
1

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Accelerating OpenMP Applications Through Parallel Hardware Architecture

Atakan Doğan, İsmail San

Department of Electrical and Electronics Engineering
Eskişehir Technical University

Eskişehir, Turkey

email: atdogan@eskisehir.edu.tr,

email: isan@eskisehir.edu.tr

Kemal Ebcioğlu

Global Supercomputing Corporation
Yorktown Heights, NY, USA

email: kemal.ebcioglu@global-supercomputing.com

Abstract—It is a well-known fact that application-specific

hardware has both performance and power advantages as

compared to general-purpose CPUs and GPUs. Furthermore,

in order to improve the computing performance leveraging

available parallelism in software and hardware, high-level

parallel programming paradigms, such as OpenMP and

OpenCL, have been viable choices for designing application-

specific hardware. In this study, an application-specific

parallel hardware architecture with a specialized memory

hierarchy is proposed for a class of fork-join applications that

can be modeled by an OpenMP program. Furthermore, three

different case studies are provided to show how this model can

be employed for the hardware acceleration of such
applications.

Keywords-OpenMP applications; high-level synthesis;

application-specific hardware; NoCs; system-on-chip.

I. INTRODUCTION

This article is based on our previous paper [1] and
extends it in several dimension, which at least includes a
revised parallel hardware architecture model.

The OpenMP Application Programming Interface is a
well-established standard for parallel programming on
shared-memory multiprocessors. OpenMP has adopted the
fork-join model of parallel execution. According to this
model, an OpenMP program begins as a single thread of
execution, called an initial thread. When any thread
encounters an OpenMP parallel construct, a team of master
and slave threads is created to execute the code enclosed by
the construct (this corresponds to the fork). At the end of the
construct, only the master thread continues, while all slave
threads are terminated (this corresponds to the join) [2][3].

In the literature, there are several approaches that attempt
to generate parallel hardware from OpenMP applications.
These studies may be broadly grouped into three classes: (i)
OpenMP-based pure hardware-based acceleration [1][4], (ii)
OpenMP-based system-on-chip design with a soft processor
and a number of hardware accelerators [5][6][7][8], (iii)
OpenMP-based device offloading [9][10].

In [4], OpenMP parallel directive and a few worksharing
and synchronization directives are first translated to
synthesizable VHDL, and then from VHDL to FPGA
hardware. In [4], each OpenMP thread is implemented by a

finite state machine. A crucial limitation of this study is that
there is no memory hierarchy. That is, an OpenMP hardware
thread is only enabled to access on-chip memory resources,
which clearly hampers to provide a scalable shared memory
system in an efficient manner.

Any task specified by OpenMP task directive is
converted into a custom hardware unit that carries out the
work within that particular task [5][6]. These hardware units
are then combined together to form an accelerator
component. Finally, a system-on-chip is created based on a
Nios II soft-core processor and a number of such accelerator
components. However, this created system-on-chip is not
equipped with memory hierarchy. Furthermore, [5] and [6]
neither provide any details about synchronization, nor
support any nested parallelism.

In [7], on the other hand, the system-on-chip with a MIPS
soft-core processor has a memory hierarchy that is composed
of a local memory per accelerator unit and a shared L1 data
cache, both of which are implemented on on-chip Block
RAMs, and off-chip DDR memory. Two special-purpose IP
cores, hardware mutex core and hardware barrier core, are
further defined in order to support several OpenMP
synchronization directives as well. In addition, [7] features
two-level nested parallelism.

Different from the single MIPS processor in [7], the
system-on-chip in [8] includes one or more Microblaze soft-
core processors. An OpenMP thread can be run on either a
processor or a hardware subsystem in [8]. Furthermore, the
system-on-chip of [8] instantiates an application-specific
synchronization network based on the Shared Memory
Process Network model of the related OpenMP application.

The surveyed approaches [4][5][6][7][8] so far do not

leverage the OpenMP target directive for creating

hardware accelerators. The OpenMP target directive [2],
on the other hand, enables programmers to mark regions of
an application that should be offloaded to an FPGA (or GPU
or DSP) device. Additionally, the data mapping clauses of

the OpenMP target directive help programmers specify
what and how data should be mapped to the target device.
Two different tool chains are introduced in [9][10]. These
tool chains aim to offload OpenMP-based applications

annotated with the OpenMP target directive to FPGA-
based hardware accelerators.

2

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

void main_prog () {

 sequential_part-1

 #pragma omp parallel {

 parallel_region-1

 }

 sequential_part-2

}

A few High Level Synthesis (HLS) tools, such as
[11][12] have support to produce parallel hardware from
OpenCL. Finally, fork-join like hardware constructs that are
automatically generated from single-threaded sequential
code using compiler dependence analysis is described in
[13]. The present work focuses on converting explicitly
parallel OpenMP programs to parallel hardware, as opposed
to converting single threaded sequential programs as in [13],
to parallel hardware.

This study makes the following contributions to the
literature as compared to [1], [4]-[10]: (i) A parallel
hardware architecture with explicit support for the OpenMP
synchronization directives is introduced. That is, it provides
specialized components and networks for the hardware
implementations of the OpenMP barrier, atomic, and critical
directives, which are not found in [1]. (ii) The memory
hierarchy with L1 and L2 caches is presented in detail to
support the OpenMP memory model. In [1], however, there
are a few untouched crucial issues related to OpenMP
memory model. In the other studies [4]-[10], either there is
no data cache, or there is a single data cache shared by all
hardware threads. (iii) The model proposed here features
dynamic scheduling of OpenMP for-loop iterations, while
[1] supports only static scheduling. (iv) Finally, the nested
parallelism in [1] is refined here to make it fully conform to
the OpenMP semantics.

The rest of the paper is organized as follows: Section II
summarizes a few features of OpenMP pertaining to this
study. Section III introduces the proposed parallel hardware
architecture. Section IV shows how this architecture provides
support for the fork-join applications using three different
case studies. Finally, Section V concludes the paper.

II. PARALLEL PROGRAMMING IN OPENMP

OpenMP is briefly introduced in this section to show

how it can be used to express parallelism in applications.

The execution model of OpenMP is based on the creation

and management of threads, which requires the execution of

at least one parallel region. In order to better explain the

execution model, consider the following OpenMP code

fragment:

According to the semantics of OpenMP, an initial thread

starts with executing sequential_part-1. The
sequential execution of the initial thread continues until it

encounters #pragma omp paralel, which results in
spawning (forking) a team consisting of itself (master thread)
and additional other slave threads. Each thread in the team
executes an implicit task that will be generated by the code

according to parallel_region-1. At the end of the
parallel construct, there is always an implicit barrier. Once
all threads reach to this implicit barrier point, only the master

thread continues its execution with sequential_part-

2, while all slave threads are terminated, which corresponds
to a join event [2][3]. There are a few points to emphasize

related to the parallel directive:

 Any part of a program that is not enclosed by a
parallel construct will be executed serially, including
OpenMP worksharing constructs.

 The work of a parallel region will not be distributed
among the threads in a team unless a worksharing
construct is used.

 Although a parallel region is executed by all threads
in the team, each thread is allowed to follow a
different path of execution.

OpenMP allows any number of parallel constructs to be
specified in a single program. For example, right after the

end of sequential_part-2, there could be another

#pragma omp paralel that encloses

parallel_region-2. It is possible in OpenMP that each
parallel region can be executed by a different number of
threads.

OpenMP also supports nested parallelism that enables a
parallel region to be nested within another one. For example,

parallel_region-1 above can include a second

#pragma omp parallel with an additional

parallel_region-2 nested inside parallel

region-1. Any thread of parallel region-1 that
encounters this nested parallel construct can start a new team
of threads and become the master of its own team.

A. Worksharing

A worksharing construct distributes the execution of the

related worksharing region among the members of the team

that encounters it. Each thread executes a portion of the

worksharing region in the context of its implicit task. A

worksharing region has no barrier upon entry, but an

implied barrier upon exit, unless a nowait clause is

specified. Note also that a worksharing construct does not

launch any new threads and it is effective only in a parallel

region [2][3].

The #pragma omp for directive is the most

important worksharing construct of OpenMP since loops are

the most common source of parallelism in many

applications. Here is an example OpenMP code fragment

with the for directive:

3

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

#pragma omp parallel num_threads(4)

{

 #pragma omp for schedule(static) {

 for (i=0; i<1000; i++)

 a[i]=(b[i]+b[i+1])/2.0;

 }

}

The for directive causes the iterations of the loop

immediately following it to be distributed across the threads

and executed in parallel. The most relevant clause supported

by the for directive is schedule, which determines how

the iteration space should be distributed among the team of

threads. The schedule clause accepts one of the five

different scheduling choices, namely static, dynamic,

guided, runtime, and auto. Thus, the user, the compiler, or

the runtime is allowed to decide about the load balancing of
threads for achieving the best application performance. In

the case of static scheduling, for example, iterations are

equally divided among threads as specified by the OpenMP

standard. As a result, in the example given above, each

thread will be assigned a task composed of 250 i-loop

iterations. In the case of dynamic and guided scheduling,

however, a thread is assigned a new chunk of iterations only

if it completes the execution of the current task and is ready

for the next one.

The #pragma omp sections directive allows a set

of structured code blocks (e.g., several independent

subroutines) to be executed in parallel by a team of threads,

where each thread executes one code block at a time, and

each code block will be executed exactly once. Note that all

threads must finish their corresponding sections before any

thread can proceed [2][3].

The #pragma omp single directive specifies that

the associated structured block must be executed by only

one of the encountering threads among in the team, while

the other threads wait at an implicit barrier at the end of the

single construct if the barrier is not eliminated by a nowait

clause [2][3].

#pragma omp paralel for and #pragma omp

paralel sections are parallel worksharing constructs

that can be used when a parallel region is composed of only

one worksharing construct. That is, the worksharing region

includes all the code in the parallel region.

B. Synchronization

OpenMP does not guarantee atomicity when accessing

and/or modifying shared data by multiple threads running in

parallel. Consequently, the user is responsible for avoiding

data race conditions among multiple threads. In order to

make it easier for the user to orchestrate the access to shared

data by multiple threads, OpenMP supports a few
synchronization constructs, such as critical, atomic, and

barrier [2][3].

The #pragma omp critical directive restricts the

associated critical region of an application to be executed

atomically by a single thread at a time. Suppose that a

thread is currently executing inside a critical region. When
another thread reaches that same critical region and attempts

to execute it, it will be blocked at least until the first thread

exits that critical region.

In contrast to the critical construct, the #pragma omp

atomic directive provides that a single memory location is

accessed atomically by multiple threads without

interference. The atomic construct is similar to the atomic

read-modify-write types of instructions in an instruction set

architecture.

In OpenMP parallelism model, there are both implicit

and explicit barriers. Remember that there is an implicit
barrier at the entry to or exit from parallel regions and at the

end of worksharing regions without the nowait clause.

OpenMP further allows users to explicitly add a barrier to

its parallel application by means of #pragma omp

barrier directive, which ensures that no thread of a team

is allowed to proceed beyond a barrier until all threads in the
team have reached that point.

C. Memory Model

OpenMP is based on the relaxed-consistency shared

memory model. According to this model, there is a global

shared memory which any thread may read from or write to
data; each OpenMP thread is allowed to have a local,

temporary view of the global shared memory that is

accessible to only the reads and writes from that thread

[2][3]. Here are more details about the OpenMP memory

model:

 A thread’s temporary view of memory is not required
to be consistent with the shared memory at all times.

 A read from a variable by a thread may not reflect all
prior writes from other threads to this variable.

 A write to a variable by a thread is not immediately
observable by another one.

 Both reads and writes by a thread may be completed
with respect to only that thread’s temporary view of
memory without any access to shared memory.

 All modifications to the shared data objects by a
thread must be written (flushed) back to the shared
memory at the synchronization points of the program.

 In order to make a thread’s temporary view of memory
consistent with the global shared memory, OpenMP provides

users with #pragma omp flush directive. Executing the
flush directive causes to write the whole thread-visible data
state of the program, as defined by the base language, back
to memory and then invalidate it in its temporary view.

III. PARALLEL HARDWARE ARCHITECTURE

Motivated by related studies in the literature, a generic
parallel hardware architecture that can be instantiated by an
OpenMP program for a class of fork-join parallel
applications is proposed in this study and illustrated in
Figure 1.

Inside an FPGA (Field Programmable Gate Array) or
ASIC (Application Specific Integrated Circuit) chip in
Figure 1, there are a few types of components, which include

4

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hardware threads, L1 caches (L1 $), a single L2 cache (L2
$), and interconnection networks. A two-way arrow in
Figure 1 represents a bidirectional message communication
port with sending FIFO (First-In First-Out) and receiving
FIFO interfaces, where it can be either master or slave port.
That is, a master port has a master sending FIFO to send
requests and a master receiving FIFO to receive the
corresponding responses; a slave port has a slave receiving
FIFO to receive requests and a slave sending FIFO to send
the related responses. Thus, a master port of a component is
connected to a slave port of another one.

A. Hardware Threads

A hardware thread component is a finite state machine
that performs either coordination (P0 in Figure 1) or

computation (Pi, i>0), or in some cases, both.

P0 is the master hardware thread that

coordinates/synchronizes the execution of a parallel

application among the slave hardware threads Pi, 1≤i≤N. In

Figure 1, P0 has the following bidirectional ports: a master

port to the task network, a master port to its L1 cache, and a

master port to the synchronization network, if P0 also

contains a critical or atomic region.

P0 implements the parallel directive as follows: P0 forks

a team of M slave threads by sending a start request

with all initial input parameters to every slave thread of the

current parallel region through its master send port to the

task network. Depending on the number of threads that will
be used in different parallel regions, the number of slave

threads M is in general a varying number (M ≤ N or M > N

are both possible), which basically corresponds to

omp_set/get_num_threads function of OpenMP. In

order to perform a join event, P0 waits until it receives a

finish response over the task network from each one

of the M slave threads of the team at the end of the parallel

region. The finish response message will be

received in the master receive port of P0. Note that P0 relies

on the number of finish response messages received

being equal to the number of start request messages

sent, in order to implement the implicit barrier required at

the end of the parallel directive.

According to [2], each worksharing region and barrier

region must be encountered by all threads in a team or by

none at all; the sequence of worksharing regions and barrier

Figure 1. A parallel hardware architecture for fork-join applications

Psynch

Task Network

L1-to-L2 Network

P1 P2 PN

L1 $ L1 $ L1 $ L1 $

S
y
n
ch

ro
n
iz

at
io

n

N
et

w
o
rk

....

P0

....

L2 $
Memory

Controller

ASIC/FPGA

Chip

5

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

regions encountered must be the same for every thread in a
team. Otherwise, such an OpenMP program is considered to

be non-conforming, which will lead to unspecified behavior.

For a conforming OpenMP program, P0 plays a role during

the implementation of both implicit and explicit barriers

(#pragma omp barrier).
Pi, 1≤i≤N, are a team of slave hardware threads that

really implements the execution of a parallel application.
Each slave thread in Figure 1 has the following bidirectional
ports: a slave port to the task network, a master port to its L1
cache, and a master port to the synchronization network. Pi
will be designed based on the following principles:

 Pi will be initially in an idle state, waiting for a

start request message from its master
hardware thread P0.

 Upon receiving the start request, each slave
thread immediately starts executing its associated
task, which is generally realized by a deeply pipelined
datapath with a finite state machine.

 The execution of a task may require one or more
implicit or explicit barrier requests and one or more
other synchronization operations. The details of those
synchronization operations will be given shortly.

 A slave task is coupled with a private L1 cache
through which it accesses its private and/or shared
variables, which will be fetched from the L2 cache on
demand.

 Once the computation of a slave thread is completed,

the slave thread sends a finish response

message to P0 and starts waiting for its next start

request message.

The static scheduling of any worksharing for loop inside
a parallel region will be predetermined at compile time, by
means of assigning an approximately equal chunk of loop
iterations to each of the slave hardware threads.

In the case of dynamic scheduling of worksharing for a
loop, however, P0 will dynamically assign multiple chunks
of loop iterations to slave threads one after another. Such
dynamic scheduling can be done with a load balancing task

network which sends start request messages from P0
to any slave thread unit P1,…PN that is currently free (whose
slave receive port FIFO is not full). For example,
implementing the task network as a 1-dimensional or 2-
dimensional torus network through which task start requests
sent by P0 travel until they encounter a currently free slave
thread, can accomplish such load balancing [13]. When the
number M of dynamic tasks is greater than the number N of
(physical) slave threads, and the task network is flooded with
start requests from P0, so that it can no longer accept further
messages, P0 will stall until the slave threads complete some
of their ongoing work, so that the task network is able to
accept start requests again.

On the other hand, n-level nested parallelism is possible
by enhancing the hardware in Figure 1 as follows:

 A second level nested parallelism can be created by
replacing each slave thread Pi by a copy of the part of
Figure 1 consisting of the components P0, the
task_network, slave threads P1,…,PN and their
attached L1 caches L11 ,…, L1N, while preserving the

interconnections between these components.
Components in this copy will be renamed
respectively as Pi-P0, Pi-task_network, Pi-P1 … Pi-PN'
and Pi-L11 … Pi-L1N' (the number of slave threads N'
within the copy may be different than the original
number of slave threads N). In this case, Pi-P0 (which
is the specific component that replaced Pi) will
remain connected to the original task_network with a
slave port and will remain connected to the original
L1 cache L1i of Pi with a master port and will also
have an additional master port attached to the new Pi-
task_network. Pi-P0 will perform its own computation

work. It will also send subthread start request
messages to the pool of subthread hardware units Pi-
P1 … Pi-PN’ and will wait for all invoked subthreads

to send back finish response messages over
the new Pi-task_network, before Pi-P0 itself finally

sends back a finish response message back to
P0. The components Pi-P0, Pi-P1, …, Pi-PN' will also
be connected to the synchronization network, so that
a subthread running on them can execute critical or
atomic regions. Finally, the Pi-L1j caches for j≥1 will
be directly connected with master ports to the original
L1-to-L2 network as well.

 One can repeat the previous step for each level of the
nested parallelism. In case the resulting hardware
does not fit on a single chip, the hardware can be
partitioned into hardware modules interconnected by
a scalable network and a semi-reconfigurable ASIC
“union module”, which can act as any of the
partitions based on configuration parameters, can be
created, to reduce ASIC NRE costs, as described in
[13].

B. Synchronization in Hardware

As explained above, the hardware thread P0 is used for

the realization of an implicit barrier. An OpenMP explicit

barrier #pragma omp barrier can also be

implemented either with any barrier network known in the

literature (e.g., for the simpler case where the number of

tasks equals the number of physical hardware slave threads),
or by using the mechanism already given in Figure 1. That

is, a hardware thread P0' can spawn and wait for completion

of task parts before an explicit barrier and then a hardware

thread P0'' can spawn and wait for completion of task parts

after the explicit barrier, and a top level hardware thread P0

can invoke P0', wait for its completion, and then invoke P0'',

therefore accomplishing the desired barrier synchronization.

In order to implement both critical and atomic directives

of OpenMP, on the other hand, a specialized

synchronization hardware unit Psynch is included in Figure 1.

Psynch has a number of bidirectional slave ports to the
synchronization network, where the number of slave ports

nsynch depends on the unique synchronization identifiers in

application. Note that nsynch = 0 if Psynch is not needed in an

application without any synchronization requirement at all;

nsynch ≤ N and nsynch > N if there are less than or equal to or

more unique synchronization identifiers than the number of

slave threads, respectively.

6

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Suppose that every critical or atomic directive in

the application program text is assigned a synchronization

identifier synchID between 0 and nsynch-1. In general, the

mapping from atomic or critical constructs to synchID's will

be a many-to-one function. However, to enhance

concurrency, two distinct critical or atomic constructs in the
program text which are known not to access overlapping

memory areas can be assigned different synchronization

identifiers either by compiler dependence analysis or

expressly by the programmer, when the programmer uses

different name parameters in the related critical

constructs. In order to get exclusive access to a contended
structured block uniquely identified by its synchID, a slave

thread with threadID is first required to send a

synchronization request with threadID and

synchID to Psynch through its master port to the

synchronization network. The synchronization network will

then route any synchronization request message by using its
synchID as the destination network output port. Psynch will be

receiving simultaneous multiple synchronization request

messages through its slave ports to the synchronization

network. In order to respond these synchronization requests

as soon as possible, Psynch can also be designed as a parallel

hardware architecture as follows:

 A finite state machine with a synchronization status
register Rsynch is assigned to manage each slave port of
Psynch.

 Initially, Rsynch is NULL and no thread is granted for
the contended structured block.

 If there is a synchronization request with
synchID, one of the following choices is applied:
o If Rsynch = NULL, let Rsynch = threadID, which

corresponds to an acquire event.
o If Rsynch ≠ NULL and Rsynch = threadID, let Rsynch

= NULL, which corresponds to a release event.
o If Rsynch ≠ NULL and Rsynch ≠ threadID, keep

Rsynch unmodified, which ensures that only one
thread is granted at any time.

 Psynch sends a synchronization response

with the current value of Rsynch to the sender thread of
the respective synchronization request.

Upon receiving a synchronization response, a slave

thread checks if its thread ID is equal to the Rsynch field of

the received response message. If they are equal, it means

that its exclusive access has been granted by Rsynch. At the

end of the synchronization point, such a thread must send

another synchronization request with threadID

and synchID in order to end the period of its exclusive

access. Otherwise, a slave thread whose request has been

rejected is expected to retry after waiting for a random

amount of time.

C. Memory Hierarchy

A two-level on-chip memory hierarchy as shown in
Figure 1 is proposed to support the parallel hardware
acceleration.

Each hardware thread in Figure 1 is associated with a
dedicated, private L1 cache (L1 $) where it keeps its

temporary view of the global shared memory. L1 cache has a
slave port to its hardware thread and a master port to L1-to-
L2 network. L1 cache is a write-back cache that supports
conventional load and store requests coming from slave
hardware threads. Furthermore, L1 cache has the following
main features:

 L1 cache does not implement any cache coherence
protocol, therefore its hardware is simplified.

 L1 cache has a dirty bit for each byte of a cache line
in order to overcome a false sharing1 error [15].

 In order to maintain coherence between L1 caches
and globally shared L2 cache according to the
respective memory model, L1 cache supports

flush_list and flush_all requests.

 A flush_list address_list request

forces L1 cache to send the cache lines containing
any of the given addresses along with their line dirty
bits to the L2 cache, invalidate these lines, and return
an acknowledgement. Note that the address list may
include a single address or multiple addresses.

 A flush_all request forces L1 cache to send
all dirty cache lines together with their line dirty bits
to the L2 cache, invalidate all cache lines, and return
an acknowledgement.

The L2 cache is a write-back cache that receives line
read and line write requests from L1 caches and responds to
these requests accordingly. All initial and final data of the
parallel application are assumed to be kept in the L2 cache.
Furthermore, according to Figure 1, the L2 cache state data is
held in an on-chip memory, whereas the application data are
kept in an off-chip memory accessed through a memory
controller. Note that L2 cache has a slave port to L1-to-L2
network and master port to its memory controller.

According to the semantics of OpenMP programs, in
addition to the explicit flushes due to the flush directive, a
flush operation is implied at several locations in the program
as well. The implicit flushes per OpenMP requirement are
supported by the proposed hardware accelerator with the
help of L1 and L2 caches as follows [2]:

 Entry to a parallel region: Before starting the parallel

region, P0 sends a flush_all request to its L1
cache. Upon receiving the related acknowledgement,

P0 starts to send a start request to each slave
thread.

1 With non-coherent caches, a false sharing error may occur even

when two slave threads access non-overlapping memory areas.
Assume that a line in L2 contains two data items a and b. L1
Cache A loads the initial contents of the line and stores a into the
line. L1 Cache B loads the initial contents of the line and stores b
into the line. If L1 Cache A flushes the line last, it will incorrectly
store the old stale value of b. Similarly, if L1 Cache B flushes the
line last, it will incorrectly store the stale value of a. However,

when only the bytes corresponding to the dirty bits of a line are
stored back (only a from the line from L1 cache A and only b from
the line from L1 cache B) into L2, this false sharing error is
eliminated. Dirty bits per byte can be replaced by dirty bits per 4-
byte (or 8-byte) word, when a compiler can determine that a group
of L1 caches is accessed with only word accesses.

7

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

#pragma omp parallel num_threads(N) \

 default(shared) private (i,j)

{

 #pragma omp for schedule(static) {

 for (i=0; i<n; i++) {

 y[i] = 0.0;

 for (j=0; j<m; j++)

 y[i] += A[i*m+j]*x[j];

 }

 }

}

 Exit from a parallel region: Just before a slave thread
ends (i.e., reaches the implicit barrier ending the

parallel region), it sends a flush_all request
to its L1 cache. After receiving the respective

acknowledgement, the slave thread sends a finish

response to P0.

 Explicit or implicit barrier region: An explicit barrier
can be implemented using an implicit one as
described in Section III B first paragraph. Therefore,
the L1 cache of a slave thread is flushed just before it
reaches any kind of barrier.

 Exit from a worksharing region without the nowait
clause: Remember that there is an implicit barrier at
the end of a worksharing region if there is no

nowait clause. Thus, this case will also be
implemented as an implicit barrier.

 Entry to an atomic region: After a slave thread
acquires the exclusive right for updating a single

shared variable through synchronization

response, it first sends a flush_list

request including only the shared variable address
to its L1 cache. Upon the acknowledgement of this
request, it sends a load request to the cache to obtain
the latest value of this variable.

 Exit from an atomic region: This will be achieved by

first sending a flush_list request including
the related shared variable to L1 cache, followed by a

synchronization request with threadID
and synchID to finish its atomic operation.

 Entry to or exit from a critical region: These two
events are the same as the entry to or exit from an

atomic region, except the flush_list request
will include multiple shared variables instead of a
single one.

D. Interconnection Network

In Figure 1, there are three different interconnection
networks, namely task network, synchronization network,
and L1-to-L2 network. Each of these networks is a packet-
based network-on-chip network (NoC) [14] that
interconnects various components of the architecture as
shown in the figure. For example, the task network can be
realized by a 1-to-N forward and N-to-1 backward butterfly
networks, whereas the L1-to-L2 network can be
implemented by a N-to-1 forward and a 1-to-N backward
butterfly networks.

IV. CASE STUDIES

In this section, how different OpenMP code fragments
can be compiled into application-specific parallel hardware

architectures with respect to Figure 1 will be demonstrated.

A. Matrix-Vector Multiplication

The first case study considers the matrix-vector
multiplication of y = A×x, where A is an n×m matrix, x and
y denote m×1 and n×1 vectors, respectively. The parallel
implementation of the matrix-vector multiplication in
OpenMP is given below:

In Figure 1, this matrix-vector computation will be

carried out as follows:

 Each hardware thread Pi, 1≤i≤N, starts its
computation upon receiving a start request from P0.
Note that in this case the number of physical
hardware slave threads N is specified by the clause

num_threads(N).

 Since OpenMP is directed to assign the iterations of
the i-loop to threads in an equal fashion due to the

clause schedule(static), each Pi, 1≤i≤N,
computes n/N vector elements y[i], where computing
y[i]=A[i,:]×x requires a complete row A[i,:] of the
matrix A and the whole vector x.

 The L1 cache (L1i) directly attached to every Pi will
be loaded with n/N rows of the matrix and the vector
x from the L2 cache on demand during the
computation.

 Each Pi computes its n/N part of the y vector and
stores this part into its L1 cache.

 At the end of the computation, each Pi sends a
flush_all request to L1i so that all dirty lines of of the
y vector in L1i are written back to the L2 cache.

 Each Pi waits for a flush acknowledgement from L1i,

and then sends a finish response to P0. Once
P0 receives N finish responses, the matrix-vector
multiplication is completed.

 According to the semantics of OpenMP, there are two
implicit barriers, one of which is for the end of the
parallel directive, and the other one is for the end of
the worksharing for directive. However, a single
implicit barrier would be enough for the correct
execution of the algorithm. That is why only one
implicit barrier that corresponds to the end of the
parallel directive is implemented.

Note that the synchronization networks and Psynch will

not be needed for this example. Thus, the matrix-vector

multiplication is realized as a single fork-join paradigm.

B. Vector Inner-Product

The second case study considers the vector inner-product
of r = b×x, where b is a 1×n row vector, x denotes an n×1
column vector, and r is a resulting scalar value.

8

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

r=0.0;

#pragma omp parallel num_threads(N) \

 default(shared)

{

 #pragma omp for reduction(+:r)

 for (i=0; i<n; i++)

 r += b[i]*x[i];

}

do {

 dmax=0.0;

 #pragma omp parallel num_threads(N)\

 default(shared)

 {

 #pragma omp for private(temp,d,dmaxL){

 for(i=1; i<n+1; i++) {

 dmaxL=0.0;

 for(j=1; j<n+1; j++) {

 temp=u[i][j];

 u[i][j]=

 d=fabs(temp-u[i][j]);

 if(dmaxL<d) dmaxL=d;

 }

 #pragma omp critical

 if (dmax<dmaxL) dmax=dmaxL;

 }

 }

 }

} while (dmax>eps);

The parallelization of the vector inner-product can be
accomplished within the framework of Figure 1 as follows:

 Upon receiving a start request from P0, each Pi,
1≤i≤N, computes a partial sum scalar value ri by
means of multiplying its exclusive part of n/N
elements of vectors b and x, and then performing n/N
sums, in pipelined fashion.

 Since each thread needs n/N elements of both vectors,
L1i is loaded with n/N columns of b and n/N rows of
x from the L2 cache.

 After the computation of the local ri is over, each Pi,
1≤i≤N, sends a special finish response with the local

value of ri of r (finish_reduction response)
to P0.

 Note that P0 initially sets as r=0.0. For each received

finish_reduction response, P0 updates the
global value of r with the local one. After P0 receives
N finish responses, P0 stores the final reduction sum r
in cache L10.

 Finally, P0 sends a flush request to L10. With the
reception of the respective flush acknowledgement
from L10, the vector inner-product computation is
finished.

Once again the synchronization network and Psynch

component in Figure 1 will not be needed for case B either.

Thus, the implementation of a vector-inner product requires

a fork-join type of parallel execution with a final reduction

operation.

C. Gauss-Seidel Algorithm

Finally, the Gauss-Seidel algorithm is used to iteratively

solve differential equations, which based on the finite

difference method. A baseline OpenMP implementation of

the Gauss-Seidel algorithm [16] is provided in this section:

The parallel implementation of the Gauss-Seidel
algorithm is supported by Figure 1 as follows:

 P0 executes the do-while loop as long as the loop
condition is true. During each iteration of the loop, P0
forks N slave threads in order to simply update the
u[i][j] matrix and calculate the new value of dmax.

 Each Pi, 1≤i≤N, starts its computation upon receiving
a start request from P0. Each slave thread is assigned
a task to update n/N rows of u[i][j] and computes its
dmaxL value based on new u[i][j] matrix values.

 L1i is loaded with the respective n/N rows of the
u[i][j] matrix from the L2 cache on demand during
computation.

 At the end of each iteration of the i-loop, all N slave
threads will contend for the critical section, which

requires sending/receiving synchronization
requests/responses through the synchronization
network.

 Psynch will grant access to only one of the slave
threads at a given time to update the shared variable
dmax. Meanwhile, each slave thread reads the latest
value of dmax from the main memory upon entering
the critical section and writes the updated value of
dmax back to main memory before exiting the critical
section.

 At the end of the computation, each Pi sends a

flush_all request to L1i so that all dirty lines of
u[i][j] in L1i are written back to the L2 cache. After
receiving its flush acknowledgement from L1i, slave

thread sends a finish response to P0.

 Once P0 receives N finish responses, P0 checks if the
loop condition is true. If it is true, it will repeat the
loop as explained above. Otherwise, the Gauss-Seidel
algorithm has converged, and the algorithm is
completed.

V. CONCLUSIONS

A parallel hardware architecture for a class of parallel
applications that can be modeled by a fork-join programming
model adopted by OpenMP is introduced. Its features are
further highlighted on three different case studies. The
proposed parallel hardware architecture has several
important features implemented purely on hardware that are
not typically supported by other studies in the literature, such
as an L1 data cache for each hardware thread, n-level nested
parallelism, and dynamic scheduling of worksharing for
loops.

Future work involves devising a compiler to generate
such parallel hardware from regular OpenMP applications;
measuring and reporting the performance that can be
attainable by the generated parallel hardware using a set of
benchmark OpenMP applications, and making this compiler
to support most of OpenMP constructs.

9

International Journal on Advances in Systems and Measurements, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/systems_and_measurements/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] A. Doğan, İ. San, and K.Ebcioğlu, “A parallel hardware
architecture for fork-join parallel applications,” The Eighth
International Conference on Advanced Communications and
Computations, (INFOCOMP 2018), IARIA Press, July 2018,
pp. 57-59.

[2] OpenMP Application Programming Interface, Version 5.0,
November 2018.

[3] B. Chapman, G. Jost, R. van der Pas, Using OpenMP Portable
Shared Memory Parallel Programming. London, UK: The
MIT Press, 2008.

[4] Y. Y. Leow, C. Y. Ng, and W.F. Wong, “Generating
hardware from OpenMP programs,” IEEE International
Conference on Field Programmable Technology, (FPT 2006),
IEEE Press, Dec. 2006, pp. 73-80, doi:
10.1109/FPT.2006.270297.

[5] A. Podobas, “Accelerating Parallel Computations with
OpenMP-driven System-on-Chip Generation for FPGAs,”
IEEE 8th International Symposium on Embedded
Multicore/Manycore SoCs, IEEE Press, Sept. 2014, pp 149-
156, doi: 10.1109/MCSoC.2014.30.

[6] A. Podobas and M. Brorsson, “Empowering OpenMP with
automatically generated hardware,” International Conference
on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS), IEEE Press, Jul. 2016, pp. 201-
205, doi: 10.1109/SAMOS.2016.7818354.

[7] J. Choi, St. Brown, and J. Anderson, “From software threads
to parallel hardware in high-level synthesis for FPGAs,”
International Conference on Field-Programmable Technology
(FPT’13), IEEE Press, Dec. 2013, pp. 270-277, doi:
10.1109/FPT.2013.6718365.

[8] A. Cilardo, L. Gallo, and N. Mazzocca, “Design space
exploration for high-level synthesis of multi-threaded

applications,” Journal of Systems Architecture, vol. 59, pp.
1171-1183, Nov. 2013, doi: 10.1016/j.sysarc.2013.08.005.

[9] L. Sommer, J. Korinth, and A. Koch, “OpenMP device
offloading to FPGA accelerators,” 2017 IEEE 28th
International Conference on Application-specific Systems,
Architectures and Processors (ASAP 2017), IEEE Press, Jul.
2017, pp. 201-205, doi: 10.1109/ASAP.2017.7995280.

[10] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, D. J.-
Gonzalez, “OpenMP extensions for FPGA Accelerators,”
International Symposium on Systems, Architectures,
Modeling, and Simulation, IEEE Press, Jul. 2009, pp. 17-24,
doi: 10.1109/ICSAMOS.2009.5289237.

[11] Xilinx SDAccel Programmers Guide. [Online]. Available
fromhttps://www.xilinx.com/support/documentation/sw_man
uals/xilinx2018_3/ug1277-sdaccel-programmers-guide.pdf
2019/02/22.

[12] Intel® FPGA SDK for OpenCLTM Pro Edition Programming
Guide [Online]. Available from
https://www.intel.com/content/dam/www/programmable/us/e
n/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
2019/02/22.

[13] K. Ebcioglu, E. Kultursay, and M. T. Kandemir, “Method and
system for converting a single-threaded software program into
an application-specific supercomputer,” US patent 8,966,457,
filed 2011/11/15 issued 2015/02/24.

[14] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Computing Surveys,
vol. 38, pp. Jun. 2006, doi: 10.1145/1132952.1132953.

[15] E. Kultursay, K. Ebcioglu, "Storage Unsharing", US patent
8,825,982, filed 2011/06/09 issued 2014/09/02.

[16] Parallel Methods for Partial Differential Equations [Online].
Available from http://www.hpcc.unn.ru/mskurs/
ENG/PPT/pp12.pdf 2019/02/22.

