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Abstract—Swarms of cyber-physical systems can be used to
tackle many challenges that traditional multi-robot systems fail
to address. In particular, the self-organizing nature of swarms
ensures they are both scalable and adaptable. Such benefits come
at the cost of having a highly complex system that is extremely
hard to design manually. Therefore, an automated process is
required for designing the local interactions between the cyber-
physical systems that lead to the desired swarm behavior. In this
work, the authors employ evolutionary design methodologies to
generate the local controllers of the cyber-physical systems. This
requires many simulation runs, which can be parallelized. Two
approaches are proposed for distributing simulations among mul-
tiple servers. First, an approach where the distributed simulators
are controlled centrally and second, a distributed approach where
the controllers are exported to the simulators running stand-
alone. The authors show that the distributed approach is suited
for most scenarios and propose a network-based architecture. To
evaluate the performance, the authors provide an implementation
that builds upon the eXtensible Messaging and Presence Protocol
(XMPP) and supersedes a previous implementation based on the
Message Queue Telemetry Transport (MQTT) protocol. Measure-
ments of the total optimization time show that it outperforms the
previous implementation in certain cases by a factor greater than
three. A scalability analysis shows that it is inversely proportional
to the number of simulation servers and scales very well. Finally,
a proof of concept demonstrates the ability to deploy the resulting
controller onto cyber-physical systems. The results demonstrate
the flexibility of the architecture and its performance. Therefore,
it is well suited for distributing the simulation workload among
multiple servers.

Keywords–Cyber-Physical System (CPS); Swarm; Evolutionary
optimization; Distributed simulation; eXtensible Messaging and
Presence Protocol (XMPP).

I. INTRODUCTION

Over the last decade, the paradigm of self-organization
has gained significant traction in many research communities.
Inspired by nature, swarm robotics is also seeing increased
interest. This concept can be generalized from swarm robotics
to swarms of Cyber-Physical Systems (CPSs) [1]. Applying
self-organization to coordinate swarms of CPSs is a rather new
approach, which aims at handling the highly complex systems,
currently available. On the one hand, coordinating multiple
CPSs using swarm approaches offers many opportunities, such

as adaptability, scalability, and robustness [2]. On the other
hand, it necessitates the difficult process of designing the
individual CPSs to achieve the desired swarm behavior.

Designing swarms of CPSs poses two main challenges.
First, selecting the hardware that best suits the requirements of
the swarm (see [3], [4], [5], [6] for a further examination of this
problem) and second, designing the control algorithm defining
the behavior of the individual CPSs. This paper focuses on
the latter problem because many platforms for swarm robotic
research already exist, e.g., Kilobot [7], Spiderino [8], or
Colias [9] and designing the hardware itself is out of scope
of this work. Other platforms developed for traditional robotic
applications such as the TurtleBot [10] are also suitable for
executing swarm algorithms. Approaches for designing local
controllers of individual CPSs in a swarm can be categorized
into two types. First, hierarchical top-down design starting
from the desired global behavior of the swarm and second,
bottom-up design defining the individual CPS behaviors and
observing the resulting global behavior [11]. Design using
either one of the mentioned approaches is still a difficult
process as neither can predict the resulting swarm behavior
based on the complex interactions between the CPSs [12].
This is especially true in dynamic environments. One method
to tackle such design challenges is evolutionary optimization
[13].

In this paper, the authors employ the bottom-up design pro-
cess based on evolutionary algorithms. Generally, evolutionary
algorithms aim to mimic the process of natural selection by
recombining the most successful solutions to a defined problem
[14]. In the context of swarms of CPSs, a solution refers to
a control algorithm of the individual CPSs that is gradually
improved during the optimization process. As experiments
with real CPSs require an extensive amount of time, such
methods typically employ accurate and fast simulations to
evaluate the performance of candidate solutions in the evolu-
tionary process [15]. Using state-of-the-art simulators allows
to build upon standard models and perform optimizations with
varying level of detail. The evaluation of control algorithms in
evolutionary optimization can be executed in parallel, which
is for example supported in the FRamework for EVOlutionary
design (FREVO) [16] by using multiple cores on the same ma-
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chine. A further step would be the distribution of evolutionary
optimization with a client-server-protocol, as exemplified by
Kriesel [17].

To tackle this problem, the authors propose an architecture
to distribute the simulations of an evolutionary optimization
process onto multiple servers. Based on the work presented in
[1], this paper describes an improved, extensible architecture
that considers the lessons learned. This architecture builds
on different generic tools for performing the optimization,
evaluating the controller candidates through simulation, and
managing the communication network. An implementation is
provided, partially based on existing tools. The implementation
is evaluated by demonstrating its usability among different
test scenarios. First, the optimization process in heterogeneous
network setups is demonstrated. Second, the deployment of the
obtained controllers onto Robot Operating System (ROS) [18]
based platforms is demonstrated, including simulations and
hardware platforms. Finally, the scalability of the optimization
performance is analyzed in terms of total time taken. There is
a significant performance improvement compared to the pre-
viously presented architecture yielding an effective scalability
with high numbers of simulators.

The proposed architecture is implemented as part of the
CPSwarm workbench [19] which is a tool chain developed in
the H2020 research project CPSwarm. This workbench aids
in developing self-organizing swarm behavior for CPSs. It
starts from modeling and design, goes over simulation and
optimization, to deployment and monitoring. It is built around
a central launcher application that allows to graphically access
and configure the different tools. This work describes the
simulation and optimization section of the architecture, known
as the simulation and optimization environment.

The paper is organized as follows. In Section II, the
evolutionary approach for designing swarms is briefly re-
viewed. Section III describes the two proposed approaches
for distributing the simulations in an evolutionary optimization
process by comparing them based on the results of the previous
paper. Section IV introduces the newly proposed architecture
that eliminates the problems previously experienced. Next, an
implementation of this architecture is described in Section V.
Section VI describes the testbeds that are used to evaluate
the features provided and to measure the performance of the
presented solution. The results of the performance analysis are
detailed in Section VII, including a comparison to the previous
approach. Finally, Section VIII provides a discussion, presents
future work, and concludes the paper.

II. DESIGNING SWARMS BY EVOLUTION

As described in the previous section, design by evolution
can be used to tackle challenges such as scalability and
generality [20], as well as adaptive self-organization [21].
These issues are not easy to handle, especially in changing
environments and with dynamic interactions among the indi-
vidual CPSs in a swarm.

Designing a swarm using evolution is an automatic design
method that creates an intended swarm behavior in a bottom-
up process starting from very small interacting components.
This process modifies potential solutions until a satisfactory
result is achieved. Such an approach is based on evolutionary
computation techniques [22],[23] and mimics the Darwinian
principle [2]. It describes the process of natural selection by

recombining the most proper solutions to a defined problem.
Evolution can be applied either on the level of individuals or
the swarm as a whole. Typically, the process of evolving a
behavior starts with the generation of a random population
of individual behavior control algorithms. Each member of
the selected population is evaluated using simulations and
graded by a fitness function that allows ranking the behaviors’
performances on the swarm level. The higher a behavior is
ranked, the more likely it is to survive to the next generation.
This selection process makes sure that only the best performing
behaviors survive to serve as input for the next iteration of
the evolutionary process. They are reproduced using genetic
operators like crossover or mutation. This process is iterated
for a specific number of generations or until a CPS controller
emerges that exhibits the desired global swarm behavior.
Nevertheless, design by evolution poses several challenges,
including no guaranteed or predictable convergence to the
global optimum, complex data structures, and the high costs
of evolutionary computation itself.

Design by evolution dictates several tasks that a designer
must face during the design of a system model. According to
Fehervari and Elmenreich [24], there are six tasks to consider:

1) The problem description gives a highly abstracted
vision of the problem. This includes constraints and
the desired objectives for such a problem.

2) The simulation setup transfers the problem descrip-
tion into an abstracted problem model. This model
specifies the system components, i.e., details about
the CPSs and the environment.

3) The interaction interface defines the interactions
among CPSs and their interactions with the environ-
ment. For instance, the CPSs’ sensors and actuators
as well as the communication protocols should be
specified here.

4) The evolvable decision unit represents the CPS con-
troller and is responsible for achieving the desired
objectives, i.e., the global behavior of the swarm to
achieve a common goal. Such a decision unit must
be evolvable to allow genetic operations as crossover
and mutation. It is most commonly represented by
an Artificial Neural Network (ANN). There are dif-
ferent types of ANNs, e.g., fully-meshed ANNs, feed-
forward ANNs, or HebbNets [25].

5) The search algorithm performs the optimization using
evolutionary algorithms by applying the results from
the above steps. During this task, an iterative math-
ematical model is used to find the optimal solution.
The optimization result is dependent on the fitness
function of the problem.

6) The fitness function represents the quality of the
optimization result in a numerical way. There is no
specific way or rule to design such a function as it
is highly dependent on the problem description. The
main purpose of this function is to guide the search
algorithm to find the best solution. In general, the
applicability and performance of a fitness function
depends on the employed Optimization Tool (OT),
thus there are no universally suitable fitness functions
[26]. However, many studies in the field of evolution-
ary optimization have considered generic methods for
fitness function design [27], [25].

136

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Recently, several software frameworks have been imple-
mented to support the procedure of evolutionary design. Auto-
MoDe [28] is a software for automatic design, which generates
modular control software in the form of a probabilistic finite
state machine. JBotEvolver is a Java-based versatile open-
source platform for education and research-driven experiments
in evolutionary robotics [29], which has been used in many
studies [30], [31], [32]. Gehlsen and Page [33] addressed the
topic of parallel execution of experiments for heuristic opti-
mum seeking procedures. Their approach, DIstributed SiMu-
lation Optimization (DISMO), supports distributed execution
of Java simulations for optimization projects. As simulation
core, the framework for DEveloping object-oriented Simula-
tion MOdels in Java (DESMO-J) is used. The SImulation-
based Multi-objective Evolutionary OptimizatioN (SIMEON)
framework [34] implements several components in Java for
providing an evolutionary optimization of problems modeled
via simulation. Examples involve supply chain optimization
and flexible manufacturing scheduling. However, the SIMEON
framework does not provide a strategy for distributed simula-
tion across multiple servers. In addition, the previously men-
tioned tool FREVO supports creating and evaluating swarm
behavior by evolution and has been used in several studies as
an evolution tool including robotics [12] and pattern generation
[35].

Designing swarm behaviors using evolutionary optimiza-
tion requires a large number of simulation runs. The next
section summarizes and compares two approaches proposed in
[1] for distributing these simulations onto different machines.

III. DISTRIBUTED SIMULATION

Depending on the level of realism in simulation of swarms
of CPSs, a considerable amount of computational power is
required [36]. This is especially true for the high number of
simulations needed to complete an evolutionary optimization
process. This can be accelerated by parallelizing the simula-
tions that are carried out within one generation. In previous
work [1], the authors proposed two architectural approaches
on how to perform this parallelization and to distribute the
workload. Both approaches have a common architecture com-
posed by two core components, the OT and one or more
Simulation Tools (STs). This concept is visualized in Figure 1.
The OT is responsible for performing the evolutionary opti-
mization process explained in Section II. The STs perform the
required simulations in each step of the optimization process
and evaluate the fitness value of a controller candidate. The
interconnection between the OT and the STs allows to pass
the simulations required during the evolutionary optimization
from the OT to the STs where they are executed in parallel.
The STs simulate a homogeneous swarm of CPSs, where
each CPS is controlled by a controller generated by the OT.
This controller translates the sensor inputs to actuator outputs.
The two components are interconnected to each other through
an interface that defines how they communicate during the
optimization process. The definition of a generic interface
gives the opportunity to build on well established STs that
support accurate simulation of swarms of CPSs with different
levels of detail.

The key difference between the two approaches is the
location where the CPS controller resides during the simu-
lation. The centralized approach lets the CPS controller reside

Simulation Tool 
Simulation Tool 

Optimization Tool Simulation Tool 

Figure 1. The concept of distributed simulation based on the components OT
and ST.

centrally within the OT. The STs are merely executing the
actions received from the controller in the OT and report back
the sensor readings of the CPSs. With this approach the STs are
hence centrally controlled by the OT. Instead, the distributed
approach transfers the CPS controller from the OT to the STs,
which can then independently run the simulation and only
return back the resulting fitness value of the controller. This
approach therefore distributes the control from the OT to the
STs.

In [1] the two approaches have been implemented differ-
ently. The centralized approach has been implemented based
on network socket inter-process communication. It allowed
to distribute the simulations among multiple STs located on
remote servers. The drawback of this implementation was that
there was a high messaging overhead and a repeated polling
for available STs. This inhibited the system to scale well with
more than three STs. The distributed approach has been im-
plemented based on file system inter-process communication.
It allowed to fully pass over the control to the STs, but was
limited to execution on a single machine. The authors now
abstract away from the implementation specifics and thus refer
to these approaches only as centralized and distributed.

Both cases require an interface between the OT and the
STs, but there are some key differences. For the centralized
approach, OT and STs must exchange the sensor readings
and actuator controls. On the OT side, the interface must
therefore receive the sensor inputs from the ST and feed
them into the controller. The resulting actuator commands
are determined by the controller and transmitted again to the
corresponding ST. On the ST side, the interface must allow
to control the CPS behavior using the actuator commands
received from the OT. Once the commands are executed by
the ST, the interface transmits back the sensor readings to
the OT as they are perceived by the CPSs. The interface for
the distributed approach requires to exchange the controller
representation. On the OT side the interface must therefore
export the controller representation and transmit it to the STs.
Once the STs completed the simulations, it receives the result
of the simulations to assess the performance of the controller.
Depending on the implementation, this can be either raw log
data or already processed information in form of a fitness
value. The ST side of the interface receives the controller
and integrates its representation into CPS behavior code. This
allows the ST to translate the sensor readings to the actuator
commands. Once the simulation is finished, it sends back the
result of the simulation. Computing the fitness value of a
simulation can be done on either side, in the OT or the ST.

Regardless of the approach, there are several messages that
need to be exchanged. At first, there is a setup phase, which
allows the OT to be aware of the available STs. This requires
some kind of discovery process where the OT polls for STs,
stating the requirements on the ST to be used (e.g., number
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of dimensions or maximum number of agents supported). The
STs satisfying these requirements then need to report back to
the OT stating their availability. Then, the optimization can
be performed, where the OT communicates with the selected
STs. Depending on the chosen approach, a different number
and different types of messages are exchanged between the
OT and the STs. This communication takes place over several
iterations until the OT has found a solution that it cannot
further optimize. This optimal solution is represented by a CPS
controller that can then be exported by the OT to be deployed
on the CPSs.

The deployment of the optimized controller can take place
in STs or on actual CPS hardware. The former can be used
to further inspect the resulting controller. This allows to run
further performance, scalability, or robustness analysis as well
as visual inspection of the CPS behavior. The latter allows
deploying the resulting controller to the CPSs and test it under
real conditions. Whether the controller is further used in simu-
lations or on actual CPS hardware, there is the requirement for
an interface that allows connecting the CPSs’ sensor inputs and
actuator outputs to this controller. This interface must follow
the same specification as the interface implemented in the
STs used during the optimization process with the distributed
approach. Therefore, this interface needs to be defined only
once and can then be used for optimization and deployment.

When comparing the two approaches, both have their
advantages and disadvantages. Looking at the centralized
approach, the implementation of the ST is agnostic to the
type of representation used for the controller. This has the
advantage that new controller representations can be added to
the OT easily, without the need to update the ST interface.
The disadvantage is that there is a lot of message exchange
between OT and the STs, throughout the simulation. When the
number of STs is increased, the OT can become the bottleneck
as it has to communicate constantly with each ST. Therefore,
the distributed approach is less portable than the centralized
approach but can reach a higher performance [1].

The performance of either architectural approach can be
measured as the total time taken for the optimization process.
As the authors shown in [1], this time can be expressed as

topt = ngen ·
(
tevo +

npop · neval

nsim
· (tsim + tohd)

)
(1)

consisting of three time components. First, the time tevo,
which expresses the time required to perform the evolutionary
calculations, such as selecting the best performing controllers
and creating a new generation of controllers. Such tasks are
executed for each generation of the optimization and hence
are multiplied by the number of generations ngen. Second, the
time tsim, which expresses the time taken by one simulation
run. For simplification purposes, it is assumed that this time
is measured in discrete steps and constant, regardless of the
number of CPSs in the simulation. The simulation time can
therefore be expressed as

tsim = nstep · tstep (2)

based on the number of discrete time steps nstep and the
time tstep required to simulate one step. A simulation is per-
formed for each controller in the population of npop controller
candidates. For robustness and statistical significance, each
controller can be evaluated neval times in a different variant

of the same problem. This results in a number of npop · neval

simulations that have to be performed during each of the ngen

generations. Depending on the number of available STs nsim,
the optimization process can be accelerated by distributing
the simulations among these STs. The upper limit for the
number of required STs is therefore npop · neval. Finally, the
third time component tohd states the amount of overhead time
required during simulation. Where the other two time com-
ponents are identical for both approaches, the overhead time
varies between the centralized and the distributed approach.
In [1] the authors differentiated between two implementations
when calculating the overhead time. It is now generalized by
calculating it for the centralized and distributed approach. This
abstracts the implementation details and yields the overhead
time as

tohd = tsetup + trun + tfinalize (3)

where the setup time tsetup is the time required to setup
the STs, the run time trun is the overhead time added while
running the simulations, and the finalization time tfinalize the
time to finalize the simulation and gather the results. For the
centralized approach, the overhead time

tohd,c = nmsg,setup · tmsg

+ nmsg,run · nstep · ncps · tmsg

+ nmsg,finalize · tmsg + tfitness (4)

contains two time components. First, the message transmission
time tmsg between the OT and the STs. During setup, there are
nmsg,setup messages to be exchanged. During run time, each
of the ncps CPSs in the STs communicates nmsg,run messages
for every simulation time step, where the simulation lasts for
nstep steps. When finalizing a simulation, there are nmsg,finalize

messages to be exchanged. Second, the time tfitness to compute
the fitness value of a controller adds to the finalization time.
For the distributed approach, the total overhead time sums up
to

tohd,d = texport + nmsg,setup · tmsg + timport

+ nmsg,finalize · tmsg + tfitness (5)

that contains two additional time components as compared to
the centralized approach. First, the time texport to export the
controller representation from the OT into a format readable
by the STs. Second, the time timport to import the controller
into a ST. To compare the performance of both approaches, it
is possible to calculate the ratio

r =
topt,c

topt,d
, (6)

which relates the total optimization run time of the centralized
approach topt,c with the optimization time of the distributed
approach topt,d. This ratio expresses, which approach is more
suitable for a specific setup of parameters. The authors de-
termined the most relevant parameters for analysis to be the
simulation length as number of simulated steps nstep and the
number of CPSs ncps that are being simulated. The number of
parallel STs has a negligible influence as both approaches can
use parallelization. To compare the performance scalability of
both approaches, the authors set the other parameters to a fixed
value that has been derived using measurements on the testbed
described in [1]. They are summarized in Table I where the
evolutionary parameters were chosen to yield good results.
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The resulting ratio r using these values can be seen in Fig-
ure 2 for a varying number of CPSs. A value of r > 1 means
that the distributed approach performs better whereas a value
of r < 1 means that the centralized approach is favorable. As
both approaches can use parallelization, the resultant ratio is
independent of the number of parallel STs used. It can be seen
that for most cases the distributed approach performs better,
even though the time for importing the controller is dominating
in Table I. This is because there is a lot of messaging overhead
if all CPS controllers are executed in the OT. This creates a
bottleneck where most work still is performed by a single tool.
As seen in Figure 2, this is not so crucial for small swarm sizes,
but already for a swarm size of eight CPSs, the optimization
with central control takes longer when simulations last more
than 18 steps.

To conclude the comparison between the two approaches,
it can be stated that the distributed approach is favorable
most of the time as it outperforms the centralized approach
in terms of total time taken to run the optimization. If the
communication between the OT and the STs is implemented
using a network socket based interface, the simulation work-
load can be well distributed onto different machines. In this
case, the OT needs to be aware of the available STs. In the
network-based implementation, previously presented in [1], the
OT was polling for new STs, before each simulation run.
This created a considerable amount of overhead, rendering
it impractical to use with more than three STs. Therefore,
this paper now proposes to have two separate phases. First,
the setup phase, where all available STs are discovered and
second, the actual optimization phase, which uses the available
STs. The new architecture realizing this proposal based on the
previous experience is presented in the next section.

IV. ARCHITECTURE

This section presents a distributed architecture that uses
a network socket based approach to allow distribution of
the STs among different machines. The communication is
managed by a central broker, which keeps track of the available
STs. It builds on the experience of the previously proposed
architecture described in [1].

The first problem addressed is the discovery protocol
responsible for determining the available STs. The previous ar-
chitecture required repeated discovery before each simulation,
hence the performances did not scale well with the number of
STs. The new architecture therefore introduces a setup phase,
where the STs announce themselves and their capabilities.
Any updates to the available STs are further communicated,

TABLE I. Optimization parameters measured through simulations.

parameter value
ngen 200
npop 50
neval 1

nmsg,setup 4
nmsg,run 2

nmsg,finalize 1
tevo 12 ms
tmsg 30 ms

texport 5.35 ms
timport 8833 ms
tfitness 0.69 ms
tstep 100 ms

100 101 102 103

0

1

2

3

1

2

48163264128

number of simulation steps

ra
tio

r

Figure 2. Ratio of optimization times between central and distributed control
for different numbers of CPSs.

also during the optimization phase. These real time updates
eliminate the need for repeated discovery by the OT. The
second problem previously encountered is the high amount of
messages that are exchanged during the optimization phase.
The new architecture is therefore based on the distributed
approach described in the previous section. The OT exports
the controller to the STs to avoid exchanging the sensor
readings and actuator commands. The STs can thus perform
the simulation stand-alone without relying on the OT. This
reduces the amount of exchanged messages considerably.

The architecture consists of four main components, as
shown in Figure 3. First, it includes the previously mentioned
OT, which is responsible for performing the evolutionary opti-
mization. Second, there are several STs, distributed in different
machines, called Simulation Servers (SSs), each one wrapped
by a Simulation Manager (SM). This latter component is a
software layer installed on the SS that implements the network
interface and acts as a client that connects the ST to the broker.
This allows the OT to communicate with the STs, without
knowing the exact type of ST actually used. Third, there is
a component called Simulation and Optimization Orchestrator
(SOO), newly introduced in this architecture. The SOO is in
charge of keeping track of all the SMs and coordinating the
simulation tasks. It maintains a list of available SMs together
with the capabilities of the STs that they wrap. When it is
launched, the user can indicate the requirements on the STs,
such as dimensionality or minimum CPS cardinality. In this

Simulation Server 

Simulation
Manager 

Simulation
Tool 

Simulation Server 

Simulation
Manager 

Simulation
Tool 

Simulation and Optimization
Orchestrator

Broker

Optimization Tool 

Simulation Server 

Simulation
Manager 

Simulation
Tool 

Figure 3. The network-based architecture consisting of the components
SOO, broker, OT, and SS.

139

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



way, the SOO can select the SMs that fulfill the requirements.
Finally, there is a broker that handles all communication
between the other components.

The proposed architecture can perform two different kinds
of workflows requiring simulations. First, the SOO can perform
an optimization using the OT, where each controller candidate
is simulated in a SS. Figure 4 illustrates the flow of messages
between the SOO, the OT, and two exemplary SMs during
the optimization process. In the initialization phase, all com-
ponents announce their availability by broadcasting presence
information. The SOO collects this information to create a
list of available SMs and their capabilities to be used in the
optimization phase. Similarly, the OT’s presence informs the
SOO that it is ready to perform optimization tasks. When the
user starts the optimization, the SOO evaluates the available
SMs, selects the ones that fulfill the indicated requirements,
and transmits to them the configuration files needed to setup
the ST. Once all the SMs have confirmed to be configured, the
SOO sends a StartOptimization message to the OT, containing
the list of SMs to be used for the optimization process. The
OT replies with an OptimizationStarted message that includes
a unique IDentifier (ID) of the optimization process. Then,
the OT starts the optimization, using the STs that satisfy
the requirements. It uses all the configured SMs in parallel
by sending a sequence of RunSimulation messages to them.
Each of these messages contains a candidate controller to be
evaluated. The OT awaits the corresponding SimulationResult
messages from the SMs. Throughout the optimization pro-
cess, the SOO may request the progress of the optimization
process intermittently or even cancel it by sending the OT
a GetProgress or CancelOptimization message, respectively.
Once the optimization process completed, the OT sends a
final OptimizationProgress message to the SOO, containing
the optimized controller.

Second, the SOO can send a specific controller candidate
to a SM for more in depth analysis. This allows to evaluate
a controller found by the OT more thoroughly, e.g., through
visual replay using the ST Graphical User Interface (GUI). In
case of visual replay, the selected ST must run on one machine
directly accessible to the user, who needs to see the GUI of
the ST. In this case, the SOO is responsible for sending the
controller to the selected SM. This is visualized in Figure 5. In
this much simpler scenario, the OT is not involved and SOO
and SM communicate directly.

As this architecture introduces two separate phases for
setup and optimization, the theoretical time required for opti-
mization therefore changes from (1) to

topt = tsetup + ngen ·
(
tevo +

npop · neval

nsim
· (tsim + tohd)

)
(7)

having the additional setup time

tsetup = (nmsg,presence + nmsg,config + 2) · tmsg (8)

being a multiple of the message transmission time tmsg.
The total setup time is made up of the number of Presence
messages nmsg,presence transmitted from the SMs and the OT
to the SOO, the number of Configuration messages nmsg,config

transmitted from the SOO to the SMs, and two messages
to start the optimization and get the final result (StartOpti-
mization and OptimizationProgress). As the OT requires only

SOO OT SM1 SM2

Presence

Presence

Presence

Configuration

Configuration

SimulatorConfigured

SimulatorConfigured

StartOptimization

OptimizationStarted

RunSimulation

RunSimulation

SimulationResult

SimulationResult

GetProgress

OptimizationProgress

OptimizationProgress

initialization

start optimization

loop [run simulations]

get optimization progress

final result

Figure 4. The messaging sequence during the optimization process.

one Presence message and each of the nsim SMs requires
exactly one Presence message and one Configuration message,
nmsg,presence = nsim + 1 and nmsg,config = nsim. Hence, the
setup time can be rewritten as

tsetup = (2 · nsim + 3) · tmsg. (9)

Based on this architecture, the next section presents an
implementation using the eXtensible Messaging and Presence
Protocol (XMPP).

V. IMPLEMENTATION

The architecture presented in the previous section is imple-
mented using existing tools wherever possible and developing
new tools where necessary. The tools that where developed
completely from scratch are the SOO as well as the SMs. The
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SOO SM1

Presence

Configuration

SimulatorConfigured

RunSimulation

SimulationResult

initialization

simulation

Figure 5. The messaging sequence for simulating a specific CPS controller.

existing tools are extended by a wrapper to enable integration
with the proposed architecture. These are the OT and the STs.
This section firstly describes the communication infrastructure
that connects the different tools, followed by a description of
their implementation.

The communication among the different tools happens
according to the messaging sequence shown in Figures 4 and
5. To enable all tools to communicate with each other, the
architecture relies on a central broker that manages the con-
nections between them. The two messaging protocols Message
Queue Telemetry Transport (MQTT) [37] and XMPP [38] have
been tested extensively and are used for the implementations.
MQTT is recognized as the de facto standard for event-driven
architectures in the Internet of Things (IoT) domain. It has
been chosen for the implementation previously presented in
[1] because of its extreme simplicity. Its design principles
attempt to minimize network bandwidth and device resource
requirements whilst also ensuring reliability and some degree
of assurance of delivery. Because XMPP owns features that
allow to fulfill the requirements of the architecture described in
Section IV it is selected as alternative communication protocol.
It is favored over MQTT in the current implementation because
MQTT does not offer all required features, such as one-to-
one communication or a standardized presence protocol. Using
XMPP, the proposed architecture can be implemented without
having to rely on multiple different protocols.

In this work, the OT is implemented based on FREVO,
a modular optimization system that applies the principles
of genetic algorithms addressed in Section II [16]. FREVO
divides the optimization task into several steps. First, it allows
to model the problem as a simulation alongside an evaluating
fitness function. Second, it allows to select different evolvable
controller representations for the CPSs’ controllers. Third,
it allows to choose the evolution method used during the
optimization process. Therefore, FREVO offers exceptional
flexibility and allows many different setups to be explored.
Currently, FREVO provides an implementation of the Neural
Network Genetic Algorithm (NNGA) method [39]. It begins
by creating npop controller candidates. In each of the ngen

generations, the controllers are evaluated and ranked according
to their performance. Successful controllers, i.e., those with
high fitness values, are carried to the next generation as elite,

or are crossed or mutated to produce new controllers. In
addition, a small proportion of entirely new random controllers
is introduced with the intention of maintaining diversity in the
population. For integrating FREVO in this architecture, it is
extended with a layer supporting XMPP communication and
hence called FREVO-XMPP.

The SOO is implemented as Java application embedding an
XMPP client. The SOO can be configured with several param-
eters. They specify the requirements of the optimization task
executed by the user. These parameters include requirements
for the evolutionary process as well as requirements on the
simulation.

The SM implementation is also done in Java and split into
two parts. First, a common part is implemented as abstract
class to provide a base module for all SMs implementations.
Each SM specific for one ST is derived from this class and
shared as a separate component. The specific part of the SMs
defines how to handle the files received for the configuration
and the messages with the controllers to be simulated.

When a SM starts, it adds the SOO to its roster, which is the
list of “friend accounts”. It signals its availability by sending
a Presence message including a list of features provided by
the wrapped ST, which is automatically received by all the
“friends”, i.e., the SOO. The current implementation features
the number of dimensions and the maximum number of CPSs
supported, but the list will be updated in future releases. In
this way, the SOO receives and collects the availability of
the SMs and it is able to choose the ones that fulfill the
requirements for the execution of new tasks. After choosing
the SMs to be used, the SOO sends to the SMs the files that
are required for configuring the STs, using the XMPP file
transfer. These include the models of CPSs and environment.
The SMs confirm the reception of the configuration with an
SimulationConfigured message. In case of simulation only, the
SOO sends the controller to be replayed directly to the SM.
In case of optimization, it sends a StartOptimization message
to the OT, indicating the Jabber Identifiers (JIDs) of the SMs
to be used.

Upon receiving a StartOptimization message, FREVO-
XMPP creates an OptimizationTask to oversee the optimization
process. As the evaluation of controllers is conducted by the
SMs, FREVO-XMPP is largely input-output bound and can
thus execute multiple OptimizationTasks in parallel without
any significant Central Processing Unit (CPU) load. The
OptimizationTask deserializes a FREVO-XMPP configuration,
which specifies the type of evolution method, the controller
representation, as well the operations to be performed on
them throughout evolution. Furthermore, it receives a list of
SMs, which may be used to evaluate controller candidates.
Rather than evaluating a controller locally as is typically
done in FREVO implementations, it sends a RunSimulation
message to one of the associated SMs and blocks waiting for
a SimulationResult message or a simulation timeout to occur.

As common basis for the STs, ROS [18] is chosen be-
cause it is an open-source solution, widely supported by
several robotic platforms and many existing STs. It provides
modularity and interoperability. In this way, the same CPS
controllers can be tested on different STs and then deployed
on actual ROS-based hardware platforms. Two specific SMs
are implemented integrating the ROS simulations based on the
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STs Stage [36] and Gazebo [40]. Several other STs have been
considered as well, e.g., V-REP [41], ARGoS [42], jMAVSim
[43], and STDR [44]. Resulting from an analysis of their
controllability, configurability and support for standard models,
the authors selected Stage and Gazebo for integration in the
proposed architecture. Nevertheless, the modular approach of
our architecture allows to integrate other ROS STs as well,
with only little additional effort.

The communication between SM and ST is built on the
work done in [1]. The ST is ROS-based and executed by the
SM as ROS node using the standard ROS facilities such as
launch files. The simulation to be run is installed beforehand on
the SS as a ROS package. The CPS controller it is transmitted
from FREVO-XMPP to the SM as C++ code, which allows
them to be efficiently integrated into the simulation image.
When the SM receives the controller, it forwards it to the
ST, which is recompiled with the new controller. The ROS
package contains a launch file that launches the required ST.
The SM runs this launch file to launch the simulations, passing
the parameters that the user indicates through the SOO. In
case of optimization, the SMs are also in charge of calculating
the fitness values of the tested controllers. This is achieved
by parsing the ROS log files and computing the fitness value
accordingly.

As a test case, a simple multi-CPS simulation called Emer-
gencyExit is implemented in ROS. It realizes a problem where
the CPSs have to escape from the environment while avoiding
collisions with other CPSs running in discrete time and space.
It is implemented as ROS package consisting of the controller
representation and a wrapper class. The wrapper is adapted for
different STs, while the controller can be reused seamlessly.
During the optimization process, the wrapper stays fixed. The
part that changes for each simulation is the controller code.
Every CPS creates log files that are used by the SM to report
to FREVO-XMPP the overall fitness value of the controller
used in that simulation.

A third SM is implemented based solely on Java with-
out the need for ROS to demonstrate the flexibility of the
architecture. It is used by the centralized approach previously
introduced in [1]. The ST is a very basic stand-alone Java
simulator called Minisim [1]. It is a command-line, multi-
CPS ST simulating a capture-the-flag game with multiple
CPSs on a two-dimensional grid. Minisim has been specifically
developed for testing the network communication between
FREVO-MQTT and the SMs.

It is planned to release the code of this implementation
in 2019 as open source on the CPSwarm Github repository
(https://github.com/cpswarm). It will include the OT FREVO-
XMPP, the SOO, and SM implementations for the STs Stage
and Gazebo.

Several testbeds are setup to test the solution presented in
this section and evaluate its performance. The description of
the testbeds and the corresponding test cases are described in
the next section.

VI. TESTBED

The solution that has been presented in the previous
chapters is evaluated through three test cases. This section
describes the testbed setup of these test cases. The first setup
acts as a Proof of Concept (PoC) to demonstrate the provided

features. The other two are used to evaluate the performance
of the presented approaches.

For the first test case, three SSs running the Stage ST and
the corresponding SM are used. Another computer is used both
as SS, running the Gazebo ST with SM, and to run the SOO
and the OT FREVO-XMPP. The XMPP server is installed in
the cloud. Both Openfire and Tigase have been used. This setup
is visualized in Figure 6.

To test the different components and workflows of the
architecture, first an optimization is performed and the result
is then replayed locally using a GUI. For this purpose, the
authors implemented the EmergencyExit problem in simulation
as ROS components, both for the Stage ST and the Gazebo
ST. The implementations are based on a simple scenario with
three CPSs and two exits. The scenario setup can be seen in
Figures 7 and 8 for the Stage and Gazebo STs, respectively.
This simple setup allows to effectively test the architecture
without shifting the focus on the challenges related to perform-
ing complex and large-numbered multi-CPS simulations. The
two implementations feature a different level of abstraction.
First Stage, which implements the CPSs as simple squares
and second Gazebo, which implements the CPSs as TurtleBot
robots.

To perform the test, the authors launched the SOO selecting
the optimization workflow with the requirement to perform
simulations in two dimensions. This requirement was defined
because a more abstract simulation yields better performance
of the optimization, which includes a high number of simula-
tions. As a result, the SOO successfully selected the three SSs
running Stage and excluded the one running Gazebo. Then,
the SOO launched FREVO-XMPP indicating to it the SSs
to use and FREVO-XMPP distributed the simulation tasks
onto them. Once the optimization finished, FREVO-XMPP
returned the optimized controller to the SOO. To continue
the test, the authors then launched the SOO again, this time
selecting the simulation-only workflow with the requirement
to perform the simulation in three dimensions with a GUI. As
a result, the SOO successfully launched the simulations locally
in Gazebo displaying the GUI with the 3D environment. The
more detailed ST Gazebo allowed to replay and test the final
optimization result under more realistic conditions. This test
case showed the ability of the SOO to automatically choose
the correct SS based on the requirements specified by the user
and the capabilities exported by the SMs. It thus demonstrated

SOO

Figure 6. PoC testbed setup.
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Figure 7. Stage ROS implementation of the EmergencyExit simulation.

Figure 8. Gazebo ROS implementation of the EmergencyExit simulation.

how the STs are seamlessly integrated through the architecture
described in this paper.

This test is complemented by using the optimized CPS
controller for deployment on real hardware. By using ROS
during the optimization and simulation process the authors
have already demonstrated the portability of the controller
among different STs. To take this even one step further,
the same controller has been installed onto TurtleBot robots.
The authors performed tests in an environment similar to the
one used in simulation, see Figure 9. In this way, it has
been demonstrated the complete chain from optimization, over
simulation, up to deployment on a CPS hardware platform.

A second test case is constructed for a realistic distributed
comparison between the centralized approach and the dis-
tributed approach. For this objective, the setup is the one shown
in Figure 10 with four distributed SSs. For technical reasons,
the centralized approach is implemented using the Minisim
Java simulation, while the distributed approach is based on the
EmergencyExit ROS simulation. Nevertheless, both approaches
are comparable as both perform simulations lasting for the
given number of steps. Specifically, for this test case, four

Figure 9. Real world experiment of the of the EmergencyExit problem using
TurtleBot robots.

distributed computers are used: three SSs having installed the
Stage ST with corresponding SM, the EmergencyExit ROS
simulation and ROS Kinetic. The SOO and the OT FREVO-
XMPP run on another computer that acts also as one SS, with
the same setup as the others. All the components have been
connected to a Tigase XMPP server running in the cloud. With
this test case it is possible to test the complete optimization
process, first using one SS and then parallelizing it on two,
three, and four SSs.

Finally, a third test case is constructed to evaluate the
scalability of the implementation with the number of SSs.
Specifically, the objective is to show what degree of paral-
lelization is possible with the current implementation, based
on the distributed approach. To do this, all implemented tools
(SOO, OT, and SMs) are executed on a single computer
with 12 Intel Xeon X5675 processors running at 3.07GHz
and 16GB of memory. Using hyper-threading, it supports
24 threads that can run in parallel. The operating system is
Ubuntu 16.04 64 bit running OpenJDK 9 Java. This setup is
visualized in Figure 11. As before, the OT used is FREVO-
XMPP and the Tigase XMPP server runs in the cloud. To rule
out performance limitations of the test computer on FREVO-
XMPP, the simulations used for the scalability analysis are
just a sleep phase, which does not put any computational load
on the computer. As it only serves to analyze the scalability of
the network performance with the number of SSs it emulates
the overhead time, which changes from (5) to

tohd = (nmsg,setup + nmsg,finalize) · tmsg (10)

excluding import, export, and fitness computation times. The
performance measurements are discussed in the next section.

VII. PERFORMANCE EVALUATION

This section presents the performance evaluation of the
proposed architecture acquired using the testbed described in
the previous section. The performance is measured in total time
taken for a complete optimization run. This optimization time
is measured for a varying number of simulation steps nstep and
a varying number of SSs nsim. All other parameters are fixed.
To get reliable results, each measurement is repeated at least
five times until the relative error of the sample is at most 10%
with a confidence of 99.9%. As a first step, the centralized
approach is compared to the distributed approach introduced
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SOO

Figure 10. Performance comparison testbed setup.

SOO

SMs
Figure 11. Scalability evaluation testbed setup.

in Section III. Then follows a more in depth analysis of
the distributed approach that analyzes its scalability with the
number of SSs.

A. Comparison of Centralized and Distributed Approach
To compare the centralized and the distributed approach,

the authors first compute the total optimization time including
setup time, based on (1) and (7), respectively. Then the authors
perform measurements according to the testbed setup described
as the second test case in the previous section. For calculating
the optimization time, the measurements presented in Table I
are used. The number of CPSs being simulated is ncps = 8
and the evolutionary parameters are set to ngen = 4 generations
and npop = 4 controller candidates per generation. This yields
the optimization times

topt,c =
9.28 s · nstep + 2.41 s

nsim
+ 0.048 s (11)

for the centralized approach and

topt,d = 0.06 s · nsim +
1.6 s · nstep + 142.39 s

nsim
+ 0.14 s (12)

for the distributed approach with nsim SSs. These optimiza-
tions times are plotted in Figure 12 as function of SSs and
simulation steps. It shows the inverse proportionality between
the simulation time and the number of SSs. Increasing the
number of SSs is therefore well suited for reducing the total
optimization time. The small term of direct proportionality of
the distributed approach does not prevail for such low numbers
of SSs. The major difference between the approaches lies
within the dependency on the number of simulation steps.
Here it becomes clear that the longer the simulation, the more
favorable becomes the distributed approach. In this example
with eight CPSs, the centralized approach is favorable only
for short simulations in the order of ten steps. This is in line
with the conclusions from the ratio shown in Figure 2.

Next, measurements using the testbed described in the
previous section are performed. They are compared to the
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Figure 12. Theoretical comparison of the scalability with number of SSs of
the optimization time between centralized and distributed approach for

varying simulation lengths and eight CPSs.

performance results of the centralized MQTT implementation
presented in [1]. The results can be seen in Figure 13. They
show the limitations of the implementation of the centralized
approach. Because it performs SS discovery before each sim-
ulation it scales only up to three SSs. The implementation of
the distributed approach mitigates this problem by introducing
a different presence mechanism. It can be seen that the perfor-
mance is mostly in line with the calculations presented above.
For short simulations the centralized approach is preferable
whereas for the other cases the distributed approach performs
better.
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Figure 13. Measured comparison of the scalability with number of SSs of
the optimization time between centralized and distributed approach for

varying simulation lengths and eight CPSs.
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B. Scalability Analysis
So far the authors showed the difference between the two

approaches where the distributed approach excelled in most
scenarios. To further investigate how well the performance
scales with a larger range of SSs, measurements using the
third test case described in Section VI are performed. To be
able to assess the parallelization, the evolutionary parameters
are set to ngen = 4 and npop = 32. Because a typical
optimization process includes only a single setup phase, only
the optimization time is measured, which is the time between
transmitting the StartOptimization message and receiving the
final OptimizationProgress messages at the SOO. Figure 14
shows the resulting optimization time. The measurements are
mostly in line with the theoretically calculated performance.
The performance scales well with the number of SSs. There is
only a small offset between measurements and theory, which
is due to implementation details not captured in the model.
When increasing the number of SSs to more than 16, it can be
seen that the performance does not scale well anymore. This
is due to the fact that the testbed reaches its limitations as the
computer used for running the tests has only 24 cores.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a solution for the evolutionary design of
swarms of CPSs based on remote simulation tools. The princi-
pal idea is to parallelize the simulations at each iteration of the
evolutionary optimization process. The architecture designed
for this solution builds upon the lessons learned from previous
work [1], which introduced two different approaches with
corresponding implementations. Starting from the evaluation
of these approaches, the authors describe an XMPP based
implementation of the architecture that combines the strengths
of the two approaches previously presented in [1] and, at the
same time, mitigates their weaknesses.

The new XMPP based implementation that uses the dis-
tributed approach is then compared to the previous imple-
mentation, which was based on the centralized approach. The
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Figure 14. Scalability with number of SSs of the optimization time of the
distributed approach for varying simulation lengths.

results in terms of total optimization time show that the new
implementation is favorable in most cases. Only optimizations
where the simulations have a short duration in the order of 1 s
perform better using the previously implemented centralized
approach. To take the performance analysis one step further,
the new implementation is analyzed for its scalability with
higher numbers of SSs. The results show that it scales well up
to 32 SSs. The performance is expected to further scale well
with even more SS, only the available hardware for creating
such a large test setup was not available to the authors. Based
on the new implementation, the authors demonstrate the ability
of the architecture to successfully perform an optimization
resulting in an optimized CPS controller. This controller is
then replayed visually using the GUI of a locally installed ST
connected to the OT. As a final step this controller is then
exported and deployed on a TurtleBot robot to show that the
resulting controller can bridge the gap from simulation to real
world experiments.

Regardless of these achievements, the authors plan to
extend the system in future to address several aspects. First, the
compilation time within the STs could be reduced. Compiling
the simulation code prior to testing a controller candidate
is a major proportion of the overall time required by the
optimization process. Incremental builds, i.e., recompiling only
parts of the simulation that have changed, may reduce this
significantly. In general, simulation code may be separated into
four categories:

• Code specific to the simulation type. In the case of
a ROS simulation, this includes the majority of ROS
code. This code needs only be compiled once during
the initial configuration of a SM.

• Code specific to the problem variant. This includes
code such as randomly generated terrain and initial
CPS positions. This code needs only be compiled
during the initialization of a problem variant.

• Code specific to the controller representation type.
This code implements a given type of representation,
such as an ANN. This code needs only be compiled
once for each representation type.

• Code specific to a given controller. This code is unique
to a particular controller candidate, such as the weights
and biases of an ANN, which can be updated without
compilation.

A more optimized compilation strategy would separate code
into these categories and would only recompile the modified
pieces for a given simulation.

Second, the ST performance could be improved. In addition
to compilation, the time required to start and stop ST instances
adds significant overhead to simulation runs. Performance may
also be improved by keeping the ST running and resetting
its state for each individual run, e.g., returning CPSs to their
start positions and resetting timer and counters. This would be
particularly advantageous in situations where a controller may
be changed purely by setting parameters, such as the weights
and biases of an ANN. In any case, to implement this approach,
improvements would need to be made to the simulation
protocol to allow STs to distinguish the first simulation run
from subsequent ones in a sequence, i.e., those from where
compilation and simulation set up is required from those where
it may be reused.
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Third, the system robustness could be increased. One
weakness of the current system is that it requires to restart
from the beginning the (very long) optimization process, if it
is disrupted. To address this, the authors propose saving the
optimization state periodically by requesting the OT to send the
last entire generation of controller candidates back to the SOO
every m generations. Furthermore, the OT must be extended
to allow it start optimization with such a set of controller
candidates, rather than just random ones. Communication with
the SMs could also be improved by continuously monitoring
XMPP presence notifications. If a SM goes offline, the OT can
immediately identify this and ask to the SOO if there is another
SS available to use. Also additional policies must be defined
for retrying controller candidates in the event of a timeout.

Fourth, the system scalability could be extended. Currently,
the system requires to instantiate one dedicated machine for
each ST. By using a container service such as Docker [45],
multiple STs may be run by each SS. To do this, a set of
docker images containing the ROS based STs and related
SMs need to be created. Furthermore, this strategy combined
with solutions like Docker Swarm [46] or Kubernetes [47]
would open the possibility to allow the user to rapidly deploy
and easily maintain large-scale sets of STs. This would allow
deploying the system to the cloud and thus addressing the
inherently resource-bound nature of simulation. Corresponding
improvements could also be made to the OT to allow it to
support a large number of SMs.

Fifth, the optimization algorithms could be improved.
Currently, the system offers the NNGA as the optimization
method. While this algorithm produces a predicable number
of simulation runs, other algorithms may offer improved per-
formance. Similarly, the authors also plan to implement more
advanced controller representations.

Finally, the tools and protocols could be generalized. In the
future, the authors have already planned to support a greater
range of OTs and STs (e.g., V-REP and ARGoS) and thus
improve the value of the system to the community as a whole.
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