
306

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the Variability Dimensions of Normalized Systems Applications:
Experiences from Four Case Studies

Peter De Bruyn, Herwig Mannaert and Philip Huysmans

Department of Management Information Systems
Faculty of Applied Economics

University of Antwerp, Belgium
Email: {peter.debruyn,herwig.mannaert,philip.huysmans}@uantwerp.be

Abstract—Normalized Systems Theory aims to create software
systems exhibiting a proven degree of evolvability. While its
theorems have been formally proven and several applications
have been used in practice, no real overview of the typical types
or dimensions along which such Normalized Systems software
applications can evolve is present. Therefore, this paper presents
several cases in which its different variability dimensions are
illustrated. Based on these cases, a more general overview of
four variability dimensions for Normalized Systems software ap-
plications is proposed: changes regarding the application model,
expanders, craftings and technological options.

Keywords–Evolvability; Normalized Systems; Variability dimen-
sions; Case Study

I. INTRODUCTION

This paper extends a previous paper which was originally
presented at the EMPAT track on evolvable modularity patterns
at the PATTERNS conference 2018 [1].

The evolvability of information systems (IS) is considered
as an important attribute determining the survival chances of
organizations, although it has not yet received much attention
within the IS research area [2]. Normalized Systems Theory
(NST) was proposed as one theory to provide an ex-ante
proven approach to build evolvable software by leveraging
concepts from systems theory and statistical thermodynamics
[3]–[5]. The theory prescribes a set of theorems which are ne-
cessary conditions to obtain evolvable software and proposes a
set of patterns to generate significant parts of software systems
which can obey to these theorems. While it has been suggested
that software created in this way exhibits evolvability, the
main dimensions of evolvability or variability facilitated by
the theory have nevertheless not yet been thoroughly discussed.
Additionally, while some NST cases have been documented in
extant literature [6]–[10], the overall number of cases is still
fairly limited and their analysis has never been focused on the
different dimensions of evolvability which were possibly pre-
sent. This paper attempts to tackle both mentioned gaps by first
discussing the case of a new (i.e., not previously documented)
NST software application, which was built and used for the
management of process evaluations of master dissertations at
the faculty of the authors. Based on our experiences with this
case, we will document variations that occurred along several
dimensions: the model (business entities) of the application,
the craftings (customizations on top of the generated code),
the technology used and the version of the code generators
themselves. Next to this new case, we will reinterpret several
previous cases which were documented earlier in other work

[7]–[10]. So while the cases themselves are not new, our
perspective and way of analyzing the cases is. It is also the
discussion of these additional (previously reported) cases in
this evolvability dimensions context which is the main addition
of this paper when compared to our initial contribution at
PATTERNS 2018 [1]. In this way, we are able to identify and
discuss the different dimensions along which variations in an
NST application can arise and provide illustrations for each of
them from different cases and examples. Consequently, these
dimensions are also important indications with respect to the
main areas in which an NST application can evolve throughout
time.

The remainder of this paper is structured as follows. In
Section II, we briefly present NST as the theoretical basis
on which the considered software applications were built.
Section III provides some general context regarding the newly
reported educational case as well as its analysis in terms of
evolvability dimensions. Section IV focuses on some of the
earlier presented cases but analyzes them from a different
angle than before, i.e., also in terms of evolvability dimensions.
We offer a discussion in Section V and our conclusion in
Section VI.

II. NORMALIZED SYSTEMS THEORY

The case applications we will present and analyze in
the following sections, are based on NST. This theory has
been previously formulated with the aim of creating software
applications exhibiting a proven amount of evolvability [3]–
[5]. More specifically, the goal is to eliminate the generally
experienced phenomenon in which software systems become
more difficult to maintain and adapt as they become bigger
and evolve throughout time [11].

NST is theoretically founded on the concept of stability
from systems theory. Here, stability is considered as an essen-
tial property of systems. Stability means that a bounded input
should result in a bounded output, even if an unlimited time
period is considered. In the context of information systems,
this implies that a bounded set of changes should only result
in a bounded impact to the information system, even in cases
where an unlimited time period and growth of the system
is taken into account (i.e., considering an unlimited systems
evolution). Put differently, it is demanded that the impact of
changes to an information system should not be dependent on
the size of the system to which they are applied, but only on
the size and property of the changes to be performed. Changes
dependent on the size of the system are called combinatorial



307

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

effects. It has been formally proven that any violation of any
of the following theorems will result in combinatorial effects
(thereby hampering evolvability) [3]–[5]:

• Separation of Concerns, stating that each concern (i.e.,
each change driver) needs to be separated from other
concerns in its own construct;

• Action Version Transparency, stating that an action
entity should be able to be updated without impacting
the action entities it is called by;

• Data Version Transparency, stating that a data entity
should be updateable without impacting the action
entities it is called by;

• Separation of States, stating that all actions in a
workflow should be separated by state (i.e., being
called in a stateful way).

The application of the theorems in practice has shown
to result in very fine-grained modular structures within a
software application. Such structure are, in general, difficult
to achieve by manual programming. Therefore, NST proposes
five elements (action, data, workflow, connector and trigger)
that serve as design patterns [4], [5]:

• data element: a set of software constructs encapsula-
ting a data construct (including a set of convenience
methods, such as get- and set-methods, and providing
remote access and persistence), allowing data storage
and usage within an NST application;

• action element: a set of software constructs encapsu-
lating an action construct (providing remote access,
logging and access control), allowing the execution
of (units of) processing functionality within an NST
application;

• workflow element: a set of software constructs allo-
wing the execution of a sequence of action elements
(on a specific data element) within an NST applica-
tion;

• connector element: a set of software constructs ena-
bling the interaction of an NST application with
external systems and users in a stateful way;

• trigger element: a set of software constructs enabling
the triggering of action elements within an NST ap-
plication, based on error and non-error states.

Based on these elements, NST software is generated in
a relatively straightforward way through the use of the NST
expansion mechanism. First, a model of the considered uni-
verse of discussion is defined in terms of a set of data,
action and workflow elements. Next, NST expanders generate
parameterized copies of the general element design patterns
into boiler plate source code. Several layers can be discerned
in this code: a shared layer (not containing any reference to
external technologies), data layer (taking care of data services),
logic layer (taking care of business logic and transactions),
remote or proxy layer (taking care of remote access), control
layer (taking care of the routing of incoming requests to
the appropriate method in the appropriate class in the proxy
layer) and view layer (taking care of presenting the view to
be rendered by the user interface, such as a web browser).
This generated code can, if preferred, be complemented with
craftings (custom code) to add non-standard functionality that

is not provided by the expanders themselves at well specified
places (anchors) within the boiler plate code. The boiler plate
code together with the optional craftings are then compiled
(built) so that the application can be deployed.

III. EDUCATIONAL CASE

In this section, we will first introduce the educational case
in-depth. Next, we analyze the case both in general and along
several potential evolvability dimensions.

A. Case introduction
The new case we present in this paper is situated within

an educational context and concerned with the master thesis
evaluations at the Faculty of Applied Economics of the Univer-
sity of Antwerp. At the university, master students writing their
dissertation are not only evaluated with regard to the end result
(i.e., the thesis itself) but also (for a minor part) with regard
to the process they go through in order to arrive at that end
result (e.g., their communication and reporting skills, problem-
solving attitude, etcetera during the project). This “process
evaluation” is built around a set of specific evaluation criteria
for students of this faculty, based upon the pedagogic vision
of the faculty. More specifically, depending on the trajectory
a student is following, the thesis advisor(s) need(s) to assess
a student two or three times on four skill dimensions (each
comprising a set of specific skills to be rated from insufficient
up to very good) during the completion of his or her master
thesis.

In this context, the procesEval application, based on NST,
was created around 2013. Up to that moment, the process
evaluation was either performed on paper or had to be regis-
tered via a customized part of the university’s online learning
and course management system. While the paper based eva-
luation was considered as generating administrative overhead
(the results had to be manually copied into the university’s
database systems by the administration) and providing little
overview for the thesis advisors (e.g., when performing the
second process evaluation they could not easily consult the
first process evaluation in order to make a more objective
comparison), the electronic variant in the online learning
and course management system was considered cumbersome
from a usability perspective (e.g., users complaining about
the amount of clicks required to perform “simple” actions or
experiencing difficulties in order to find the information they
are looking for).

The faculty management decided to develop an NST ap-
plication to manage the process evaluations. This choice was
made for several reasons. First, the expertise on how to build
NST applications was present within the faculty itself as the
theory (and the adjoining code expanders) was the output of
research projects of faculty members. Second, as the software
system would be developed by members of the faculty itself
as well, the developers were highly knowledgeable about
the inner working of the faculty (administration) and the
associated (functional) requirements. And third, evolvability
and maintainability were considered to be import quality
aspects of the software system to be developed as the process
evaluation was anticipated to remain an important part of the
student evaluations for several years to come (but could be
subject to some further fine-tuning or redirection in the future).
Given the situation of the project as sketched above, it was



308

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. A general screenshot of the procesEval application.

expected that the application could be developed in a rather
short development trajectory without too many hurdles (i.e.,
no significant risk related to the technology was present and
the application domain was well known and understood).

The application was developed in the beginning of 2013.
In the academic years 2013–2014 and 2014–2015, a first pilot
test with a set of key users (technological savvy and proactive
faculty members) was conducted. In the academic years 2015–
2016 and 2016–2017, the set of test users was gradually enlar-
ged up to the level at which all thesis supervisors could use the
procesEval application if they wanted, but could still use the
paper version if preferred. As of the academic year 2017–2018,
all faculty members were expected to use the NST procesEval
application for the administration of the master thesis process
evaluations. Apart from minor (usability) adjustments, the
project has been completed without major problems. Currently,
on a yearly basis, about 45 faculty members manage the
process evaluation of roughly 500 students via the procesEval
application.

Figure 2. A screenshot of a specific process evaluation within the procesEval
application.

In Figure 1, a screenshot of the procesEval application is
shown (the names of the students are blurred out to assure
anonymity, the names of the labels are Dutch as this is the ad-
ministrative language of the organization). Here, one can notice
that a supervisor can get an overview of all the students he or
she is supervising in the current academic year. By selecting
a particular student, a set of tabs appears below the first table
providing further details regarding his/her (earlier) evaluations
or working sessions (e.g., meetings) and documents (e.g.,
preliminary thesis version). Figure 2 shows a screenshot of
one particular process evaluation. The procesEval application
therefore manages all process evaluations (typically 2-3) of all
master dissertations (as of 2017–2018) of multiple academic
years. Based on the provided information, the application
automatically generates overview reports of the evaluations



309

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and sends emails to students and supervisors with information
regarding their evaluations, as well as reminders (e.g., when a
particular process evaluation is due).

B. Case analysis
We will first provide a general overview of our case

analysis, and then zoom into a set of relevant variability
dimensions that could be discerned at the level of the case.

1) General overview: An NST application typically con-
sists of a set of base components (which are reused in several
or even most applications), as well as one or multiple non-base
components (typically specific for the considered application).
The base components used within the procesEval application
consisted of 29 data elements, 7 task elements and 1 flow
element. The non-base component used within the procesEval
application consisted of 14 data elements, 8 task elements and
4 flow elements. As a consequence, relatively speaking, the
NST application was still rather small: it comprised about 63
NST elements.

2) Model variations: By using the NST approach, the
procesEval application could be extended and adapted at the
level of the model (i.e., the definition of the different element
instances for the considered application domain). For instance,
additional elements could be added: next to the registration
of three possible process evaluations for each student, some
working documents and information regarding working ses-
sions (e.g., what was agreed upon by the student and his
supervisor during a meeting) could be added to the model.
After re-generating the application based on this updated
model, this functionality becomes available in the new version
of the application. Similarly, existing (i.e., earlier created)
components could be added to the model. For example, a no-
tification component was added to the procesEval application
as that component contained the functionality to automatically
trigger emails and could be leveraged to enable the automatic
report delivery (of the process evaluations to the students,
supervisors and administration). While the model could be
changed in terms of data elements and components, this also
holds for all types of other possible changes within the model.
More specifically, the following types of adaptations can be
performed to create different variations of the application:

• the addition, update or deletion of a component (i.e.,
a set of data, task and flow elements);

• the addition, update or deletion of a data element
definition (its fields with its types and field options,
finders, data element options, child elements);

• the addition or deletion of a task element definition
(the specific implementation of a task is a crafting,
see below);

• the addition, update or deletion of a flow element de-
finition and its accompanying default state transitions.

It should be remarked that the determination and evolutions
of such model is completely technology-agnostic (i.e., it does
not require any specification in programming language specific
terminology). For instance, the specification of the model (in
terms of elements and their properties) is currently stored in an
XML file, not containing any references to the (background)
technology of the current reference implementation (i.e., Java).
Based on this model, boiler plate source code for each of the
layers can be created.

3) Crafting variations: Once the model is converted (ex-
panded) into boiler plate source code, additional code (so-
called “craftings”, which are custom made for an application)
could be added between predefined anchors (insertions) or in
additional classes (extensions). This way, non-standard functi-
onality can be incorporated within the application as well.
In total, the procesEval application contained 22 classes with
insertions and 29 additional classes (extension). For instance,
specific coding had to be added to make sure that a supervisor
logged into the application can only view those master dis-
sertations which he/she is supervising in the concerning year
(i.e., dissertations supported by other supervisors or those of
the previous year should not be visible). For this purpose, a
few lines of code were added in the MasterThesisFinderBean
class determining the fetching of the results viewable for a
particular user. These FinderBean classes are expanded as part
of the data layer: enforcing the filter of master dissertations at
the level of the data layer ensures that no data from other users
can be retrieved by the currently logged in user. Consequently,
this crafting only impacts the data layer, while the remaining
layers have no impact resulting from this change: they perform
their functionality handling the (filtered) data offered by the
MasterThesisFinderBean.

Additionally, a set of screentips was added to assist the user
when filling-in the process evaluation (e.g., summarizing the
meaning of each of the evaluation criteria in case of a mouse-
over). The expanded NST code base supports this functionality
by providing a helpInfo Knockout binding. Specific screentips
can be added by including a crafting using this Knockout
binding, and referring to a certain key. At run-time, the specific
values for the required keys can be added in instances of
HelpInfo data elements. This enables the configuration of
the screentips even when the application has already been
deployed. Note that only the view layer is customized for this
functionality. This makes sense, since it is purely a useability
concern, not impacting actual business logic. However, it is
dependent on the specific technology used in the view layer
(i.e., Knockout), and should be reprogrammed when a different
technology is used.

Next, as mentioned before, the procesEval application also
needed to create and send reports summarizing the content of
the process evaluations. The definition of these reports (i.e.,
the items to be included and the corresponding layout) is
considered to be a separate functionality, and should therefore
be contained in a task element. The expanders provide all
boilerplate code needed to execute this task in the NST ap-
plication, and only the specific report generating functionality
needs to be added as a crafting. The actual implementation of
the execution of a task element is clearly separated, allowing
versions and variations of the task implementation to co-exist.
Currently, reports are generated using Jasper Reports. This
requires the addition of a Jasper template file to the code
base, and some code to fill the parameters to be inserted into
this template. The additional processing logic is completely
contained in the logic layer.

These craftings were added in a gradual and iterative way
to the application: each time a particular additional functio-
nality was added or improved, a new version of the overall
application could be built and deployed. Furthermore, it can be
remarked that each of these craftings were situated at another
layer (i.e., data, view and logic).



310

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Infrastructural technology variations: The procesEval
application could be generated by using various different
underlying infrastructural technologies. For instance, whereas
a prototype of the application is typically demonstrated by
using an HSQL database, most production systems are de-
ployed while using a PostgreSQL database. Nevertheless, one
can choose for SQLServer and MySQL databases as well.
Further, the procesEval can be built by using different build
automation frameworks (i.e., Ant and Maven). And finally, the
procesEval could also be generated by using different con-
trolling (Cocoon, Struts2, or combination Struts2-Knockout)
and styling frameworks (plain style or using Bootstrap). In
practice, the Struts2-Knockout and Bootstrap were used in the
production environment. Changing the choice of a particular
infrastructural technology in the procesEval only impacts those
layers depending on the purpose of the technology (e.g., the
database selection impacts the data layer, whereas the GUI
framework selection impacts the view layer).

5) Expander version variations: The expanders (i.e., the
programming logic used to convert the model into boiler
plate source code according to the infrastructural technologies
chosen) evolves throughout time as well. This way, when
considering the current procesEval project duration (2013–
present), 8 different production versions were deployed while
using the same model and craftings (as the expanders provide
backwards version compatibility). In each of these production
versions, the new or improved possibilities of the expanders
could be used. For instance, in one particular version of the
expanders, information regarding a Date field did no longer
have to be entered manually but could be selected by using a
more advanced date picker. And, more relevant in the context
of the procesEval, another particular version of the expanders
allowed the automatic creation of summarizing graphs on
certain fields. For example, it would now be possible to inspect
the number of master dissertations who did not yet receive a
first process evaluation versus those who did in a visual way.
In order to use the date picker, no changes in the model or
the craftings are required. In order to use the status graphs,
only one additional specification in the model (i.e., an option
indicating that a graph for a particular field should be created)
needs to be added. Clearly, the precise set of layers that is
impacted due to an expander update depends on the type of
modifications performed in that particular version update (logic
related, view related, etcetera).

IV. REINTERPRETATION OF EXISTING CASES

In this section, we will look at some previously docu-
mented and analyzed cases of NST applications. While the
initial publications were not specifically directed towards the
illustration of the variability dimensions present within these
systems, we will now aim to see to which extent we can find
indications of such variability dimensions in them. This should
allow us to verify whether the variability dimensions identified
in the educational case study above also appear in other cases,
thereby increasing the validity of our study.

A. Budget management application
A first case which we published in earlier work concerns a

budgeting application for a local Belgian government [7]. The
administration of the concerned local government organization
was required to track its allocated budgets meticulously and in

a very fine-grained way (including the division of budgets in
subbudgets, their reservation, changes to the budgets, etcetera).
The goal of the application was to provide the functionality
for users to have a clear overview and tracking of budgets
and subbudgets, budget assignments, changes on them, and
so on. While the organization originally had the possibility to
perform these activities via Microsoft Excel by using pivot
tables, the long term goal was to integrate the application
performing these analyses with other functionalities such as
project management, budget reporting and simulations. During
the analysis of this case, we noticed that the development of
this replacing application was not trivial [7]. Indeed, many
people are used of working with the popular spreadsheet pro-
gram Excel, which offers many flexible and versatile analysis
options in a user friendly way. In order to be able to meet the
high standards of the end users, it was therefore decided to
approach the application development in a very iterative and
gradual way. In a first stage, attention was almost exclusively
devoted to the development of the functionalities related to
budget management and the usability of that part for end
users. It was only later on that the project started to focus on
the realization of a larger application which also incorporated
some of the additional functionalities as mentioned above.
Therefore, both the optimization of the universe of discussion
within the budgeting functionality, as well as the initial (ex-
clusively budgeting oriented) and later phases (focusing on the
other functionalities as well) can be seen as different versions
of the model throughout time (each time be expanded into
working prototypes or working applications). Therefore, this
case clearly illustrated the relevance of model variations.

During the case, craftings had to be added at various places
as well. First, some code was required to provide additional
graphical features. That is, a more advanced user interface
with more sophisticated screens was needed (compared to
those that were by default provided by the code expanders at
that point in time). Such more advanced (composed) screens
would allow users to inspect budget specifications over various
levels concurrently (year, department, article) or from different
angles/perspectives (departments, types of activities), thereby
replicating behavior somewhat similar as the previously used
pivot tables. Next to that, several customizations were present
for specific calculations (logical operations). These calculati-
ons were very context specific for the organization and domain
at hand and were directed towards issues such as the on-the-
fly calculation of the currently available budget based on all
previous budgets, the verification that budget calls were not
exceeding the available budget, etcetera. As these craftings
were refined over time, they illustrate the relevance of the
crafting variations within this case. However, probably even
more interesting, while the logic related craftings were very
specific for this application that needed to be developed, the
graphical extensions (i.e., the composite screens displaying
multiple data elements having a one-to-many relationship on
one screen) were considered to be useful for other (current
and future) NST applications. Stated otherwise, these craftings
were regarded as being somewhat generic. As a consequence,
over time, some of these graphical extensions have been
included in the code expanders. As soon as this happened,
the more advanced screens became available for other (already
existing or newly developed) NST applications. Therefore, this
case clearly illustrated the relevance of expander variations.



311

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Infrastructure monitoring application
A second case which has been published earlier involved

an application for an organization providing hardware and
software for the monitoring of infrastructure (e.g., checking the
correct functioning) such as power supplies, airconditioning
and so on [8]. Whereas the report of the previous case
(discussed in Section IV-A) provided a general overview of
the application as a whole, the current case was reported in
a temporal way, i.e., four phases were discussed in which
the application evolved from its original status to its current
status (at the time of publication). Additionally, the case was
somewhat atypical for an NST application as it involved one of
the first applications (re)developed according to this approach.
In particular, the following four phases were distinguished in
the concerning case:

• phase 1: Initially, the application was designed in
a rather monolithic way without explicit attention
to modularization while using a Microsoft Access
database and a Visual Basic application. This was a
version of the application without any use of the NST
approach;

• phase 2: The application was redeveloped and de-
signed in another technology stack using Java 2
Enterprise Edition (J2EE) with Enterprise JavaBeans
2.1 and the Cocoon framework. With NST not yet
formulated and the element expansion mechanism
not yet developed, the software system was mainly
developed manually but taking into account industry
best practices and the (implicit) heuristic knowledge
which would later on result into the NST theorems.
This resulted in a recurrent structure throughout the
application similar to the later on developed NST
elements;

• phase 3: In the following version, a significant part
of the application was defined by using descriptor
files describing certain recurring constructs (such as
the need to persist a certain type of data) for which
the code was then generated by one of the first
versions of the pattern expanders. Next to updating
the application to a new version of its code base, some
additional functionalities (e.g., regarding FAQs and as-
set management) were added by generating additional
data elements for them. Some custom code (e.g., for
authorization requirements and user interfaces) was
added in separate files;

• phase 4: In a final documented phase of the applica-
tion, a switch to other controls and protocols for the
infrastructure was made. At the same time, a newer
version of the NST expanders was used in which cus-
tom code could be added between specifically located
anchors within the code that could be harvested and
injected during regeneration later on.

Based on the description of the phases as provided above,
we can not only distinguish the relevance of the evolvability
dimensions described earlier in the context of the instructure
monitoring application, but also gather some information on
their historical occurrence throughout time. As in phase 1, a
non-NST approach was adopted, no explicit evolvability di-
mensions were present. The case report mentioned difficulties
in order to adapt the application, including duplications and

lack of flexibility. In phases 2 and 3, the patterns or elements
were introduced (first in a somewhat implicit way, later on in
a more explicit way allowing for automatic code generation)
and improved for (largely) the same functional requirements.
Therefore, the expander variability dimension was introdu-
ced at this point. In phase 3, due to the addition of some
functionality based on the same patterns, the model variability
dimension was illustrated as well. Finally, in phase 4, the
harvesting mechanism allowed the easier migration of custom
code from one application version to another. Therefore,
this last phase also illustrates the occurrence of the crafting
variability dimension in this context. One might remark that
the last variability dimension, regarding the technological or
infrastructural options does not seem to covered by the case
at hand. While it is true that during the actual use of the
NST expanders no significant technological or infrastructural
changes have been performed, the transition of phase 1 to
phase 2 was partly motivated by the fact that the technologies
used for the creation of the initial software application were
not adequate to work with in a distributed and multi-user
environment. Therefore, at least the relevance of this variability
dimension could certainly be argued for in the context of this
case as well.

C. Integration applications
Finally, a set of four enterprise application integration cases

was presented in [8]. For the purpose of this paper, with
our focus on variability dimensions, one case is particularly
interesting as it illustrates the infrastructural technology varia-
tions possible within this context and this variability dimension
was somewhat less prominently present in the cases discussed
in Sections IV-A and IV-B. The case was conducted within
a multinational human resources consulting firm for which
web-based access to 180 data entities needed to be provided
from a legacy application (which was using a PL/SQL Oracle
database). At the time the case was carried out, the NST
expanders did not provide support for the PL/SQL Oracle
database as required by the case organization. Therefore, the
NST expanders had to be adapted for this possibility. Once this
operation was performed, the generated NST application was
able to connect with the database of the case organization. Next
to that, all previously existing default functionality typically
present in an NST application (and not impacted by the
required changes in the logic and data layers) were available
as well (e.g., the out-of-the-box CRUD screens for all the
data elements within the application). And, as this project
required an adaptation of the expanders, the possibility to
link to PL/SQL databases became as of then available for all
other current or future NST applications. Therefore, this case
clearly illustrated the relevance of infrastructural technology
variations.

V. DISCUSSION

Based on the above discussion of NST and its cases,
we will discuss two broad areas in this section. First, in
Section V-A, we will analyze the offered variability dimensions
in the cases in a somewhat more general way. While we illus-
trated the possible variability dimensions using only one in-
depth and three smaller cases, we anticipate that the proposed
categorization can be generalized to a large extent as it also
aligns with the general “degrees of freedom” available during



312

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the development and maintenance of an NST application. Next,
in Section V-B, we discuss some general implications that the
existence of these kind of evolvability dimensions has for the
management of NST projects and the role of the analyst in
particular.

A. Application level evolvability dimensions
Based on our analysis as presented above, we identify four

variability dimensions, as visualized in Figure 3.
First, as represented at the top of the figure, the modeler

should select the model he or she wants to expand. Such
a model is technology agnostic (i.e., defined without any
reference to a particular technology that should be used) and
represented by a blue puzzle (i.e., each puzzle piece represents
a defined element, with the columns corresponding to data,
task, flow, trigger and connector elements). Such a model can
have multiple versions throughout time (e.g., being updated
or complemented) or concurrently (e.g., choosing between a
more extensive or summarized version). As a consequence, the
figure contains multiple blue puzzles that are put behind each
other and the chosen model represents a variability dimension
(represented by the green bidirectional arrow).

Second, the expanders (represented by the trapezoid in the
figure) generate (boiler plate) source code by taking the spe-
cifications in the chosen model as its arguments. For instance,
for a data element Person, a set of java classes PersonBean,
PersonLocal, PersonRemote, PersonDetails, etcetera will be
generated. This code can be called boiler plate code as it
provides a set of standard functionalities for each of the
elements within the model. Nevertheless, one could argue that
this set of standard functionalities is already quite decent as it
contains the possibilities to provide standard finders, master-
detail (waterfall) screens, certain display options, document
upload/download functionality, child relations, etcetera. The
expanders themselves evolve throughout time. Typically, in
each new version, a set of bugs of the previous version are
solved and additional features (e.g., creation of a status graph)
are provided. It should be remarked that, given the fact that
the application model is completely technology agnostic and
can be used as argument for any version of the expanders,
these bug fixes and additional features become available for
all versions of all application models (only a re-expansion
or “rejuvenation” is required). As a consequence, the figure
contains multiple trapezoids that are put behind each other
and the expander version represents a variability dimension
(represented by the green bidirectional arrow).

Third, in the middle left of the figure, a set of infrastruc-
tural options are displayed by means of different rectangular
blocks. These consist of global options (e.g., determining the
build automation framework), presentation settings (determi-
ning the graphical user framework), business logic settings
(determining the database used) and technical infrastructure
(e.g., determining the background technology). For each of
these infrastructural options, the modeler can choose out of
a set of possibilities (e.g., different user interface frameworks
for which the associated code can be generated), which will be
used by the expanders as their parameters. That is, given a cho-
sen application model version and expander version, different
variants of boiler plate code can be generated, depending on
the choices regarding the infrastructural options. As a conse-
quence, the figure contains multiple infrastructural option sets

(blocks) that are put behind each other and the infrastructural
options represent a variability dimension (represented by the
green bidirectional arrow).

Fourth, craftings (“custom code”) can be applied to the
generated source code. These craftings are represented in the
lower left of the figure by means of red clouds as they enrich
(are put upon) the earlier generated boiler plate code and can
be harvested into a separate repository before regenerating the
software application (after which they can be applied again).
This includes extensions (e.g., additional classes added to the
generated code base) as well as insertions (i.e., additional
lines of code added between the foreseen anchors within the
code). Craftings can have multiple versions throughout time
(e.g., being updated or complemented) or concurrently (e.g.,
choosing between a more advanced or simplified version).
These craftings should contain as little technology specific
statements within their source code as possible (apart from
the chosen background technology). Indeed, craftings referring
to (for instance) a specific GUI framework will only be
reusable as long as this particular GUI framework is selected
during the generation of the application. In contrast, craftings
performing certain validations but not containing any EJB
specific statements will be able to be reused when applying
other versions or choices regarding such framework. Craftings
not dependent on the technology framework of a specific layer
can be included in the “common” directory structure, whereas
technology-dependent craftings need to reside in the directory
structure specified for that technology (e.g., EJB for the logic
layer, JPA for the data layer, Struts2 for the control layer).
As a consequence, the figure contains multiple crafting planes
that are put behind each other and the chosen set of craftings
represents a variability dimension (represented by the green
bidirectional arrow).

In summary, each part in Figure 3 with green bidirectional
arrows is a variability dimension in an NST context. It is clear
that talking about the “version” of an NST application (as is
traditionally done for software systems) in such context beco-
mes rather pointless. Indeed, the eventual software application
(the grey puzzle at the bottom of the figure) is the result of
a specific version of an application model, expander version,
infrastructural options and set of craftings. Put differently,
with M , E, I and C referring to the number of available
application model versions, the number of expander versions,
the number of infrastructural option combinations and crafting
sets respectively, the total set of possible versions V of a
particular NST application becomes equal to:

V = M × E × I × C

Whereas the specific values of M and C are different for every
single application, the values of E and I are dependent on
the current state of the expanders. Remark that the number of
infrastructural option combinations (I) is equally a product:

I = G× P ×B × T

Where G represents the number of available global option
settings, P the number of available presentation settings, B
the number of available business logic settings and T the
number of available technical infrastructure settings. This
general idea in terms of combinatorics corresponds to the
overall goal of NST: enabling evolvability and variability by
leveraging the law of exponential variation gains by means



313

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

global options

Extension

Insertion

Extension

Extension

presentation settings

business logic settings

technical infrastructure

Figure 3. A graphical representation of four variability dimensions within a Normalized Systems application.

of the thorough decoupling of concerns and the facilitation of
their recombination potential [5].

B. Project management
Performing software development projects in an environ-

ment where the chosen approach enables the variability dimen-
sions as discussed in this paper, has some implications on how
the project management in such context can be executed and,
in particular, on the responsibilities of the analyst.

First, as NST is based upon the idea of realizing evolvable
and adaptable applications, it seems logical that most NST
projects are conducted in an iterative or agile way. More
specifically, due to a visual modeling tool and supporting
web application —allowing the definition of an NST model
(specified in terms of data, action, flow, trigger and work-
flow elements), as well as the expansion and deployment of
NST applications— analysts are able to create evolutionary
prototypes. After some first examination of the universe of
discussion, the analyst can thus make his interpretation of
the main functional requirements which can immediately be
incorporated in a working prototype and shown to, for instance,
future end users. Based on their feedback, the analyst can then
adapt his model, after which a new version of the prototype
can be regenerated and demonstrated. Next to iterations related
to the optimization of the model (still focusing on the same

universe of discussion), the analyst can also enlarge the model
by extending the universe of discussion covered by the ap-
plication. That is, in initial stages one can opt to model (and
further develop with craftings) only a part of an application
and, later on, to extend the application towards other areas
of the organization. This way of working is clearly related
to the model variability dimension: the analyst only defines a
model and the other dimensions (craftings, technologies and
expanders) are at that point irrelevant and can be specified later
on.

Once (a part of) the model has been defined, all ba-
sic functionality offered by the expanders is present within
the generated application. In case additional functionality is
required (i.e., not provided by the expanders), this can be
added by developers within the provided anchors in the ge-
nerated code or by additional files (e.g., classes). This code
can be added and developed independently from the model
(e.g., analysts can keep on working on the extension of the
model while developers start adding additional crafting code)
as the craftings can be harvested and reinjected from one
model to the other (as long as the craftings do not become
incompatible with the newly defined model, which could for
instance be the case when programming the implementation
of a custom finder method using an attribute that would be
deleted later on). The analyst can inject these craftings into



314

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

his prototype as well, thereby validating whether the added
code fits the customer requirements and crosscheck them with
end users if required. Analysts can clearly see how specified
customizations map onto crafting code. This can be helpful
in assessing their complexity (e.g., by checking the size of
code required) and maintaining the current state of the project
(which customizations have been completed and which have
not). This part of the project management is clearly related to
the crafting variability dimension.

As the analyst verifies and inspects the customizations
made by the developers, he might notice that some functi-
onalities are not only relevant for the specific case at hand
and might in fact prove their usefuless in other and future
applications as well. At that point, certain functionalities within
the craftings can be incorporated or “generalized” into the
expanders. As each of the functionalities needs to adhere to the
theorems of NST, needs to be (almost) free of bugs, etcetera
this typically only happens after the functionality has been
thoroughly tested in the context of multiple projects in such a
way that sufficient experience in this matter has been gained.
As of then, the functionality is removed from the application’s
crafting part and becomes available for all other applications as
well. Therefore, this part of the project management is clearly
related to the expander variability dimension.

Finally, the expanders can be used to employ various
(combinations of) technology infrastructure. This is typically
independent from the model (as it is mostly also not a
responsibility of the analyst to take committing decisions on
this area) and expander version. Clearly, the craftings need to
be written in a certain technology or language which introduces
a dependency and might imply adaptations to craftings in case
a certain technological infrastructure option is chosen. For in-
stance, when a certain GUI framework is chosen and craftings
are added in this part, a future change of GUI framework might
imply changes to the previous craftings (which need to be
rewritten in the newly chosen GUI framework). In other cases
however, technological infrastructure decisions can vary freely
from code within the craftings, such as in cases where the
chosen technology is irrelevant to the craftings (e.g., craftings
in the view layer will not be impacted by changing the selected
database) or when the craftings are all encapsulated from the
changing technology (e.g., plain non-EJB specific Java code
within anchors in a class using EJB annotations). Therefore,
this part of the project management is clearly related to the
technology infrastructure variability dimension.

VI. CONCLUSION

This paper presented one in-depth case study of an NST
software application in an educational context and analyzed the
different dimensions in which it could evolve. Additionally,
three previously documented cases were reinterpreted using
the same point of view. Based on this, four general variability
dimensions were proposed.

This paper is believed to make several contributions. From
a theoretical side, inductive reasoning based on our cases
allowed the formulation and illustration of four variability
dimensions, which might be the (or at least a subset of the)
orthogonal dimensions along which a typical NST application
can evolve. At the same time, these variability dimensions
clarify that the concept of an overall application “version” is
not applicable for NST applications as a specifically deployed

application is the result of a combination of choices for each
of the variability dimensions. For practitioners, this paper
contributes to the set of case studies available on NST (as well
as a reinterpretation from some previously documented cases),
which might provide them with a better insight regarding the
application potential of the theory in practice.

Next to these contributions, it is clear that this paper is
also subject to a set of limitations. That is, we proposed
the set of variability dimensions based on a limited set of
case studies. Although the size, complexity and industry of
the cases were different, their modest amount still limits the
generalizability of our findings. Therefore, future research
should be directed towards the analysis of additional cases,
including information systems being even larger and more
complex. These additional cases might confirm, and possibly
extend, the variability dimensions proposed in this paper.

REFERENCES
[1] P. De Bruyn, H. Mannaert, and P. Huysmans, “On the variability

dimensions of normalized systems applications: Experiences from an
educational case study,” in Proceedings of the Tenth International
Conference on Pervasive Patterns and Applications (PATTERNS) 2018,
2018, pp. 45–50.

[2] R. Agarwal and A. Tiwana, “Editorial—evolvable systems: Through
the looking glass of IS,” Information Systems Research, vol. 26, no. 3,
2015, pp. 473–479.

[3] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[4] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89–116.

[5] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[6] M. Op’t Land, M. Krouwel, E. Van Dipten, and J. Verelst, “Exploring
normalized systems potential for dutch mods agility: A proof of concept
on flexibility, time-to-market, productivity and quality,” in Proceedings
of the 3rd Practice-driven Research on Enterprise Transformation
(PRET) working conference, Luxemburg, Luxemburg, September 2011,
pp. 110–121.

[7] G. Oorts, P. Huysmans, P. De Bruyn, H. Mannaert, J. Verelst, and
A. Oost, “Building evolvable software using normalized systems theory:
a case study,” in Proceedings of the 47th annual Hawaii international
conference on system sciences (HICSS), Waikoloa, Hawaii, USA, 2014,
pp. 4760–4769.

[8] P. Huysmans, P. De Bruyn, G. Oorts, J. Verelst, D. van der Linden,
and H. Mannaert, “Analyzing the evolvability of modular structures:
a longitudinal normalized systems case study,” in Proceedings of the
Tenth International Conference on Software Engineering Advances
(ICSEA), Barcelona, Spain, November 2015, pp. 319–325.

[9] P. Huysmans, J. Verelst, H. Mannaert, and A. Oost, “Integrating infor-
mation systems using normalized systems theory: four case studies,”
in Proceedings of the 17th IEEE Conference on Business Informatics
(CBI), Lisbon, Portugal, July 2015, pp. 173–180.

[10] P. De Bruyn, P. Huysmans, and J. Verelst, “Tailoring an analysis
approach for developing evolvable software systems : experiences from
three case studies,” in Proceedings of the 18th IEEE Conference on
Business Informatics (CBI), Paris, France, August-September 2016, pp.
208–217.

[11] M. Lehman, “Programs, life cycles, and laws of software evolution,” in
Proceedings of the IEEE, vol. 68, 1980, pp. 1060–1076.


