
396

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Application of a Radial Basis Function Network to Supervised Terrain

Classification

1Tiny du Toit and 2Hennie Kruger

School of Computer Science and Information Systems

North-West University

Potchefstroom, South Africa

e-mail: 1Tiny.DuToit@nwu.ac.za, 2Hennie.Kruger@nwu.ac.za

Abstract—In this paper, inertial contact sensor-based terrain

classification is performed with a Radial basis function

network. Compared to the more popular Multilayer

perceptrons, Radial basis function networks are also intelligent

techniques and universal approximators, but with a much

simpler structure and shorter training time. It has been shown

that Radial basis function networks are efficient classifiers

and, consequently may be used for terrain classification. For

the experiments, a mobile robot platform recorded vibration

training data with an inertial measurement unit while

traversing five different terrains: asphalt, carpet, dirt, paving,

and tiles. The composition of these terrains induces specific

vibrations in the mobile platform, which are measured by the

inertial measurement unit. The vibration signatures comprise

the mobile robot’s linear acceleration, orientation, and the

earth’s magnetic field. In contrast to most terrain classification

techniques found in literature, no pre-processing of the data is

performed. This reduces the computational overhead needed

for real-time classification. A Radial basis function network is

then trained using a hybrid conjugate gradient descent method

and k-fold cross-validation. Identification of the terrain is

performed in real time. The classification capability is

empirically compared to that obtained by a Multilayer

perceptron, a Naïve Bayes method and a Support Vector

Machine, which have also been successfully applied to terrain

classification in literature. It was found that the Radial basis

function network outperformed the Support Vector Machine

and Naïve Bayes techniques by a relatively large margin. The

Multilayer perceptron, although performing slightly better

than the Radial basis function network, has some

disadvantages compared to the Radial basis function network.

Consequently, the Radial basis function network, with no pre-

processing of the input data, may be used successfully as an

alternative contact sensor-based terrain classification method.

Keywords–classification; inertial measurement unit; MLP;

RBFN; sensor; terrain classification.

I. INTRODUCTION

Mobile robots are employed on various types of terrain
[1] in many different operational fields, such as supply and
logistics, surveillance, search and rescue missions,
agricultural applications, transportation, cleaning, inspection
and entertainment [2][3]. For these operations, it may be
necessary to traverse some indoor or off-road terrain which
might influence the vehicle’s performance. The efficiency of
these vehicles can be improved by their detection of their

environment. This act of identifying the type of terrain being
traversed from a list of candidate terrains such as dirt, sand,
or gravel, is called terrain classification [4].

Factors, such as friction, cohesion, damping, stiffness and
surface irregularity comprise the terrain interface that is
presented to the mobile robot [5]. It may be beneficial to
identify the current terrain type as the terrain conditions may
have an influence on both the planning stages and motion
control of the vehicle’s trip. Once the mobile robot’s control
system has knowledge of the surface on which it is
travelling, it will be easier to maneuver over uneven terrain
or around obstacles, which allows the vehicle to traverse the
terrain most effectively. In particular, awareness of the
terrain type will enable the vehicle to drive at higher speeds,
enable the mobile robot to choose an appropriate driving
mode, prevent physical damage, keep wheels from sinking
into the ground and obtain an automated driving process
which is terrain-dependent.

Research on the identification of terrain types can be
divided into two groups: methods relying on noncontact
sensors [4] - [8] and methods utilizing contact sensors [9] -
[12]. Examples of noncontact sensors are vision sensors and
laser scanners. A vision sensor, such as a charge-coupled
device (CCD) camera, uses techniques that extract textures
and colors from the sensor data to classify this information
into variable terrains, like forests and the sky. Unfortunately,
the performance of these techniques is highly dependent on
environmental factors, such as lighting conditions and
climate effects and consequently, the sensor information can
be distorted. Laser scanner sensor data that are obtained from
a terrain are converted into frequency information. Learning
algorithms then use this information to classify the terrain. A
disadvantage of such a method is that it needs numerous data
points which may hinder real-time classification. As the
mobile robot traverses the specific terrain, these terrain
properties combined with the robot dynamics produce
vibrational signatures in body motion. Methods based on
contact sensors, however, classify a terrain using sensor
information, such as the vibration frequency or the slope
ratio of the mobile robot’s body into the terrain type.

The aim of this paper is to perform terrain classification
using a Radial basis function network (RBFN) and then to
compare the results to a Multilayer perceptron (MLP) neural
network [13], the Naïve Bayes method and the Support
Vector Machine (SVM) technique, which have also been

397

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

𝑥1

𝜙0 = 1

𝜙1

⋮

𝑦1

𝑦2

⋮

𝑦𝑗3

𝒘

𝑥2

𝑥𝐽1
 𝜙𝐽2

⋮

successfully applied to this problem to provide context. The
main focus, however, is on the comparison between the
RBFN and the MLP and, consequently only these two
methods will be discussed in detail.

Broomhead and Lowe [14] proposed the RBFN in 1988.
This type of neural network model forms a unifying link
among many different research fields, such as pattern
recognition, regularization, function approximation, noisy
interpolation, and medicine. The model has become
increasingly popular due to its topological structure and
neurons that are tuned locally. In addition, it has become a
good alternative to the MLP, since it has capabilities
equivalent to those of the MLP model, but with a simpler
structure and can be trained much faster. Previous studies
have shown that RBFNs in general are efficient classifiers
[2][15]. In one study in particular [2], a RBF network has
been used for terrain classification where a Discrete Fourier
transform was implemented to perform feature extraction.
Unfortunately, such pre-processing of the data is a time-
consuming task, which may prevent the real-time
identification of the terrain.

The MLPs that are trained by the backpropagation rule is

one of the most important neural network techniques used

for nonlinear modeling [16]. Their greatest benefit is that no

a priori knowledge of the particular functional form is

required. Feedforward MLPs are mostly utilized to estimate

relationships between input and target variables. They often

exhibit superior performance in comparison to more

classical methods. In contrast to common belief, they are not

a black box tool. The scientific understanding of empirical

phenomena subject to neural network modeling can be

considerably enhanced. Formal statistical inference can be

performed using estimates obtained from neural network

learning as the basis. Statistical tests of specific scientific

hypotheses that are of interest become possible. The

capability of MLPs to extract interactive and complex

nonlinear effects extends the power of such tests beyond

those possible with more traditional methods, such as linear

regression analysis.
Terrain classification will be performed based on real-

time vibration data obtained from an inertial measurement
unit (IMU) contact sensor. No pre-processing of the data as
reported in some previous studies is performed. The
assumption is that the output of the IMU sensor is influenced
by the vibrations induced in the platform while traversing
different terrains. The test vehicle, a Lego Mindstorms EV3
mobile robot, is augmented by an IMU mounted on a
Raspberry Pi 2 computer. Data that is collected from the
IMU on the moving test vehicle is used as the terrain
signature. This signature will then be classified as one of five
predetermined terrains - asphalt, carpet, dirt, paving, or tiles.

The remainder of the paper is organized as follows. In
Section II, the relatively simple structure and training of the
RBFN will be discussed. A variant of the gradient descent
method is used for training. The well-known MLP
architecture and backpropagation training algorithm are
considered in Section III. Specific issues related to artificial
neural network model building are examined in Section IV.

Experiments performed to determine the accuracy of terrain
classification using a RBFN, an MLP, the Naïve Bayes
method and an SVM model will be considered in Section V.
The results that were obtained will be examined in Section
VI. Finally, some concluding remarks and future work will
be presented in Section VII.

II. RADIAL BASIS FUNCTION NETWORKS

In this section, the RBFN architecture and training of the

model will be considered.

A. Architecture

A RBFN is a feedforward neural network with three

layers (𝐽1 − 𝐽2 − 𝐽3) [15][17][18] as shown in Figure 1. In

the input, hidden and output layers there are 𝐽1 , 𝐽2 and 𝐽3

neurons, respectively. The bias in the output layer is denoted

by 𝜙0(�⃗�) = 1 while the nonlinearity at the hidden nodes is

denoted by the 𝜙𝑘(�⃗�) ’s. Each hidden layer node uses a

Radial basis function (RBF), denoted by 𝜙(𝑟) for its

nonlinear activation function. The hidden layer performs a

nonlinear transformation of the input. This nonlinearity is

then mapped into a new space by the output layer which acts

as a linear combiner. Normally, all hidden nodes utilize the

same RBF; the RBF nodes have the nonlinearity 𝜙𝑘(�⃗�) =
𝜙(�⃗� − 𝑐𝑘), 𝑘 = 1, … , 𝐽2, where 𝑐𝑘 denotes the center or

prototype of the kth node and 𝜙(�⃗�) is an RBF. An extra

neuron in the hidden layer can model the biases of the

output layer neurons. This neuron has a constant activation

function 𝜙0(𝑟) = 1. The RBFN determines a global optimal

solution for the adjustable weights in the minimum mean

square error (MSE) sense by using the method of linear

optimization. The output of the RBF network, provided by

input �⃗�, is given by

𝑦𝑖(�⃗�) = ∑ 𝑤𝑘𝑖𝜙(‖�⃗� − 𝑐𝑘‖

𝐽2

𝑘=1

), 𝑖 = 1, … , 𝐽3,

 (1)

where 𝑦𝑖(�⃗�) is the ith output, 𝑤𝑘𝑖 denotes the connection

weight from the kth hidden neuron to the ith output unit, and

‖∙‖ is the Euclidian norm. The RBF usually utilizes the

Gaussian function 𝜙(∙) and such a model is normally called

the Gaussian RBF network.

Figure 1. RBF network architecture [16]

398

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Given a set of N pattern pairs {(�⃗�𝑝, �⃗�𝑝)|𝑝 = 1, … , 𝑁}, (1)

can be expressed in matrix form as

 𝒀 = 𝑊𝑇Φ (2)

where 𝑾 = [𝑤1, … , 𝑤𝐽3
] is a 𝐽2 × 𝐽3 matrix, �⃗⃗⃗�𝑖 =

(𝑤1𝑖 , … , 𝑤𝐽2𝑖)
𝑇

, Φ = [�⃗⃗�1, … , �⃗⃗�𝑁] is a 𝐽2 × 𝑁 matrix, �⃗⃗�𝑝 =

(𝜙𝑝,1, … , 𝜙𝑝,𝐽2
)

𝑇
is the hidden layer output for the pth

sample, specifically, 𝜙𝑝,𝑘 = 𝜙(‖�⃗�𝑝 − 𝑐𝑘‖), 𝒀 =

 [𝑦1 𝑦2 … 𝑦𝑁] is a 𝐽3 × 𝑁 matrix, and �⃗�𝑝 = (𝑦𝑝,1, … , 𝑦𝑝,𝐽3
)

𝑇
.

The RBFN is a universal approximator [17]. If the RBF

is appropriately chosen, the RBF network can theoretically

approximate any continuous function arbitrarily well. The

Gaussian RBF is expressed as 𝜙(𝑟) = exp (−𝑟2/2𝜎2)

where 𝑟 > 0 represents the distance from a data point �⃗� to a

center 𝑐 and 𝜎 is utilized to control the smoothness of the

interpolating function. The Gaussian RBF is a localized

RBF with the property that 𝜙(𝑟) → 0 as 𝑟 → ∞.

Training of a RBFN is usually performed by a two-

phase strategy. During the first phase, suitable centers 𝑐𝑘

and their corresponding standard deviations, 𝜎𝑘, also known

as widths or radii are determined. The network weights 𝑾

are adjusted in the second phase. The training approach that

is followed in this research is the supervised learning of all

the parameters by the relatively simple gradient descent

method.

B. Training

There is one output unit for each of the five terrain class
values (asphalt, carpet, dirt, paving, and tiles). The model
trained for the ith output unit (class value) is given by:

 𝑦𝑖(𝑥1, 𝑥2, … , 𝑥𝑚) =

𝑔 (𝑤𝑖,0 + ∑ 𝑤𝑖,𝑘exp (− ∑
(𝑥𝑗 − 𝑐𝑘)

2

2𝜎𝑔𝑙𝑜𝑏𝑎𝑙
2

𝑚

𝑗=1

)

𝑏

𝑘=1

) ,

(3)

where the activation function 𝑔(∙) is a logistic function [19].
A Gaussian RBF network with the same global variance
parameter 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 for all RBF centers still has universal

approximation capability [17]. The appropriate parameter
values for 𝑤𝑖,𝑘 and 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 are found by identifying a local

minimum of the penalized squared error on the training data.
Given 𝑝 classes, the error function can be expressed as

𝐿𝑆𝑆𝐸 = (
1

2
∑ ∑ (𝑦𝑘,𝑖 − 𝑓𝑖(�⃗�𝑘))

2
𝑝

𝑖=1

𝑛

𝑘=1

)

+ (𝜆 ∑ ∑ 𝑤𝑖,𝑘
2

𝑏

𝑘=1

𝑝

𝑖=1

),

(4)

where 𝑦𝑘,𝑖 = 0.99 if data point �⃗�𝑖 has the ith class value, and

𝑦𝑘,𝑖 = 0.01 otherwise. Instead of using 1.0 and 0.0, the

values 0.99 and 0.01 are used to aid the optimization process.

Additionally, in (4), 𝐿𝑆𝑆𝐸 , is divided by 𝑛, the number of
training data points, as this was determined through
empirical observation to improve convergence with the
optimization methods used [20]. Standard calculus is utilized
to find the corresponding partial derivatives, which consist of
the gradients of the error function with respect to the network
parameters. Backpropagation is employed to calculate the
partial derivatives in the same manner as in Multilayer
perceptrons. The hybrid conjugate gradient descent method
specified by [21] is used for training.

Initialization of the network parameters is another

important aspect of the training procedure. The initial

weights of the output layer are sampled from 𝒩(0, 0.1) .

This strategy was empirically determined based on the

familiar heuristic of choosing small, randomly distributed

initial weights [20].

As the k-means algorithm is often used to train the

hidden layer of the RBFN in an unsupervised process, it is

utilized to determine the initial hidden unit centers 𝑐𝑘 .

Furthermore, the initial value of the variance parameter

𝜎𝑔𝑙𝑜𝑏𝑎𝑙 is set to the maximum squared Euclidian distance

between any pair of cluster centers. This ensures that the

initial value of the variance parameter is not too small. The

learning process is accelerated on a multi-core computer by

parallelizing the calculation of the error function and its

gradient on a user-specified number of threads.

Artificial neural networks (ANNs) such as RBFNs and

MLPs can be considered as techniques that lie in machine

learning middle ground, somewhere between artificial

intelligence and engineering [22]. They use heuristic

methods, because very often there is no theoretical basis to

support the decisions about the ANN implementation, as

well as mathematical techniques, such as mean-square error

minimization. ANNs are comprised of a large class of

various architectures. The RBFN and MLP are two of the

most widely used neural network architectures in literature

for regression and classification problems [23]. To put the

application of the RBFN on terrain classification in context,

an MLP constructed for the same purpose is also examined.

Both types of neural network structures are good in pattern

classification problems and also robust classifiers with the

ability to generalize for imprecise input data. A general

difference between the RBFN and MLP is that the RBFN

performs a local type of learning, which is responsive only

to a limited section of the input space. In contrast, the MLP

is a more distributed type of approach. The output of an

RBFN is produced by mapping distances between the input

vectors and center vectors to outputs through a radial

function, whereas the MLP output is produced by linear

combinations of the outputs of hidden layer nodes in which

a weighted average of the inputs is mapped by every neuron

through a sigmoid function. In the next section, the MLP

architecture and training procedure are considered.

399

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

𝑥1

𝑥𝑚

1

𝑦𝑐
⋮ ⋮

h

𝒘

III. MULTILAYER PERCEPTRONS

Similar to a RBFN, the MLP neural network is capable

of arbitrary input-output mapping [24]. With its powerful

universal approximation capability, it has been shown that

MLPs with an appropriate number of hidden neurons can

implement any continuous function. The MLP is extensively

used in classification, regression, prediction, system

identification, control, feature extraction, and associative

memory. An MLP, like a RBFN, is estimated by a

supervised procedure where the network constructs the

model based on examples in the data with known outputs.

A. Architecture

In most cases, an MLP has several layers of nodes.

External information is received at the first or lowest layer.

The problem solution is obtained at the highest layer which

is an output layer. Between the input layer and output layer

there are one or more intermediate layers called the hidden

layers. The number of hidden layers is a very important

parameter in the network. Bordering nodes are normally

fully connected from a lower layer to a higher layer. No

lateral connection between neurons in the same layer, or

feedback connection is possible. The MLP estimates a

functional relationship, which can be written as 𝑦 =
𝑓(𝑥1, 𝑥2, … , 𝑥𝑚), where 𝑥1, 𝑥2, … , 𝑥𝑚 are m independent

variables and y is the dependent variable. Functionally, the

MLP in this sense is equivalent to a nonlinear multiple

regression model.

A single hidden layer MLP network with h neurons

(Figure 2) and c outputs has the following form:

 𝑦𝑐(𝑥1, 𝑥2, … , 𝑥𝑚) =

𝑔 (𝑤0 + ∑ 𝑤𝑘tanh (𝑤0𝑘 + ∑ 𝑤𝑗𝑘𝑥𝑗

𝑚

𝑗=1

)

ℎ

𝑘=1

),

(5)

where 𝑔(∙) is the activation function, and 𝑤𝑖 , 𝑤𝑗𝑘 the

weights.

Figure 2. MLP network architecture

The model in (5) can be expressed in matrix form as 𝑦𝑐 =
𝑔(𝑾𝒙 + 𝒃), where 𝑦𝑐 is the output, 𝑔(∙) the activation

function, 𝑾 = [

𝑤1,1 … 𝑤1,𝑚

… … …
𝑤ℎ,1 … 𝑤ℎ,𝑚

] a [𝐻 × 𝑀] weight

matrix, 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑚] the input vector, and 𝒃 =
[𝑏1, 𝑏2, … , 𝑏ℎ] the bias vector [18].

B. Training

The backpropagation algorithm used to train an MLP

was first discovered by [25] and later popularized by [26].

During the training phase, a set of input-output pairs is

utilized for training and is repeatedly presented to the

network. When training is stopped, the performance of the

network is tested. The learning algorithm includes a

forward-propagating step, followed by a backward-

propagating step. On the whole, the algorithm is as follows:

input: training set, weight vector w

output: optimal weight vector w*

repeat

repeat

repeat

Initialize the weights w to small random

values.

Select an instance t, which is a data point from

the training set.

Apply the network input vector to the network.

Calculate the network output vector z.

For each of the outputs c, calculate the errors,

which is the difference (δ) between the target

output and the network output.

Minimize this error by calculating the

necessary updates for the weights (Δw).

Add the calculated weights’ updates (Δw) to

the accumulated total updates (ΔW).

 until number of instances comprises an epoch

Adjust the weights (w) of the network by ΔW.

until all instances in the training set are considered.

This forms one iteration.

until the error for the entire system (error δ or cross-

validation set error) is satisfactorily low, or a pre-defined

number of iterations is completed.

Algorithm 1. Backpropagation algorithm

During training, the backpropagation algorithm performs

gradient descent on the error surface by adjusting each

weight in proportion to the gradient of the error surface at its

location. It is well known that gradient descent can

sometimes cause networks to get stuck in a local minimum

in the error surface should such a local minimum exist.

These local minima correspond to a partial solution for the

network given the training data. At best, a global minimum

is desired (the lowest error value possible), however, the

local minima are surrounded by higher error values and the

network usually does not escape these local minima by

employing the standard algorithm. To get out of a local

minimum, special techniques should be used. These include

400

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

varying the number of hidden units, changing the learning

parameter (𝛼), but especially by using the momentum term

(𝜂) in the algorithm. This term is generally chosen between

0 and 1. Taking into account the momentum term, the

formula for modifications of weights at epoch t + 1 is given

by

Δ𝑤𝑘𝑗(𝑡 + 1) = 𝜂𝛿𝑘𝑥𝑚 + 𝛼Δ𝑤𝑘𝑗(𝑡), (6)

where j denotes the specific neuron. The network can

oscillate, or more seriously, get stuck in a local minimum

with incorrect values of these parameters.

Regardless of the many favorable characteristics of

ANNs, constructing a neural network model for a particular

problem is a nontrivial task [24]. Modeling issues that have

an effect on the performance of an ANN must be carefully

taken into account to ensure the successful application of the

ANN. These issues are briefly examined next.

IV. ARTIFICIAL NEURAL NETWORK MODELING ISSUES

One of the critical decisions that must be made when

building an ANN model is to determine a suitable

architecture, specifically the number of layers, the number

of nodes in each of the layers, and the number of

connections that join the nodes. Additional network design

decisions comprise the choice of activation functions for the

hidden and output nodes, the training algorithm, data

normalization or transformation methods, training and test

data sets, and performance metrics.

A. Network architecture

An ANN is normally formed by layers of nodes. All the

input nodes are grouped in the input layer, all the output

nodes are in the output layer and the hidden nodes are

allocated in one or more hidden layers in the middle. When

constructing the ANN, the following variables must be

determined:

 the number of input nodes;

 the number of hidden layers and hidden nodes; and

 the number of output nodes.

Selection of these parameters is inherently dependent on the

problem. Many different methods to determine the optimal

architecture of an ANN exist, but many of these methods are

relatively complex in nature and difficult to implement.

Examples include the network information criterion [27],

the polynomial time algorithm [28], the canonical

decomposition technique [29] and the pruning algorithm

[30][31]. In addition, none of these methods is able to

guarantee the optimal solution for all problems. Currently,

there is no simple explicit method to choose these

parameters. The guidelines are either based on simulations

obtained from limited experiments or heuristic in nature.

Therefore, the design of an ANN can be considered more of

an art than a science.

A.1 Number of input nodes

The number of input nodes coincide with the number of

variables in the input vector used to model target values.

Given a specific problem, the number of inputs is usually

transparent and relatively easy to choose.

A.2 Number of hidden layers and nodes

Many successful applications of neural networks are

highly dependent on the hidden layer(s) and nodes. The

hidden nodes in the hidden layer(s) enable a neural network

to detect features, capture patterns in the data and to perform

complex nonlinear mappings between input and output

variables. It is evident that without hidden nodes, simple

perceptrons with linear output nodes are equivalent to linear

statistical forecasting models. Since theoretical works show

that a single layer is sufficient for ANNs to approximate any

complex nonlinear function to any desired accuracy [32], a

single hidden layer is often used for modeling purposes.

Unfortunately, one hidden layer networks may involve a

very large number of hidden nodes, which is undesirable in

that the network generalization ability and training time will

get worse. Two or more hidden layer MLPs may provide

more benefits for some types of problem [33][34]. Many

authors focus on this problem by considering more than one

hidden layer.

Determining the optimal number of hidden nodes is a

crucial yet complicated issue. In most cases, networks with

fewer hidden nodes are favored as they overfit less and

usually have a better generalization ability. However,

networks with too few hidden nodes may not have enough

power to model and learn the data. There is no theoretical

principle for choosing this parameter though a number of

systematic approaches exist. Methods for increasing hidden

nodes and pruning out unwanted hidden nodes have been

proposed. A grid search method used to determine the

optimal number of hidden nodes was put forward by [35].

The most common way to establish the number of hidden

nodes is by means of experiments or trial-and-error. Various

rules of thumb have also been suggested such as each

weight should have at least ten input data points (referring

to the sample size), and the number of hidden nodes should

be determined by the number of input patterns. Some

researchers have presented empirical rules to assist in

avoiding the overfitting problem by restricting the number

of hidden nodes [24]. Additionally, the number of hidden

nodes was limited by a heuristic constraint by [36]. A

number of practical guidelines exist in the case of the

common one hidden layer networks, which include
𝑛

2
 [37],

2𝑛 [38] and 2𝑛 + 1 [39], where 𝑛 denotes the number of

input nodes. Nevertheless, none of these heuristic choices

works well for all problem contexts.

401

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A.3 Number of output nodes

As in the case of the number of input nodes, the number

of output nodes is relatively easy to determine as it is

directly related to the problem being modeled.

B. Interconnection of nodes

The behavior of a network is essentially determined by

the connections between nodes. In most applications, the

networks are fully connected with all nodes in one layer

being connected to all the nodes in the next, higher layer,

excluding the output layer. Sparsely connected networks

[40] or direct connections between input nodes and output

nodes [41] are, however, possible. The latter may be

beneficial to predictive accuracy since it can be utilized to

model the linear structure in the data and might increase the

recognition power of the network.

C. Activation function

The activation function determines the relationship

between the inputs and outputs of a neuron and the rest of a

network. This function establishes a degree of nonlinearity

that is valuable for most ANN applications. In theory, any

differentiable function can be used as an activation function,

but in practice, only a small number of activation functions

are used. Some heuristic rules exist for the selection of the

activation function. When learning about average behavior

such as terrain classification, [42] suggests logistic

activation functions.

D. Training algorithm

Training of a neural network is an unconstrained

nonlinear minimization problem where weights of a network

are iteratively adjusted to minimize the overall squared error

or mean between the actual and desired output values for all

the output nodes over all inputs patterns. Many different

optimization methods to use for neural network training

exist. Currently, there is no algorithm available to guarantee

the global optimal solution for a general nonlinear

optimization problem in a reasonable amount of time. In

practice, all optimization algorithms suffer from the local

optima problem. A solution to this problem is to use the

available optimization method, which produces the “best”

local optima if the true global solution is not available. The

backpropagation algorithm is the most widely used training

method.

E. Data normalization

Nonlinear activation functions such as the hyperbolic

tangent function usually have a squashing role in restricting

or compressing the possible output from a node to typically

(0,1) or (-1, 1). Often, data normalization is performed

before the training process begins. When nonlinear

activation functions are used at the output nodes, the desired

output values must be transformed to the range of the actual

network outputs. Even when a simple linear output transfer

function is utilized, it may still be beneficial to standardize

the outputs together with the inputs to facilitate network

learning, meet algorithm requirements and to avoid

computational problems. Four methods to normalize inputs

are presented by [43]: along channel (independent input

variable) normalization, across channel (each input vector

independently) normalization, mixed channel (combinations

of along and across) normalization, and external

normalization where all the training data are normalized into

an explicit range.

F. Training and test samples

A training and test sample are typically involved when

building an ANN model. The training sample is used for

developing the model and the test sample for evaluating the

predictive ability of the model. At times a set called the

validation sample is also put to use to avoid the overfitting

problem or to determine a stopping point for the training

process. An important issue is the division of the data into

the training and validation sets. One common approach is to

use k-fold cross-validation [44] where a data set (𝒟) is

randomly split into k mutually exclusive subsets (the folds)

𝒟1, 𝒟2, … , 𝒟𝑘. A model is then trained and tested k times;

for each time 𝑡 ∈ {1, 2, … , 𝑘} , it is trained on 𝒟 ∖ 𝐷𝑡 and

tested on 𝒟𝑡 . The cross-validation estimate of accuracy is

the overall number of correct classifications divided by the

number of instances in the data set.

G. Performance measures

In spite of many performance measures for an ANN

model, such as training time and modeling time, the most

important measure of performance is the prediction

accuracy the model can produce beyond training data.

Nevertheless, academics and practitioners do not universally

accept a suitable measure of accuracy for a given problem.

An accuracy measure is frequently defined in terms of the

prediction error, which is the difference between the desired

(actual) and the predicted value. There are a number of

accuracy measures in the prediction literature and each has

its advantages and limitations [45].

In the next section, the experiments that are performed

to determine the RBFN terrain classification accuracy and

comparison with an MLP, Naïve Bayes method and SVM

will be discussed. Modeling issues in Section IV will be

taken into account to construct the best RBFN and MLP

architectures.

V. EXPERIMENTAL DESIGN

The aim of the experiments is to identify the type of

terrain being traveled on by a mobile robot from a list of

candidate terrains. Figure 3 shows the Lego Mindstorms

EV3 experimental platform used in the investigation. The

mobile robot has a Raspberry Pi 2 computer attached to the

402

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

front with a Sense HAT inertial measurement unit (IMU) in

turn connected to the Raspberry Pi. The Sense HAT is

readily available and includes the following sensors: a

gyroscope, an accelerometer, and a magnetometer. The

mobile robot platform is battery powered and moves on

rubber treads. An additional battery pack (not shown) is

mounted on top and powers the Raspberry Pi computer. The

five terrain types used in the study are displayed in Figures

4 to 8.

Figure 3. Lego Mindstorms EV 3 mobile robot

The terrain (asphalt, carpet, dirt, paving, or tiles) on

which the mobile robot is currently travelling is identified in

real time. The assumption is that the vibrations induced in

the test vehicle and measured by the output of the IMU

sensor represent a signature which can be used to accurately

classify a terrain. The data for each terrain is sampled at an

irregular rate of ≈ 16
2

3
 Hz for a 600-second duration. The

RBFN is then trained offline using the RBFN training

scheme discussed in Section II (B) and the MLP by the

backpropagation algorithm discussed in Section III (B).

Three outdoor terrains (asphalt, dirt, and paving) and two

indoor terrains (carpet and tiles) were analyzed.

Figure 4. Asphalt

Figure 5. Carpet

The RBFN architecture for this specific problem has five

outputs that serve to identify the terrain type. Each of the

output values 𝑦𝑖 ∈ [0,1] denotes the likelihood that a given

signal presented as an input to the RBFN matches one of the

five candidate terrains. In addition, the RBFN architecture

has twelve inputs, which correspond to the dimension of the

input signal data point. Each of these input signal data

points received from the Sense HAT IMU can be denoted

as:

[𝑝 𝑟 𝑦 𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑔𝑥 𝑔𝑦 𝑔𝑧 𝑚𝑥 𝑚𝑦 𝑚𝑧],

where 𝑝, 𝑟, and 𝑦 denote the pitch, roll and yaw (measured

in degrees), 𝑎 is the linear acceleration (𝑚/𝑠2) measured in

three dimensions (𝑎𝑥 , 𝑎𝑦 and 𝑎𝑧), 𝑔 is the rate of turn

(degrees/seconds), also measured in three dimensions

(𝑔𝑥, 𝑔𝑦 and 𝑔𝑧)and 𝑚 denotes the earth’s magnetic field

403

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(gauss), measured in three dimensions (𝑚𝑥, 𝑚𝑦 and 𝑚𝑧) of

the mobile robot, respectively.

Figure 6. Dirt

Figure 7. Paving

Figure 8. Tiles

The Weka system [20] was used for data processing,

presentation, classifier training and testing. The terrain

classification training data set contained twelve inputs, five

outputs and a total of 49993 IMU sensor samples.

Before training started, all inputs in the data were

normalized to the [0, 1] interval. This data was transformed

back into the original space when predictions were

produced. These same transformations were performed for

new inputs when the predictions were made.

For the experiments, 10-fold cross-validation was

performed. Results obtained by the RBFN were compared to

those found by the MLP model, and default SVM and Naïve

Bayes techniques. The latter are two popular methods found

in the literature used for supervised terrain classification

[11][12]. Sigmoid activation functions were utilized for the

hidden and output nodes of the MLP architecture. A grid

search was applied to obtain the best number of RBFN and

MLP hidden nodes and number of hidden layers for the

MLP. Coincidentally, the best results were obtained with

120 hidden nodes for both the RBFN and single hidden

layer fully connected MLP. In the following section, the

results will be discussed.

VI. DISCUSSION

The classification accuracy results obtained by the

experiments are shown in Figure 9.

404

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Figure 9. Terrain classification results

From the figure it can be observed that the machine

learning algorithms, ordered from worst classification

accuracy to best, are the Naïve Bayes, SVM, RBFN and

MLP. The latter two techniques produced nearly the same

classification accuracy with the MLP slightly outperforming

the RBFN. The results presented in Figure 9 show that the

RBFN is a feasible terrain classification technique compared

to the former two models. Although the MLP exhibited a

slightly higher classification performance than the RBFN,

the results indicate the good predictive capability of the

RBFN. In addition, the RBFN applied to terrain

classification has the following advantages and

disadvantages:

 Compared to the MLP, the RBFN has less model

complexity, exhibits better comprehensibility, is easier

to construct due to its simpler fixed three-layer structure

and has a fast learning algorithm.

 Special techniques exist to increase the interpretability

of RBFNs, thereby reducing the black box effect of

neural networks in general [46].

 With regards to generalization, RBFNs can respond

well for patterns which are not used for training [47].

 The stability of the designed RBFN model is enhanced

by its strong tolerance to input noise [47].

 An ensemble of RBFN models can be constructed to

increase the accuracy of a RBFN model. In some cases,

this ensemble model can surpass an MLP model [48] in

terms of classification accuracy.

 No pre-processing of the input sensor data is performed

as in some previous studies.

 Classification of the terrain can be performed in real

time because of the onboard IMU contact sensor.

 In terms of predictive accuracy, the RBFN

outperformed the Naïve Bayes technique and the SVM

model by a relatively large margin.

 A limitation of the RBFN model, however, is that it has

greater difficulties if the number of hidden units is large

and it is more sensitive to dimensionality [23].

Based on the small difference in classification accuracy

between the RBFN and the MLP and the advantages of the

RBFN, it can be concluded that it is reasonable to consider

the RBFN as a competitive method for supervised terrain

classification.

VII. CONCLUSION AND FUTURE WORK

In this paper, real-time classification of five given

terrains was performed with a RBFN. In contrast to some

other techniques found in the literature, no pre-processing of

the mobile robot platform’s IMU vibration sensor data was

performed. Eliminating feature extraction reduces the

computational overhead needed to identify the terrain in

real-time. The results have shown that even without feature

extraction, the RBFN is still a feasible model for contact

sensor-based terrain classification compared to other

popular models used for this task. It can be used as an

alternative to the MLP model due to its simpler structure

and shorter training times. The RBFN has the capability to

accurately recognize complex vibration signature patterns

and can easily adapt to new terrain signatures by providing

the model with new training examples. Unfortunately,

compared to the other techniques, offline training of the

model can be time consuming.

Future work includes a more detailed comparison with

the existing methods. Metrics, such as latency (velocity) can

be included in the results. Finally, an investigation into the

feasibility of the RBFN model applied to other types of

robots and how they must be adapted for this task can be

performed.

ACKNOWLEDGMENT

The authors would like to thank Mr. Ryno Marx for

assembling the mobile robot platform and for acquiring the

vibration sensor data for the five terrains.

REFERENCES

[1] J. V. du Toit and H. A. Kruger, “Terrain Classification Using

a Radial Basis Function Network,” in Proceedings of the

Twelfth International Multi-Conference on Computing in the

Global Information Technology (ICCGI), Nice, France, 2017,

pp. 11-16.

[2] T. Kurban and E. Besdok, “A Comparison of RBF neural

network training algorithms for inertial sensor-based terrain

classification,” Sensors, vol. 9, pp. 6312-6329, 2009.

[3] D. Sadhukhan, “Autonomous ground vehicle terrain

classification using internal sensors,” Florida State

University, Master’s thesis, 2004.

[4] L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen, “Terrain

characterization and classification with a mobile robot,”

Journal of Field Robotics, vol. 23(2), pp. 103-122, 2006.

[5] F. L. Garcia Bermudez, R. C. Julian, D. W. Haldane, P.

Abbeel, and R. S. Fearing, “Performance analysis and terrain

classification for a legged robot over rough terrain,”

“IEEE/RSJ International Conference on Intelligent Robots

and Systems”, Vilamoura, Algarve, Portugal, October 7-12,

2012.

78.53% 80.80%

97.28% 98.12%

0%

20%

40%

60%

80%

100%

Naïve Bayes SVM RBFN MLP

Accuracy Results

405

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] A. Angelova, L. Matthies, D. Helmick, and P. Perona, “Fast

terrain classification using variable-length representation for

autonomous navigation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Minneapolis, MN, USA, 2007, pp. 1-8.

[7] A. Talukder et al., “Autonomous terrain characterization and

modelling for dynamic control of unmanned vehicles,” in

Proceedings of the IEEE Conference on Intelligent Robots

and Systems (IROS), Lausanne, Switzerland, 2002.

[8] R. Manduchi, A. Castano, A. Talukder, and L. Matthies,

“Obstacle detection and terrain classification for autonomous

off-road navigation,” Autonomous Robots, vol. 18, pp. 81-

102, 2005.

[9] B. Park, J. Kim, and J. Lee, “Terrain feature extraction and

classification for mobile robots utilizing contact sensors on

rough terrain,” Procedia Engineering, vol. 41, pp. 846-853,

2012.

[10] R. Jitpakdee and T. Maneewarn, “Neural networks terrain

classification using inertial measurement unit for an

autonomous vehicle,” SICE Annual Conference, The

University Electro-Communications, Japan, 2008.

[11] C. C. Ward and K. Iagnemma, “Speed-independent

vibration-based terrain classification for passenger vehicles,”

Vehicle System Dynamics, vol. 47, no. 9, pp. 1095-1113,

2009.

[12] M. Happold, M. Ollis, and N. Johnson, “Enhancing

supervised terrain classification with predictive unsupervised

learning,” Robotics: Science and Systems II, University of

Pennsylvania, Philadelphia, 2006.

[13] T. Y. Kim, G. Y. Sung, and J. Lyou, “Robust terrain

classification by introducing environmental sensors,” IEEE

International Workshop on Safety Security and Rescue

Robotics (SSRR), 2010.

[14] D. S. Broomhead and D. Lowe, “Multivariable functional

interpolation and adaptive networks,” Complex Systems, vol.

2, no. 3, pp. 321-355, 1988.

[15] C. S. K. Dash, A. K. Behera, S. Dehuri, and S.-B. Cho,

“Radial basis function neural networks: a topical state-of-

the-art survey,” Open Computer Science, vol. 6, no. 1, pp.

33-63, 2016.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

“Learning internal representations by error propagation,” in

Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, D. E. Rumelhart and J. L.

McClelland, Eds., vol. 1, pp. 318-362, MIT Press,

Cambridge, Mass, USA, 1986.

[17] Y. Wu, H. Wang, B. Zhang, and K.-L. Du, “Using radial

basis function networks for function approximation and

classification,” International Scholarly Research Network,

Applied Mathematics, Volume 2012,

doi:10.5402/2012/324194.

[18] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan,

“Neural network design,” 2nd edition, Martin Hagan, USA,

2014.

[19] E. Frank, “Fully supervised training of Gaussian Radial basis

function networks in WEKA,” [Online].

http://www.cs.waikato.ac.nz/~ml/publications/2014/rbf_netw

orks_in_weka_description.pdf 2018.11.10.

[20] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA

workbench. Online appendix for ‘Data mining: Practical

machine learning tools and techniques’,” Morgan Kaufmann,

Fourth Edition, 2016.

[21] Y. H. Dai and Y. Yuan, “An efficient hybrid conjugate

gradient method for unconstrained optimization,” Annals of

Operations Research, 103, pp. 33-47, 2001.

[22] S. E. Jørgensen and B. D. Fath, “Multilayer Perceptron,”

Encyclopedia of Ecology, Academic Press, pp. 2455-2462,

2008.

[23] I. Yilmaz and O. Kaynar, “Multiple regression, ANN (RBF,

MLP) and ANFIS models for prediction of swell potential of

clayey soils,” Expert Systems with Applications, 38, pp.

5958-5966, 2011.

[24] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with

artificial neural networks: The state of the art,” International

Journal of Forecasting, vol. 14, pp. 35-62, 1998.

[25] P. Werbos, “Beyond Regression: New Tools for Prediction

and Analysis in the Behavioral Sciences,” PhD thesis,

Harvard University, 1974.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning

representations by back-propagating errors", Nature, 323

(6088):533–536, 1986.

[27] N. Murata, S. Yoshizawa, and S. Amari, “Network

information criterion determining the number of hidden units

for an artificial neural network model,” IEEE Transactions

on Neural Networks, 5 (6), pp. 865-872, 1994.

[28] A. Roy, L. S. Kim, and S. Mukhopadhyay, “A polynomial

time algorithm for the construction and training of a class of

multilayer perceptrons,” Neural Networks, 6, pp. 535-545,

1993.

[29] Z. Wang, C. D. Massimo, M. T. Tham, and A. J. Morris, “A

procedure for determining the topology of multilayer

feedforward neural networks,” Neural Networks, 7 (2), pp.

291-300, 1994.

[30] J. Sietsma and R. Dow, “Neural net pruning–Why and how?,”

In: Proceedings of the IEEE International Conference on

Neural Networks, 1, pp. 325-333, 1988.

[31] M. Cottrell, B. Girard, Y. Girard, M. Mangeas, and C.

Muller, “Neural modeling for time series: a statistical

stepwise method for weight elimination,” IEEE Transactions

on Neural Networks, 6 (6), pp. 1355-1364, 1995.

[32] G. Cybenko, “Approximation by superpositions of a sigmoi-

dal function,” Mathematical Control Signals Systems, 2, pp.

303–314, 1989.

[33] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,”

MIT Press, 2016.

[34] A. R. Barron, “A comment on Neural networks: A review

from a statistical perspective,” Statistical Science, 9 (1), pp.

33-35, 1994.

[35] W. L. Gorr and D. Nagin, J. Szczypula, “Comparative study

of artificial neural network and statistical models for

predicting student grade point averages,” International

Journal of Forecasting, 10, pp. 17-34, 1994.

[36] G. Lachtermacher and J. D. Fuller, “Backpropagation in

time-series forecasting,” Journal of Forecasting, 14, pp. 381-

393, 1995.

[37] S. Kang, “An Investigation of the Use of Feedforward

Neural Networks for Forecasting,” PhD Thesis, Kent State

University, 1991.

[38] F. S. Wong, “Time series forecasting using backpropagation

neural networks,” Neurocomputing, 2, pp. 147–159, 1991.

[39] R. Hecht-Nielsen, “Neurocomputing,” Addison-Wesley,

Menlo Park, CA, 1990.

[40] S. T. Chen, D. C. Yu, and A. R. Moghaddamjo, “Weather

sensitive short-term load forecasting using nonfully

406

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

connected artificial neural network,” In: Proceedings of the

IEEE/ Power Engineering Society Summer Meeting, 91, SM

449-8 PWRS, 1991.

[41] K. A. Duliba, “Contrasting neural nets with regression in

predicting performance in the transportation industry,” In:

Proceedings of the Annual IEEE International Conference on

Systems Sciences, 25, 1991, pp. 163-170.

[42] C. C. Klimasauskas, “Applying neural networks. Part 3:

Training a neural network,” PC-AI, May/June, 20-24, 1991.

[43] E. M. Azoff, “Neural Network Time Series Forecasting of

Financial Markets,” John Wiley and Sons, Chichester, 1994.

[44] R. Kohavi, “A Study of Cross-Validation and Bootstrap for

Accuracy Estimation and Model Selection,” International

Joint Conference on Artificial Intelligence (IJCAI), 1995.

[45] S. Makridakis, S. C. Wheelwright, and V. E. McGee,

“Forecasting: Methods and Applications,” 2nd ed. John

Wiley, New York, 1983.

[46] L. Wang and X. Fu, “A simple rule extraction method using

a compact RBF neural network”, Advances in Neural

Networks (ISNN): Second International Symposium on

Neural Networks, Lecture notes in Computer Science, 3496,

pp. 682-687, 2005.

[47] H. Yu, T. Xie, S. Paszczyñski, and B. M. Wilamowski,

“Advantages of Radial Basis Function Networks for

Dynamic System Design”, IEEE Transactions on Industrial

Electronics, vol. 58, no. 12, 2011.

[48] B. T. Pham, A. Shirzadi, D. T. Bui, I. Prakash, and M.B.

Dholakia, “A hybrid machine learning ensemble approach

based on a Radial Basis Function neural network and

Rotation Forest for landslide susceptibility modeling: A case

study in the Himalayan area, India”, International Journal of

Sediment Research, vol. 33, no. 2, pp. 157-170, 2018.

