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Abstract—We present an architecture to integrate a portable mi-
cro combined heat-and-power (pmCHP) unit into a smart energy
grid. The pmCHP is a gateway technology to bridge conventional
vehicles battery electric vehicles, increasing range and comfort.
Furthermore, pmCHP are to be used in the house within a
connected smart energy grid. A software system is required to
drive the pmCHP operation within building and vehicle. The
System needs to be highly adaptable to accommodate the high
amount of changes a novel device will undergo as it is introduced
into a real world scenario. To find the best architecture, we design
three different architectures using different architectural styles
and evaluate them based on five categories of software quality.
We conclude that a Service-Oriented Architecture (SOA) using
microservices provides a higher quality solution than a layered
or Event-Driven Complex-Event-Processing (ED-CEP) approach.
Future work will include implementation and simulation-driven
evaluation.
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I. INTRODUCTION

This article is based on our previous paper [1] and expands
upon it. A section showing the exact requirements for the
development of the architectures was added as well as further
information about the developed architectures giving more
insight into the designs. Also, the evaluation was expanded,
adding information about the application of the scenarios to
the architectures, documenting the changes.

The current energy distribution system of Europe is in
change, former tree-like distribution networks are replaced
with small autonomous microgrids, which imitate a peer-to-
peer network [2]. With ever growing demands for electrical
energy old, tree-like structures do not scale well enough to
further justify their construction. Peak loads demand over-
building for capacities that are only used during a very small
amount of time. With a peer-to-peer network, distributed
energy generation can be introduced to the grid much easier,
which allows every participant of the grid to generate and
consume energy opening a new market for small scale energy
trading. The change to distributed generation also alleviates
the issue of overbuilding to compensate peak loads and allows
more efficient expansion of the electrical grid to cover more
extensive loads. This however requires a high amount of
coordination between the different participants of the grids,
resulting in ubiquitous automation of the grid.

In the same vein the automotive industry is currently chang-
ing. To combat global warming, cars have to meet strict emis-
sion goals to be allowed to operate in some countries. With
current cars being optimized to the boundaries of engineering,

alternative sources of propulsion are under review, resulting
in an emergence of electrically driven cars, called battery-
electric vehicles (BEV). However, the development of afford-
able BEVs with comparable range to conventional combustion-
driven vehicles is slow, current BEVs often reach only half the
maximum range of conventional cars. Additionally, BEVs only
reach their maximum range without passenger climatization,
since the energy needed for air conditioning and heating is
drawn from the same battery as propulsion. Using a BEV
therefore requires careful attention to the available driving
range, since recharging station are comparatively scarce and a
recharge often takes a lot of time. The fear of being stranded
somewhere along the way when using a BEV is a major
impediment to customer acceptance.

To alleviate issues in BEV and to bridge the gap between
BEV and ICE-cars, the University of Applied Sciences and
Arts Hannover is currently developing the portable micro-
combined-heat-and-power unit (pmCHP). The pmCHP is a
small scale version of conventional CHP-units, weighing less
than 40 kilograms, and can be carried by a single person.
Utilizing the co-generation of heat and electricity to achieve
a very high efficiency, the pmCHP is designed to be used
in a BEV or to be connected to a smart energy grid in a
house. In the BEV the pmCHP generates heat (which can
be converted to coldness) and electrical power, increasing the
range of the car directly and allowing the conditioning of the
passenger compartment [3]. It is comparable to a conventional
range-extender, a small combustion engine, which generates
electrical power to increase the range of a BEV, but is more
efficient and provides conditioning. When the pmCHP is not
needed in the BEV, it can easily be unplugged and carried to
another point of use, for example in a house. In the house
it supports the local heating and energy production, covering
peak loads and recharging the local storages. This however
requires an integration of the local smart energy grid to identify
moments of peak load or other scenarios, in which to use the
pmCHP efficiently. For example, the generation of electricity
has to be coordinated with other, less flexible producers, like
solar cells or small scale wind energy.

In this article we will present a smart grid integration
of the pmCHP, starting with defining the requirements of
the software, selecting the best architecture and showing the
interoperability with the established smart grid standards. To
start off, Section II will give an overview of the relatively small
amount of related works. Requirements will be explained and
listed in Section III and Section IV, before resulting archi-
tectures are presented in Section V. After the presentations
of the architectures, we will show our process of architecture
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comparison in Section VI, which is based on a scenario driven
approach. The article ends with an evaluation in Section VII
and our conclusion in Section VIII.

II. RELATED WORKS

Regarding software architectures for the smart grid, mostly
interactions are standardized. For example, the standards
61968/61970, designed by the International Electrotechnical
Commission (IEC) describe a global domain model of the
smart grid with predefined interfaces and messages. The stan-
dards however do not describe a predefined internal software
architecture.

In [4], Reinprecht et al. describe the IEC Common Infor-
mation Model (CIM) architecture, which is a layered archi-
tecture that ensures standard-compliant implementation over
the different levels of the architecture. The authors describe
multiple SOA-based designs, which were created for the Smart
Grid Interoperability test. A comparison or evaluation of the
architectures is not mentioned.

Appelrath et al. [5] show a reference architecture for
smart grid software. It describes general interfaces for abstract
devices, a real device might be composed of multiple abstract
ones. However, neither a concrete implementation nor an
evaluation of alternatives is presented.

An architecture to operate a pmCHP testbed is presented
in [6]. There is no connection to the smart grid, although
microservices are used to provide high architectural flexibility.

To compare different architectural designs, Kazman et al.
[7] present a scenario-driven comparison method that provides
the general process used in this work.

The most important quality-aspects of smart grid software
are proposed by the NIST in [8]. Since the Smart Grid is
critical infrastructure, one of the most desired qualities is the
availability of the devices. These qualities are considered when
comparing the different designs in Section VI.

All considered, there is no concrete work on how to
integrate a pmCHP into a smart grid, let alone an evaluation
of suitable software architectures for this purpose, known to
the authors of this article.

III. REQUIREMENTS

Building an architecture requires a clear set of goals, often
referred to as requirements. The requirements define a clear
goal of what the software has to achieve to be successfully
developed and provide a baseline, against which a software
can be evaluated. For the pmCHP the requirements are split
into three categories, based on the planned operations for
the device. There are general requirements describing its use
in all scenarios, requirements for the usage in the car and
requirements for the usage in the building.

A. General Requirements
The general requirements describe the essential processes

in operating the pmCHP, regardless of the location of usage.
Overall, they contain safety relevant issues, user experience,
and general operating procedures.

First, the pmCHP has to choose the operational strategy,
which decides how the pmCHP is going to be driven. The
pmCHP can be used in three different modes; electricity-
driven, heat-driven, and combined heat- and electricity-driven.

The electrically-driven mode controls the production of the
pmCHP depending on the needed electricity, heat is seen
as byproduct and will not be produced if no electricity is
needed. In heat-driven mode, the pmCHP uses the heating
requirements as the control value, the combined operation
mode just produces depending on whichever energy is needed
at the time. Each of the modes has different advantages,
depending on the situation the pmCHP is employed in. For
example, operating the pmCHP in heat-driven mode in a house
secures government grants on electricity produced through
the usage of the power-heat-co-generation, due to its high
efficiency. However, choosing the wrong operational strategy
will result in a bad user experience, in the BEV running in
heat-driven mode will not result in higher ranges, as long as
the passengers do not require air conditioning.

After choosing the general strategy for the pmCHP opera-
tion, operational plans have to be made. Ideally, the pmCHP
is operated for long uninterrupted periods of time, with the
combustion engine running in its optimal operating point. This
decreases wear on the moving parts and also guarantees high
efficiency with low fuel consumption, allowing the pmCHP to
operate at the minimum costs to the user. For the operational
plans, external inputs have to be considered, depending on the
location of usage.

With the pmCHP up and running within optimal param-
eters, the device has to be monitored. Engine temperature,
rpm, fuel flow, air flow, cooling flow, etc. have to be watched
carefully to diagnose errors early and allow safe shutdowns. To
accommodate this, the software has to handle many different
sensor inputs and correlate the sensors into an operational state.

The state monitoring is needed for two different purposes,
first and most important is the emergency shutdown. If the
state of the pmCHP is critical, for example if the engine
is leaking fuel and has caught fire, the pmCHP has to be
shutdown safely, disconnecting it from other devices and
stopping its operation. The shutdown has to be fast enough to
prevent further damage and has precedence over every other
procedure in the software. Current operational parameters, like
operational plan and strategy as well as sensor readings, have
to be logged for examination.

Also, errors and problems have to be reported to connected
devices and the user of the pmCHP. In the connected smart
grid or the car, other electronic control units exist and need to
know the state of the network, i.e., if devices like the pmCHP
are performing as the control unit expects them to. The user
needs the information about the device state to make decisions
on maintenance.

Lastly the pmCHP-software should give the user an
overview over the current operational state and planning to
increase transparency of the device.

The general functional requirements can be summarized as
follows:

GR01 Smart choice of the operational strategy.
GR02 Creation of operational planning depending on exter-

nal inputs and operational constraints.
GR03 Monitoring of device state.
GR04 Emergency shutdown on critical or dangerous state.
GR05 Reporting of errors or malfunctions to other devices

and the user.
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GR06 Displaying the current operational state and planning
to the user.

B. Usage in BEV
After considering general requirements, we will present the

requirements for the usage of pmCHP in a BEV. The usage
in the car is dominated by the use of the pmCHP as a range
extender, the requirements revolve around functions to increase
range and comfort. An important point for the usage in the
BEV is the lack of other electrical generators in the car. The
generation of electrical power hence takes precedence over
efficient usage of the pmCHP resources.

To facilitate operation in the car, the pmCHP has to
monitor different aspects of the cars state. Most importantly,
the pmCHP has to monitor the charge of the internal battery
and the expected range depending on current consumption,
planned route and expected consumption. If electrical energy
is likely needed to complete the planned route, the pmCHP
has to act and charge the battery before it depletes completely.
Ideally, the pmCHP starts operation at the beginning of the
drive to charge the battery and condition the passengers, so it
can shut down when thermal requirements are met.

The primary function of the pmCHP is the generation of
electrical power, if needed to continue driving. A different
requirement is the operation as emergency range extender,
when the battery is about to be depleted. Thermal energies
produced during emergency mode are however considered as
waste, therefore the pmCHP loses its efficiency advantage over
conventional range extenders.

As already mentioned, the pmCHP shall condition the
passenger compartment to increase passenger comfort during
rides. The pmCHP-Software has to monitor the current tem-
perature of the passenger compartment as well as the desired
temperature. Furthermore, the pmCHP shall provide heat or
cold (depending on the difference between desired and current
temperature).

A more exotic requirement is the conditioning of the
battery used for driving. Studies have shown that thermal
conditioning of the battery can increase the range of an BEV
considerably. While this would introduce additional thermal
loads to be satisfied by the battery in a normal BEV, a pmCHP-
equipped BEV can utilize the pmCHP to cover the thermal
loads and profit from efficient co-generation of heat and power.
To properly condition the car battery, the pmCHP has to
monitor the batteries temperature and regulate it to the optimal
temperature.

Summarizing these requirements results in the following
list:

BR01 Monitoring of current range and expected driving
distance.

BR02 Generation of electrical energy, if it is needed to
continue driving.

BR03 Monitoring of the current passenger compartment tem-
perature and desired passenger compartment temper-
ature.

BR04 Conditioning the passenger compartment, if the bat-
tery can be charged.

BR05 Monitoring of the car battery temperature.
BR06 Conditioning of the car battery, if it will increase range

or the battery can be charged.

C. Usage in the house
The usage of the pmCHP in the house is dominated by

its connection to their devices. Integrated into a smart grid,
the focus of operation changes to one of cooperation and
coordination. Since there are a lot of alternative generators
available in the house or the smart grid, the operation of the
pmCHP focuses on optimal usage of co-generation effects.
Connecting a pmCHP to a potentially global network with a
lot of other clients opens the pmCHP to attacks, so security
considerations come into play.

The first functional requirement is the proper communi-
cation of the pmCHP with other smart grid devices, via the
expected smart grid standards like IEC61850. To facilitate co-
ordination, communication is needed. By using the IEC61850
standard interoperability with other smart grid devices is
ensured. Since no real modern smart grid is currently in use in
Germany or the EU, strict adherence to the predefined standard
is needed.

Another requirement is the monitoring of the attached heat
storage. In contrast to the car, which has a battery, the house
usually has no system for electrical storage (devices like the
Tesla Powerwall exist, but are currently not in widespread use).
However, most houses have some sort of thermal storage for
heating and hot water, which can be used by the pmCHP to
store thermal energy. This decouples the time of use from
the time of generation and allows more flexibility for pmCHP
operation.

The most important functional requirement is the effi-
cient operational planning. The pmCHP-software needs to
create efficient operational plans, which use the pmCHP to
its maximum potential. To create the operational plans, the
software needs to consider current and historical weather data,
other energy producing devices within the smart grid, the
operational specifics of the pmCHP (long, continuous periods
of medium load), and the current price of electricity. The
weather data shall be used to predict future loads for proactive
generation. Other smart grid devices have to be considered
during planning, since there might be no need for the pmCHP
to run. Interestingly, the current price of energy also factors
into the planning, since the pmCHP consumes fuel to generate
heat and electricity. If buying electricity from another source
is cheaper than running the pmCHP, it might be more sensible
to not run the pmCHP.

In line with the monitoring of the current price of electric-
ity, currently the German government gives grants on sales of
electrical energy, if it was produced using the co-generation
of heat and power. The pmCHP shall also tap into this stream
of revenue by producing and selling electrical energy, if it is
not needed in the users house, the heat can be stored and used
later, and the profit from the energy sale exceeds the price of
fuel.

Since the pmCHP is connected to a network when used
in a house, additional functions should be provided by the
software. First, the software shall provide the ability for
remote maintenance, like software updates, error reporting and
state monitoring. This allows the manufacturer to continuously
improve upon the pmCHP software and, most importantly, fix
security and safety issues in the software quickly.

In a similar fashion, the pmCHP-software needs to provide
the ability of emergency control to the electrical grid operator.
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Mainly a safety requirement, this allows for remote control of
the pmCHP in case of emergencies, like blackouts or times of
overproduction, which cannot be handled automatically.

Also, three requirements concerning security are imposed
on the software. With hacker attacks on energy grids already
being reality, protective measures have to be considered early
in development of smart grid devices. The most important
requirements for security are the protection of the hardware
from malicious control, preventing physical damage to the
pmCHP and its surroundings. For example, a hacker with
free control over the pmCHP-control could run the pmCHP
at a very high load, possibly causing a fire. With software
protecting the pmCHP hardware and an update mechanism to
change the software, the software itself has to be protected
against unauthorized changes. Lastly the information of the
user, like times of usage in the car have to be protected from
attackers to prevent social or physical damage.

The requirements are summarized as follows:

HR01 Communication with the other smart grid devices.
HR02 Monitoring of the attached heat storage.
HR03 Smart creation of operational plans.
HR04 Sale of electrical energy, if the heat can be stored and

profit can be made.
HR05 Provide remote maintenance support.
HR06 Provide emergency remote control to the grid operator.
HR07 Protection of physical components from attacks.
HR08 Protection of the software from unauthorized changes.
HR09 Protection of the users information.

IV. REQUIREMENTS TO SOFTWARE QUALITY

After considering the functional requirements, quality re-
quirements have to be looked at. Quality requirements do not
define the softwares behavior like functional requirements, but
instead describe the goodness of the software, which often is
not directly measurable. Since the device and the projected
usage environments are currently in development only a rough
definition of quality requirements will be given.

The most important quality requirement is availability,
which consists of robustness against errors in the system,
time of restoration of service after failure and probability of
failure. With the goal of improving the daily life of the user,
failure of the software is very problematic as missing energy
production can have large impacts to the users daily life. The
direct interface to physical components makes failure very
dangerous, therefore the availability is of very high importance,
with short times of recovery after a failure and long times
between failures.

Other very important quality requirements are safety and
security, consisting of the security of the software (i.e., resis-
tance to malicious use) and safety due to functional correct-
ness. With pmCHP being part of the smart grid, they auto-
matically become part of critical infrastructure, which needs
to be protected extensively against attacks. Also, the direct
cyber-physical-interface presented by the software requires
high security and safety due to the large impact of malicious
use or incorrect functioning of the software.

Also, rather important is the maintainability of the soft-
ware, consisting of the ease of change and extension as

well as conceptual integrity and testability. Since the software
will be designed in a very early state of development of
the pmCHP and the smart grid, the underlying requirements
are not final and might change during the future. A good
maintainability allows for easy, rapid change of the softwares
components, which is critical in unclear scenarios. Adherence
to the established smart grid standards also improves maintain-
ability through ease of integration. According to the German
’Normungsroadmap 2.0’ [9] three standards are primarily used
in the Smart Grid.

• IEC 61850: Substation automation and protection
• IEC 61968/61970: Application level energy manage-

ment system interfaces, CIM (Common Information
Model)

• IEC 62351: Information security for power system
control operations

We will concentrate on the IEC 61850.
However, performance is not as important as the other

quality requirements, with the exception of the emergency
shutdown and other hardware-related parts of the software.
While parts of the software ’close’ to the hardware are
confronted with hard real-time requirements, those parts are
considered to be very small. Other parts like the operational
planning are not subject to hard deadlines, a late operational
plan can always be executed a bit later.

Usability of the software is not very important, since the
software is planned to be very autonomous, with little amounts
of user interaction.

To summarize the following importances are derived for
different quality aspects:

• Availability
◦ High error tolerance.
◦ High meant time between failures.
◦ Low time of recovery after failure.

• Security/Safety
◦ Protection against software manipulation.
◦ Protection against abuse of the softwares func-

tions.
◦ High safety through functional correctness.

• Maintainability
◦ High extendability.
◦ High conceptual integrity.
◦ High testability.
◦ High standard compliance (esp. IEC 61850)

• Performance
◦ Hard real-time requirements to the emergency

shutdown / other close to hardware functions.
◦ Soft real-time requirements elsewhere.

• Usability
◦ Low usability requirements for the software.

V. ARCHITECTURES

Based upon the aforementioned requirements, architectures
can be developed. Instead of directly choosing an architectural
style, we decided to first build a rough sketch and compare
three different architectures based upon the sketch. By first
designing the principal components of the software, we were
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Figure 1. Rough sketch of the pmCHP-Software

able to keep conceptual integrity and continuity between the
architectures, which allows proper comparison.

Figure 1 shows the principal components of the pmCHP
software. Generally, the energy production will be handled
on the basis of energy requests, which specify how much
energy of which type is needed. The pmCHP can generate
own requests and handle requests from external sources, this
simplifies the handling of requests, since only a single mech-
anism will control the pmCHP.

The CONTROLLER coordinates the production of the pm-
CHP with its environment, be it the Smart Grid or the computer
of the BEV. It receives energy requests, validates their security,
and checks if they can be fulfilled, since requests might not fit
in the current operational strategy or the generation capabilities
of the pmCHP. The CONTROLLER relies on the STRATEGY
component for decision making. Valid requests are handed the
PLANNING for further processing. The CONTROLLER fulfills
a wide number of functional requirements, since it contains
the main logic for generating and handling requests. In further
designs it will be split into different components, based upon
architectural style.

The component STRATEGY provides the framework for the
day-planning, as it decides, which operational strategy is used.
The decision for the heat-driven/electricity-driven or combined
mode is based upon the detected environment of the pmCHP.
It fulfills the requirement GR01.

The component PLANNING is responsible for planning
the day-to-day-operation of the pmCHP, according to the
operational strategy. To create plans, the component uses
the energy requests received fro the controller and further
information, like the current operational strategy, data about
previous operation and forecasts. After a plan was created,
they are handed over to the DRIVER for execution.

The component DRIVER provides the interface between
hard- and software. Most importantly, it monitors the pmCHP
and provides emergency shutdown functions as outlined in
requirements GR03 and GR04. Furthermore, the DRIVER
transforms the operational plan into control-commands and
provides this information to other parts of the software.

The VISUALIZATION component presents the current state
and planned operation to the user of the device (GR06). Also,
errors and warnings can be shown to the user, so corrective
action can be taken if needed (GR05).

To facilitate remote access to the pmCHP, in case the
software needs to be updated or other remote action needs to be

taken, the component MAINTENANCE exists. It allows remote
software updates, access to log files and current operational
status of the pmCHP as well as remote control in case the
grid operating company needs to control the pmCHP manually.
This covers the requirements HR05 and HR06, as outlined in
the requirements for the operation in the house.

Allowing remote access to the pmCHP Software without
any security measures would be grossly negligent; therefore,
a component SECURITY needs to take care of authentication
and authorization of all incoming requests.

Other components like SMART GRID, CURRENT EX-
CHANGE, etc. are beyond the scope of the software and
represent neighboring systems to interact with. However, these
can not be ignored, since the necessary interfaces in the
pmCHP software need to be considered when designing the
software.

Based on the previously shown rough design, three differ-
ent architectural styles were used to create three architectures:
SOA, ED-CEP and layered.

A. Service-oriented architecture (SOA)
First, we will give an overview of the service-oriented

architectural style itself, before we show our implementation
of the SOA for pmCHP. The main drive behind SOA is a very
loose coupling and high coherence in components [10]. A spe-
cial form of SOA are the microservices, in which components
are designed for easy rapid replacement. Since a SOA is highly
flexible between components, the service oriented architecture
is a good match for a cloud environment, in which components
can be deployed across different locations without having to
adopt the component to the deployment location. Very often
web services using REST or SOAP are utilized to facilitate
inter-component communication.

A general structure of a very comprehensive service ori-
ented architecture is shown in Figure 2. In total, the general
SOA consists of five layers and two cross-cutting parts.

Figure 2. The service oriented architectural style according to [10].

The uppermost layer, also called the presentation layer (5)
contains all components that allow interaction with the soft-
ware system, like the graphical user interface or services that
other software systems can use. To access the softwares func-
tionalities, the presentation layer (5) accesses functions from
the business process choreography layer (4). In this layer the
business processes of the software are modeled and executed.
It contains the major functionalities of the software, often
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modeled in Business Process Model and Notation (BPMN),
allowing domain experts the creation and validation of business
processes and therefore functionalities. The business processes
from layer 4 access the services in the service layer (3). A
service is a defined interface enclosing single functions, inde-
pendent of their implementation. The services can be modeled
very fine grained allowing swift replacement. Generally, a
business process accesses many services to complete, each
service fulfilling a single step in the process. Services are
independent of each other and can be recombined easily in
new business processes allowing a high degree of re-usability.
The services are implemented in applications contained in the
application layer (2). An application might implement multiple
services or just a single one, depending on the complexity
of the desired functionality. Applications cluster services by
semantics or other constraints (e.g., all services regarding a
single database might be implemented in a single application).
Rather unusual, Figure 2 shows the operational systems, which
often are not considered in a cloud environment, since the
SOA can be developed platform independent. Working in the
background, the integration architecture (6) serves as ’glue’
providing functions to connect all parts of the SOA. For
example, a service bus is needed to connect the services to
the implementation and present the endpoints to the business
process choreography. Another important cross cutting part
of the SOA are the quality monitoring and management
components contained in (7). These allow the implementation
of quality aspects like redundancy of services and security.

In the following section we are going to design an archi-
tecture based on the aforementioned style. Since the general
business processes are already roughly designed a top-down
approach is chosen for the design, starting at the business
process, which will be decomposed into services grouped into
applications, iteratively refining the softwares structure. For the
services we follow a microservice-approach, defining services
small enough so they can be replaced within a day. This allows
for easy maintenance as shown later. Not all business processes
and services will be shown, rather we will concentrate on
the usage of the pmCHP in BEV or house, leaving, e.g.,
maintenance out of scope for this article.

1) Processing of energy requests: The main operation of
the pmCHP revolves around energy requests. These stem from
the smart grid, the car or the pmCHP itself and are the
driving force behind the pmCHP-operation. An energy request
contains information about the energy that is needed in the
environment.

We differentiate between external and internal energy re-
quests as shown in Figure 3. External energy requests are first

Figure 3. Processing energy requests in the SOA.

checked for authenticity and integrity to ensure no malicious
use happens. Afterwards, the current charge of the attached
heat storage unit as well as the current operational strategy, has
to be checked. If the energy request does not fit the strategy
or the generated heat can not be stored in heat-driven-mode,
the energy request has to be declined. Otherwise the request
meets all requirements and can be turned into an operational
plan. This is shown in the internal part of the process, which
is also the entry point for internally generated energy requests.

To fulfill the energy request, first a single operational
plan containing the single energy request is created. The plan
conveys information about the needed energy and the duration
of the energy request (e.g., 1 kW of electrical energy for 1
hour). This plan is then integrated into a copy of the current
operational plan, which replaces the original when the plan is
executed afterwards. If the plan can not be integrated into the
current operational plan for whatever reason (e.g., the needed
energy exceeds the current production capacity), the energy
request is declined and the execution of the original current
operational plan continues.

Figure 4. Services for processing energy requests in the SOA.

Figure 4 shows the services used in the business process
as well as the applications implementing the services. The
services are rather straightforward and fulfill a single respon-
sibility indicated by their name, following the microservice-
approach.

2) Energy requests in the BEV: The usage of pmCHP in
BEV is a novel deployment of CHP-technology. Here three
main business processes can be extracted from the require-
ments BR01-BR06, as shown in Figure 4. The three processes
model the different operational strategies of the pmCHP, using
it as a range extender (top), as an air conditioning unit (middle)
and as a power conditioning unit (bottom).

In the usage as a range extender the pmCHP checks the
currently planned route as well as the current battery charge.
If the range is insufficient to complete the planned route, an
operational plan has to be created to generate the necessary
electrical energy. Using the pmCHP as air conditioner or power
conditioning unit works similarly, as the physical attribute of
the environment is measured and an operational plan is created
to move the temperature to the desired or optimal value.

To create operational plans, the energy requests are sent
to the aforementioned internal part of the energy request
processing.

The services used for the usage of the pmCHP in the BEV
are completely external as all of them have to be implemented
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Figure 5. Business processes for the operation in the BEV.

Figure 6. Services for the request creation within the car.

within the cars system software. While they are needed for the
correct operation, they are not within the scope of our design.

3) Energy requests in the house: The second cornerstone
of pmCHP-operation is the usage of pmCHP in a house,
connected to a smart energy grid. Main requirements regarding
energy generation are HR01-HR04. In the house, most oper-
ational plans are created upon external request through the
smart grid, which was shown before. The design of business
processes for the internal request generation required for HR04
is left as an exercise for the reader.

4) Overview: Continuing the design as a service oriented
architecture, we result in the general architecture presented in
Figure 7. Not all processes and services are shown.

Figure 7. Overview of the complete SOA.

Excluding the presentation layer and the operational sys-
tems layer from Figure 2, our architecture conforms to the
style presented before. In comparison to the rough sketch
in Figure 1, the CONTROLLER was split into different busi-
ness processes, as expected, while other components like
the DRIVER were converted into applications with services.

Furthermore, new components were introduced to support
the service model, like the WORKFLOW-ENGINE providing
orchestration or the SERVICE-BUS, which connects service
endpoints to applications.

Overall, to create the SOA we transformed the require-
ments into business processes, which were decomposed into
services. The services were grouped into the applications,
which are closely aligned to our previous rough sketch. We
achieve comparability to the other architectures by reducing
our freedom of design.

B. Event-driven complex event processing (ED-CEP)
In the event-driven complex event processing architecture,

processes are mapped to event chains, which start with simple
events, later combined them into more complex events. Every
event is consumed by an event processor, which either creates
a new event, combines multiple events into one or calls an
external service.

The general structure of ED-CEP-Architectures is shown
in Figure 8.

Figure 8. The event-driven complex event processing architecture according
to [11].

Events originate in event-sources like sensors or news
tickers and are fed into the event processing network (EPN).
The EPN contains the event processors, which process different
events according to their rule-set. Within the rules, conditions
and actions are defined. The conditions can be based on the
timing of events, values contained in events or the presence of a
combination of events, etc. If a condition is met, the processor
executes an action as outlined before. The events ’leave’ the
EPN through the event sinks, which are special processors that
execute actions (e.g., call a certain service of an application) if
they receive the corresponding event. Applications in ED-CEP
are similar to applications in SOA and group functions that
can be accessed by the EPN.

The ED-CEP is similar to the SOA, the functional require-
ments are modeled within the EPN instead of business pro-
cesses while a ’framework’ takes care of technical functions.
It is therefore possible to exchange the orchestration layer of
a SOA with an EPN.

To design an ED-CEP architecture, event sources are iden-
tified, their events and the transformation of those events are
defined. The business processes are modeled as event chains
often ending in a service call to an external application.
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Figure 9. Creation and processing of energy requests in the EPN.

Similar to the SOA we will start by modeling the process-
ing of energy requests as well as their creation in the car.

Figure 9 shows a part of the EPN with event sources
marked as triangles and processors as rectangles. On the left
side are the event sources involved.

The first event source is the SMART GRID-ADAPTER,
which connects the system to the smart grid. Energy re-
quests are received as messages over the network and trans-
formed into Request events, which are processed by the
CONTROLLER. The CONTROLLER contains the rules, which
can be extracted from the business processes shown in the
section about the SOA. For example, a (very simple) rule to
process an external request might look like this:

IF ( r e q u e s t . energyNeeded < pmCHP . a v a i l a b l e P o w e r )
CREATE new Plan ( Reques t ) ;

The CONTROLLER then generates a new Plan event, which is
consumed (executed) by the DRIVER.

For the usage in the BEV or the house energy requests are
created by the EPN through other chains of events and proces-
sors, shown in the bottom half of Figure 9. The CAR is an event
source for four different events, containing information about
the cars current operational status, which are processed by the
CAR REQUESTS processor. Again, the internal modeling of the
processor rules can be extracted from the business processes
used in the SOA and is therefore not shown here. (Each
operational mode is modeled as a single rule, comparing the
different events to each other and generating Request events
if necessary.)

The complete event processing network for the pmCHP-
software is shown in Figure 10.

Figure 10. Complete EPN of the ED-CEP architecture.

As opposed to the SOA, there is no clear separation of
the business processes but rather a complex network of events
and processors with behavior hidden in the internal rules of
the processors.

Additionally, further components are required as a frame-
work for the EPN, shown in Figure 11.

Figure 11. Overview of the ED-CEP architecture.

With the event sources on the left and the event sinks on
the right, four components remain in the bottom. These four
provide cross cutting functionality, which concerns the EPN or
provides functions to the EPN. For example, the MONITORING
monitors EPN performance and reliability and takes action if
necessary to sustain availability.

Overall, in the ED-CEP business processes are mapped to
event chains containing events and rules on how to transform
the events into different events or service calls. The modeling
of processes as chain of rules allows flexibility in program
logic that is directly visible in program structure, as processes
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are modeled as EPN components.
The similarity to the rough sketch of Figure 1 can be seen

in the overview, as components like the CONTROLLER can be
clearly identified. Also, a similarity to the SOA is visible, as
the EPN can be seen as an orchestration layer for service calls.
This confirms the coherent modeling of both architectures
under the same constraints, allowing later comparison under
non-functional aspects.

C. Layered Architecture

Lastly, we will present an architecture designed using
the layered style. The layered style is one of the oldest
architectural styles, dating back to a publication by Dijkstra
in 1969 [12]. Generally speaking, the software is divided into
multiple layers of increasing abstraction, from the concrete
physical system towards the ideal software system. Layers can
be observed in other styles as well, as already shown in SOA
(Figure 2).

The general style of a layered architecture is shown in
Figure 12.

Figure 12. The layered architectural style according to [13].

Each layer can use functions from any layer below it, but
not functions from layers above. At the top is the presentation
layer, which provides users an interface to the software as
well as some logic needed to show the user interface. Below
is the service layer, providing interfaces for the presentation
layer or external applications. To provide their function, the
service layer accesses the business layer, sometimes through
the facade, which hides the components of the business layer
from external access, decoupling the components further. The
whole business logic of the system is implemented within the
business layer, comparable to the EPN in the ED-CEP or the
business processes in the SOA. The lowest layer, also called

Figure 13. Processing energy requests from the smart grid in the layered
architecture.

Figure 14. Request-creation for the BEV in the layered architecture.

the data layer contains technical parts of the system, which
allow access to databases or other systems.

Some aspects of the software however cannot be attributed
to a single layer, since they are needed on all layers, like
security. These cross cutting components are often distributed
across all layers.

Designing a layered architecture can be done in multitude
of ways, we will first model the most important business
processes as function calls between components and the order
the components into the appropriate layers.

Again, the process of processing an energy requests is
modeled first, before we model the creation of energy requests
in the car.

Energy requests are received from the smart grid by the
SMART GRID-ADAPTER, which is responsible to check the
request via the AUTHENTICATION, before handing the request
to the SMART-GRID-REQUESTS component, which processes
the request. To process the request, first the operational strategy
and the current energy storage space is checked, similar to the
process shown in the SOA or the ED-CEP. If the request is
valid and can be fulfilled an operational plan is created via the
PLANNING and sent to the CONTROLLER for execution. The
process is modeled as function calls between components.

The same structure can be observed within the request
creation for the BEV, shown in Figure 14.

First, the operational strategy is retrieved to determine the
functionality needed at the moment (e.g., usage as range-
extender or air conditioning). Afterwards the necessary data
about the car, like route, temperature, etc. as well as current
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Figure 15. Overview of the layered architecture.

battery charge is retrieved before creating an operational plan
to be executed by the controller.

Continuing the process for all business processes the final
architecture can be seen in Figure 15.

As shown in the architectural style, the layered architecture
contains a presentation and an interface-layer to facilitate
access to the software functionalities.

Below those layers, the three logic layers are found.
First the request layer, which is responsible of handling and
creating energy requests to drive the pmCHP-operation. It
is comparable to the business process choreography of the
SOA shown in Figure 2. The business logic layer is found
in the middle of Figure 15. Containing the PLANNING and
STRATEGY components, the business logic layer is responsible
for defining the core operation of the pmCHP. It is less abstract
than the general request creation occurring above, but not as
technical as the layers below, which are system specific. The
bottommost logic layer is the technical logic, which contains
components that implement system specific logic, like the
CONTROLLER, which has to execute operational plans via the
driver. Below we find a data layer, allowing access to different
data sources within the pmCHP-system. At the bottom of
Figure 15 the adapters are found, allowing access to different
parts of the pmCHPs environment.

The layered architecture contains a lot of similar compo-
nents when compared to the SOA or the ED-CEP with the most
distinct difference being the spread of the business logic across
the three logic layers. All three architectures are designed to
be functionally identical, fulfilling all functional requirements
allowing the comparison of the architectures without obvious
deficiencies being visible at this point.

VI. COMPARISON OF ARCHITECTURES

Comparisons of architectures are a useful tool to increase
software quality at an early stage of the development cycle
[14]. Choosing the wrong architecture can decrease the max-
imum achievable quality by forcing bad design. For example,

forcing an EPN into a micro-controller controlling a toaster
will have less performance and increased development cost
over a monolithic software. (Assuming the software is tasked
with just turning the toaster off as soon as a signal is received.
EPNs most likely handle complex scenarios better than mono-
lithic approaches.)

A. Scenario-based comparison
Multiple ways exist to compare different architectures, but

most commonly scenario-based methods are used. Scenario-
based methods use scenarios to estimate necessary changes to
the architecture, which in turn can be used as an indicator for
the quality of the architecture. The first step of a comparison
is the definition of the architectures in some form, as already
described in the previous section. In a second step, scenarios
describing possible usages or changes of the architecture are
defined, each providing a measurable way to describe quality.
The scenarios are grouped after the five general aspects of
software quality and use the rough system sketch as a common
baseline for all architectures.

a) Availability: Availability scenarios describe situa-
tions where the system has to take certain countermeasures
to provide uninterrupted operation. Availability is the most
important quality in an energy providing system [8].

Ava01 The DRIVER crashes due to an error, the system
realizes the failure and immediately switches to a
backup.

Ava02 The DRIVER receives a single incorrect measured
value outside of the defined thresholds for this sensor.
Instead of immediately shutting down the pmCHP the
DRIVER averages values and prevents shutdown due
to measurement errors.

Ava03 The connection between the DRIVER and the pmCHP
is severed and cannot be reestablished. An error is pre-
sented to the user and the pmCHP switches to a safe
operating mode instead of shutting down immediately.

Ava04 A usual high amount of energy requests is received
from the smart grid. After a certain threshold is
reached, the CONTROLLER rejects all further requests
to provide protection against overload-attacks.

b) Security: Security-scenarios describe situations
where the software is possibly used in a way that it is
not intended and unwanted. In an interconnected network
with access to physical systems, security is one of the most
important qualities the software has to achieve.

Sec01 A different system tries to access a pmCHP-software
functionality, the authenticity of the accessing system
is checked, before access is granted.

Sec02 When the pmCHP is activated, a minimal software
checks the integrity of the pmCHP-software using a
digital signature. If the signature is not correct, an
error is presented to the user, and the software does
not start.

Sec03 A manipulated component tries to access a function of
the DRIVER, which it normally would not access and
is not authorized to do so. The component SECURITY
recognizes the unauthorized attempt, prevents it and
produces an error message shown to the user.
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c) Safety: In contrast to security, safety-scenarios are
describing potentially dangerous situations in the normal oper-
ation of the pmCHP-software. Again, safety is rather important
in operating an energy generating device, as failures can harm
humans and the operating environment.

Saf01 The DRIVER continuously monitors all of the pm-
CHPs sensors and detects dangerous operation. If
a dangerous operation is recognized, the DRIVER
transfers the pmCHP into a safe mode of operations,
possibly even shutting it down.

Saf02 All control-signals are checked by the DRIVER, ignor-
ing signals that might damage the pmCHP.

d) Maintainability: Since the smart grid is not com-
pletely clear at the moment, adaptability and maintainability
is somewhat needed. The following scenarios include likely
changes and developmental processes of the software’s life-
time.

Mai01 After the end of the pmCHP-development a different
developer is tasked to add smart market integration
to the pmCHP-software. The smart market component
needs to accept requests from the smart grid, overview
their execution, and take care of the billing aspects
according to the energy contract.

Mai02 The emergency shutdown shall be tested intensively;
the required components can be interchanged with
mock-ups without changing the DRIVER.

Mai03 The systems architecture is checked by a software
architect. Similar problems are solved in similar ways
using similar architectural or design patterns.

e) Performance: Performance is not overall important
to the pmCHP-software, only a single scenario is presented.

Per01 A malfunction of the pmCHP requires an emergency
shutdown, the shutdown happens fast enough to pre-
vent damage.

f) Usability: Usability describes the grade at which
the user’s interaction is eased by good interface and software
design. Since there is almost no interaction of the user with
the pmCHP-software, usability is an afterthought.

Usa01 To start or stop the pmCHP, only a single button has
to be pressed by the user.

Usa02 After being started the software presents the momen-
tary state of the pmCHP and can display the current
operational planning.

B. Application of scenarios
To evaluate the architectures, the aforementioned scenarios

are applied to the architectures. For each scenario, necessary
changes to the architecture are tracked, differentiating between
easy and complicated changes. Easy changes are changes
that are most likely to be completed within a day, while
complicated changes will most likely take longer than three
days. With the scenarios being drawn from different use cases
within the softwares life, changes to a lot of components to
accommodate a single scenario indicate strong coupling. If
only a single component has to be changed for a scenario loose
coupling is visible, if no change to any component is necessary
the scenario showcases a previously unspoken requirement that
was accidentally fulfilled.

Furthermore, scenario interactions are tracked. Two scenar-
ios interact, if they require changes to the same component,
indicating a low coherence of the component. If a component
is only responsible for a single thing, no two different scenarios
will not interact if the scenarios are separate (not two variations
of the same situation). A high amount of scenario interactions
indicate a badly defined component.

a) Availability: First, we will evaluate the architectures
using the scenarios regarding software availability, starting
with Scenario Ava01.

Ava01 demands the monitoring of the DRIVER component
within the software. A component to monitor the driver can
already be found within all three architectures, therefore no
additional components are needed. Changes to the MONITOR-
ING component are the simple inclusion of the monitoring and
restarting of the driver, which we classify as an easy change.

Ava02 requires the Driver to ignore incorrect measurements
caused by normal sensor jitter. Again, the no new component
has to be introduced, since all architectures already contain a
DRIVER, which can be changed. However, only in the ED-
CEP this change can be done easily, since the rule-based logic
allows for the easy definition of complex conditions. In the
SOA or the layered architecture the change is rather complex,
requiring a lot of work to correctly filter incorrect data.

Ava03 describes the disconnect of the pmCHP from the
Software, an error has to be displayed. All three Architectures
already display the status of the system to the user, therefore
no change to the architectures has to be made.

Ava04 puts a heavy load of requests on the software
and demands continuous service. A simply threshold can be
introduced into the corresponding component of the three
architectures, discarding all requests beyond that threshold. In
the SOA, the WORKFLOW ENGINE creates new processes for
every request, a simple change adds a threshold to concurrent
processes. In ED-CEP or the layered architecture, the threshold
can easily be added to the SMART GRID ADAPTER.

b) Security: Next on the list are the scenarios concern-
ing software security.

Sec01 aims to prevent abuse of software functions, authen-
tication of requests prevents unauthorized or malicious use of
the pmCHP. All three architectures already ensure authenticity
of requests, no change is needed.

Sec02 is rooted in the softwares update mechanism re-
quired by the requirement HR05, allowing software changes
in the form of updates. To ensure software integrity the
BOOTER within ED-CEP and layered architecture as well as
the INTEGRITY CHECK in the SOA are already used to check
integrity on startup. No changes are necessary.

Sec03 requires internal shielding of software functions to
prevent access to critical functions from unauthorized com-
ponents. In the SOA all calls to services are done via the
SERVICE BUS, which can easily be extended with an access
control list, a single easy change is counted. The ED-CEP
requires a lot more modification. First, all events consumed
by the DRIVER as well as the DRIVER itself have to be
modified to allow for authorization checks using a token based
system. Additionally, the EMERGENCY CONTROL as well as
the PLANNING components have to be modified to use the new
token system. Therefore, we count four changes, one of which
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is a difficult change of the DRIVER. Similarly, the layered
architecture requires extensive changes to the DRIVER as well
as easy changes to the VISUALIZATION, CONTROLLER and
the MAINTENANCE component.

c) Safety: After ensuring availability and security,
safety is our primary concern.

Saf01 describes an emergency shutdown of the pmCHP,
which is already part of the DRIVER within each architecture.
No changes are necessary.

Saf02 requires the DRIVER to check of every command it
receives, to prevent damage to the pmCHP. While the Driver
already exists, this was not part of the original functionality,
therefore, changes are necessary. To add the checks to the
DRIVER is relatively easy within the CEP, since complex
conditions can easily be translated into rules. Adding checks to
SOA or the layered architecture however is rather complicated
since no rule language is available.

d) Maintainability: Maintainability is important over
the softwares life, as changes might arise, which are not
expected at the moment of its design.

Mai01 plans the integration of the pmCHP into the smart
market, adding new features. For this a new component
BILLING is needed, which monitors the execution of requests
and bills the produced energy to the consumer. In the SOA
the process to process an energy request has to be extended
by the billing of the customer. A new service BILLING has
to be added, which needs to be mapped by the SERVICE
BUS. The BILLING service accesses process variables already
tracked by the MONITORING to fulfill its function. Three easy
changes are required. The CEP architecture requires more
extensive changes. The Request events have to be extended
with data about the consumer to be billed. These changes
have to be integrated into the CONTROLLER, Plan and the
DRIVER. Furthermore, the DRIVER needs to create Bill events,
which are consumed by the BILLING processor to bill the
customer. Five components need to be changed and two new
components need to be introduced. The layered architecture
requires similar changes, since the customer data needs to be
introduced to the SMART GRID-ADAPTER and the SMART
GRID-REQUESTS component. Additionally, the SMART GRID-
REQUESTS component needs to monitor the execution of the
operational plan, billing the customer after the energy was
provided. To access billing functions, a new adapter BILLING
is introduced. This results in two changes and a single new
component.

Mai02 describes the unit test of the DRIVER, requiring a
mock of all functions needed by the DRIVER. This is easily
achievable in all architectures, since the physical pmCHP is
designed as an external system, no changes are necessary.

Mai03 requires conceptual integrity within the architec-
tures. After reviewing the architectures we conclude that no
changes are necessary to the architectures, as similar problems
are solved in similar ways in our designs.

e) Performance: The performance of the pmCHP-
Software is not as important as the security and safety, since
all time-critical functions are contained within the operating
system of the pmCHP.

Per01 demands a ’fast enough’ shutdown of the pmCHP
in critical situations. This is out of scope for our architectures,
therefore no changes are necessary.

f) Usability: Ease of use is a desirable trait for all
software systems, but is the least important quality concern
for the pmCHP-Software, since almost no user interaction is
planned.

Usa01 describes a single button startup of the pmCHP as
well as a stop upon pressing the same button. This functionality
requires the initialization as well as the correct shutdown of
all software components. In the SOA this is already provided
by the LIFECYCLE-MANAGEMENT, no change is necessary.
The CEP and the layered architecture provide a BOOTER,
which only takes care of proper initialization and has to be
modified to also provide a shutdown functionality. A single
change is necessary to CEP and layered architecture (including
a renaming of the BOOTER, which no longer only boots the
software).

Usa02 needs the display of status information to user at all
times. The component VISUALIZATION is already present in
all architectures for this exact purpose.

g) Summary: The results of the scenario based evalua-
tion is presented in Tables I and II.

First we will concentrate on Table I, containing the count
of changes to the architectures.

TABLE I. COUNT OF CHANGES TO COMPONENTS NECESSARY TO
FULFILL ALL SCENARIOS.

SOA ED-CEP Layers
Component Count Component Count Component Count

Driver (difficult) 2 Driver 3 Driver (difficult) 3
ServiceBus 2 SG-Adapter 2 SG-Adapter 2
WfE 1 Controller 2 Controller 1
process request 1 Driver (difficult) 1 Maintenance 1
Billing* 1 Planning 1 Visualization 1

Emergency
override

1 Smart
Grid-request

1

Monitoring 1 Billing 1
Booter 1 Booter 1
Request 1
Billing-event 1
Billing 1

Total: 7 16 13
of total
- difficult: 2 1 3
- easy: 5 15 10

A lot of easy changes to the ED-CEP architecture and a
lot of difficult changes to the layered architecture are evident
in the results.

The numerous changes to the ED-CEP are based in its
structure, often a lot of small changes to components or new
events had to be introduced. Especially the internal shielding
required a lot of changes to the architecture. However, changes
to the DRIVER often were easy in the ED-CEP but difficult
within the SOA or the layered architecture. This is a result of
the rule-based nature of the ED-CEP, which is built for easy
modeling of complex conditions.

The high amount of difficult changes to layered architecture
originate from the scenarios requiring pattern recognition (e.g.,
Saf01), which is difficult to introduce without specialized tools
like the rule language used in the ED-CEP.

The SOA however requires the least amount of changes.
Especially the easy extension and modification of services
through the use of microservices keeps the necessary changes
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small. Also, the SERVICE BUS provides a central place to
introduce software specific functions like internal shielding.

Table II shows the scenario interactions that occurred
during the application of the scenarios.

TABLE II. COUNT OF SCENARIO INTERACTIONS WHEN APPLYING
THE SCENARIOS TO THE COMPONENTS OF THE DIFFERENT

ARCHITECTURES.

SOA ED-CEP Layers
Component Count Component Count Component Count

Driver 2 Driver 4 Driver 3
ServiceBus 2 SG-Adapter 2 SG-Adapter 2

Planning 2
Controller 2

A lot of scenario interactions are evident for the ED-CEP
architecture. This originates from the spread of functionalities
over a high amount of small components, which results in
unclear boundaries of responsibility.

However, the SOA and the layered architecture suffer from
interactions as well, mostly through the DRIVER, which seems
to be responsible for multiple scenarios. Splitting the DRIVER
into multiple components might be useful.

VII. EVALUATION

Considering the previous results two rankings can be cre-
ated. First, the architectures are rated by the changes necessary
to accommodate the scenarios. The changes are summed up
with difficult changes contributing threefold to the score.

1) SOA using microservices (11 points)
2) ED-CEP (18 points)
3) Layered architecture (19 points)

As previously mentioned the amount of necessary changes to
the architecture is an indicator of its coupling with a high
amount of points indicating a strong coupling. A strongly
coupled architecture is difficult to adapt to new circumstances,
since every change touches a lot of parts of the architecture
making development complicated. This is considered a neg-
ative trait of architecture. Therefore, we consider the SOA
the best architecture under this metric with ED-CEP and the
layered architecture being similarly bad.

To rank the architectures using the scenario interactions,
the interactions are simply summed up.

1) SOA using microservices (4 points)
2) Layers (5 points)
3) ED-CEP (10 points)

The scenario interactions provide an indicator for the quality of
the component definition, i.e., how clear the functionalities are
defined that a component should provide. A high amount of in-
teractions indicate badly defined components that have no clear
responsibility. This leads to feature envy in components that
accumulate a lot of different functionalities, making changes
complicated and the replacement of components a lot of work.
Also, a negative trait of software architecture, badly defined
components decrease maintainability and are considered bad.
We conclude that the SOA contains the most well defined
components, with the layered architecture trailing closely.

Considering both rankings we choose the service-oriented
architecture for the integration of the pmCHP into the Smart
Grid.

VIII. CONCLUSION

In this article, we first presented the problem of distributed
power generation in the smart grid and range extension in
the BEV. The problems are tackled by the pmCHP as it
is developed at the University of Applied Sciences and Arts
Hannover. To integrate the pmCHP into a smart grid an
architecture had to be chosen.

After presenting the requirements posed to the architecture,
we designed three different designs using different architec-
tural styles. This was done to find the optimal architecture
to implement. To compare the architectures, we presented
scenarios of five different aspects of software quality before
applying the scenarios to the architectures.

Considering the evaluation results we conclude that the
SOA is the best suited architecture to integrate the pmCHP
into the Smart Grid. The SOA provides the highest amount
of flexibility when compared to our ED-CEP or layered
approaches. Especially the usage of microservices helped to
define clear functional boundaries and ensure loose coupling
within the architecture, both considered to be good traits within
software. We conclude that using the SOA design, we will be
able to easily accommodate changes in the project field of
usage, e.g., adoption to specific BEVs. However, this result
only holds true for our narrowly defined domain and might
be different for other use cases, like the usage of pmCHP in
planes.

Also, since all architectures have been developed by the
same person over a short span of time, they likely influence
each other. Especially the CEP and the SOA share some
applications, which can also be explained by similar design
philosophies. Further work combining the two might prove an
even better solution for the smart grid integration of pmCHP.

In future steps, we will implement the SOA and evaluate
the impact of pmCHPs in a smart grid.
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