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Abstract—In this paper, inertial contact sensor-based terrain 

classification is performed with a Radial basis function 

network. Compared to the more popular Multilayer 

perceptrons, Radial basis function networks are also intelligent 

techniques and universal approximators, but with a much 

simpler structure and shorter training time. It has been shown 

that Radial basis function networks are efficient classifiers 

and, consequently may be used for terrain classification. For 

the experiments, a mobile robot platform recorded vibration 

training data with an inertial measurement unit while 

traversing five different terrains: asphalt, carpet, dirt, paving, 

and tiles. The composition of these terrains induces specific 

vibrations in the mobile platform, which are measured by the 

inertial measurement unit. The vibration signatures comprise 

the mobile robot’s linear acceleration, orientation, and the 

earth’s magnetic field. In contrast to most terrain classification 

techniques found in literature, no pre-processing of the data is 

performed. This reduces the computational overhead needed 

for real-time classification. A Radial basis function network is 

then trained using a hybrid conjugate gradient descent method 

and k-fold cross-validation. Identification of the terrain is 

performed in real time. The classification capability is 

empirically compared to that obtained by a Multilayer 

perceptron, a Naïve Bayes method and a Support Vector 

Machine, which have also been successfully applied to terrain 

classification in literature. It was found that the Radial basis 

function network outperformed the Support Vector Machine 

and Naïve Bayes techniques by a relatively large margin. The 

Multilayer perceptron, although performing slightly better 

than the Radial basis function network, has some 

disadvantages compared to the Radial basis function network. 

Consequently, the Radial basis function network, with no pre-

processing of the input data, may be used successfully as an 

alternative contact sensor-based terrain classification method. 

Keywords–classification; inertial measurement unit; MLP; 

RBFN; sensor; terrain classification. 

I.  INTRODUCTION 

Mobile robots are employed on various types of terrain 
[1] in many different operational fields, such as supply and 
logistics, surveillance, search and rescue missions, 
agricultural applications, transportation, cleaning, inspection 
and entertainment [2][3]. For these operations, it may be 
necessary to traverse some indoor or off-road terrain which 
might influence the vehicle’s performance. The efficiency of 
these vehicles can be improved by their detection of their 

environment. This act of identifying the type of terrain being 
traversed from a list of candidate terrains such as dirt, sand, 
or gravel, is called terrain classification [4].  

Factors, such as friction, cohesion, damping, stiffness and 
surface irregularity comprise the terrain interface that is 
presented to the mobile robot [5]. It may be beneficial to 
identify the current terrain type as the terrain conditions may 
have an influence on both the planning stages and motion 
control of the vehicle’s trip. Once the mobile robot’s control 
system has knowledge of the surface on which it is 
travelling, it will be easier to maneuver over uneven terrain 
or around obstacles, which allows the vehicle to traverse the 
terrain most effectively. In particular, awareness of the 
terrain type will enable the vehicle to drive at higher speeds, 
enable the mobile robot to choose an appropriate driving 
mode, prevent physical damage, keep wheels from sinking 
into the ground and obtain an automated driving process 
which is terrain-dependent. 

Research on the identification of terrain types can be 
divided into two groups: methods relying on noncontact 
sensors [4] - [8] and methods utilizing contact sensors [9] - 
[12]. Examples of noncontact sensors are vision sensors and 
laser scanners. A vision sensor, such as a charge-coupled 
device (CCD) camera, uses techniques that extract textures 
and colors from the sensor data to classify this information 
into variable terrains, like forests and the sky. Unfortunately, 
the performance of these techniques is highly dependent on 
environmental factors, such as lighting conditions and 
climate effects and consequently, the sensor information can 
be distorted. Laser scanner sensor data that are obtained from 
a terrain are converted into frequency information. Learning 
algorithms then use this information to classify the terrain. A 
disadvantage of such a method is that it needs numerous data 
points which may hinder real-time classification. As the 
mobile robot traverses the specific terrain, these terrain 
properties combined with the robot dynamics produce 
vibrational signatures in body motion. Methods based on 
contact sensors, however, classify a terrain using sensor 
information, such as the vibration frequency or the slope 
ratio of the mobile robot’s body into the terrain type.  

The aim of this paper is to perform terrain classification 
using a Radial basis function network (RBFN) and then to 
compare the results to a Multilayer perceptron (MLP) neural 
network [13], the Naïve Bayes method and the Support 
Vector Machine (SVM) technique, which have also been 
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successfully applied to this problem to provide context. The 
main focus, however, is on the comparison between the 
RBFN and the MLP and, consequently only these two 
methods will be discussed in detail. 

Broomhead and Lowe [14] proposed the RBFN in 1988. 
This type of neural network model forms a unifying link 
among many different research fields, such as pattern 
recognition, regularization, function approximation, noisy 
interpolation, and medicine. The model has become 
increasingly popular due to its topological structure and 
neurons that are tuned locally. In addition, it has become a 
good alternative to the MLP, since it has capabilities 
equivalent to those of the MLP model, but with a simpler 
structure and can be trained much faster. Previous studies 
have shown that RBFNs in general are efficient classifiers 
[2][15]. In one study in particular [2], a RBF network has 
been used for terrain classification where a Discrete Fourier 
transform was implemented to perform feature extraction. 
Unfortunately, such pre-processing of the data is a time-
consuming task, which may prevent the real-time 
identification of the terrain.  

The MLPs that are trained by the backpropagation rule is 

one of the most important neural network techniques used 

for nonlinear modeling [16]. Their greatest benefit is that no 

a priori knowledge of the particular functional form is 

required. Feedforward MLPs are mostly utilized to estimate 

relationships between input and target variables. They often 

exhibit superior performance in comparison to more 

classical methods. In contrast to common belief, they are not 

a black box tool. The scientific understanding of empirical 

phenomena subject to neural network modeling can be 

considerably enhanced. Formal statistical inference can be 

performed using estimates obtained from neural network 

learning as the basis. Statistical tests of specific scientific 

hypotheses that are of interest become possible. The 

capability of MLPs to extract interactive and complex 

nonlinear effects extends the power of such tests beyond 

those possible with more traditional methods, such as linear 

regression analysis. 
Terrain classification will be performed based on real-

time vibration data obtained from an inertial measurement 
unit (IMU) contact sensor. No pre-processing of the data as 
reported in some previous studies is performed. The 
assumption is that the output of the IMU sensor is influenced 
by the vibrations induced in the platform while traversing 
different terrains. The test vehicle, a Lego Mindstorms EV3 
mobile robot, is augmented by an IMU mounted on a 
Raspberry Pi 2 computer. Data that is collected from the 
IMU on the moving test vehicle is used as the terrain 
signature. This signature will then be classified as one of five 
predetermined terrains - asphalt, carpet, dirt, paving, or tiles. 

The remainder of the paper is organized as follows. In 
Section II, the relatively simple structure and training of the 
RBFN will be discussed. A variant of the gradient descent 
method is used for training. The well-known MLP 
architecture and backpropagation training algorithm are 
considered in Section III. Specific issues related to artificial 
neural network model building are examined in Section IV. 

Experiments performed to determine the accuracy of terrain 
classification using a RBFN, an MLP, the Naïve Bayes 
method and an SVM model will be considered in Section V. 
The results that were obtained will be examined in Section 
VI. Finally, some concluding remarks and future work will 
be presented in Section VII. 

II. RADIAL BASIS FUNCTION NETWORKS 

In this section, the RBFN architecture and training of the 

model will be considered. 

A. Architecture 

A RBFN is a feedforward neural network with three 

layers (𝐽1 − 𝐽2 − 𝐽3) [15][17][18] as shown in Figure 1. In 

the input, hidden and output layers there are 𝐽1 , 𝐽2  and 𝐽3 

neurons, respectively. The bias in the output layer is denoted 

by 𝜙0(�⃗�) = 1 while the nonlinearity at the hidden nodes is 

denoted by the 𝜙𝑘(�⃗�) ’s. Each hidden layer node uses a 

Radial basis function (RBF), denoted by 𝜙(𝑟)  for its 

nonlinear activation function. The hidden layer performs a 

nonlinear transformation of the input. This nonlinearity is 

then mapped into a new space by the output layer which acts 

as a linear combiner. Normally, all hidden nodes utilize the 

same RBF; the RBF nodes have the nonlinearity 𝜙𝑘(�⃗�) =
𝜙(�⃗� − 𝑐𝑘), 𝑘 = 1, … , 𝐽2,  where 𝑐𝑘  denotes the center or 

prototype of the kth node and 𝜙(�⃗�) is an RBF. An extra 

neuron in the hidden layer can model the biases of the 

output layer neurons. This neuron has a constant activation 

function 𝜙0(𝑟) = 1. The RBFN determines a global optimal 

solution for the adjustable weights in the minimum mean 

square error (MSE) sense by using the method of linear 

optimization. The output of the RBF network, provided by 

input �⃗�, is given by 

 

 

𝑦𝑖(�⃗�) = ∑ 𝑤𝑘𝑖𝜙(‖�⃗� − 𝑐𝑘‖

𝐽2

𝑘=1

), 𝑖 = 1, … , 𝐽3, 

 

  (1) 

where 𝑦𝑖(�⃗�)  is the ith output, 𝑤𝑘𝑖  denotes the connection 

weight from the kth hidden neuron to the ith output unit, and 

‖∙‖  is the Euclidian norm. The RBF usually utilizes the 

Gaussian function 𝜙(∙) and such a model is normally called 

the Gaussian RBF network.  

 

 
 

 

 

 

 

 

Figure 1. RBF network architecture [16] 
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Given a set of N pattern pairs {(�⃗�𝑝, �⃗�𝑝)|𝑝 = 1, … , 𝑁}, (1)  

can be expressed in matrix form as 

 

 𝒀 = 𝑊𝑇Φ (2) 

 

where 𝑾 = [𝑤1, … , 𝑤𝐽3
]  is a 𝐽2 × 𝐽3  matrix, �⃗⃗⃗�𝑖 =

(𝑤1𝑖 , … , 𝑤𝐽2𝑖)
𝑇

, Φ = [�⃗⃗�1, … , �⃗⃗�𝑁]  is a 𝐽2 × 𝑁  matrix, �⃗⃗�𝑝 =

(𝜙𝑝,1, … , 𝜙𝑝,𝐽2
)

𝑇
is the hidden layer output for the pth 

sample, specifically,  𝜙𝑝,𝑘 = 𝜙(‖�⃗�𝑝 − 𝑐𝑘‖),  𝒀 =

 [𝑦1 𝑦2  … 𝑦𝑁] is a 𝐽3 × 𝑁 matrix, and �⃗�𝑝 = (𝑦𝑝,1, … , 𝑦𝑝,𝐽3
)

𝑇
. 

The RBFN is a universal approximator [17]. If the RBF 

is appropriately chosen, the RBF network can theoretically 

approximate any continuous function arbitrarily well. The 

Gaussian RBF is expressed as 𝜙(𝑟) = exp (−𝑟2/2𝜎2) 

where 𝑟 > 0 represents the distance from a data point �⃗� to a 

center 𝑐 and 𝜎 is utilized to control the smoothness of the 

interpolating function. The Gaussian RBF is a localized 

RBF with the property that 𝜙(𝑟) → 0 as 𝑟 → ∞.  

Training of a RBFN is usually performed by a two-

phase strategy. During the first phase, suitable centers 𝑐𝑘 

and their corresponding standard deviations, 𝜎𝑘, also known 

as widths or radii are determined. The network weights 𝑾 

are adjusted in the second phase. The training approach that 

is followed in this research is the supervised learning of all 

the parameters by the relatively simple gradient descent 

method.  

B. Training 

There is one output unit for each of the five terrain class 
values (asphalt, carpet, dirt, paving, and tiles). The model 
trained for the ith output unit (class value) is given by: 

 
 𝑦𝑖(𝑥1, 𝑥2, … , 𝑥𝑚) = 

𝑔 (𝑤𝑖,0 + ∑ 𝑤𝑖,𝑘exp (− ∑
(𝑥𝑗 − 𝑐𝑘)

2

2𝜎𝑔𝑙𝑜𝑏𝑎𝑙
2

𝑚

𝑗=1

)

𝑏

𝑘=1

) , 

 

 
 

(3) 

where the activation function 𝑔(∙) is a logistic function [19]. 
A Gaussian RBF network with the same global variance 
parameter 𝜎𝑔𝑙𝑜𝑏𝑎𝑙  for all RBF centers still has universal 

approximation capability [17]. The appropriate parameter 
values for 𝑤𝑖,𝑘  and 𝜎𝑔𝑙𝑜𝑏𝑎𝑙  are found by identifying a local 

minimum of the penalized squared error on the training data. 
Given 𝑝 classes, the error function can be expressed as 
  

𝐿𝑆𝑆𝐸 = (
1

2
∑ ∑ (𝑦𝑘,𝑖 − 𝑓𝑖(�⃗�𝑘))

2
𝑝

𝑖=1

𝑛

𝑘=1

)

+ (𝜆 ∑ ∑ 𝑤𝑖,𝑘
2

𝑏

𝑘=1

𝑝

𝑖=1

),  

 

 
 
 
 

(4) 

where 𝑦𝑘,𝑖 = 0.99 if data point �⃗�𝑖 has the ith class value, and 

𝑦𝑘,𝑖 = 0.01  otherwise. Instead of using 1.0 and 0.0, the 

values 0.99 and 0.01 are used to aid the optimization process. 

Additionally, in (4), 𝐿𝑆𝑆𝐸 ,  is divided by 𝑛,  the number of 
training data points, as this was determined through 
empirical observation to improve convergence with the 
optimization methods used [20]. Standard calculus is utilized 
to find the corresponding partial derivatives, which consist of 
the gradients of the error function with respect to the network 
parameters. Backpropagation is employed to calculate the 
partial derivatives in the same manner as in Multilayer 
perceptrons. The hybrid conjugate gradient descent method 
specified by [21] is used for training. 

Initialization of the network parameters is another 

important aspect of the training procedure. The initial 

weights of the output layer are sampled from 𝒩(0, 0.1) . 

This strategy was empirically determined based on the 

familiar heuristic of choosing small, randomly distributed 

initial weights [20]. 

As the k-means algorithm is often used to train the 

hidden layer of the RBFN in an unsupervised process, it is 

utilized to determine the initial hidden unit centers 𝑐𝑘 . 

Furthermore, the initial value of the variance parameter 

𝜎𝑔𝑙𝑜𝑏𝑎𝑙  is set to the maximum squared Euclidian distance 

between any pair of cluster centers. This ensures that the 

initial value of the variance parameter is not too small. The 

learning process is accelerated on a multi-core computer by 

parallelizing the calculation of the error function and its 

gradient on a user-specified number of threads.  

Artificial neural networks (ANNs) such as RBFNs and 

MLPs can be considered as techniques that lie in machine 

learning middle ground, somewhere between artificial 

intelligence and engineering [22]. They use heuristic 

methods, because very often there is no theoretical basis to 

support the decisions about the ANN implementation, as 

well as mathematical techniques, such as mean-square error 

minimization. ANNs are comprised of a large class of 

various architectures. The RBFN and MLP are two of the 

most widely used neural network architectures in literature 

for regression and classification problems [23]. To put the 

application of the RBFN on terrain classification in context, 

an MLP constructed for the same purpose is also examined. 

Both types of neural network structures are good in pattern 

classification problems and also robust classifiers with the 

ability to generalize for imprecise input data. A general 

difference between the RBFN and MLP is that the RBFN 

performs a local type of learning, which is responsive only 

to a limited section of the input space. In contrast, the MLP 

is a more distributed type of approach. The output of an 

RBFN is produced by mapping distances between the input 

vectors and center vectors to outputs through a radial 

function, whereas the MLP output is produced by linear 

combinations of the outputs of hidden layer nodes in which 

a weighted average of the inputs is mapped by every neuron 

through a sigmoid function. In the next section, the MLP 

architecture and training procedure are considered. 
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III. MULTILAYER PERCEPTRONS 

Similar to a RBFN, the MLP neural network is capable 

of arbitrary input-output mapping [24]. With its powerful 

universal approximation capability, it has been shown that 

MLPs with an appropriate number of hidden neurons can 

implement any continuous function. The MLP is extensively 

used in classification, regression, prediction, system 

identification, control, feature extraction, and associative 

memory. An MLP, like a RBFN, is estimated by a 

supervised procedure where the network constructs the 

model based on examples in the data with known outputs. 

A. Architecture 

In most cases, an MLP has several layers of nodes. 

External information is received at the first or lowest layer. 

The problem solution is obtained at the highest layer which 

is an output layer. Between the input layer and output layer 

there are one or more intermediate layers called the hidden 

layers. The number of hidden layers is a very important 

parameter in the network. Bordering nodes are normally 

fully connected from a lower layer to a higher layer. No 

lateral connection between neurons in the same layer, or 

feedback connection is possible. The MLP estimates a 

functional relationship, which can be written as 𝑦 =
𝑓(𝑥1, 𝑥2, … , 𝑥𝑚),  where 𝑥1, 𝑥2, … , 𝑥𝑚  are m independent 

variables and y is the dependent variable. Functionally, the 

MLP in this sense is equivalent to a nonlinear multiple 

regression model. 

A single hidden layer MLP network with h neurons 

(Figure 2) and c outputs has the following form: 

 
 𝑦𝑐(𝑥1, 𝑥2, … , 𝑥𝑚) = 

𝑔 (𝑤0 + ∑ 𝑤𝑘tanh (𝑤0𝑘 + ∑ 𝑤𝑗𝑘𝑥𝑗

𝑚

𝑗=1

)

ℎ

𝑘=1

),   

 
 

(5) 

 

where 𝑔(∙) is the activation function, and 𝑤𝑖 , 𝑤𝑗𝑘  the 

weights.  
 

 
Figure 2. MLP network architecture 

 

The model in (5) can be expressed in matrix form as 𝑦𝑐 =
𝑔(𝑾𝒙 + 𝒃),  where 𝑦𝑐  is the output, 𝑔(∙)  the activation 

function, 𝑾 = [

𝑤1,1 … 𝑤1,𝑚

… … …
𝑤ℎ,1 … 𝑤ℎ,𝑚

]  a [𝐻 × 𝑀] weight 

matrix, 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑚]  the input vector, and 𝒃 =
[𝑏1, 𝑏2, … , 𝑏ℎ] the bias vector [18].  

B. Training 

The backpropagation algorithm used to train an MLP 

was first discovered by [25] and later popularized by [26]. 

During the training phase, a set of input-output pairs is 

utilized for training and is repeatedly presented to the 

network. When training is stopped, the performance of the 

network is tested. The learning algorithm includes a 

forward-propagating step, followed by a backward-

propagating step. On the whole, the algorithm is as follows: 

 

input: training set, weight vector w 

output: optimal weight vector w* 

repeat 

repeat 

repeat 

Initialize the weights w to small random 

values. 

Select an instance t, which is a data point from 

the training set. 

Apply the network input vector to the network. 

Calculate the network output vector z. 

For each of the outputs c, calculate the errors, 

which is the difference (δ) between the target 

output and the network output. 

Minimize this error by calculating the 

necessary updates for the weights (Δw). 

Add the calculated weights’ updates (Δw) to 

the accumulated total updates (ΔW). 

        until number of instances comprises an epoch 

Adjust the weights (w) of the network by ΔW. 

until all instances in the training set are considered. 

This forms one iteration. 

until the error for the entire system (error δ or cross-

validation set error) is satisfactorily low, or a pre-defined 

number of iterations is completed. 

 
Algorithm 1. Backpropagation algorithm 

During training, the backpropagation algorithm performs 

gradient descent on the error surface by adjusting each 

weight in proportion to the gradient of the error surface at its 

location. It is well known that gradient descent can 

sometimes cause networks to get stuck in a local minimum 

in the error surface should such a local minimum exist. 

These local minima correspond to a partial solution for the 

network given the training data. At best, a global minimum 

is desired (the lowest error value possible), however, the 

local minima are surrounded by higher error values and the 

network usually does not escape these local minima by 

employing the standard algorithm. To get out of a local 

minimum, special techniques should be used. These include 
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varying the number of hidden units, changing the learning 

parameter (𝛼), but especially by using the momentum term 

(𝜂) in the algorithm. This term is generally chosen between 

0 and 1. Taking into account the momentum term, the 

formula for modifications of weights at epoch t + 1 is given 

by 

 

 

Δ𝑤𝑘𝑗(𝑡 + 1) = 𝜂𝛿𝑘𝑥𝑚 + 𝛼Δ𝑤𝑘𝑗(𝑡),    (6) 

 

 

  

where j denotes the specific neuron. The network can 

oscillate, or more seriously, get stuck in a local minimum 

with incorrect values of these parameters. 

Regardless of the many favorable characteristics of 

ANNs, constructing a neural network model for a particular 

problem is a nontrivial task [24]. Modeling issues that have 

an effect on the performance of an ANN must be carefully 

taken into account to ensure the successful application of the 

ANN. These issues are briefly examined next. 

IV. ARTIFICIAL NEURAL NETWORK MODELING ISSUES 

One of the critical decisions that must be made when 

building an ANN model is to determine a suitable 

architecture, specifically the number of layers, the number 

of nodes in each of the layers, and the number of 

connections that join the nodes. Additional network design 

decisions comprise the choice of activation functions for the 

hidden and output nodes, the training algorithm, data 

normalization or transformation methods, training and test 

data sets, and performance metrics. 

A. Network architecture 

An ANN is normally formed by layers of nodes. All the 

input nodes are grouped in the input layer, all the output 

nodes are in the output layer and the hidden nodes are 

allocated in one or more hidden layers in the middle. When 

constructing the ANN, the following variables must be 

determined: 

 the number of input nodes; 

 the number of hidden layers and hidden nodes; and 

 the number of output nodes. 

Selection of these parameters is inherently dependent on the 

problem. Many different methods to determine the optimal 

architecture of an ANN exist, but many of these methods are 

relatively complex in nature and difficult to implement. 

Examples include the network information criterion [27], 

the polynomial time algorithm [28], the canonical 

decomposition technique [29] and the pruning algorithm 

[30][31]. In addition, none of these methods is able to 

guarantee the optimal solution for all problems. Currently, 

there is no simple explicit method to choose these 

parameters. The guidelines are either based on simulations 

obtained from limited experiments or heuristic in nature. 

Therefore, the design of an ANN can be considered more of 

an art than a science. 

A.1 Number of input nodes 

The number of input nodes coincide with the number of 

variables in the input vector used to model target values. 

Given a specific problem, the number of inputs is usually 

transparent and relatively easy to choose.  

A.2 Number of hidden layers and nodes 

Many successful applications of neural networks are 

highly dependent on the hidden layer(s) and nodes. The 

hidden nodes in the hidden layer(s) enable a neural network 

to detect features, capture patterns in the data and to perform 

complex nonlinear mappings between input and output 

variables. It is evident that without hidden nodes, simple 

perceptrons with linear output nodes are equivalent to linear 

statistical forecasting models. Since theoretical works show 

that a single layer is sufficient for ANNs to approximate any 

complex nonlinear function to any desired accuracy [32], a 

single hidden layer is often used for modeling purposes. 

Unfortunately, one hidden layer networks may involve a 

very large number of hidden nodes, which is undesirable in 

that the network generalization ability and training time will 

get worse. Two or more hidden layer MLPs may provide 

more benefits for some types of problem [33][34]. Many 

authors focus on this problem by considering more than one 

hidden layer. 

Determining the optimal number of hidden nodes is a 

crucial yet complicated issue. In most cases, networks with 

fewer hidden nodes are favored as they overfit less and 

usually have a better generalization ability. However, 

networks with too few hidden nodes may not have enough 

power to model and learn the data. There is no theoretical 

principle for choosing this parameter though a number of 

systematic approaches exist. Methods for increasing hidden 

nodes and pruning out unwanted hidden nodes have been 

proposed. A grid search method used to determine the 

optimal number of hidden nodes was put forward by [35]. 

The most common way to establish the number of hidden 

nodes is by means of experiments or trial-and-error. Various 

rules of thumb have also been suggested such as each 

weight should have at least ten input data points (referring 

to the sample size), and the number of hidden nodes should 

be determined by the number of input patterns. Some 

researchers have presented empirical rules to assist in 

avoiding the overfitting problem by restricting the number 

of hidden nodes [24]. Additionally, the number of hidden 

nodes was limited by a heuristic constraint by [36]. A 

number of practical guidelines exist in the case of the 

common one hidden layer networks, which include 
𝑛

2
 [37], 

2𝑛  [38] and 2𝑛 + 1  [39], where 𝑛  denotes the number of 

input nodes. Nevertheless, none of these heuristic choices 

works well for all problem contexts. 
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A.3 Number of output nodes 

As in the case of the number of input nodes, the number 

of output nodes is relatively easy to determine as it is 

directly related to the problem being modeled.  

B. Interconnection of nodes 

The behavior of a network is essentially determined by 

the connections between nodes. In most applications, the 

networks are fully connected with all nodes in one layer 

being connected to all the nodes in the next, higher layer, 

excluding the output layer. Sparsely connected networks 

[40] or direct connections between input nodes and output 

nodes [41] are, however, possible. The latter may be 

beneficial to predictive accuracy since it can be utilized to 

model the linear structure in the data and might increase the 

recognition power of the network.  

C. Activation function 

The activation function determines the relationship 

between the inputs and outputs of a neuron and the rest of a 

network. This function establishes a degree of nonlinearity 

that is valuable for most ANN applications. In theory, any 

differentiable function can be used as an activation function, 

but in practice, only a small number of activation functions 

are used. Some heuristic rules exist for the selection of the 

activation function. When learning about average behavior 

such as terrain classification, [42] suggests logistic 

activation functions.  

D. Training algorithm 

Training of a neural network is an unconstrained 

nonlinear minimization problem where weights of a network 

are iteratively adjusted to minimize the overall squared error 

or mean between the actual and desired output values for all 

the output nodes over all inputs patterns. Many different 

optimization methods to use for neural network training 

exist. Currently, there is no algorithm available to guarantee 

the global optimal solution for a general nonlinear 

optimization problem in a reasonable amount of time. In 

practice, all optimization algorithms suffer from the local 

optima problem. A solution to this problem is to use the 

available optimization method, which produces the “best” 

local optima if the true global solution is not available. The 

backpropagation algorithm is the most widely used training 

method. 

E. Data normalization 

Nonlinear activation functions such as the hyperbolic 

tangent function usually have a squashing role in restricting 

or compressing the possible output from a node to typically 

(0,1) or (-1, 1). Often, data normalization is performed 

before the training process begins. When nonlinear 

activation functions are used at the output nodes, the desired 

output values must be transformed to the range of the actual 

network outputs. Even when a simple linear output transfer 

function is utilized, it may still be beneficial to standardize 

the outputs together with the inputs to facilitate network 

learning, meet algorithm requirements and to avoid 

computational problems. Four methods to normalize inputs 

are presented by [43]: along channel (independent input 

variable) normalization, across channel (each input vector 

independently) normalization, mixed channel (combinations 

of along and across) normalization, and external 

normalization where all the training data are normalized into 

an explicit range. 

F. Training and test samples 

A training and test sample are typically involved when 

building an ANN model. The training sample is used for 

developing the model and the test sample for evaluating the 

predictive ability of the model. At times a set called the 

validation sample is also put to use to avoid the overfitting 

problem or to determine a stopping point for the training 

process. An important issue is the division of the data into 

the training and validation sets. One common approach is to 

use k-fold cross-validation [44] where a data set (𝒟)  is 

randomly split into k mutually exclusive subsets (the folds) 

𝒟1, 𝒟2, … , 𝒟𝑘. A model is then trained and tested k times; 

for each time 𝑡 ∈ {1, 2, … , 𝑘} , it is trained on 𝒟 ∖ 𝐷𝑡  and 

tested on 𝒟𝑡 . The cross-validation estimate of accuracy is 

the overall number of correct classifications divided by the 

number of instances in the data set. 

 

 

G. Performance measures 

In spite of many performance measures for an ANN 

model, such as training time and modeling time, the most 

important measure of performance is the prediction 

accuracy the model can produce beyond training data. 

Nevertheless, academics and practitioners do not universally 

accept a suitable measure of accuracy for a given problem. 

An accuracy measure is frequently defined in terms of the 

prediction error, which is the difference between the desired 

(actual) and the predicted value. There are a number of 

accuracy measures in the prediction literature and each has 

its advantages and limitations [45]. 

In the next section, the experiments that are performed 

to determine the RBFN terrain classification accuracy and 

comparison with an MLP, Naïve Bayes method and SVM 

will be discussed. Modeling issues in Section IV will be 

taken into account to construct the best RBFN and MLP 

architectures. 

 

 

V. EXPERIMENTAL DESIGN 

The aim of the experiments is to identify the type of 

terrain being traveled on by a mobile robot from a list of 

candidate terrains. Figure 3 shows the Lego Mindstorms 

EV3 experimental platform used in the investigation. The 

mobile robot has a Raspberry Pi 2 computer attached to the 
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front with a Sense HAT inertial measurement unit (IMU) in 

turn connected to the Raspberry Pi. The Sense HAT is 

readily available and includes the following sensors: a 

gyroscope, an accelerometer, and a magnetometer. The 

mobile robot platform is battery powered and moves on 

rubber treads. An additional battery pack (not shown) is 

mounted on top and powers the Raspberry Pi computer. The 

five terrain types used in the study are displayed in Figures 

4 to 8. 

 

 

 

 

 

 

 

 

 
 

Figure 3. Lego Mindstorms EV 3 mobile robot 

 

 

 

 

 

The terrain (asphalt, carpet, dirt, paving, or tiles) on 

which the mobile robot is currently travelling is identified in 

real time. The assumption is that the vibrations induced in 

the test vehicle and measured by the output of the IMU 

sensor represent a signature which can be used to accurately 

classify a terrain. The data for each terrain is sampled at an 

irregular rate of ≈ 16
2

3
 Hz for a 600-second duration. The 

RBFN is then trained offline using the RBFN training 

scheme discussed in Section II (B) and the MLP by the 

backpropagation algorithm discussed in Section III (B). 

Three outdoor terrains (asphalt, dirt, and paving) and two 

indoor terrains (carpet and tiles) were analyzed. 

 

 

 

 

 

 

Figure 4. Asphalt 

 
 

Figure 5. Carpet 

The RBFN architecture for this specific problem has five 

outputs that serve to identify the terrain type. Each of the 

output values 𝑦𝑖 ∈ [0,1] denotes the likelihood that a given 

signal presented as an input to the RBFN matches one of the 

five candidate terrains. In addition, the RBFN architecture 

has twelve inputs, which correspond to the dimension of the 

input signal data point. Each of these input signal data 

points received from the Sense HAT IMU can be denoted 

as: 

 

[𝑝 𝑟 𝑦 𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑔𝑥 𝑔𝑦 𝑔𝑧 𝑚𝑥  𝑚𝑦 𝑚𝑧], 

 

where 𝑝, 𝑟, and 𝑦 denote the pitch, roll and yaw (measured 

in degrees), 𝑎 is the linear acceleration (𝑚/𝑠2) measured in 

three dimensions (𝑎𝑥 , 𝑎𝑦  and 𝑎𝑧),  𝑔  is the rate of turn 

(degrees/seconds), also measured in three dimensions 

( 𝑔𝑥, 𝑔𝑦  and 𝑔𝑧)and 𝑚  denotes the earth’s magnetic field 
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(gauss), measured in three dimensions (𝑚𝑥, 𝑚𝑦 and 𝑚𝑧) of 

the mobile robot, respectively.  

 

 

 

 

 

 
 

Figure 6. Dirt 

 

 

 

 

 
 

Figure 7. Paving 

 

 
 

Figure 8. Tiles 

 

 

 

The Weka system [20] was used for data processing, 

presentation, classifier training and testing. The terrain 

classification training data set contained twelve inputs, five 

outputs and a total of 49993 IMU sensor samples.  

Before training started, all inputs in the data were 

normalized to the [0, 1] interval. This data was transformed 

back into the original space when predictions were 

produced. These same transformations were performed for 

new inputs when the predictions were made. 

For the experiments, 10-fold cross-validation was 

performed. Results obtained by the RBFN were compared to 

those found by the MLP model, and default SVM and Naïve 

Bayes techniques. The latter are two popular methods found 

in the literature used for supervised terrain classification 

[11][12]. Sigmoid activation functions were utilized for the 

hidden and output nodes of the MLP architecture. A grid 

search was applied to obtain the best number of RBFN and 

MLP hidden nodes and number of hidden layers for the 

MLP. Coincidentally, the best results were obtained with 

120 hidden nodes for both the RBFN and single hidden 

layer fully connected MLP. In the following section, the 

results will be discussed. 

VI. DISCUSSION 

 

The classification accuracy results obtained by the 

experiments are shown in Figure 9. 
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 Figure 9. Terrain classification results 

From the figure it can be observed that the machine 

learning algorithms, ordered from worst classification 

accuracy to best, are the Naïve Bayes, SVM, RBFN and 

MLP. The latter two techniques produced nearly the same 

classification accuracy with the MLP slightly outperforming 

the RBFN. The results presented in Figure 9 show that the 

RBFN is a feasible terrain classification technique compared 

to the former two models. Although the MLP exhibited a 

slightly higher classification performance than the RBFN, 

the results indicate the good predictive capability of the 

RBFN. In addition, the RBFN applied to terrain 

classification has the following advantages and 

disadvantages: 

 

 Compared to the MLP, the RBFN has less model 

complexity, exhibits better comprehensibility, is easier 

to construct due to its simpler fixed three-layer structure 

and has a fast learning algorithm. 

 Special techniques exist to increase the interpretability 

of RBFNs, thereby reducing the black box effect of 

neural networks in general [46]. 

 With regards to generalization, RBFNs can respond 

well for patterns which are not used for training [47]. 

 The stability of the designed RBFN model is enhanced 

by its strong tolerance to input noise [47]. 

 An ensemble of RBFN models can be constructed to 

increase the accuracy of a RBFN model. In some cases, 

this ensemble model can surpass an MLP model [48] in 

terms of classification accuracy. 

 No pre-processing of the input sensor data is performed 

as in some previous studies. 

 Classification of the terrain can be performed in real 

time because of the onboard IMU contact sensor. 

 In terms of predictive accuracy, the RBFN 

outperformed the Naïve Bayes technique and the SVM 

model by a relatively large margin. 

 A limitation of the RBFN model, however, is that it has 

greater difficulties if the number of hidden units is large 

and it is more sensitive to dimensionality [23]. 

 

Based on the small difference in classification accuracy 

between the RBFN and the MLP and the advantages of the 

RBFN, it can be concluded that it is reasonable to consider 

the RBFN as a competitive method for supervised terrain 

classification. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, real-time classification of five given 

terrains was performed with a RBFN. In contrast to some 

other techniques found in the literature, no pre-processing of 

the mobile robot platform’s IMU vibration sensor data was 

performed. Eliminating feature extraction reduces the 

computational overhead needed to identify the terrain in 

real-time. The results have shown that even without feature 

extraction, the RBFN is still a feasible model for contact 

sensor-based terrain classification compared to other 

popular models used for this task. It can be used as an 

alternative to the MLP model due to its simpler structure 

and shorter training times. The RBFN has the capability to 

accurately recognize complex vibration signature patterns 

and can easily adapt to new terrain signatures by providing 

the model with new training examples. Unfortunately, 

compared to the other techniques, offline training of the 

model can be time consuming. 

Future work includes a more detailed comparison with 

the existing methods. Metrics, such as latency (velocity) can 

be included in the results. Finally, an investigation into the 

feasibility of the RBFN model applied to other types of 

robots and how they must be adapted for this task can be 

performed. 
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