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Abstract—It is a well-known fact that application-specific 

hardware has both performance and power advantages as 

compared to general-purpose CPUs and GPUs. Furthermore, 

in order to improve the computing performance leveraging 

available parallelism in software and hardware, high-level 

parallel programming paradigms, such as OpenMP and 

OpenCL, have been viable choices for designing application-

specific hardware. In this study, an application-specific 

parallel hardware architecture with a specialized memory 

hierarchy is proposed for a class of fork-join applications that 

can be modeled by an OpenMP program. Furthermore, three 

different case studies are provided to show how this model can 

be employed for the hardware acceleration of such 
applications. 

Keywords-OpenMP applications; high-level synthesis; 

application-specific hardware; NoCs; system-on-chip. 

I.  INTRODUCTION 

This article is based on our previous paper [1] and 
extends it in several dimension, which at least includes a 
revised parallel hardware architecture model. 

The OpenMP Application Programming Interface is a 
well-established standard for parallel programming on 
shared-memory multiprocessors. OpenMP has adopted the 
fork-join model of parallel execution. According to this 
model, an OpenMP program begins as a single thread of 
execution, called an initial thread.  When any thread 
encounters an OpenMP parallel construct, a team of master 
and slave threads is created to execute the code enclosed by 
the construct (this corresponds to the fork). At the end of the 
construct, only the master thread continues, while all slave 
threads are terminated (this corresponds to the join) [2][3]. 

In the literature, there are several approaches that attempt 
to generate parallel hardware from OpenMP applications. 
These studies may be broadly grouped into three classes: (i) 
OpenMP-based pure hardware-based acceleration [1][4], (ii) 
OpenMP-based system-on-chip design with a soft processor 
and a number of hardware accelerators [5][6][7][8], (iii) 
OpenMP-based device offloading [9][10]. 

In [4], OpenMP parallel directive and a few worksharing 
and synchronization directives are first translated to 
synthesizable VHDL, and then from VHDL to FPGA 
hardware. In [4], each OpenMP thread is implemented by a 

finite state machine. A crucial limitation of this study is that 
there is no memory hierarchy. That is, an OpenMP hardware 
thread is only enabled to access on-chip memory resources, 
which clearly hampers to provide a scalable shared memory 
system in an efficient manner. 

Any task specified by OpenMP task directive is 
converted into a custom hardware unit that carries out the 
work within that particular task [5][6]. These hardware units 
are then combined together to form an accelerator 
component. Finally, a system-on-chip is created based on a 
Nios II soft-core processor and a number of such accelerator 
components. However, this created system-on-chip is not 
equipped with memory hierarchy. Furthermore, [5] and [6] 
neither provide any details about synchronization, nor 
support any nested parallelism. 

In [7], on the other hand, the system-on-chip with a MIPS 
soft-core processor has a memory hierarchy that is composed 
of a local memory per accelerator unit and a shared L1 data 
cache, both of which are implemented on on-chip Block 
RAMs, and off-chip DDR memory. Two special-purpose IP 
cores, hardware mutex core and hardware barrier core, are 
further defined in order to support several OpenMP 
synchronization directives as well. In addition, [7] features 
two-level nested parallelism. 

Different from the single MIPS processor in [7], the 
system-on-chip in [8] includes one or more Microblaze soft-
core processors. An OpenMP thread can be run on either a 
processor or a hardware subsystem in [8]. Furthermore, the 
system-on-chip of [8] instantiates an application-specific 
synchronization network based on the Shared Memory 
Process Network model of the related OpenMP application. 

The surveyed approaches [4][5][6][7][8] so far do not 

leverage the OpenMP target directive for creating 

hardware accelerators. The OpenMP target directive [2], 
on the other hand, enables programmers to mark regions of 
an application that should be offloaded to an FPGA (or GPU 
or DSP) device. Additionally, the data mapping clauses of 

the OpenMP target directive help programmers specify 
what and how data should be mapped to the target device. 
Two different tool chains are introduced in [9][10]. These 
tool chains aim to offload OpenMP-based applications 

annotated with the OpenMP target directive to FPGA-
based hardware accelerators. 



2

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

void main_prog () { 

 ...... 

 sequential_part-1 

 ...... 

 #pragma omp parallel { 

  ...... 

  parallel_region-1 

  ...... 

 }  

 ...... 

 sequential_part-2 

 ...... 

} 

A few High Level Synthesis (HLS) tools, such as 
[11][12] have support to produce parallel hardware from 
OpenCL. Finally, fork-join like hardware constructs that are 
automatically generated from single-threaded sequential 
code using compiler dependence analysis is described in 
[13]. The present work focuses on converting explicitly 
parallel OpenMP programs to parallel hardware, as opposed 
to converting single threaded sequential programs as in [13], 
to parallel hardware. 

This study makes the following contributions to the 
literature as compared to [1], [4]-[10]: (i) A parallel 
hardware architecture with explicit support for the OpenMP 
synchronization directives is introduced. That is, it provides 
specialized components and networks for the hardware 
implementations of the OpenMP barrier, atomic, and critical 
directives, which are not found in [1]. (ii) The memory 
hierarchy with L1 and L2 caches is presented in detail to 
support the OpenMP memory model. In [1], however, there 
are a few untouched crucial issues related to OpenMP 
memory model. In the other studies [4]-[10], either there is 
no data cache, or there is a single data cache shared by all 
hardware threads. (iii) The model proposed here features 
dynamic scheduling of OpenMP for-loop iterations, while 
[1] supports only static scheduling. (iv) Finally, the nested 
parallelism in [1] is refined here to make it fully conform to 
the OpenMP semantics. 

The rest of the paper is organized as follows: Section II 
summarizes a few features of OpenMP pertaining to this 
study. Section III introduces the proposed parallel hardware 
architecture. Section IV shows how this architecture provides 
support for the fork-join applications using three different 
case studies. Finally, Section V concludes the paper. 
 

II. PARALLEL PROGRAMMING IN OPENMP 

OpenMP is briefly introduced in this section to show 

how it can be used to express parallelism in applications. 

The execution model of OpenMP is based on the creation 

and management of threads, which requires the execution of 

at least one parallel region. In order to better explain the 

execution model, consider the following OpenMP code 

fragment: 
 

According to the semantics of OpenMP, an initial thread 

starts with executing sequential_part-1. The 
sequential execution of the initial thread continues until it 

encounters #pragma omp paralel, which results in      
spawning (forking) a team consisting of itself (master thread) 
and additional other slave threads. Each thread in the team 
executes an implicit task that will be generated by the code 

according to parallel_region-1. At the end of the 
parallel construct, there is always an implicit barrier. Once 
all threads reach to this implicit barrier point, only the master 

thread continues its execution with sequential_part-

2, while all slave threads are terminated, which corresponds 
to a join event [2][3]. There are a few points to emphasize 

related to the parallel directive: 

 Any part of a program that is not enclosed by a 
parallel construct will be executed serially, including 
OpenMP worksharing constructs. 

 The work of a parallel region will not be distributed 
among the threads in a team unless a worksharing 
construct is used. 

 Although a parallel region is executed by all threads 
in the team, each thread is allowed to follow a 
different path of execution. 

OpenMP allows any number of parallel constructs to be 
specified in a single program. For example, right after the 

end of sequential_part-2, there could be another 

#pragma omp paralel that encloses 

parallel_region-2. It is possible in OpenMP that each 
parallel region can be executed by a different number of 
threads. 

OpenMP also supports nested parallelism that enables a 
parallel region to be nested within another one. For example, 

parallel_region-1 above can include a second 

#pragma omp parallel with an additional 

parallel_region-2 nested inside parallel 

region-1. Any thread of parallel region-1 that 
encounters this nested parallel construct can start a new team 
of threads and become the master of its own team. 

A. Worksharing 

A worksharing construct distributes the execution of the 

related worksharing region among the members of the team 

that encounters it. Each thread executes a portion of the 

worksharing region in the context of its implicit task. A 

worksharing region has no barrier upon entry, but an 

implied barrier upon exit, unless a nowait clause is 

specified. Note also that a worksharing construct does not 

launch any new threads and it is effective only in a parallel 

region [2][3]. 

The #pragma omp for directive is the most 

important worksharing construct of OpenMP since loops are 

the most common source of parallelism in many 

applications. Here is an example OpenMP code fragment 

with the for directive:    
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#pragma omp parallel num_threads(4) 

{ 

 #pragma omp for schedule(static) { 

   for (i=0; i<1000; i++) 

   a[i]=(b[i]+b[i+1])/2.0; 

 } 

}  

 

The for directive causes the iterations of the loop 

immediately following it to be distributed across the threads 

and executed in parallel. The most relevant clause supported 

by the for directive is schedule, which determines how 

the iteration space should be distributed among the team of 

threads. The schedule clause accepts one of the five 

different scheduling choices, namely static, dynamic, 

guided, runtime, and auto. Thus, the user, the compiler, or 

the runtime is allowed to decide about the load balancing of 
threads for achieving the best application performance. In 

the case of static scheduling, for example, iterations are 

equally divided among threads as specified by the OpenMP 

standard. As a result, in the example given above, each 

thread will be assigned a task composed of 250 i-loop 

iterations. In the case of dynamic and guided scheduling, 

however, a thread is assigned a new chunk of iterations only 

if it completes the execution of the current task and is ready 

for the next one. 

The #pragma omp sections directive allows a set 

of structured code blocks (e.g., several independent 

subroutines) to be executed in parallel by a team of threads, 

where each thread executes one code block at a time, and 

each code block will be executed exactly once. Note that all 

threads must finish their corresponding sections before any 

thread can proceed [2][3]. 

The #pragma omp single directive specifies that 

the associated structured block must be executed by only 

one of the encountering threads among in the team, while 

the other threads wait at an implicit barrier at the end of the 

single construct if the barrier is not eliminated by a nowait 

clause [2][3].  

#pragma omp paralel for and #pragma omp 

paralel sections are parallel worksharing constructs 

that can be used when a parallel region is composed of only 

one worksharing construct. That is, the worksharing region 

includes all the code in the parallel region. 

B. Synchronization 

OpenMP does not guarantee atomicity when accessing 

and/or modifying shared data by multiple threads running in 

parallel. Consequently, the user is responsible for avoiding 

data race conditions among multiple threads. In order to 

make it easier for the user to orchestrate the access to shared 

data by multiple threads, OpenMP supports a few 
synchronization constructs, such as critical, atomic, and 

barrier [2][3].  

The #pragma omp critical directive restricts the 

associated critical region of an application to be executed 

atomically by a single thread at a time. Suppose that a 

thread is currently executing inside a critical region. When 
another thread reaches that same critical region and attempts 

to execute it, it will be blocked at least until the first thread 

exits that critical region. 

In contrast to the critical construct, the #pragma omp 

atomic directive provides that a single memory location is 

accessed atomically by multiple threads without 

interference. The atomic construct is similar to the atomic 

read-modify-write types of instructions in an instruction set 

architecture. 

In OpenMP parallelism model, there are both implicit 

and explicit barriers. Remember that there is an implicit 
barrier at the entry to or exit from parallel regions and at the 

end of worksharing regions without the nowait clause. 

OpenMP further allows users to explicitly add a barrier to 

its parallel application by means of #pragma omp 

barrier directive, which ensures that no thread of a team 

is allowed to proceed beyond a barrier until all threads in the 
team have reached that point. 

C. Memory Model 

OpenMP is based on the relaxed-consistency shared 

memory model. According to this model, there is a global 

shared memory which any thread may read from or write to 
data; each OpenMP thread is allowed to have a local, 

temporary view of the global shared memory that is 

accessible to only the reads and writes from that thread 

[2][3]. Here are more details about the OpenMP memory 

model: 

 A thread’s temporary view of memory is not required 
to be consistent with the shared memory at all times. 

 A read from a variable by a thread may not reflect all 
prior writes from other threads to this variable. 

 A write to a variable by a thread is not immediately 
observable by another one.  

 Both reads and writes by a thread may be completed 
with respect to only that thread’s temporary view of 
memory without any access to shared memory. 

 All modifications to the shared data objects by a 
thread must be written (flushed) back to the shared 
memory at the synchronization points of the program. 

 In order to make a thread’s temporary view of memory 
consistent with the global shared memory, OpenMP provides 

users with #pragma omp flush directive. Executing the 
flush directive causes to write the whole thread-visible data 
state of the program, as defined by the base language, back 
to memory and then invalidate it in its temporary view. 
 

III. PARALLEL HARDWARE ARCHITECTURE 

Motivated by related studies in the literature, a generic 
parallel hardware architecture that can be instantiated by an 
OpenMP program for a class of fork-join parallel 
applications is proposed in this study and illustrated in 
Figure 1.  

Inside an FPGA (Field Programmable Gate Array) or 
ASIC (Application Specific Integrated Circuit) chip in 
Figure 1, there are a few types of components, which include  
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hardware threads, L1 caches (L1 $), a single L2 cache (L2 
$), and interconnection networks. A two-way arrow in 
Figure 1 represents a bidirectional message communication 
port with sending FIFO (First-In First-Out) and receiving 
FIFO interfaces, where it can be either master or slave port. 
That is, a master port has a master sending FIFO to send 
requests and a master receiving FIFO to receive the 
corresponding responses; a slave port has a slave receiving 
FIFO to receive requests and a slave sending FIFO to send 
the related responses. Thus, a master port of a component is 
connected to a slave port of another one. 

A. Hardware Threads 

A hardware thread component is a finite state machine 
that performs either coordination (P0 in Figure 1) or 

computation (Pi, i>0), or in some cases, both. 

P0 is the master hardware thread that 

coordinates/synchronizes the execution of a parallel 

application among the slave hardware threads Pi, 1≤i≤N. In 

Figure 1, P0 has the following bidirectional ports: a master 

port to the task network, a master port to its L1 cache, and a 

master port to the synchronization network, if P0 also 

contains a critical or atomic region. 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

P0 implements the parallel directive as follows: P0 forks 

a team of M slave threads by sending a start request 

with all initial input parameters to every slave thread of the 

current parallel region through its master send port to the 

task network. Depending on the number of threads that will 
be used in different parallel regions, the number of slave 

threads M is in general a varying number (M ≤ N or M > N 

are both possible), which basically corresponds to 

omp_set/get_num_threads function of OpenMP. In 

order to perform a join event, P0 waits until it receives a 

finish response over the task network from each one 

of the M slave threads of the team at the end of the parallel 

region.  The finish response message will be 

received in the master receive port of P0. Note that P0 relies 

on the number of finish response messages received 

being equal to the number of start request messages 

sent, in order to implement the implicit barrier required at 

the end of the parallel directive. 

According to [2], each worksharing region and barrier 

region must be encountered by all threads in a team or by 

none at all; the sequence of worksharing regions and barrier 

Figure 1. A parallel hardware architecture for fork-join applications 
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regions encountered must be the same for every thread in a 
team. Otherwise, such an OpenMP program is considered to 

be non-conforming, which will lead to unspecified behavior. 

For a conforming OpenMP program, P0 plays a role during 

the implementation of both implicit and explicit barriers 

(#pragma omp barrier). 
Pi, 1≤i≤N, are a team of slave hardware threads that 

really implements the execution of a parallel application. 
Each slave thread in Figure 1 has the following bidirectional 
ports: a slave port to the task network, a master port to its L1 
cache, and a master port to the synchronization network. Pi 
will be designed based on the following principles: 

 Pi will be initially in an idle state, waiting for a 

start request message from its master 
hardware thread P0.  

 Upon receiving the start request, each slave 
thread immediately starts executing its associated 
task, which is generally realized by a deeply pipelined 
datapath with a finite state machine. 

 The execution of a task may require one or more 
implicit or explicit barrier requests and one or more 
other synchronization operations. The details of those 
synchronization operations will be given shortly. 

 A slave task is coupled with a private L1 cache 
through which it accesses its private and/or shared 
variables, which will be fetched from the L2 cache on 
demand.   

 Once the computation of a slave thread is completed, 

the slave thread sends a finish response 

message to P0 and starts waiting for its next start 

request message. 

The static scheduling of any worksharing for loop inside 
a parallel region will be predetermined at compile time, by 
means of assigning an approximately equal chunk of loop 
iterations to each of the slave hardware threads.  

In the case of dynamic scheduling of worksharing for a 
loop, however, P0 will dynamically assign multiple chunks 
of loop iterations to slave threads one after another. Such 
dynamic scheduling can be done with a load balancing task 

network which sends start request messages from P0 
to any slave thread unit P1,…PN that is currently free (whose 
slave receive port FIFO is not full). For example, 
implementing the task network as a 1-dimensional or 2-
dimensional torus network through which task start requests 
sent by P0 travel until they encounter a currently free slave 
thread, can accomplish such load balancing [13]. When the 
number M of dynamic tasks is greater than the number N of 
(physical) slave threads, and the task network is flooded with 
start requests from P0, so that it can no longer accept further 
messages, P0 will stall until the slave threads complete some 
of their ongoing work, so that the task network is able to 
accept start requests again. 

On the other hand, n-level nested parallelism is possible 
by enhancing the hardware in Figure 1 as follows:  

 A second level nested parallelism can be created by 
replacing each slave thread Pi by a copy of the part of 
Figure 1 consisting of the components P0, the 
task_network, slave threads P1,…,PN and their 
attached L1 caches L11 ,…, L1N, while preserving the 

interconnections between these components. 
Components in this copy will be renamed 
respectively as Pi-P0, Pi-task_network, Pi-P1 … Pi-PN' 
and Pi-L11 … Pi-L1N' (the number of slave threads N' 
within the copy may be different than the original 
number of slave threads N). In this case, Pi-P0 (which 
is the specific component that replaced Pi) will 
remain connected to the original task_network with a 
slave port and will remain connected to the original 
L1 cache L1i of Pi with a master port and will also 
have an additional master port attached to the new Pi-
task_network. Pi-P0 will perform its own computation 

work. It will also send subthread start request 
messages to the pool of subthread hardware units Pi-
P1 … Pi-PN’ and will wait for all invoked subthreads 

to send back finish response messages over 
the new Pi-task_network, before Pi-P0 itself finally 

sends back a finish response message back to 
P0. The components Pi-P0, Pi-P1, …, Pi-PN' will also 
be connected to the synchronization network, so that 
a subthread running on them can execute critical or 
atomic regions. Finally, the Pi-L1j caches for j≥1 will 
be directly connected with master ports to the original 
L1-to-L2 network as well. 

 One can repeat the previous step for each level of the 
nested parallelism. In case the resulting hardware 
does not fit on a single chip, the hardware can be 
partitioned into hardware modules interconnected by 
a scalable network and a semi-reconfigurable ASIC 
“union module”, which can act as any of the 
partitions based on configuration parameters, can be 
created, to reduce ASIC NRE costs, as described in 
[13]. 

B. Synchronization in Hardware 

As explained above, the hardware thread P0 is used for 

the realization of an implicit barrier. An OpenMP explicit 

barrier #pragma omp barrier can also be 

implemented either with any barrier network known in the 

literature (e.g., for the simpler case where the number of 

tasks equals the number of physical hardware slave threads), 
or by using the mechanism already given in Figure 1. That 

is, a hardware thread P0' can spawn and wait for completion 

of task parts before an explicit barrier and then a hardware 

thread P0'' can spawn and wait for completion of task parts 

after the explicit barrier, and a top level hardware thread P0 

can invoke P0', wait for its completion, and then invoke P0'', 

therefore accomplishing the desired barrier synchronization.  

In order to implement both critical and atomic directives 

of OpenMP, on the other hand, a specialized 

synchronization hardware unit Psynch is included in Figure 1. 

Psynch has a number of bidirectional slave ports to the 
synchronization network, where the number of slave ports 

nsynch depends on the unique synchronization identifiers in 

application. Note that nsynch = 0 if Psynch is not needed in an 

application without any synchronization requirement at all; 

nsynch ≤ N and nsynch > N if there are less than or equal to or 

more unique synchronization identifiers than the number of 

slave threads, respectively. 
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Suppose that every critical or atomic directive in 

the application program text is assigned a synchronization 

identifier synchID between 0 and nsynch-1. In general, the 

mapping from atomic or critical constructs to synchID's will 

be a many-to-one function. However, to enhance 

concurrency, two distinct critical or atomic constructs in the 
program text which are known not to access overlapping 

memory areas can be assigned different synchronization 

identifiers either by compiler dependence analysis or 

expressly by the programmer, when the programmer uses 

different name parameters in the related critical 

constructs. In order to get exclusive access to a contended 
structured block uniquely identified by its synchID, a slave 

thread with threadID is first required to send a 

synchronization request with threadID and 

synchID to Psynch through its master port to the 

synchronization network. The synchronization network will 

then route any synchronization request message by using its 
synchID as the destination network output port. Psynch will be 

receiving simultaneous multiple synchronization request 

messages through its slave ports to the synchronization 

network. In order to respond these synchronization requests 

as soon as possible, Psynch can also be designed as a parallel 

hardware architecture as follows: 

 A finite state machine with a synchronization status 
register Rsynch is assigned to manage each slave port of 
Psynch. 

 Initially, Rsynch is NULL and no thread is granted for 
the contended structured block. 

 If there is a synchronization request with 
synchID, one of the following choices is applied: 
o If Rsynch = NULL, let Rsynch = threadID, which 

corresponds to an acquire event. 
o If Rsynch ≠ NULL and Rsynch = threadID, let Rsynch 

= NULL, which corresponds to a release event. 
o If Rsynch ≠ NULL and Rsynch ≠ threadID, keep 

Rsynch unmodified, which ensures that only one 
thread is granted at any time. 

 Psynch sends a synchronization response 

with the current value of Rsynch to the sender thread of 
the respective synchronization request. 

Upon receiving a synchronization response, a slave 

thread checks if its thread ID is equal to the Rsynch field of 

the received response message. If they are equal, it means 

that its exclusive access has been granted by Rsynch. At the 

end of the synchronization point, such a thread must send 

another synchronization request with threadID 

and synchID in order to end the period of its exclusive 

access. Otherwise, a slave thread whose request has been 

rejected is expected to retry after waiting for a random 

amount of time. 

C. Memory Hierarchy  

A two-level on-chip memory hierarchy as shown in 
Figure 1 is proposed to support the parallel hardware 
acceleration.  

Each hardware thread in Figure 1 is associated with a 
dedicated, private L1 cache (L1 $) where it keeps its 

temporary view of the global shared memory. L1 cache has a 
slave port to its hardware thread and a master port to L1-to-
L2 network. L1 cache is a write-back cache that supports 
conventional load and store requests coming from slave 
hardware threads. Furthermore, L1 cache has the following 
main features: 

 L1 cache does not implement any cache coherence 
protocol, therefore its hardware is simplified. 

 L1 cache has a dirty bit for each byte of a cache line 
in order to overcome a false sharing1 error [15]. 

 In order to maintain coherence between L1 caches 
and globally shared L2 cache according to the 
respective memory model, L1 cache supports 

flush_list and flush_all requests. 

 A flush_list address_list request 

forces L1 cache to send the cache lines containing 
any of the given addresses along with their line dirty 
bits to the L2 cache, invalidate these lines, and return 
an acknowledgement. Note that the address list may 
include a single address or multiple addresses.  

 A flush_all request forces L1 cache to send 
all dirty cache lines together with their line dirty bits 
to the L2 cache, invalidate all cache lines, and return 
an acknowledgement.  

The L2 cache is a write-back cache that receives line 
read and line write requests from L1 caches and responds to 
these requests accordingly. All initial and final data of the 
parallel application are assumed to be kept in the L2 cache. 
Furthermore, according to Figure 1, the L2 cache state data is 
held in an on-chip memory, whereas the application data are 
kept in an off-chip memory accessed through a memory 
controller. Note that L2 cache has a slave port to L1-to-L2 
network and master port to its memory controller. 

According to the semantics of OpenMP programs, in 
addition to the explicit flushes due to the flush directive, a 
flush operation is implied at several locations in the program 
as well. The implicit flushes per OpenMP requirement are 
supported by the proposed hardware accelerator with the 
help of L1 and L2 caches as follows [2]: 

 Entry to a parallel region: Before starting the parallel 

region, P0 sends a flush_all request to its L1 
cache. Upon receiving the related acknowledgement, 

P0 starts to send a start request to each slave 
thread. 

                                                        
1 With non-coherent caches, a false sharing error may occur even 

when two slave threads access non-overlapping memory areas. 
Assume that a line in L2 contains two data items a and b. L1 
Cache A loads the initial contents of the line and stores a into the 
line. L1 Cache B loads the initial contents of the line and stores b 
into the line. If L1 Cache A flushes the line last, it will incorrectly 
store the old stale value of b. Similarly, if L1 Cache B flushes the 
line last, it will incorrectly store the stale value of a. However, 

when only the bytes corresponding to the dirty bits of a line are 
stored back (only a from the line from L1 cache A and only b from 
the line from L1 cache B) into L2, this false sharing error is 
eliminated. Dirty bits per byte can be replaced by dirty bits per 4-
byte (or 8-byte) word, when a compiler can determine that a group 
of L1 caches is accessed with only word accesses. 
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#pragma omp parallel num_threads(N) \ 

   default(shared) private (i,j)  

{ 

 #pragma omp for schedule(static) { 

   for (i=0; i<n; i++) { 

     y[i] = 0.0; 

     for (j=0; j<m; j++) 

       y[i] += A[i*m+j]*x[j]; 

   } 

 } 

}  

 Exit from a parallel region: Just before a slave thread 
ends (i.e., reaches the implicit barrier ending the 

parallel region), it sends a flush_all request 
to its L1 cache. After receiving the respective 

acknowledgement, the slave thread sends a finish 

response to P0. 

 Explicit or implicit barrier region: An explicit barrier 
can be implemented using an implicit one as 
described in Section III B first paragraph. Therefore, 
the L1 cache of a slave thread is flushed just before it 
reaches any kind of barrier. 

 Exit from a worksharing region without the nowait 
clause: Remember that there is an implicit barrier at 
the end of a worksharing region if there is no 

nowait clause. Thus, this case will also be 
implemented as an implicit barrier. 

 Entry to an atomic region: After a slave thread 
acquires the exclusive right for updating a single 

shared variable through synchronization 

response, it first sends a flush_list 

request including only the shared variable address 
to its L1 cache. Upon the acknowledgement of this 
request, it sends a load request to the cache to obtain 
the latest value of this variable.    

 Exit from an atomic region: This will be achieved by 

first sending a flush_list request including 
the related shared variable to L1 cache, followed by a 

synchronization request with threadID 
and synchID to finish its atomic operation. 

 Entry to or exit from a critical region: These two 
events are the same as the entry to or exit from an 

atomic region, except the flush_list request 
will include multiple shared variables instead of a 
single one.  

D. Interconnection Network 

In Figure 1, there are three different interconnection 
networks, namely task network, synchronization network, 
and L1-to-L2 network. Each of these networks is a packet-
based network-on-chip network (NoC) [14] that 
interconnects various components of the architecture as 
shown in the figure. For example, the task network can be 
realized by a 1-to-N forward and N-to-1 backward butterfly 
networks, whereas the L1-to-L2 network can be 
implemented by a N-to-1 forward and a 1-to-N backward 
butterfly networks. 

IV. CASE STUDIES 

In this section, how different OpenMP code fragments 
can be compiled into application-specific parallel hardware 

architectures with respect to Figure 1 will be demonstrated.   

A. Matrix-Vector Multiplication 

The first case study considers the matrix-vector 
multiplication of y = A×x, where A is an n×m matrix, x and 
y denote m×1 and n×1 vectors, respectively. The parallel 
implementation of the matrix-vector multiplication in 
OpenMP is given below: 

 

 
In Figure 1, this matrix-vector computation will be 

carried out as follows: 

 Each hardware thread Pi, 1≤i≤N, starts its 
computation upon receiving a start request from P0. 
Note that in this case the number of physical 
hardware slave threads N is specified by the clause 

num_threads(N).  

 Since OpenMP is directed to assign the iterations of 
the i-loop to threads in an equal fashion due to the 

clause schedule(static), each Pi, 1≤i≤N, 
computes n/N vector elements y[i], where computing 
y[i]=A[i,:]×x requires a complete row A[i,:] of the 
matrix A and the whole vector x.  

 The L1 cache (L1i) directly attached to every Pi will 
be loaded with n/N rows of the matrix and the vector 
x from the L2 cache on demand during the 
computation.  

 Each Pi computes its n/N part of the y vector and 
stores this part into its L1 cache.  

 At the end of the computation, each Pi sends a 
flush_all request to L1i so that all dirty lines of of the 
y vector in L1i are written back to the L2 cache. 

 Each Pi waits for a flush acknowledgement from L1i, 

and then sends a finish response to P0. Once 
P0 receives N finish responses, the matrix-vector 
multiplication is completed. 

 According to the semantics of OpenMP, there are two 
implicit barriers, one of which is for the end of the 
parallel directive, and the other one is for the end of 
the worksharing for directive. However, a single 
implicit barrier would be enough for the correct 
execution of the algorithm. That is why only one 
implicit barrier that corresponds to the end of the 
parallel directive is implemented. 

Note that the synchronization networks and Psynch will 

not be needed for this example. Thus, the matrix-vector 

multiplication is realized as a single fork-join paradigm. 

B. Vector Inner-Product 

The second case study considers the vector inner-product 
of r = b×x, where b is a 1×n row vector, x denotes an n×1 
column vector, and r is a resulting scalar value. 
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r=0.0; 

#pragma omp parallel num_threads(N) \ 

   default(shared)  

{ 

 #pragma omp for reduction(+:r) 

   for (i=0; i<n; i++) 

     r += b[i]*x[i]; 

}  

do { 

 dmax=0.0;      

 #pragma omp parallel num_threads(N)\ 

   default(shared)  

 { 

  #pragma omp for private(temp,d,dmaxL){  

    for(i=1; i<n+1; i++) { 

      dmaxL=0.0; 

      for(j=1; j<n+1; j++) { 

        temp=u[i][j]; 

        u[i][j]= .... 

        d=fabs(temp-u[i][j]); 

        if(dmaxL<d) dmaxL=d; 

      } 

      #pragma omp critical 

        if (dmax<dmaxL) dmax=dmaxL;   

    } 

  } 

 } 

} while (dmax>eps);  

The parallelization of the vector inner-product can be 
accomplished within the framework of Figure 1 as follows: 

 Upon receiving a start request from P0, each Pi, 
1≤i≤N, computes a partial sum scalar value ri by 
means of multiplying its exclusive part of n/N 
elements of vectors b and x, and then performing n/N 
sums, in pipelined fashion. 

 Since each thread needs n/N elements of both vectors, 
L1i is loaded with n/N columns of b and n/N rows of 
x from the L2 cache. 

 After the computation of the local ri is over, each Pi, 
1≤i≤N, sends a special finish response with the local 

value of ri of r (finish_reduction response) 
to P0. 

 Note that P0 initially sets as r=0.0. For each received 

finish_reduction response, P0 updates the 
global value of r with the local one. After P0 receives 
N finish responses, P0 stores the final reduction sum r 
in cache L10.  

 Finally, P0 sends a flush request to L10. With the 
reception of the respective flush acknowledgement 
from L10, the vector inner-product computation is 
finished. 

Once again the synchronization network and Psynch 

component in Figure 1 will not be needed for case B either. 

Thus, the implementation of a vector-inner product requires 

a fork-join type of parallel execution with a final reduction 

operation.  

C. Gauss-Seidel Algorithm 

Finally, the Gauss-Seidel algorithm is used to iteratively 

solve differential equations, which based on the finite 

difference method. A baseline OpenMP implementation of 

the Gauss-Seidel algorithm [16] is provided in this section: 

The parallel implementation of the Gauss-Seidel 
algorithm is supported by Figure 1 as follows: 

 P0 executes the do-while loop as long as the loop 
condition is true. During each iteration of the loop, P0 
forks N slave threads in order to simply update the 
u[i][j] matrix and calculate the new value of dmax. 

 Each Pi, 1≤i≤N, starts its computation upon receiving 
a start request from P0. Each slave thread is assigned 
a task to update n/N rows of u[i][j] and computes its 
dmaxL value based on new u[i][j] matrix values.  

 L1i is loaded with the respective n/N rows of the 
u[i][j] matrix from the L2 cache on demand during 
computation. 

 At the end of each iteration of the i-loop, all N slave 
threads will contend for the critical section, which 

requires sending/receiving synchronization 
requests/responses through the synchronization 
network.  

 Psynch will grant access to only one of the slave 
threads at a given time to update the shared variable 
dmax. Meanwhile, each slave thread reads the latest 
value of dmax from the main memory upon entering 
the critical section and writes the updated value of 
dmax back to main memory before exiting the critical 
section. 

 At the end of the computation, each Pi sends a 

flush_all request to L1i so that all dirty lines of 
u[i][j] in L1i are written back to the L2 cache. After 
receiving its flush acknowledgement from L1i, slave 

thread sends a finish response to P0. 

 Once P0 receives N finish responses, P0 checks if the 
loop condition is true. If it is true, it will repeat the 
loop as explained above. Otherwise, the Gauss-Seidel 
algorithm has converged, and the algorithm is 
completed. 

V. CONCLUSIONS 

A parallel hardware architecture for a class of parallel 
applications that can be modeled by a fork-join programming 
model adopted by OpenMP is introduced. Its features are 
further highlighted on three different case studies. The 
proposed parallel hardware architecture has several 
important features implemented purely on hardware that are 
not typically supported by other studies in the literature, such 
as an L1 data cache for each hardware thread, n-level nested 
parallelism, and dynamic scheduling of worksharing for 
loops.  

Future work involves devising a compiler to generate 
such parallel hardware from regular OpenMP applications; 
measuring and reporting the performance that can be 
attainable by the generated parallel hardware using a set of 
benchmark OpenMP applications, and making this compiler 
to support most of OpenMP constructs. 
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