutting with the geodetic lines provides straight edges when 

flattened whereas the sectional planes result in curved edges 

which leads to a higher amount of material loss. However, 

sectional planes are much easier to apply and less time 

consuming than the analytical calculation of geodetic lines 

which is not even possible in many cases. Thus, this paper 

aims to provide an algorithm which approximates analytical 

geodetic lines on any given surface [1].  

Using geodetic lines, a cutting pattern can be derived 

which is not explicitly explained in this paper. However, it 

is not only one layer which is treated when producing 

objects so that several layers have to be taken into account. 

This paper presents an approach how to duplicate layers. 

For this purpose, finite thinness of the single layers is 

assumed which is in practice always true so that the overall 

area of a single layers slightly increases on a convex 

structure proportional to the number of layers (assuming 

that the layers are applied on the outer/convex face of the 

given surface). This shift of coordinates is addressed in this 

paper as well as the analysis of the orientation of the 

surface. As a result, an algorithm is presented which 

uniformly applies layers of any given thickness and size to 

the outside of any given convex surface which will be 

derived, e.g., which thickens a surface without changing its 

shape. The algorithm can be easily adapted to shift the 

coordinates to the inner face if needed.  

The paper is divided in nine sections. After the 

introduction, the calculation of the shortest distance on a 

triangulated mesh is shown in Section II followed by 

Section III about the extraction of the geodetic line. In 

Section IV a straightening algorithm for improvement of the 

geodetic line is presented. In Section V exemplary results of 

the applied algorithm which is derived in Section II-IV are 

evaluated. Section VI explains the basic considerations and 

concepts of the creation of multiple layers and challenges 

which have to be faced when duplicating layers. The 

duplication of layers is then described in Section VII. In 
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Section VIII the point of maximum curvature. Its relevance 

for research is shortly paraphrased in Section IX which is a 

concluding paragraph and an outlook to future work on this 

project at the end of this paper. 

 

II. CALCULATION OF SHORTEST DISTANCES ON A 

TRIANGULATED MESH  

In this paper, the procedure of the Fast Marching 

Method (FMM) is used [4] for calculating the shortest 

distances on a triangulated mesh. Basically, this method 

approximates the distances of all points surrounding the 

starting point successively by a wave front until it reaches 

the given ending point. For the following procedure it is 

assumed that starting and ending point of the geodetic line 

which is to be approximated are given. 

A. Procedure 

In the FMM, the vertices of all triangles in the mesh are 
divided into several groups which are sets of vertices. 

1) Fixed vertex set (FVS): contains initially only the 

starting points; vertices which are points of the shortest 

distance are added in the procedure. 

2) Close vertex set (CVS): contains initially no vertices; 

vertices which are close to the point that is investigated in 

the current iteration of the loop are added. 

3) Unprocessed vertex set (UVS): contains all vertices 

of the mesh that are not contained in FVS. 
 
Two situations can be distinguished: Only one starting 

point is given and more than one starting point is given. If 

there is only one starting point, the distances 𝑇𝑖 of its direct 
neighbours have to be calculated and the neighbours are 
added to the CVS. If there is more than one starting point, 

the points 𝑎0, 𝑎1, and 𝑎2 which are part of a triangle of the 
mesh containing exactly two points in FVS have to be 

determined. After computing their distances 𝑇0, 𝑇1, and 𝑇2 

to the starting value, the points 𝑎0, 𝑎1, and 𝑎2 are added to 
CVS. After these initial steps, the following loop starts: 

 The point 𝑎𝑖, i = 0, 1, 2 with the shortest distance 𝑇𝑖 
to the starting value is moved to FVS and is now the 
point of origin for further investigations. This point 
is called trial.  

 The distances 𝑇𝑖 of all points in UVS∪CVS which 
are adjacent to triangles containing trial and a point 
in FVS are computed and moved to CVS. 

In each iteration, one point is added to FVS and its 
neighbours are added to CVS. The algorithm terminates 
when FVS contains every vertex which is part of a line 
resulting in the shortest distance from starting to ending 
point.  

 
 

B. Calculation of Distance T 

For calculating the distance 𝑇 the method presented in 
[3] is used. It requires that one point, 𝑃1, of known distance 

𝑇1  is the origin and that another point, 𝑃2 , of known 

distance 𝑇2 is on the x-axis.  

1) Procedure: The distance 𝑇3  of the third point 𝑃3  is 

calculated in terms of 𝑇1, 𝑇2 and the connecting vectors 𝜈𝑖  

with 𝜈𝑖 = 𝑃𝑖 − 𝑃1 , in particular (𝜈3 )x and (𝜈3 )y, i.e., the 

projections of 𝜈3  onto the new basis vectors, which are 

calculated as follows: To change the default, adjust the 

template as follows: 

1. One point is set as the origin (𝑃1):  

𝜈𝑖 = 𝑃𝑖 − 𝑃1 

2. The coordinate system is transformed, where:  

𝑒𝑥 =
(𝑝2 − 𝑝1)

|𝑝2 − 𝑝1|
=

(𝜈2)

|𝜈2|
 

𝑒𝑦 =
(𝜈3 − 𝑒𝑥 ⋅ (𝑒𝑥 ⋅ 𝜈3))

|(𝜈3 − 𝑒𝑥 ⋅ (𝑒𝑥 ⋅ 𝜈3)|
=

(𝜈3 ⋅ |𝜈2|
2 − 𝜈2 ⋅ (𝜈2 ⋅ 𝜈3))

|(𝜈3 ⋅ |𝜈2|
2 − 𝜈2 ⋅ (𝜈2 ⋅ 𝜈3)|

 

3. The distance of 𝜈3 to the new coordinate system is 

computed where 𝑂𝑥 is the x-coordinate at which the origin 

of the new coordinate is located and 𝑂𝑦  is the relative y-

coordinate:  

𝑂𝑥 =
1

2

(𝜈2)𝑥
2 + 𝑇1

2 − 𝑇2
2

(𝜈2)𝑥

 

𝑂𝑦 = ±√𝑇1
2 −

((𝜈2)𝑥

2 + 𝑇1
2 − 𝑇2

2)²

4(𝜈
2
)
𝑥

2
= ±√𝑇1

2 − 𝑂𝑥
2 

𝑇3 = 𝑂𝑥 ⋅ 𝑒𝑥 + 𝑂𝑦 ⋅ 𝑒𝑦 − 𝜈3 

A challenge with this method is that there are always 

two possible virtual origins due to ±𝑂𝑦. In [4] it is stated 

that this is solved by calculating both distances and taking 

the larger value. However, there are situations where the 

smaller value is the correct one. This happens, presumably, 

mostly or only when P3 is not in front of the wavefront but 

beside. Such a situation occurs when the distance of a point 

in the CVS is recalculated. To mitigate this issue in a simple 

way, the recalculated value for the distance 𝑇 is only stored 

if it is smaller than the existing one. 

2) Accuracy: The algorithm was tested on a sphere with 

equally spaced points as shown in Figure 1. The starting 

point, i.e., the point with distance 𝑇 = 0 is chosen to be the 

north pole. The points are numerated such that one whole 

circle at constant 𝜃 is taken. Thus, plotting the distance over 

the index results in plateaus of constant distance as shown in  

Figure 1b and 1c.  
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III. EXTRACTING THE GEODETIC LINE 

In the second section, the shortest distance from starting 
to ending point on the triangulated mesh is determined. In 
order to approximate the geodetic line, a line of shortest 
distance can be backtracked along the points in FVS. The 
real geodetic line, however, does not necessarily consist only 
of vertices but of points on edges of the triangles as well. In 
the following the first approximation of the geodetic line is 
denoted by Γ0.  

A. Method of Minimum Distance  

The Method of Minimum Distance approximates Γ0 with 

regard to the calculated distances T. It iterates the following 

procedure and can be modified through two different 

options: 

1. The neighbor N of the previous point is determined 

which fulfills one of the following requirements: 

1. Option 1: N has the lowest distance TN of all 

provided neighbours.  

2. Option 2: N is the point of neighbours for which the 

value of the distance TN added to the distance from the 

previous point p is minimal 

2. The resulting neighbor N is appended to Γ0. 

 

This method extracts the geodetic line very quickly but does 

not provide a good approximation, neither with Option 1 nor 

Option 2, especially when the grid is very uniform. Also, 

the points of the geodetic line are still only located on 

vertices. Therefore, the gradient method was implemented. 

 

 

B. The Gradient Method 

The gradient method provides an approach to extract the 

geodetic line dissociated from the vertices. To determine the 

direction in which the geodetic line propagates the gradient 

of the distance T, approximated with the three distances for 

each point in each triangle, is used. 

 

1) Approximation of the gradient in a triangle: 

 

The gradient in a triangle with vertices i, j and k is given by 
 

(∇⃗⃗ 𝑇)(𝑖,𝑗,𝑘) = −
�⃗� 

|𝑛|⃗⃗ ⃗⃗  ⃗2
× (𝑇𝑖𝑒 𝑗𝑘 + 𝑇𝑗𝑒 𝑘𝑖 + 𝑇𝑘𝑒 𝑖𝑗),       

 

where 

𝑒 𝑎,𝑏 = 𝑥 𝑏 − 𝑥 𝑎  

 

are the vectors connecting the vertices a and b and �⃗�  is the 

Figure 2. Three points (i, j,k) of a triangle with distance 

values T and the approximated gradient (∇⃗⃗ 𝑇)(𝑖,𝑗,𝑘) 

(a) The colourmap was chosen to be 

repeating 10 times so that intra-ring 

fluctuations are visible. 

(b) Staircase-distances 

emerging from the ring-

after-ring-data-structure 

(c) Zoom of the upper „stair“ shows 

oscillations (visible in intra-ring 

colour changes in (a)) 

Figure 1. Distances on a homogeneously sampled sphere. The index starts at the south pole 

and increases ring by ring until the north pole is reached. Distances are calculated from the 

south pole via the fast marching method. 
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surface normal of the triangle: 

 

�⃗� = 𝑒 𝑘𝑖 × 𝑒 𝑗𝑘 

 

Note that the connecting vectors 𝑒 𝑖𝑗, 𝑒 𝑗𝑘 and 𝑒 𝑘𝑖 are 

circular, i.e., that 

𝑒 𝑖𝑗 + 𝑒 𝑗𝑘 + 𝑒 𝑘𝑖 = 0 

 

In Figure 2, a sketch of a triangle with its gradient is 

shown for an example set of distance values Ti, Tj, Tk. 

 

2) Extracting the Geodetic Line with the Gradient 

Method: 

 

The basic concept of the gradient method is to generate a 

line g for each triangle from the previous point p of the 

geodetic line and the gradient of T 

 

𝑔 ∶  𝑥 (𝜆) = 𝑝 + 𝜆∇⃗⃗ 𝑇(𝑖𝑗𝑘) 

 
and to find its point of intersection with the edges of adjacent 
triangles. For the choice of edges to intersect g with, one has 
to consider whether the previous point p is on a vertex or an 
edge. If p is on a vertex, the following procedure is applied: 
 

1. The negative gradients of the adjacent triangles are 
computed.  

2. A triangle is determined whose negative gradient 
points into the triangle itself. 

3. The line g is intersected with the edge of that 
triangle on the opposite side. 

4. The point of intersection is added to Γ0. 
 

If no triangle is found whose negative gradient points 
into the triangle itself, the neighbour N with the smallest  
distance T to the previous point p is added to Γ0. 
 
If p lies on an edge, a different procedure is used: 
 

1. The triangle which is adjacent to p and was not used 
for the prior calculation of p itself has to be 
identified. 
 

2. The line g is intersected with the two remaining 
edges, if the negative gradient points into the 
triangle. 

 
If the negative gradient does not point into the triangle, 

the previous p is moved to the vertex of the same edge that 
has the smaller distance T.  

Special case: It might happen that p lies on a boundary 
edge. This case can be resolved by moving p to the vertex of 
the same triangle with a smaller distance T. If p lies on a 
boundary vertex, the above-mentioned procedure can be 
applied without further arrangements. As already mentioned, 
his is a special case. Therefore, this will not be considered in 
the further course. 

 
3) Performance of the Gradient Method 

The algorithm approximates the real geodetic line in many 
test cases very precisely in accurate time. In case that real 
geodetic line runs near or along a line of edges without 
passing through several triangles or without changing the 
lane over the course of many points, the calculated geodetic 
line tends to stick to one lane and very late moves over to the 
other. This cannot be taken care of by the improvement 
algorithm which is described in the next section unless it is 
run for a lot more iterations than usual which is expensive. 
However, this special case is not problematic unless one 
wants to find the real geodetic line with even higher accuracy 
than already provided. For this, one could calculate the 
geodetic line and refine the triangulation around it to redo the 
whole calculation with the new triangulation until it 
converges. 

 
 

IV. IMPROVING THE APPROXIMATION OF THE GEODETIC 

LINE 

In the previous section we have generated an initial 

approximation Γ0 for the geodetic line between two points 

on a triangulated mesh in three-dimensional space. As this is 

just a first approximation, an algorithm for improving Γ0 is 

required. The improvement can be achieved by moving the 

points on vertices of the geodetic line along the edges of the 

mesh to shorten the length of Γ0. 

 

A. Criterion for Improvement of the Geodetic Line 

According to [2] the shortest path is given by the 

straightest path for triangulated surfaces. ‘Straight’ is 

defined as follows: After taking all triangles that the 

approximation Γ𝑖−1 passes through and unfolding them into 

a plane, the path Γ𝑖 is the shortest when it is a straight line in 

the planar view. Therefore, the algorithm for improvement 

aims at straightening the path in the unfolded planar view.  

 

(a) Pi,,j  lies on an edge. (b) Pi,,j  lies on a vertex. 

Figure 3. The two cases of a point of the geodetic Γ𝑖 needing correction. For readability Pi,-1,,j , Pi,,,j and Pi,+1,,j have 

been replaced by P1, P2 and P3, respectively. The dashed line denotes the corrected path. 
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B. The straightening algorithm 

For this section the i-th version of the path is denoted as 

Γ𝑖 and Pi,,j  the j-th point of the i-th path. For the following 

let Pi,,j  be the point to be corrected using the information 

about Pi,,j+1  and Pi,,j -1. The idea is to locally straighten the 

path by moving the central point of the three, i.e., Pi,,j . To 

ensure that the geodetic line converges and actually 

becomes shorter with each iteration, the updated Pi,+1,,j  for 

the updated path Γ𝑖+1  is calculated using the points which 

have already been updated during this iteration, i.e., Pi,+1,j-1 

instead of Pi,,j-1. For readability, we omit the “+1” in Pi,+1,j-1, 

but take care of it by only keeping one Г stored and 

updating it with each step during each iteration.  

There are always two cases to be considered: Pi,,j  lies on 

an edge or on a vertex as can be seen in Figure 3.  

 

1) Pi,,j  lies on an edge: 

If Pi,,j  lies on an edge, the following steps are needed to 

improve the line: 

1. The two triangles adjacent to Pi,,j  are unfolded.  

2. The point of intersection of the connecting line     

between Pi,,j +1 and Pi,,j -1 and the edge that Pi,,j  lies on are 

calculated. If the point of intersection does not lie between 

the two vertices of the edge, the closer vertex is chosen to be 

the corrected point instead in this case.  

 

As an example, let us assume the three points P1, P2 and 

P3, of which P2 lies on an edge and is the point which has to 

be corrected. Since P2 is on an edge, there are only two 

triangles adjacent to P2. For this example, let us call the 

points of the first triangle A, B and C, and of the second 

triangle B, C and D. P2 lies subsequently on the edge 

connecting B and C, P1 lies in the triangle limited by ABC 

and P3 lies in the triangle BCD. Applying the procedure 

explained above, first, the points D and P3 have to be rotated 

around 𝐶𝐷̅̅ ̅̅  to be in the same plane as ABC. The rotated                   

points will be denoted D’ and P3’. When defining C as the 

origin, every investigated point is moved by −𝑐 , which is  

the position vector of C in the original coordinate system. 

The position vectors of the points P3’ and D’ are then given 

by: 

 

𝑝 3′ ×= 𝑣 (𝑣 · 𝑝 3)  + cos(ɸ) (𝑣 × 𝑝 3) × 𝑣 + sin(ɸ)(𝑣 × 𝑝 3) 

𝑑 ′ ×= 𝑣 (𝑣 · 𝑑 )  + cos(ɸ) (𝑣 × 𝑑 ) × 𝑣 + sin(ɸ)(𝑣 × 𝑑 ) 

 

Where the edge connecting the vertices B and C is given by 

 

𝑣 = �⃗� − 𝑐  
 

And the angle by which the points have to be rotated by: 

 

ɸ = ±arccos 
(�⃗� 1 × �⃗� 2)

|�⃗� 1| × |�⃗� 2|
 

 

As the second step, the point of intersection of the edge 𝐵𝐶̅̅ ̅̅ , 

in the following denoted as h, and 𝑃1, 𝑃3′̅̅ ̅̅ ̅̅ ̅̅ , in the following 

denoted as g, has to be calculated. The points C’ and B’ are 

found, which are defined as the points on h with the shortest 

distance to 𝑃1 and 𝑃3’ which can be seen in Figure 4.  

       A plane at C’ with normal vector �⃗� 2 = 𝑝 1 − 𝑐 ′ can then 

be inserted as can be seen in Figure 4c. This plane can then 

be intersected with the line to find 𝑝 2: 

 

𝑔: 𝑥 = 𝑝 3 +  𝜆(𝑝 1 − 𝑝 3) = 𝑝 2 

 

With 

𝜆 =  
(𝑐 ′ − 𝑝 3) · �⃗� 2

�⃗� 2 · 𝑣 2
 

 

 

 

 

 

 

Figure 4. Intersecting two lines 

 

. 

(c) Plane (perpendicular to  𝑝 1 − 𝑐 ′) 
added for finding 𝑝 2 

(a) Initial situation (two lines 

defined by four poitns) 

(b) Two planes (perpendicular to 

g) added for finding c’ and b’ 
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2) Pi,,j   lies on a vertex 

If the point that is to be corrected coincides with a vertex, 

the procedure becomes more complicated. Let Sk be the set 

of triangles that have Pi,,j  as the central vertex, then several 

cases can be distinguished. Firstly, there are two simple 

cases which can be easily taken care of numerically: 

a) If all three points (Pi,-1,j,  Pi,,j  and Pi,+1,j)  are part of 

the same triangle, Pi,,j   is removed from Г.  

b) If Pi, j+1 or Pi,,j-1 lies on an edge that is not part of 

the boundary of Sk, it is removed from Г. 

For all other cases (Pi, j+1 and Pi,,j-1 belong to two 

different triangles) the vertices around Pi,,j are sorted 

and the left and right hand angles, θl and θr, are 

calculated in order to characterize the vertex as can be 

seen in Figure 5. These angles are given by the sum of 

the central angles of the triangles which are obtained by 

splitting the star-like structure of Sk along the path Pi,-1,j 

→ Pi,,j  → Pi,+1,j.  

 

Three main cases can be distinguished:  

1. θ = 2π : euclidean 

2. θ = θl + θr  > 2π : hyperbolic 

3. θ < 2π : spherical 

These three cases are taken care of differently where θ is 

defined as left or right hand angle. 

a) Euclidean: Sk can be unfolded isometrically. After 

unfolding, Pi, j+1 or Pi,,j-1 are joined in the unfolded 

Sk and  the intersections with the edges added to Г. 

b) Hyperbolic:  

a. If  θl and θr  are greater than π: no 

correction is needed. 

b. If  θl and θr  are smaller than π, that side of 

Sk is unfolded and Pi, j+1 as well as Pi,,j-1 

are joined in the same manner as in the 

Euclidean case. 

c) Spherical: The part of Sk with smaller θl/r is 

unfolded and Pi, j+1 or Pi,,j-1 are joined as in the 

Euclidean case. 

In all three cases the part of Sk with smaller θl/r has to be 

unfolded and the points of intersection have to be 

calculated.  

In test runs, it was observed that points which are very 

close to vertices keep approaching the vertex which they are 

close to without coinciding and adopting its value. 

Therefore, every 10 iterations the path is scanned for points 

on Г for which this might be the case. These points are 

moved to the vertex instead. All the following points that 

approach the same vertex are deleted from the path. This is 

necessary because otherwise curves in the path will never 

pass over a vertex. The effect of the scanning of the path 

and the movement of points to vertices is shown in Figure 6.  

 

V. EXEMPLARY RESULTS 

To test the capability of the gradient method and the 

straightening algorithm a geometry was chosen for which 

exact geodetic lines can be analytically computed for 

reference.  

A plane with a half cylinder barrier is generated and the 

geodetic line between two points on either side of the half 

cylinder is calculated, first analytically, then using the 

Figure 6. Correction of points surrounding a vertex. 

(a) The path is stuck at a vertex. (b) After ten iterations all points 

close to a vertex are removed 

and replaced by one point 

which is directly located on 

the vertex. 

Figure 5. Notation of angles. 

(c) The next iteration corrects 

this point and the detour is 

removed. 

(a)  Angle θr 

(b)  Angle θl 
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presented algorithm as shown in Figure 7.  

The axis of the cylinder is set along the y-direction. Let 

us assume that the following parameters are given: the range 

of x, the step size dx, the range of y, the step size dy, the step 

size dɸ for the angles on the cylinder, radius r of the 

cylinder and the displacement in x- direction of the cylinder 

axis c in the space. The cylinder is set in space such that 

there is translational invariance along the y-direction. Thus, 

the same y-vector can be used for each pair of x and z. The 

x-axis is separated into three parts. The first is an equally 

spaced vector that is limited by:  

 

𝑥 = 𝑐 − 𝑟 − 𝑑𝑥 
 

The third is an equally spaced vector starting at  

 

𝑥 = 𝑐 + 𝑟 + 𝑑𝑥 

 

The third part is the section in the middle of the mentioned 

ones and the one containing the half cylinder. This central 

part is given by: 

𝑥 = 𝑐 + 𝑟 · (− cos(ɸ)) 

 

For these three parts the z-coordinate is only unequal zero 

for the cylindrical part as can be seen in Figure 7. For the 

triangulation of the surface the Matlab function delaunay is 

used.  

The surface can then be expressed in terms of a function 

f which is defined to be: 

 

 

 

𝑓:ℝ2 → ℝ 

i. e. , 𝑓: (𝑥, 𝑦) → 𝑧(𝑥, 𝑦)  

 

This general generation of the test surface can be seen in 

Figure 7.  

      The analytical solution of the geodetic line running over 

the cylinder can be calculated as follows:  

The starting and ending point, pstart and pend, of the desired 

geodetic line are set to be on different sides of the cylinder. 

The first step is then to find the point at which the geodetic 

line starts to climb the cylinder which is denoted as 𝛼  and 

the point at which the geodetic merges again to the plane 

which is denoted as 𝛽  as can be seen in Figure 8a. To find 

these two points the half cylinder can be flattened which 

results in an isometric stretch of the grid in x-direction. The 

part which previously was on the right side of the half 

cylinder is then displaced by 𝑟𝜋 − 2𝑟  as shown in Figure 

8b, where shifted points are denoted with a prime (‘). 

Drawing a straight line between pstart and pend’gives then the 

possibility to determine 𝛼  and 𝛽  by the slope m of the drawn 

line. For this purpose, the slope is firstly calculated: 

 

𝑚 = 
(𝑝 𝑒𝑛𝑑,𝑦′ − 𝑝 𝑠𝑡𝑎𝑟𝑡,𝑦)

(𝑝 𝑒𝑛𝑑,𝑥′ − 𝑝 𝑠𝑡𝑎𝑟𝑡,𝑥)
=

(𝑝 𝑒𝑛𝑑,𝑦 − 𝑝 𝑠𝑡𝑎𝑟𝑡,𝑦)

(𝑝 𝑒𝑛𝑑,𝑥 + 𝑟(𝜋 − 2) − 𝑝 𝑠𝑡𝑎𝑟𝑡,𝑥)
 

 

Let us call the x-component of the distance between pstart 

and the left bottom of the half cylinder Δα and the x-

component of the distance between pend and the right bottom 

of the half cylinder Δβ, which are then given by: 
 

Δα = 𝑐 − 𝑟 − pstart,x 

Δβ = −𝑐 − 𝑟 + pend,x 

 

 

Figure 7. Scatterplot and delaunay triangulation of the test surface (Matlab). 
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The coordinates of 𝛼  and 𝛽  are subsequently given by: 

 

𝛼  = 𝑝 𝑠𝑡𝑎𝑟𝑡 + (
Δα

𝑚 · Δα
0

) 

 

β ⃗⃗  = 𝑝 𝑒𝑛𝑑 − (

Δβ 
𝑚 · Δβ 

0
) 

 

The distance in x,y and z-direction of the sections on the 

left-hand and right-hand side on the half cylinder can be 

easily calculated because the geodetic line is given by a 

straight line in a plane. The geodetic line in the central 

section can be analytically calculated as well: 

 

𝑦(ɸ) =  𝛼𝑦 + ɸ ·
𝛽𝑦 − 𝛼𝑦

𝜋
 

 

 

 

In Figure 9, an exemplary result of the geodetic line 

analytically calculated is shown as a black line. The 

numerical result is indicated by red dots. Several aspects can 

be seen: Beginning at the ending point (on the right-hand 

side of the half cylinder) the distances of the other points are  

calculated by the FMM. These increase up to the starting 

point (on the left-hand side of the half cylinder). For clarity, 

the colour palette was chosen such that it is repeated five 

times.  

In the left image the calculation is stopped after the 

extraction using the gradient method. For the right image 

the extracted geodetic line was improved by using the 

technique described in Subsection IV-B.  

As can be seen, the straightening algorithm removed a 

few deviations visible close to the upper right end of the 

geodetic line. The straightening algorithm ran 50 times but 

most of the improvement was already achieved after five 

iterations. 

(b) Stretching out the barrier to the 

right shifts 𝛽  and pend  by 𝑟𝜋 − 2𝑟   

Figure 9. Result of fast marching method (both), geodetic extraction (left) and improvement algorithm (right) 

(a) Sketch of a geodesic that goes over 

a cylindrical barrier. The points 

which it enters and leaves the 

barrier are highlighted (𝛼  and 𝛽 ) 

Figure 8. Flattening the half cylinder (Matlab Figure). 
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VI. CREATING MULTIPLE LAYERS 

When developing material structures, a given layer, 

which determines the structure of the desired object, has to 

be duplicated to ensure stability of the resulting object. For 

this, multiple considerations have to be taken into account 

which will be discussed in the following sections: 

A) The layers, which extend the first one by being 

attached on it, do not have exactly the same size as the 

given one due to the thickness of the individual layers, 

which cannot be assumed to be infinitesimally small in 

practice. Thus, there are two general movements, which 

have to be considered. The first movement is the one, 

which the single investigated vertex is subjected to, i.e., 

the relative change of coordinates. The second one is 

the direction in which the surface moves as a whole. 

Here, the layers should shift to the outside of the 

surface, which has to be defined first.  
 

B) In order to determine important specifications for the 

cutting pattern such as the thickness of the material 

layers and the width of the applied layers/material 

stripes, the point on the surface has to be found, which 

is subjected to the highest stress and thus experiences 

the highest strain in the whole layer. This point is, when 

regarding a surface without external loads being applied 

on it, the point of maximum curvature. At this point, the 

internal stress of the material is at its maximum. 

Material properties as well as manufacturing processes 

have to be adjusted in a way that the material at this 

point is still able to withstand the expected strains it 

might experience in its life cycle. 

 

VII. DUPLICATING A TRIANGULATED LAYER 

This section deals with the direction of the vertex shift, 

the direction of the surface shift and the resulting 

coordinates of additionally applied layers. 

 
A. Direction of vertex shift 

The direction 𝑑 𝑖, in which a single vertex moves, can be 

determined by the normal vectors �⃗� 𝑖  of the surrounding 

triangles 𝑇𝑖 . Given are the edges of the triangles 𝑒 𝑖 and the 

corresponding vertices 𝑣𝑖. The normal vector �⃗� 𝑗 of a triangle 

is obtained by the cross product of two edges 𝑒 𝑖  depicted in 

vector form of the triangle 𝑇𝑗: 

 

�⃗� 𝑗  = 𝑒 1 × 𝑒 2 

 

If a point 𝑝𝑗 is adjacent to i triangles 𝑇𝑖  with normal vectors 

�⃗� 𝑖 , then the direction 𝑑 𝑖  of the shift in 𝑝𝑗  is given by the 

average of the normal vectors of the adjacent triangles as 

shown in 2-D in Figure 10. 

 

𝑑 𝑖 =
∑(�⃗� 𝑖 )

𝑖
 

 

 

 

 

 

B. Direction of surface shift 

1) The ‘outside’ of the surface 
The outer face of protection gear, which is particularly 

aimed at in this project, is predominantly defined by convex 

structures such as shield, helmets and vests. The outside is 

subsequently generally defined as the space above the 

convex curvature of the surface. The problem, which arises, 

is that the orientation of the surface, or more specifically, of 

the order and direction of edges is not given by the delaunay 

triangulation in Matlab. Therefore, the calculation of the 

normal vectors is not necessarily right-handed which results 

in normal vectors that can point inside the surface when 

calculated with a left-handed system and outside the surface 

when calculated with a right-handed system. Hence, the 

normal vectors have to be oriented in a way that they all 

point in one direction which can then be easily adjusted to 

the outside of the surface.  

Owing to the assumption that there are no large kinks in 

the triangulated surface, one can say that the projection of 

the normal vector of any triangle on the normal vectors of 

each of the adjacent triangles, i.e., the scalar product 𝑐𝑖, has 

to be positive when the normal vectors of the triangles point 

in the same direction. For this concept to work, the 

triangulation has to be fine enough, so that on a convex 

surface normal vectors of adjacent triangles, which point on 

the same side of the surface, have a positive scalar product 

without exception. 

 

𝑐𝑖 = �⃗� 𝑖 ⋅ �⃗� 𝑖+1  >! 0 

 

2) Direction of the surface  

To shift all vertices in the same direction, all normal 

vectors have to point in the same direction of the surface. At 

this point of the procedure, it does not matter, whether they 

point inside or outside the surface. The specified 

assumptions and calculations result in the following 

procedure to set the direction: 

1) One arbitrary reference triangle 𝑇𝑟  is determined, 

whose direction of the relative normal vector gives 

the reference normal vector for all other triangles 

(points to inside or outside) 

Figure 10. Calculation of normal vectors in points (red) 

from normal vectors in triangles (blue).  
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2) It is iterated through all adjacent triangles of  𝑇𝑟 

and the projections of the normal vectors are 

calculated, i.e., the scalar product, of the normal 

vectors of the adjacent triangles on the reference 

normal vector. 

3) If the scalar product is smaller than zero, the 

relative normal vector of the adjacent triangle has 

to be flipped, i.e., multiplied with “–1”.  

4) It is iterated for all triangles (without step a)) such 

that there is always one triangle in the 

neighborhood, which has already been checked on 

its direction. This triangle then sets the new 

reference normal vector. 

At the end of this procedure, all normal vectors point on 

the same side of the surface, either the inside or the outside 

of the surface. 

For the following principle, it is additionally assumed 

that the coordinate system is set such that the convex part of 

the structure points in positive z-direction.  

To check, whether the normal vectors point inside or 

outside the structure, it is iterated through all normal vectors 

and searched for the one with the largest z-component, 

which is denoted as 𝑧 𝑚𝑎𝑥 . The vector 𝑧 𝑚𝑎𝑥  should be the 

one of the triangle on top of the convex curvature of the 

surface, e.g., on top of the helmet. This works even with a 

rotated surface as long as the convex curvature points 

upwards. Owing to this, the scalar product of the unit vector 

in z-direction 𝑒 𝑧  and 𝑧 𝑚𝑎𝑥  can be used to determine the 

orientation on now all normal vectors because they all point 

on the same side of the helmet. 

1) If the scalar product is positive, the normal vectors 

of all triangles point outside the surface. No 

arrangement has to be made in this case. 

 

𝑐𝑖  > 0  →  �⃗� 𝑖 ,𝑓𝑖𝑛𝑎𝑙  = �⃗� 𝑖  

 

2) If the scalar product is negative, the direction of all 

normal vectors has to be reversed, i.e., multiplied 

with “–1” so that they point outwards.  

 

𝑐𝑖  < 0  →  �⃗� 𝑖 ,𝑓𝑖𝑛𝑎𝑙  = �⃗� 𝑖 ⋅ (-1) 

 

The result at this point of the algorithm for multiple layers 

are the directions in which each point has to be shifted. Due 

to numerical round-off errors, the normal vectors might not 

all be of length 1, which is addressed in the next section. 

 
3) Shifting the vertices 

The vertices 𝑣𝑖  of the triangulation can now be shifted n-

times by the distance s in direction 𝑑 𝑖 , where n is the 

number of required additional layers and s is the thickness 

of the applied layer. The coordinates for the new layers are 

denoted as 𝑋𝑛+1  which is given in matrix form. At this 

stage, distance s is manually given. As mentioned above, the 

normal vectors may not be of length “1”, which is why the 

distance s is divided by the length of the normal vector 𝑙  in 

the following equation. 𝑋𝑛 and the summand are of the same 

dimension as 𝑋𝑛 stores all coordinates of m points in m rows 

and three columns for the corresponding x-, y- and z- 

components and the summand denotes the shift in x-, y- and 

z- direction stored in three columns for m points stored in m 

rows. 

 

 𝑋𝑛+1= 𝑋𝑛+ [ n ⋅ 𝑑 𝑖 ⋅  
𝑠

𝑙𝑖
 ] 

 

By this, the given layer can be shifted arbitrarily often while 

maintaining its original shape as can be seen in Figure 11. 

 
 

VIII. POINT OF MAXIMUM CURVATURE 

The curvature of points can be calculated with an 

approach given in [2]. In this approach, every single triangle 

is investigated independently of the surrounding triangles. 

The curvature directly in the vertices is then set to zero. 

However, in this project, it is assumed that the number of 

elements over the whole surface, i.e., the number of 

triangles, is so large that the triangles can be approximated 

with planes such that there is no curvature within one 

individual triangle but the convex shape of the whole 

structure is obtained by putting the triangles together with 

different angles of inclination. The triangulated mesh is 

assumed to be so fine that the differences in angles of 

inclination of two adjacent triangles never exceeds 90 

degrees. Consequently, scalar products of the normal 

vectors of adjacent triangles are always positive. Therefore, 

these scalar products of the normal vectors of adjacent 

triangles can be used to approximate the curvature by the 

difference in inclination of two adjacent triangles. The 

‘curvature’ of the surface in a given vertex can then be 

determined by averaging over the scalar products of the 

adjacent triangles. The smallest scalar product then results 

in the point of maximum curvature, which can be used in 

future research.  

 

Figure 11. First layer (black) shifted two times (green and 

blue lines) in the direction of the normal vectors in the points 

(red). 
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IX. CONCLUSION AND FUTURE WORK 

An algorithm for calculating a geodetic line on a given 

surface, a technique for its further improvement and the 

numerical derivation of multiple layers on a surface are 

described. The goal was to derive an accurate numerically 

determined geodetic line as well as duplication of a given 

layer. Further steps could feature an extension of the 

algorithm for geodetic lines, such that several geodetic lines 

on one surface can be found by iterating over the algorithm. 

To further improve, analyse and straighten the geodetic line, 

the unfolding of surfaces with the least distortion could be 

investigated and automatized [1]. For this, the point of 

maximum curvature, which was derived in the last section, 

can be used as the point of investigation because it faces the 

largest distortion when being flattened. As a reference for 

the distortion the calculation of metric and angular change 

of the flattened and convex surface [5] or the elastic 

potential [6] could be used. At this stage the aim is that the 

geodetic lines, i.e., the cutting pattern, should be set in a 

way that the distortion when flattening is minimised because 

the material is cut in the 2-D plane and is then formed into 

the desired state or attached on a convex 3-D object. For this 

process of flattening, the approach given in [7] can be 

referred to which also presents an approach on how to 

measure the amount of distortion.  

Furthermore, thresholds values for the thickness of layers 

and width of material stripes could be set with reference to 

the point of maximum curvature depending on material 

properties such as Young’s Modulus and Poisson’s ratio. 

Both values should never exceed a threshold where too 

much stress is applied on the material when bending over 

the maximum point of curvature. This threshold value for 

the maximum applicable stress could be set to be the 

ultimate tensile stress when working with prestressing. In 

[8] basis properties of elasto-mechanical properties of 

materials with and without prestressing as well as distortion 

are discussed which could be used as a starting point for 

future research in this topic.  

Additionally, the change in accuracy dependent of the 

number of elements in the triangulated mesh could be 

investigated in order to define and optimize the relation 

between these two quantities. 

Summarized, future work could contain research about 

appropriate thresholds, materials and manufacturing 

specifications with the aim to reinforce a given structure. 
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