
269

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Flexible QoS Measurement Platform for Service-based Systems

Andreas Hausotter, Arne Koschel
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Andreas.Hausotter@hs-hannover.de

email: Arne.Koschel@hs-hannover.de

Johannes Busch, Malte Zuch
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Johannes.Busch@stud.hs-hannover.de

email: Malte.Zuch@hs-hannover.de

Abstract—The transfer of historically grown monolithic software
architectures into modern service-oriented architectures creates
a lot of loose coupling points. This can lead to an unforeseen
system behavior and can significantly impede those continuous
modernization processes, since it is not clear where bottlenecks
in a system arise. It is therefore necessary to monitor such
modernization processes with an adaptive monitoring concept to
be able to correctly record and interpret unpredictable system
dynamics. This contribution presents a generic QoS measurement
framework for service-based systems. The framework consists of
an XML-based specification for the measurement to be performed
– the Information Model (IM) – and the QoS System, which
provides an execution platform for the IM. The framework will be
applied to a standard business process of the German insurance
industry, and the concepts of the IM and their mapping to
artifacts of the QoS System will be presented. Furthermore,
design and implementation of the QoS System’s parser and
generator module and the generated artifacts are explained
in detail, e.g., event model, agents, measurement module and
analyzer module.

Keywords–Quality of Service (QoS); Indicator Measurement;
XML-Model; Service-orientation; SOA; Complex Event Processing
(CEP)

I. INTRODUCTION

The background of this work is a cooperation with a partner
from the German insurance industry and its IT-Architecture
department. Many IT-driven and data-driven companies face
the challenge of continually modernizing their infrastructure,
technologies, systems and processes. The insurance industry
in particular is characterized by the fact that extensive dig-
itization of processes took place very early. This was done
well before researching modern service-based approaches,
such as ’traditional’ service-oriented architectures (SOA) or
even microservices (MS) and without the use of distributed
infrastructures such as cloud computing. Historically grown
software monoliths were state of the art. The modernization of
such monoliths in the direction of service-based architectures
is a major challenge. This conversion process is the main
motivation of this work and will be explained in more detail
below.

A. Motivation
Systems cannot be abruptly switched off and replaced

by new architectures but must be continuously transformed
into modern architectural forms. In this continuous modern-
ization process, monolithic structures are broken down and
distributed into services. This gives companies more agility
and adaptability to changing business requirements. However,

a decentralized and service-oriented system architecture is
usually quite fine-granular and loosely coupled. Generally,
this provokes an unpredictable dynamic system behavior. This
also applies to our partner in the insurance industry. In order
to remain competitive, the insurance industry has to respond
quickly to customer information portals, such as check24.de,
where different insurance companies competitively can offer,
e.g., car insurances. This scenario motivates the need for a
holistic measurement concept and defines the general applica-
tion scenario of this work.

So, there is a fundamental need for information about
the system behavior. Relevant information is collected in the
’Information Product’, which represents the output of the ’Core
Measurement Process’ (cf. Fig. 1). The ’Information Need’
provides the input for the subprocess ’Plan the Measurement
Process’, the subprocess ’Perform the Measurement Process’
generates the Information Product’. The process goal is to
satisfy the ’Information Need’.

Nowadays it is normal that customers are demanding
online services unpredictably and with high volatility. These
volatile demands may lead to bottlenecks in distributed service-
oriented architectures. Therefore, a reliable measurement of the
whole system behavior is necessary in order to eliminate any
bottlenecks. Such a measurement concept and its prototypical
implementation are the core contributions of our work.

B. Contribution
In order to monitor individual system components with

respect to time behavior, fixed time limits have so far been
used. These fixed time limits are often used in historically
grown software systems of the German insurance industry.
If a system component (service) could not respond within
these time limits, this was interpreted as a bad quality feature.
However, with these static limits, a dynamic system behavior
can be poorly monitored and interpreted. The challenge is
to determine, when dynamic systems are overloaded. In this
respect, a partner company of the insurance industry demands
to integrate a metric, which could replace their static time
limits in the future with a more dynamic metric. The general
requirements lead to the following questions:

• How could static rules and timeouts be supplemented
by a dynamic measurement metric?

• How could the measuring system be built on existing
XML-Standards?

In previous work [1] [2] [3], we have already developed
a framework for dynamically measuring the service response

270

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

time as a Quality of Service (QoS) Parameter within service-
oriented architectures. Especially in [1] we provided initial
implementation details of the dynamic measuring system.
Our measuring system considers existing XML standards and
can flexibly record the load behavior of a software system.
This measuring system should measure the response time as
a particular QoS parameter as an example. The measuring
system should be able to consider both dynamic limits as
well as static limits (optional). Normally, only the dynamic
limits should be considered. But, if a service exceeds a fixed
limit of, e.g., 5 seconds, then this should also be recognized.
Another requirement is that the measuring system should
’inject’ measurement agents into a software system as flexible
and automated as possible.

As a significant extension to our previous articles, here
we contribute in more details in important areas of our work,
namely in Section IV and in Section V we show:

• a detailed design model of our QoS generator includ-
ing an in depth look at its general parser classes as
well as its derived measure parser classes,

• our in-memory model for our base XML model,
• much more implementation details on the measure-

ment module and our event model (EventModel),
• and a comprehensive summary of the overall QoS

platform based on our previous articles.

In total, our additional contributions provide a much deeper
look at our work with respect to design and implementation
of our overall system.

The remainder of this article is organized as follows: In
Section II, related work concerning the topic of measurement
models of service-based systems is explained. The measure-
ment process with its core concepts and the information model
are described in Section III and more implementation details in
Section IV. Some mathematical equation explains the general
measurement concept. After clarifying the general measure-
ment plan, Section VI shows how the planned measurement

Figure 1. The Core Measurement Process

concept can be applied for detecting the so called ’Spikes’,
situations of high system-loads. The final Section VII will sum-
marize this work. The different advantages and disadvantages
of the described measurement model will be discussed. Also,
an outlook to future work will show how the results of this
work will be used in upcoming work in Section VII.

II. PRIOR AND RELATED WORK

In prior work, we already discussed several aspects of
the combination of SOA, Business Process Management
(BPM), Workflow Management Systems (WfMS), Business
Rules Management (BRM), and Business Activity Monitoring
(BAM) [4][5][6] as well as Distributed Event Monitoring
and Distributed Event-Condition-Action (ECA) rule processing
[7][8]. Building on this experience, we now address the area
of QoS measurement for combined BRM, BPM, and SOA
environments, mainly but not limited to, within the (German)
insurance domain.

Work related to our research falls into several categories.
We will discuss these categories in sequence.

General work on (event) monitoring has a long history (cf.
[9][10] or the ACM DEBS conference series for overviews).
Monitoring techniques in such (distributed) event-based sys-
tems are well understood, thus such work can well contribute
general monitoring principles to the work presented here. This
also includes commercial solutions, such as the Dynatrace [11]
system or open source monitoring software like, for example,
the NAGIOS [12] solution. In these systems there is generally
no focus on QoS measurement within SOAs. Also, they usually
do not take application domain specific requirements into
account (as we do with the insurance domain).

Active Database Management Systems (ADBMS) of-
fer some elements for use in our work (see [13][14] for
overviews). Event monitoring techniques in ADBMSs are
partially useful, but concentrate mostly on monitoring ADBMS
internal events, and tend to neglect external and heterogeneous
event sources. A major contribution of ADBMSs is their very
well defined and proven semantics for definition and execution
of Event-Condition-Action (ECA) rules. This leads to general
classifications for parameters and options in ADBMS core
functionality [14]. We may capture options that are relevant
to event monitoring within parts of our general event model.
QoS aspects are handled within ADBMS, for example, within
the context of database transactions. Since ADBMSs mostly do
not concentrate on heterogeneity (and distribution), let alone
SOAs, our research work extends into such directions.

The closest relationship to our research is the work, which
directly combines the aspects QoS and SOA. As many as 2002
several articles fall into this category. However, in almost all
known articles the SOA part focuses on WS-* technologies.
This is in contrast to our work, which takes the operational
environment of our insurance industry partners into account.

Examples of Webservice (WS-*) related QoS work in-
clude QoS-based dynamic service bind [15][16], related WS-
* standards such as WS-Policy [17], and general research
questions for QoS in SOA environments [18]. Design aspects
and models for QoS and SOA are, for example, addressed in
[15][19][20][21][22]. As for WS-* Web services, we also take
XML as foundational modelling language for our work. SOA
performance including QoS is discussed in articles [23], and
monitoring for SOA in articles such as [24][25][26][27].

271

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Uniqueness of our research is that it takes all the above-
mentioned aspects into account. We provide a detailed XML
based measurement model, as well as a generator-supported,
generic SOA monitoring framework. All of it takes especially
the operational environment of our insurance industry partners
into account, which is a large-scale SOA, but only partially
WS-* technology based. This makes our work highly relevant
in practice. Even more, since we base our modelling on
standards, which are highly relevant for German insurance
businesses (cf. VAA [28], ISO/IEC 9126 [29][30]), our work
is of a quite general nature and thus can be transferable (at
least within the insurance domain).

III. PLAN THE MEASUREMENT PROCESS

The Core Measurement Process can be divided into two
parts. First of all, the planning of the measurements takes
place, which determines how the Information Need can be
answered. In the second part, the planned methods of mea-
surement will be implemented.

A. Core Concepts of the Abstract Information Model
To measure the response time behavior of a dynamic

system, the definition of static response time limits is often
not sufficient. When a system component (service) is deployed
in a different hardware environment or in a different cloud
environment, this will affect the response time of this system
component. Static limits would have to be adapted manually to
the new execution environment of the services. Furthermore,
individual services share hardware resources with many other
services. This can lead to an unpredictable system behavior, es-
pecially in complex business processes. Therefore, static limits
are not sufficient, but a more flexible solution is required. The
approach of this work is the investigation of a measurement
concept, which is more flexible and based on the standard
deviation of system load of a specifiable measuring period.

The insurance industry in particular is characterized by
strong seasonal fluctuations. Towards the end of the year, many
customers switch their insurance contracts and are provoking
high system loads. In times of such high system loads, the
mentioned static limits would be continuously exceeding. The
information would be lost at the time when high loads are
peaking in such a strongly demanded period. It is important to
know when the current system is heavily loaded. Knowledge
about this information represents the so-called Information
Need (Fig. 1) of our partner from the insurance industry.

To answer this Information Need, the average response time
behavior µ of a system component is firstly computed for a
freely definable time period. For example, on the basis of the
last n = 500 measured response times of the services. On the
basis of this, the standard deviation is calculated within this
period, shown in (1):

s =

√√√√√ n∑
i=1

(xi − µ)2

n− 1
(1)

After this calculation, the current response time r of a
service is set in relation to this standard deviation s. If the
response time r of a currently requested service exceeds this
standard deviation by the factor of 2x then this is considered
as an overload situation:

Spike detected: r > µ+ 2 ∗ s (2)

This calculation takes place continuously. As soon as a
service is requested again, its response time is recorded and set
in relation to the last one (e.g., the last 500 measured values).
It is therefore a continuous and rolling measurement. This
measuring system can be applied both for very slow system
components on a daily base and also to very fine-granular
services that interact in the range of milliseconds.

The important fact is that the standard deviation is calcu-
lated continuously over a defined time period, and the current
response time of a service is set in relation to this. Therefore,
the measuring system adapts to seasonal fluctuations, and it
is possible to identify, which user requests (service calls) are
currently very critical with respect to the general response time
behavior, independently of the prevailing current load situation.
This allows fast and more precise analysis of systems and less
misinterpretation due to incorrectly set static time limits. This
dynamic measurement concept can give a more reliable answer
to the Information Need of our project partners.

B. Mapping of the Concepts of the Information Model
In this subsection, a QoS Information Model (QoS IM)

is presented in a more detailed manner. The QoS IM is a
XML document that includes values of the concepts for a
given application scenario. The concepts and their relationships
with each other are introduced in [3]). Here we focus on the
implementation of the concepts.

The QoS IM is created during the planning stage when
executing the subprocess ’Plan the Measurement Process’, cf.
Fig. 1). The XML document is used to automatically generate
the QoS Platform’s artefacts. The measurements results (i.e.,
the output of ’Perform the Measurement Process’) are pro-
duced by the QoS Platform. They are persistently stored for
subsequent analysis, typically in a database system.

We opted for XML as universally accepted standard which
is highly flexible, platform and vendor independent and sup-
ported by a wide variety of tools. Furthermore, XML comes
with a standardized schema definition language, namely XML
Schema. This is a big advantage against other languages such
as JSON for example.

In the QoS IM, we specify the measurement concepts for
the check24.com scenario, or the Proposal Service respectively.
Due to space limitation, the discussion is restricted to the
following concepts (cf. [3]):

• Measurable Concept – outlines in an abstract way, how
the Quality Attributes are determined to satisfy the
Information Need,

• Base Measure – specifies by its Measurement Method
how the value of Quality Attribute is to be determined,

• Derived Measure – uses one or more Base Measures
or other Derived Measures, whilst the Measurement
Function specifies the calculation method and thus the
combination of the Measures used,

• Indicator – is a qualitative evaluation of Quality At-
tributes, which directly addresses the issue raised in
the Information Needs.

The Measurable Concept Processing_Time references

272

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 <MeasurableConcept Name="Processing_Time">
2 <SubCharacteristic Name="Performance"/>
3 <BaseMeasure Name="t_inst"/>
4 <BaseMeasure Name="t_term"/>
5 <DerivedMeasure Name="t_proc"/>
6 <DerivedMeasure Name="Count_StdDev_Calls"

y

/>
7 <DerivedMeasure Name="Count_Calls"/>
8 <DerivedMeasure Name="

y

StdDev_Calls_Percentage"/>
9 <DerivedMeasure Name="Failed_Calls"/>

10 </MeasurableConcept>

Listing 1. Calculation of the Proposal Service’s Processing Time

1 <BaseMeasure Name="t_inst">
2 <Scale TypeOfScale="Rational" Type="R"/>
3 <Attribute ServiceID="BAS_001"

y

AttributeName="ServiceCallID"/>
4 <MeasurementMethod Name="

y

recordTimeOfServiceCall">
5 <Implementation>
6 <Agent Class="ServiceAgent">
7 <Method>
8 <Attribute Name="ServiceCallID" Type="

y
xs:integer"/>

9 <Attribute Name="Time" Type="xs:string"
y

Computed="time"/>
10 <Event Name="ServiceStartEvent"/>
11 </Method>
12 </Agent>
13 </Implementation>
14 </MeasurementMethod>
15 </BaseMeasure>

Listing 2. Start Time of a Proposal Service Call

by name all necessary Base and Derived Measures (cf. list-
ing 1).

The definition of the Base Measure t_inst is shown in
listing 2. Its task is to capture the start time of a Proposal
Service call (by a user request). The element Attribute
specifies the attribute of the Proposal Service to be observed.
The element hierarchy of Implementation defines all
platform specific information to automatically generate all
artefacts needed for the measurement, i.e., the agent class with
attributes and the measurement method (cf. subsection IV).

The Derived Measure Count_StdDev_Calls presented
in listing 3 calculates the number of Proposal Service calls that
exceeds twice the standard deviation (cf. subsection IV, (2)).

Count_StdDev_Calls is based on a different Derived
Measure, namely t_proc, which computes the processing
time of a Proposal Service call (cf. Uses element, line 2).
The element Implementation comprises of all informa-
tion that is used to generate the analyzer class (cf. subsec-
tion IV). The analyzer executes the SQL Select statement
(cf. lines 8 to 16), which represents the content of the
element Plain. This is done by the measurement func-
tion calculateNumberOfCallsAboveSTDDEV, shown
in line 3, whenever an event ServiceDurationEvent has
been fired (cf. line 6).

1 <DerivedMeasure Name="Count_StdDev_Calls">
2 <Uses><DerivedMeasure Name="t_proc"/></

y

Uses>
3 <MeasurementFunction Name="

y

calculateNumberOfCallsAboveSTDDEV">
4 <Implementation>
5 <Analyzer>
6 <Query Class="ServiceDuration" Type="

y

xs:long">
7 <Plain>
8 SELECT COUNT(*) FROM serviceduration
9 WHERE

10 TINTS > TIME_SECS(DATEADD(’DAY’,
11 -30,NOW()))
12 AND TPROC > (SELECT AVG(TPROC)
13 + (2 * STDDEV(

y

TPROC))
14 FROM serviceduration
15 WHERE TINTS > TIME_SECS(
16 DATEADD(’DAY’,-30, NOW())))
17 </Plain>
18 </Query>
19 </Analyzer>
20 </Implementation>
21 </MeasurementFunction>
22 <UnitOfMeasurement>ms</UnitOfMeasurement>
23 <TargetValue>1</TargetValue>
24 </DerivedMeasure>

Listing 3. Compute the Number of Proposal Service Calls that Exceed Twice
the Standard Deviation

Finally, the Indicator SLoT_proc, shown in listing 4,
evaluates the adequacy of the processing time of all Proposal
Service calls.

SLoT_proc is based on two different Derived
Measures, namely StdDev_Calls_Percentage, and
Failed_Calls respectively (cf. Uses element, lines 4
to 7). The first measure, StdDev_Calls_Percentage,
takes Count_StdDev_Calls and Count_Calls and
does some basic arithmetic computation.

The element DecisionCriteria specifies a decision
table, so that a value, computed by the Derived Measures, can
be mapped to the entry of the given nominal scale (i.e., high,
medium, low). The element Implementation comprises all
information to generate the analyzer class (cf. subsection IV),
which implements the decision table and the mapping.

IV. DESIGN OF THE QOS GENERATOR

The initial phases of applying an IM (cf. Fig. 2) were
shown in Section III-B. This section discusses subsequent
phases (especially about generators, artefacts, etc.) in detail.
Please note, although its concepts are transferable, our QoS
Generator aims not to be of generic nature but is tailored
specifically towards our XML based IM and needs of our
partner companies. Furthermore, the generated artefacts are
specific to our current QoS Platform. Both offer the flexibility
to tailor each part to the specific needs of each of our partner
companies.

Several different artefacts have to be generated to apply a
specific IM. The basic design of the QoS Generator is given in

273

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Phase from IM to QoS System.

1 <Indicator Name="SLoT_proc">
2 <AnalysisModel Name="

y

computeAdequacyOfProcessingTime">
3 <Scale TypeOfScale="Nominal" Type=.../>
4 <Uses>
5 <DerivedMeasure Name="

y

StdDev_Calls_Percentage"/>
6 <DerivedMeasure Name="Failed_Calls"/>
7 </Uses>
8 <DecisionCriteria>
9 <Implementation>

10 <Analyzer>
11 <IndicatorTable Class="

y

IndicatorController" Type="HMN">
12 <IndicatorEntry>
13 <Input>devPercentageCount < 5 &&

y

badCount == 0</Input>
14 <Result>low</Result>
15 </IndicatorEntry>
16 <IndicatorEntry>
17 <Input>devPercentageCount >= 5 &&

y
badCount == 0</Input>

18 <Result>mittel</Result>
19 </IndicatorEntry>
20 <IndicatorEntry>
21 <Input></Input>
22 <Result>hoch</Result>
23 </IndicatorEntry>
24 </IndicatorTable>
25 </Analyzer>
26 </Implementation>
27 </DecisionCriteria>
28 </AnalysisModel>
29 </Indicator>

Listing 4. Compute the Adequacy of the Processing Time of all Proposal
Service Calls

Figure 3. Design of the QoS Generator.

Fig. 3. In general, it consists of a parser step and a generator
step. Purpose of the first step (parser) is to build an optimized
in-memory model of an given IM. A specific parser gets the
XML root element and parses an abstract or concrete part.
The second step (generator) consists of different generators
reading the in-memory model to generate specific artefacts
(e.g., classes, rule files, etc.). This distinction is necessary for
the desired flexibility of the QoS Platform itself and follows
the single responsibility principle. Further explanations of the
in-memory model, the QoS-Generator parsers and generators
are given in this section. At the end a brief overview of the
execution of these components is described.

a) In-memory model: The optimized model is part of
the Context class. Furthermore, it contains general con-
figuration information, a TypeMapperRepository and
a GeneratorModel. The TypeMapperRepository contains
mappers to translate XML Schema types into implementation
specific types (e.g., SQL, Java, etc.). The GeneratorModel
contains specific information (package definitions, etc.) for the
generators and is shared between them by the Context class.

An overview of the in-memory model is given in Fig. 6.
The model contains class representations of all IM concepts
like Services or Events. A major part is the representation of
Measure concepts which is combined in the MeasurableCon-
cept class. It contains references to BaseMeasure and Derived-
Measure classes. Also it contains helper methods to access
these (e.g., based on the name) or Measurement Methods
and Measurement Functions directly. Each IM concept
class contains all attributes and elements as shown in the XML.
Instead of accessing the XML directly, this approach offers
helper methods and direct references to other parts of the IM.
Where possible attributes are not represented in simple String
values but instead by more specialized types like enums or else.
Further optimizations can be implemented upon this basis.

b) QoS-IM parsers: A brief overview of all parsers
is given in Fig. 4. As stated before each IM concept has
a corresponding parser class. The Context and XML root
element is given to each parser. The QoS Generator defines the
order in which these parsers have to be executed. Basis for all
parsers is the minimal Parser interface which defines only the
parser(...) method. Thus, all parsers can be implemented
completely independent, which allows to implement more
complex optimizations or more in-depth evaluations of an IM.

An overview of the DerivedMeasureParser class
and its basic dependencies is given in Fig. 5. While the
Context contains the Model (and thus all previously parsed
elements), the XML Element class usually contains the In-
formation Need concept of the given QoS IM. Parsers are
divided into classes for abstract and concrete parts. As shown
before the abstract part is parsed first and thus this parser
calls their concrete part parsers. In this case the concrete
parts are parsed by the DerivedMeasureParser and
MeasurementFunctionParser. The latter one handles
all needed subsequent parsers calls. A Derived Measure can

274

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Overview of the parser classes.

Figure 5. Overview of the Derived Measure parser class.

contain a concrete part for rule-, query- or computation-
functions. To determine these each parser defines a unique
XML query string based on XPath.

c) QoS-Platform generators: While the parsers are tai-
lored towards the IM model, the generators are tailored towards
implementation artefacts or QoS Platform concepts. There
are generators for the QoS Agent, Indicator implementation
or complex event processing (CEP) rules. An overview of
the different generators is given in Fig. 7. Each generator
has a specific task concluding in the generation of certain
artefacts. This further supports the flexibility of the QoS
Platform itself. All generators implement the Generator
interface and thus get the Context and GeneratorModel ob-
jects. Purpose of the latter is to share certain information
between different generator in a defined and consistent way.
In this case only three Java package definitions are shared.
The Velocity template engine (cf. [31]) was chosen because
of its ease of use and simplicity. It offers access to Java
objects through a template language which can be used to
generate HTML or Java code. To further simplify the generator
implementation several abstract base classes were developed.
While the VelocityShellGenerator only offers basic
initializations, the VelocityGenerator prepares nearly
everything to generate artefacts. Only the file name and the
specific arguments for the template have to be provided. This
differentiation was needed because the QueryGenerator creates
several different artefact types (e.g., SQL files, Java classes)
and thus uses several different templates. The other generators
only have to use one template in the moment.

A detailed view of the QueryGenerator is given in
Fig. 8. Different SQL files and Java query classes are gener-
ated by this generator. To initialize several Velocity Template
classes, direct access to the VelocityEngine is needed. Sev-
eral TypeMapper classes are retrieved from the TypeMap-
perRepository. Actual generation is delegated to several
generate... methods. Each one builds the corresponding
VelocityContext and calls the writeToFile(...)
method to render the template. The VelocityContext is ba-
sically a key value map which can be accessed inside of a
template.

d) QoS-Generator execution: An example of a QoS
Generator parser execution is given in Fig. 9. After the IM
is parsed by a SAX compatible parser, the XMLElements are
given to each one separately. Every IM concept is parsed
from the abstract part to the concrete part. In this case,
the Uses, UnitOfMeasurement and TargetValue el-
ements are parsed by the DerivedMeasureParser. After
the MeasurementFunctionParser parses the relevant
attributes (e.g., the Name attribute) and creates the corre-
sponding Model class, it determines which type of imple-
mentation it contains. This is done by a query string that
each FunctionImplementationParser offers. In this
specific case, the MeasurementFunction contains a query
and thus the QueryFunctionParser is executed. Each
query implementation uses certain events to execute a query.
To parse these, the inherited method parseEvents is given
the Event elements.

A brief overview of the a query generator execution
is given in Fig. 10. The initialization step of each gen-
erator consists of initializing the needed Velocity Tem-
plates. Each template represents a certain type of file that

275

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Overview of the in-memory model.

Figure 7. Overview of different generators.

can be generated. The QueryGenerator is derived from
VelocityShellGenerator and thus the initialization
step is very complex to offer more flexibility. A query consists
of Java and SQL files, thus several templates are needed.
The generation is started through the generate(Context)
method call. The first step is to determine the needed
TypeMappers. As stated before mappers for Java and SQL
types are needed, which can be loaded by their names
(e.g., ’java’, ’sql’). The second step is to generate the files

Figure 8. QueryGenerator and certain dependencies.

and artefacts by building the needed VelocityContext
classes and calling the derived method writeToFile. Each
VelocityContext object contains all data (e.g., variable
names, data types, etc.) in a simple Map like data structure.
Inside each template certain special codes can be used to access
Context data, execute loops or use conditional statements to
determine what will be rendered.

V. IMPLEMENTED CONCEPTS AND THEIR ARTEFACTS

In the following paragraphs, different concrete parts and
their corresponding artefacts are presented. Note, only excerpts
are shown and currently not all elements of the abstract part
are used. In Fig. 11 an overview of the QoS System and it’s
different components is given. The Measurement Agents (or
QoS Agent) are only design-wise part of the QoS-System. In
general they are placed inside the measured system (e.g., an

276

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Overview of a parser execution.

Figure 10. Overview of a generator execution.

ESB, process engine, etc.) and send its results to the QoS
Platform. In our current case, this is done via REST but
other technologies (e.g., Sockets, CORBA, SOAP, JMS) can
be implemented too. The QoS Platform consists of two distinct
components.

QoS Measurement is the ’first stage’ and contains logic
to format or filter incoming events. Furthermore, it contains
a CEP engine (JBoss Drools) to further compute and analyze
the event stream. QoS Analyzer module is the ’second stage’
and contains the main computation of Derived Measures and
Indicators. Interfaces to offer these data to downstream systems
(e.g., alerting) are also implemented in this module. While the
QoS Measurement handles incoming events as fast as possible,
the Analyzer module is heavily based on SQL queries and

computations which are only executed when needed.
a) Event Model: The EventModel is a concrete part

inside an IM but part of a specific IM Measure. It is defined
aside of these concepts and defines the different events used
inside QoS Platform, especially by the QoS Agent and the
Measure components. It offers concepts to define events, their
Attributes and dependencies (inheritance) between them.
Currently used is the model shown in Listing 5.

From this model several Java POJOs are generated, which
are shown in Fig. 12. An overview of the generated code is
shown in Listing 6 and Listing 7. Each Attribute is generated
with their mapped type, their name and the needed getters and
setters. Furthermore, abstract keyword is generated if set

277

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Overview of the QoS System.

<EventModel>
<EventType Name="ServiceBaseEvent" Abstract=

y

"true">
<Attribute Name="id"

Type="xs:positiveInteger"/>
<Attribute Name="t_term"

Type="xs:positiveInteger"/>
</EventType>
<EventType Name="ServiceStartEvent"

Super="ServiceBaseEvent"/>
<EventType Name="ServiceEndEvent"

Super="ServiceBaseEvent"/>
<EventType Name="ServiceDurationEvent">
<Attribute Name="id"

Type="xs:positiveInteger"/>
<Attribute Name="t_inst" Type="xs:long"/>
<Attribute Name="t_proc" Type="xs:long"/>

</EventType>
</EventModel>

Listing 5. EventModel concrete part of an IM.

to true. If a super class is set, the Java extends clauses are
generated too. The ServiceBaseEvent is mainly used by
the QoS Agent and Measurement component. The Service-
DurationEvent is a complex event created through the CEP
rule. While the id attributes are simply integers as defined by
the insurance system, the other attributes are of data type long.
This is necessary to hold timestamps with the needed precision.

b) Measurement Agent: The concrete part of the Base
Measure t_inst is given in Listing 2. It defines Attribute
elements and references the computed QoS Event. The Ser-
viceCallID is parsed from Service Call data. The Time attribute

Figure 12. Detailed view of the generated Event classes.

public abstract class ServiceBaseEvent {
private int id;
public int getid() {
return id;

}
public void setid(int id) {
this.id = id;

}

private long t_term;
public long getT_term() {
return t_term;

}
public void setT_term(long t_term) {
this.t_term = t_term;

}
}

Listing 6. Generated Java POJO ServiceBaseEvent.

will be computed by the Agent itself. Furthermore, a class at-
tribute is given in the Agent element. It is used to structure the
generated code and the corresponding artefacts. The specific
method name is derived from the MeasurementMethod
element. While the QoS Agent is designed as part of the QoS
System, it is actually placed directly into the SOA as part
of the ESB component. The used ESB is a partner specific
implementation.

c) Measurement Module: A brief overview of the Mea-
surement module is given in Fig. 13. The QoS Agent send sev-
eral events to this module. Each event is currently handled and
formatted by EventController and EventFormatter
classes. The formatters are needed because Agents only sent
raw string-based data. After the formatter constructs actual
Event classes, these are given to the Drools CEP Engine.
This is done through the DroolsEndpoint class. These
classes are considered to be part of the QoS Platform core.
Thus, they are not generated and only adjusted if needed.
EventFormatter are written for each Event that a BaseMeasure
uses. In the postConstruct method, the CEP engine is

278

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public class ServiceDurationEvent {
private int id;
public int getid() {
return id;

}
public void setid(int id) {
this.id = id;

}

private long t_inst;
public long gett_inst() {
return t_inst;

}
public void sett_inst(long t_inst) {
this.t_inst = t_inst;

}

private long t_proc;
public long gett_proc() {
return t_proc;

}
public void sett_proc(long t_proc) {
this.t_proc = t_proc;

}
}

Listing 7. Generated Java POJO ServiceDurationEvent.

Figure 13. Overview of the measurement module.

further initialized with logging capabilities and a Spring Inte-
gration Channel. The ServiceDurationRepository of
the Analyzer module is listening on this channel and persists
every incoming complex event.

The concrete part of the Derived Measure t_proc is
given in Listing 8. It contains the definition of the CEP rule,
which computes the complex event ServiceDurationEvent.
Plain element indicates that this code fragment will be placed
’as is’ into a rule file. Only certain definitions (e.g., for event
classes) will be added. The rule file is loaded on start up by the
CEP engine (JBoss Drools) of the QoS Measurement module.
The generated rule file is shown in Listing 9. Besides the
import definitions, also the package definition is added. This

<Rule>
<Event Name="ServiceDurationEvent"
Handle="output"/>

<Plain>
rule "Service Duration Rule"
when
$start : ServiceStartEvent()
$end : ServiceEndEvent(
this after[0s , 2s] $start &&
this.id == $start.id

)
then
channels["analyzer"].send(
new ServiceDurationEvent(...)

);
end

</Plain>
</Rule>

Listing 8. Concrete Part of a Rule.

package de.hshannover.ccitm.qos.measurement;

import de.hshannover.ccitm.qos.events.*;

declare ServiceEndEvent
@role(event)

end
declare ServiceDurationEvent
@role(event)

end
declare ServiceStartEvent
@role(event)

end

rule "Service Duration Rule"
when
$start : ServiceStartEvent()
$end : ServiceEndEvent(this after[0s , 2s

y

] $start && this.id == $start.id)
then
logger.info("Duration rule fired");
ServiceDurationEvent duration = new

y

ServiceDurationEvent();
duration.setid($start.getid());
duration.sett_inst($start.getT_term());
duration.sett_proc($end.getT_term() - $start

y

.getT_term());
channels["analyzer"].send(duration);

end

Listing 9. Generated rule file.

definition is based upon the information of the GeneratorModel
described earlier. Another important and generated part are the
declare statements. These define the Event POJOs as CEP
events in the JBoss Drools sense. As shown, only the actual
needed events of the included rule have declare statements.

d) Analyzer Module: The generated class and rule files
for the DerivedMeasures are part of the QoS Platform (and part
of the QoS Platform.war). For example, the generated classes

279

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Detailed view into the Analyzer Module.

of the Analyzer module are shown in Fig. 14. Indicator and
*-Duration classes are integrated, if needed manually, into the
QoS Platform. The AnalyzerService class is considered part
of the QoS Platform core and implements the REST interface
for downstream systems (e.g., alerting).

The concrete part of the Derived Measure
COUNT_STDEV_CALLS is given in Listing 3. It contains
the SQL query to get the count of all events with a runtime
above the doubled standard deviation. The generated class is
shown in Listing 10. The QUERY_STDDEV_EVENTQuery
attribute contains the SQL query given in a Plain element.
Again, the class attribute is used to structure the code and
artefacts, but the Type attribute is specific for a query and
specifies the return type (in this case Long) of the query. The
name of method is given in the MeasurementFunction
element. Also, this class contains the SQL queries for other
derived measures. Furthermore, needed imports and Spring
code to integrate the jdbcOperations object are generated.

The concrete part of the Indicator SLoT_proc is given
in Listing 4. Each IndicatorEntry element consists of
an Input where the Indicator condition is defined and a
Result element, which contains the actual Indicator re-
sponse. Each of these results has to be a valid HMN
type. The generated IndicatorController class is given in
Listing 11. The dependencies to other Measure results are
given by the Uses element. This information is also used
for generation and manual modifications. In this case, the
ratio of service calls above the standard deviation is com-
puted by the ServiceDurationComputation class. The
ServiceDurationQuery class provides the number of
failed service calls.

VI. MEASUREMENTS

For the evaluation of the described measurement concept,
it is stressed with an initial load test. The general ’Information
Need’ (Fig. 1) is the information about how volatile a software

public class ServiceDurationQuery {
private String QUERY_STDDEV_EVENTQuery =
"SELECT COUNT(*) FROM serviceduration

WHERE
TINTS > TIME_SECS(DATEADD(’DAY’,-30,NOW()))

AND TPROC > (SELECT AVG(TPROC)
+ (2 * STDDEV(TPROC))

FROM serviceduration
WHERE TINTS >
TIME_SECS(DATEADD(’DAY’,-30, NOW())))";

...

private JdbcOperations jdbcOperations;

public ServiceDurationQuery(DataSource

y

dataSource) {
jdbcOperations =
new JdbcTemplate(dataSource);

}

public Long

y

calculateNumberOfCallsAboveSTDDEV() {
return jdbcOperations.queryForObject(
QUERY_STDDEV_EVENTQuery, Long.class);

}

public Long getNumberOfCals() {
return jdbcOperations.queryForObject(
QUERY_EVENT_COUNTQuery, Long.class);

}

public Long computeFailedCalls() {
return jdbcOperations.queryForObject(
QUERY_FAILED_EVENTQuery, Long.class);

}
}

Listing 10. Generated query class.

system is currently being stressed. Static thresholds cannot
fulfill the desired ’Information Need’ of the partner companies
in the insurance industry. The dynamic approach of measuring
the spikes, which exceed the standard-deviation of a measuring
period, can provide better answers here. For the evaluation,
such spikes are directly provoked. When generating the spikes,
two parameters are randomly influenced:

• Intensity: The intensity of the spikes.
• Frequency: The frequency at which the spikes occur.

In the stress test, the two parameters ’Intensity’ and ’Fre-
quency’ are set. A high intensity means that a spike is gen-
erated with a high level of volatility. The intensity describes,
how long the response time of a service request is and how
’intensive’ the standard deviation is exceeded according to
(1). The frequency determines, how often such a spike should
occur in the stress test. The stress test therefore generates
very volatile measurement events, which must be recorded
dynamically by the measuring system. So, a random variation
of these two parameters will provoke volatile stress situations
with unpredictable intensity and frequency. This allows the
measuring system to be tested as strongly and dynamically as
possible. Some of the preliminary results measured with the
QoS System are shown in Fig. 15. The yellow line shows the
standard deviation barrier. In this case, 3 % of all measured

280

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public class IndicatorController {
@Autowired
ServiceDurationQuery durationQuery;
@Autowired
ServiceDurationComputation

y

durationComputation;

public String

y

computeAdequacyOfProcessingTime() {
long devPercentageCount =

y

durationComputation.

y

computeRatioOfCallsAboveSTDV();
long badCount = durationQuery.

y

computeFailedCalls();

if(devPercentageCount < 5 &&
badCount == 0) {
return "low";

}
if(devPercentageCount >= 5 &&
badCount == 0) {
return "middle";

} else {
return "high";

}
}}

Listing 11. Generated indicator class.

Figure 15. Preliminary Measurement Results.

requests (6 service calls) are violating the barrier, thus the com-
puted indicator would be low. Above 5 %, the indicator would
be middle. The red line shows the SLA barrier introduced by
service consumers like check24.de. If one request exceeds this
barrier, the indicator switches to high. A more thorough test
and evaluation based on these loads will be given in our future
work. But based on these results, the measurement concept can
be used to even measure very volatile stress situations.

VII. CONCLUSION AND FUTURE WORK

In this article, we presented an approach for monitoring a
distributed SOA environment, which we see as a promising
path to take. Our SOA Quality Model is aimed to follow
the ISO/IEC-Standard 15939 (cf. [32]), which enables a wide
range of use cases. Our Measurement Concept outlines an
execution platform for the specific QoS Information Model,
which should cause minimal impact on the SOA environment.

The separation of Measurement Agents and QoS-Analyzer

on one hand allows lightweight agents and on the other hand
a very capable analyzer component. Furthermore, certain parts
of our QoS Platform can be replaced or complemented with
common tools, e.g., from the microservices eco system. For
example, Netflix’s Hystrix could be used to implement a
BaseMeasure or Prometheus to implement DerivedMeasures.
This flexibility in our architecture with the general concept
given by our SOA Quality Model offers new opportunities for
our partner companies.

Already in previous work [2] [3], we presented our general
measurement concept, an initial business process (the ’check
24’ Proposal Service insurance use case, a basic business
relevant scenario), and our information model and concept. The
core contributions of the present article are implementation
details of our approach.

Therefore, in Section IV, we dive deeply into design and
operation of the QoS Generator. In Section V, implementation
details of the generated artifacts – e.g., event model, agent,
measurement module, and analyzer module – are described in
depth.

Our ongoing work of applying the QoS System to an
application scenario relevant to our partner in the insurance
industry (the so called ’Check 24 process’), will provide
evidence of the practical usability of the created framework.
Furthermore, a more thorough evaluation will be the main part
of our future work.

To this end, we designed and implemented a simulation
environment based on the QoS System and applied to the
partner’s system architecture. The simulation environment will
be feed with real data, i.e., the number of requests per unit of
time over the day, to perform measurement and analysis.

It is expected that our monitoring system will help to
discover potential bottlenecks in the current system design of
our partner’s distributed services. Therefore, it will create value
in the process of solving these issues.

In future work, we have planned to apply our existing work
to the more complex insurance process ’Angebot erstellen’
(’create individual proposal’) of the VAA [28]. Thus, we will
implement a more complex insurance scenario. Moreover, the
actual measurement and analysis of the results are an ongoing
process, which is yet to be finalized.

We also have plans to apply these results onto cloud-based
environments. Furthermore, a deeper subdivision or extraction,
from the current coarse granular SOA services into fine-grained
microservices, will be investigated by us in future work ’where
it makes sense’, for e.g., to allow for a better scalability of
individual microservices.

REFERENCES

[1] A. Hausotter, A. Koschel, J. Busch, and M. Zuch, ”A Generic Mea-
surement Model for Service-based Systems,” in: The 10th International
Conferences on Advanced Service Computing (Service Computation),
IARIA, Barcelona, Spain, 2018, pp. 12-18.

[2] A. Hausotter, A. Koschel, J. Busch, M. Petzsch, and M. Zuch, ”Im-
plementing a Framework for QoS Measurement in SOA – A Uniform
Approach Based on a QoS Meta Model,” in: IARIA Intl. Journal On
Advances in Software, 10(3,4), 2017, pp. 251-262.

[3] A. Hausotter, A. Koschel, J. Busch, M. Petzsch, and M. Zuch, ”Agent
based Framework for QoS Measurement Applied in SOA,” in: The 9th
International Conferences on Advanced Service Computing (Service
Computation), IARIA, Athens, Greece, 2017, pp. 16-23.

281

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] T. Bergemann, A. Hausotter, and A. Koschel, ”Keeping Workflow-
Enabled Enterprises Flexible: WfMS Abstraction and Advanced Task
Management,” in: 4th Intl. Conference on Grid and Pervasive Comput-
ing Conference (GPC), 2009, pp. 19-26.

[5] C. Gäth, A. Hödicke, S. Marth, J. Siedentopf, A. Hausotter, and A.
Koschel, ”Always Stay Agile! – Towards Service-oriented Integration
of Business Process and Business Rules Management,” in: The Sixth
International Conferences on Advanced Service Computing (Service
Computation), IARIA, Venice, Italy, 2014, pp. 40-43.

[6] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken,
”Always Stay Flexible! WfMS-independent Business Process Control-
ling in SOA,” in: IEEE EDOCW 2011: Workshops Proc. of the 15th
IEEE Intl. Enterprise Distributed Object Computing Conference, IEEE:
Helsinki, Finnland, 2011, pp. 184-193.

[7] A. Koschel and R. Kramer, ”Configurable Event Triggered Services for
CORBA-based Systems,” Proc. 2nd Intl. Enterprise Distributed Object
Computing Workshop (EDOC’98), San Diego, U.S.A, 1998, pp. 1-13.

[8] M. Schaaf, I. Astrova, A. Koschel, and S. Gatziu, ”The OM4SPACE
Activity Service - A semantically well-defined cloud-based event notifi-
cation middleware,” in: IARIA Intl. Journal On Advances in Software,
7(3,4), 2014, pp. 697-709.

[9] B. Schroeder, ”On-Line Monitoring: A Tutorial,” IEEE Computer,
28(6), pp. 72-80, 1995.

[10] S. Schwiderski, ”Monitoring the Behavior of Distributed Systems,”
PhD thesis, Selwyn College, University of Cambridge, University of
Cambridge, Computer Lab, Cambridge, United Kingdom, 1996.

[11] Dynatrace LLC, ”Dynatrace Application Monitoring,” [Online].
URL: https://www.dynatrace.com/de/products/application-monitoring.
html [accessed: 2017-12-06].

[12] Nagios.ORG, ”Nagios Core Editions,” [Online]. URL: https://www.
nagios.org/ [accessed: 2016-12-26].

[13] N. W. Paton (ed.), ”Active Rules for Databases,” Springer, New York,
1999.

[14] ACT-NET Consortium, ”The Active DBMS Manifesto,” ACM SIG-
MOD Record, 25(3), 1996.

[15] M. Garcia-Valls, P. Basanta-Val, M. Marcos, and E. Estévez, ”A
bi-dimensional QoS model for SOA and real-time middleware,” in:
Intl. Journal of Computer Systems Science and Engineering, CLR
Publishing, 2013, pp. 315-326.

[16] V. Krishnamurthy and C. Babu, ”Pattern Based Adaptation for Service
Oriented Applications,” in: ACM SIGSOFT Softw. Eng. Notes 37,
2012(1), 2012, pp. 1-6.

[17] T. Frotscher, G. Starke (ed.), and S. Tilkov (ed.), ”Der Webservices-
Architekturstack,” in: SOA-Expertenwissen, Heidelberg, dpunkt.verlag,
2007, pp. 489-506.

[18] F. Curbera, R. Khalaf, and N. Mukhi, ”Quality of Service in SOA
Environments. An Overview and Research Agenda,” in: it - Information
Technology 50, 2008(2), 2008, pp. 99-107.

[19] S.W. Choi, J.S. Her, and S.D. Kim, ”QoS Metrics for Evaluating
Services from the Perspective of Service Providers,” in: Proc. of the
IEEE International Conference on e-Business Engineering, Washington
DC, USA : IEEE Computer Society (ICEBE’07), 2007, pp. 622-625.

[20] Z. Balfagih and M.F. Hassan, ”Quality Model for Web Services
from Multi-stakeholders’ Perspective,” in: Proceedings of the 2009
International Conference on Information Management and Engineering,
Washington DC, USA : IEEE Computer Society (ICIME’09), 2009, pp.
287-291.

[21] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj, ”Integrated
Quality of Service (QoS) Management in Service-Oriented Enterprise
Architectures,” in: Proceedings of the 8th IEEE Intl. Enterprise Dis-
tributed Object Computing Conference (EDOC’04), Washington DC,
USA, IEEE, 2004, pp. 21-32.

[22] M. Varela, L. Skorin-Kapov, F. Guyard, and M. Fiedler, ”Meta-
Modeling QoE,” PIK-Praxis der Informationsverarbeitung und Kom-
munikation, 2014, Vol. 37(4), pp. 265-274.

[23] R.W. Maule and W.C. Lewis, ”Performance and QoS in Service-Based
Systems,” Proc. of the 2011 IEEE World Congress on Services, IEEE
Computer Society, 2011, pp. 556-563.

[24] B. Wetzstein et al., ”Monitoring and Analyzing Influential Factors

of Business Process Performance,” in: Proc. IEEE Intl. Enterprise
Distributed Object Computing Conf. (EDOC’09), 2009, pp. 141-150.

[25] F. Rosenberg, C. Platzer, and S. Dustdar, ”Bootstrapping Performance
and Dependability Attributes of Web Services,” in: Proc. International
Conference on Web Services (ICWS’06), 2006, pp. 205-212.

[26] M. Schmid, J. Schaefer, and R. Kroeger, ”Ein MDSD-Ansatz zum QoS-
Monitoring von Diensten in Serviceorientierten Architekturen,” in: PIK
Praxis der Informationsverarbeitung und Kommunikation, 31 (2008) 4,
2008, pp. 232-238.

[27] S.M.S. da Cruz, R.M. Costa, M. Manhaes, and J. Zavaleta, ”Monitoring
SOA-based Applications with Business Provenance,” Proc. of the 28th
Annual ACM Symposium on Applied Computing (ACM SAC), ACM,
2013, pp. 1927-1932.

[28] GDV (Gesamtverband der Deutschen Versicherungswirtschaft e.V. –
General Association o.t. German Insurance Industry), ”Die Anwen-
dungsarchitektur der Versicherungswirtschaft: Das Objektorientierte
Fachliche Referenzmodell (The application architecture of the German
insurance business – The functional object-oriented reference model,”
VAA Final Edt. Vers. 2.0, 2001, [Online]. URL: http://www.gdv-online.
de/vaa/vaafe html/dokument/ofrm.pdf [accessed: 2017-01-11].

[29] ISO - International Organization for Standardization (ed.), ”ISO/IEC
25010:2011 - Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software
quality models,” 2011.

[30] M. Azuma, ”SQuaRE: the next generation of the ISO/IEC 9126 and
14598 international standards series on software product quality, ” in:
Proc. of European Software Control and Metrics (ESCOM), 2001, pp.
337-346.

[31] The Apache Software Foundation, ”The Apache Velocity Project,”
[Online]. URL: https://velocity.apache.org// [accessed: 2018-08-15].

[32] ISO - International Organization for Standardization (ed.), ”ISO/IEC
15939:2007 - Systems and software engineering - Measurement pro-
cess,” 2007.

