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Abstract—Modern vaccine research & development efforts are
complex, long, costly undertakes with high rate of failure. A
major cause of inefficiency can be attributed to the mostly
unstructured, unorganized, disconnected and diversity of knowl-
edge spread across the Vaccine Development Life Cycle (VDLC)
and honed by number of stakeholders with conflicting interests.
State-of-the-art approaches have mostly fostered stove-piping
knowledge and information within individual disciplines and
separation of concerns, with little interest or appetite for cross-
domain knowledge integration. In this research, we build on
the ability of systems engineering to bridge the gaps between
(and integrate) other disciplines to architect and develop a novel
knowledge-intensive framework for efficient vaccine development.
We formulate a model-based platform that accounts for the
need for, (1) formalisms to support unambiguous and correct
knowledge representation and reasoning across the VDLC, (2)
capturing stochastic system biology behaviors and integrating
with stakeholders’ discrete decisions and, (3) models that are
formal, reusable, customizable and can be assembled as needed
for the purpose of the analysis at hand. Description logic-based
formalisms and foundational domain theories support knowledge
models of domains tightly coupled with Markov models of biologi-
cal and chemical processes are the cornerstone of our framework.
An example step-by-step implementation procedure illustrates
the modularity, flexibility and configuration of the framework
for tackling increasingly complex, cross-domain challenges across
the VDLC. Vaccine preservation laboratory experiments are
conducted to assess some prototype formulations and generate
system biology models to be integrated with semantic models in
the platform. Results are very encouraging but further work is
needed in identifying and mapping all relevant biological system
behaviors for the analysis under consideration and improving
their characterization and integration in the framework.

Keywords-Vaccine; Knowledge formalisms; Systems Engineer-
ing; Semantic; Ontology; Markov Chain; Multiple Regression
Model.

I. INTRODUCTION

This work is concerned with the development and pro-
totyping of a framework based on knowledge description
formalisms and stochastic modeling of biological systems for
improved efficiency across the Vaccine Development Lifecy-
cle (VDLC). It stems from and, extends previous work on
Knowledge-driven Vaccine Systems Engineering [1]. Scientific
breakthroughs in biotechnology and genetic decoding as well
as advances in information technologies and computation have
spurred the acceleration of vaccine development. This can
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be observed in the wide range of technologies and tech-
niques used to develop modern vaccines, which can now
target over 25 infectious and non-communicable diseases.
Genome-based approaches have enabled the development of
vaccines for Meningococcus B or the development of the
first ever therapeutic vaccine (for prostate cancer). Similarly,
(conjugate) vaccines with multiple antigens or strains now
allow for broadened protection while reducing the required
number of injections [2][3]. With more than 2.5 million
child deaths/year prevented, billions in healthcare cost savings
and multiple outcome-related productivity gains, vaccination
has become a cornerstone of modern human being of all
ages (and financial) health [4]. Looking at vaccine research
& development pipelines in Big Pharmaceutical companies,
ongoing efforts aim at developing vaccines for more than 50
bacterial, viral, parasitic, degenerative and addictive diseases.
This effort includes vaccines against the top 3 killers in devel-
oping countries, i.e., lower respiratory infection, HIV/AIDS,
and Diarrheal diseases [5].

While population and health professionals rejoice, re-
searchers are faced with mounting challenges hindering the
vaccine development life cycle. Among the challenges are:
(1) the knowledge disconnect between the disciplines in-
volved — biology, chemistry, engineering, manufacturing, legal,
regulator and healthcare — and between stakeholder’s views
(see Figure 1), which makes the development process very
convoluted; (2) the need for sustained capital investment over
a lengthy period — hundreds of millions of dollars and 8 to
10 years from research to market with high failure rates —
for vaccine development; (3) the costly and stringent storage
and handling conditions to be satisfied in order to reduce the
loss in vaccine potency and expand an otherwise very short
shelf life span (i.e., a year or less); (4) genetic mutations and
constantly evolving environment factors making it difficult for
certain vaccines to be produced (e.g., HIV-1) [6][7]. A unified,
formal, vaccine knowledge-driven approach for the VDLC is
needed to enable stakeholders along the VDLC to answer
both domain specific and cross-domain questions, quickly,
accurately and cheaply, in the context of highly stochastic and
complex biological dynamics.

In this project we take a significant step towards a novel
knowledge-intensive framework for efficient vaccine develop-
ment. Our objective is to develop the foundational semantic
infrastructure for knowledge and behavior specification, mod-
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Figure 1. Vee-model of the Vaccine Development Lifecycle and Current Knowledge Gaps

eling and processing across the VDLC as a whole. Therefore,
we build on the discipline of systems engineering ability to
bridge the gaps between (and integrate) other disciplines, to
architect a knowledge-enabled vaccine development platform.
The guiding principles of our approach are as follows: (1)
formal methods must drive and support the development of
vaccine domain models, (2) the latter must properly capture
the depth and breadth of stochastic behaviors of biological
systems and, (3) models must be reusable, customizable and
integrated at will for the purpose of the analysis at hand. The
resulting platform supports the integration of biological system
dynamic models and, discipline and stakeholder knowledge
models thus, enables the emergence of novel architectures,
which instantiation can be performed and executed against
the requirements of a given application or analysis. Section
II is a review of vaccines typology, mechanisms and existing
development approaches. Section III introduces mathematical
foundations for the formal representation and description of
vaccine knowledge and systems biology. Section IV describes
the architecture of the framework along with a simplified soft-
ware implementation infrastructure. An experimental vaccine
case study is introduced in Section V to illustrate some of the
core capabilities of the framework. The paper concludes with
discussions, conclusions and future work.

II. STATE OF THE ART: TYPOLOGY, MECHANISMS AND
DEVELOPMENT LIFECYCLE OF VACCINES

Vaccine has been playing a hugely important role in
preventing infectious and non-communicating diseases and im-
proving overall quality of living. However, for a vaccine to be
successful, (1) its active ingredients should induce an effective

and sustained immune response, (2) it must have minimal side
effects and, (3) it must be produced cost-effectively at a large
scale. Because of the complex nature of vaccine manufacturing
it is important to understand and control and or, predict the
factors that impacts the efficacy, stability and safety of the
vaccine along its process-engineering pathway.

A. Typology and Composition of Vaccines

They are mainly three classes of vaccines. Most con-
ventional or the first generation of vaccines consists of a
live, but attenuated form of the pathogen or an inactivated
pathogen. Live, attenuated vaccines — consists of live viruses
that have been extensively passaged through animal hosts
until an acceptable balance has been retained between the
loss of virulence and retention of immunogenicity. Inactivated
vaccines — contains microorganisms that have been treated to
destroy their infectivity (inactivation). The second generation
of vaccines consist only a part of the pathogen — subunit
vaccines. Subunit vaccines — consists of epitopes around exter-
nal surface of the pathogen. With recent advances in vaccine
science, a third generation vaccines have emerged as DNA
and recombinant vector vaccines. DNA vaccines consist of
non-replicating plasmids, which contain DNA that encodes
specific proteins (antigens) from a pathogen. Recombinant
viral vectors vaccine works by enabling an intracellular antigen
expression in the body. Figure 2 illustrates the most common
components found in modern vaccines at delivery point. The
main components play various functions needed to enable the
trigger, execute and maintain host immunization including,
(1) elicit and enhance immune response (active ingredients
and adjuvants respectively), (2) ensure the stability of various
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components (stabilizers) and, (3) protect the vaccine against
contamination(preservatives). Other components Other inactive
elements (e.g., antibiotics and trace components) are inherited
from the development and manufacturing process.

B. Mechanisms of Immunization

A vaccine raises immunity through a complex process —
yet to be fully understood — in the body. Vaccine protects by
inducing immune mechanisms capable of rapidly controlling
replicating pathogens or inactivating their toxic components.
One immune mechanism is raising antibodies against the
vaccine antigen. For example the antigen in an inactivated viral
vaccine is the inactivated virus. Vaccine antigens can stimulate
a number of cells in the immune system, which includes
macrophages, T cells, and B cells. An immune response
begins when macrophages ingest the antigen. Fragments of
the digested antigen are displayed on the surface of the
macrophage. These displayed antigen fragments are recognized
by T lymphocytes helper cells, which stimulate B lymphocyte
cells to secrete antigen specific antibodies. T helper cells
activate killer T cells to actively bind and destroy the antigen.
Long-term protection is given by immune memory cells (B
and T memory cells), capable of rapidly and effectively re-
activating the production of antibodies and killer T cells.
Despite the success of three generations of successful vaccines
that have eradicated small pox and nearly eradicated polio,
there is still a great need for new vaccines and these are
emerging far more slowly than we would wish. Successful
immunization is not only influenced by various immunological
factors (including host physiology and the type and nature of
antigen), but also by formulation and delivery aspects.

C. Vaccines Development

The development of vaccines is a complex, lengthy and
extremely expensive process involving public, private and non-
profit players. It is a high-risk undertaking as many of vaccine
candidates fail in preclinical studies. Also, regulatory, technical
and manufacturing hurdles lie in the path that translates a
vaccine candidate to the final vaccine available in clinics
for administration. There are multiples closely coupled stages
in vaccines development. The first stage involves candidate
selection (exploratory stage) from a fundamental research lab-
oratory — conducting the discovery of antigens — and testing the
candidate among animal models. During the pre-clinical stage,
development of small case scale material and formulation —
a prototype vaccine “medicine” — is done to make material
for phase I, II and III studies (clinical development). The
exploratory and preclinical can last 1 to 10 years and cost
between $10 and $20 millions. Phase I includes test of safety
among a sample of 10-100 human subjects to evaluate clinical
responses. Phase II focuses on the evaluation of immune
responses in a sample of 100-3000 subjects and large scale
studies are conducted in phase III to test vaccine efficacy and
tolerance. In a clinical development of material candidate, the
candidate is cultured, harvested, inactivated (in certain cases),
formulated and filled (free dried or in liquid form) in vials
syringes packaged and released for distribution. Clinical trials
coupled with regulatory approvals can last between 4 to 7 years
and are highly capital extensive, with costs in hundreds of
millions of dollars.
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III. MATHEMATICAL FOUNDATIONS FOR VACCINE
KNOWLEDGE FORMALIZATION AND SYSTEMS BIOLOGY

A. Knowledge Representation Formalisms

Knowledge representation formalisms are needed to prop-
erly capture and formally represent a domain (e.g., vaccine)
knowledge as well as reasoning on it. Over the years, re-
searchers have developed several such formalisms including
Semantic Networks [9], Frame Systems [10], Description
Graphs [11] and Logic-based formalisms [12]. The declarative
part of frame systems — a class of logic-based formalisms —
are credited for the rise and development of modern Artificial
Intelligence (AI) formalisms. Modal and description logics
(DL) are descendants of such systems. DL appears to be
the most appealing logic-based formalisms for framework like
ours, thanks in part to its flexibility of extension to enable
complex domain descriptions and the capability to support
multi-values attributes and reasoning (for some subsets). Such
features are critical to enable the formal representation of a
heterogeneous and intricate domain as the vaccine, at various
levels of abstractions. Also, we note that some results for
description logics were found by translating results from
variations of modal logics (propositional dynamic logics, -
calculus) into description logics [13].

B. Description Logic Semantics and The Semantic Web

Capturing vaccine knowledge and crossing the divide be-
tween disciplines along and across the development life cycle
depicted in Figure 1 requires mechanisms not just to represent,
but also to integrate, share and reuse knowledge across the
various stages of the process. Knowledge must (1) be captured,
represented in a clear, unambiguous way with respect to the
associated domain and the context of use and, (2) lend itself
to automated processing and reasoning by machines. This
requires data to be enriched and backed by sound semantics
to ensure accuracy of facts and inferencing.

Description Logics (DL) formalisms, as fragment of first
order logics, provide the sound mathematical foundations and
decidability needed to tackle the first part of this challenge
[15]. A brief definition of key DL concepts and its ALC
extension are introduced in the appendix of [14]. The strong
mathematical foundations of DLs enable the development of
machine and human readable ontological languages, such as
the web ontology language (OWL), in a systematic way. OWL
is the language of choice for creation of ontologies, which
are engineering artifacts specifying the intended meaning of a
vocabulary used to describe a given domain (e.g., vaccine). As
such, ontologies provide explicit semantic meanings that enrich
the way models can be branched and integrated across do-
mains of knowledge automatically. Understanding the intricate
relationships spanning the vaccine domain and their ultimate
affects on vaccine effectiveness will greatly benefit from these
capabilities. In [14], SHOZN and SROZQ DLs (respectively
mapped to OWL1-DL and OWL2 DL) have been identified
as appropriate logic-based formalisms for knowledge-driven
frameworks such as the one introduced in this work. The
computational decidability of OWL2 DL makes it a suitable
language for the development of ontologies in our framework.

The second part of above-mentioned challenge can be
addressed using semantic web technologies integrated with
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reasoner through Application Programming Interfaces or API
(e.g., Jena). Semantic web technology resources are organized
as a stack, where technologies such as the eXtensible Markup
Language (XML), the Resource Description Framework (RDF)
and OWL provide the necessary foundations needed by the
one on the top, in hierarchical layers. The stack enables the
implementation of reasoning that can prove whether or not
assertions in the knowledge base are true or false in almost
real-time (decidability). Therefore, semantic web technologies
are the mean by excellence for automated processing and
reasoning over a high variety of distributed and heterogeneous
across-domains information such as the ones encountered in
vaccine development. Specifically, the various sources of infor-
mation will be organized, formalized and merged accordingly
using semantic models (ontologies, rules and computation
extensions) and reasoning will be performed to answer simple
and complex biological and/or engineering questions.

C. Stochastic Modeling of System Biology

Beyond the formal description of their structure and proper-
ties, the effective capture of the behavior of biological systems
(e.g., vaccine antigen, host physiology) across the VDLC is
needed to accurately represent and understand the essence of
unfolding biological (and underlining) chemical processes at
various level of abstractions. Therefore, there is a need for
models that can allow for the simulation of the system behavior
over time, propagate and predict changes from interactions
within systems and with the environment. Researchers have
developed and introduced various modeling schemes of biolog-
ical phenomenons and systems with emphasis on aspects such
as body metabolism, neuronal systems, genetic networks or
processes (e.g., intracellular processes). Resulting models work
fine for cellular level analyses and studies but they are ineffec-
tive higher levels of abstractions (e.g., tissue, organs) biological
phenomenons [16]. Thus, in order to address those limitations,
we opt for a more general formalism — Markov models —
in our framework. Such models have been shown effective,
in previous work, in modeling and predicting the behavior
of highly stochastic biological [17] and biomedical systems
[18]. Moreover, they are domain independent and well-suited
for integration through segmentation mechanism to domain
specific models. In this work, we will use Markov chain (MC)
formalism to represent actual biological or chemical behavior
as a network of states as nodes and directed edges representing
allowable transitions between states annotated with their proba-
bility of propagation. The graph on the top left corner of Figure
3 — illustrates such MC model. In MCs, feedback and steady-
states are allowed as long as all propagation probabilities at
each state sum up to 1. A variant of Markov models — Hidden
Markov models — extend MCs and are suitable for observed
system performance (e.g., lab experiments) studies. Markov
models, when properly developed and analyzed, are powerful
for analysis and prediction of complex system behaviors.

IV. SYSTEM ARCHITECTURE AND SOFTWARE
INFRASTRUCTURE

In this section, we introduces and briefly describes the
architecture of the proposed framework at the core of effort
towards for efficient vaccine development. It is built on top of
the mathematical foundations introduced in Section III applied
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to the vaccine domain knowledge as introduced in Section II.
Also, it mirrors a simplified software infrastructure that can
enable its deployment at increasingly higher scales and levels
of complexity.

A. Overview

The system architecture consists of modules to be assem-
bled as per the needs of the analyses as illustrated in Figure 3.
The modules lie at the intersection of three groups of vaccine
knowledge categories and three layers of abstractions mirroring
various levels of representation of the system. In the first group
(Go), knowledge of component and system biological/chemical
dynamics constrained by relevant corresponding (abstract)
foundational theories is captured and represented using Markov
chains. Knowledge in the second group (G1) is mostly the
formal representation of vaccine, other related domains (e.g.,
gene, DNA) and foundational fields (e.g., time, space) knowl-
edge as constrained by the corresponding theories. The last
knowledge group (G2) comprises the actual problem input
data, the semantically enriched output data resulting from
the analysis as well as structured and unstructured (domain)
expert knowledge. In the knowledge-intensive framework, not
all knowledge types or groups are created equal. They interact
with each others — each playing different role — within and
across groups to enable the desired functionality of the frame-
work through its analysis-oriented configuration. The main
layers of the infrastructure where the various modules are
assembled are as follows.

B. Semantic Foundation Layer (L)

It provides the mathematical foundations needed by mod-
els to ensure effective and unambiguous description of both
the domains involved in the analysis and biological/chemical
phenomenons. We distinguish foundational theories for known
cross-cutting domains (such as time, physical quantities or
communication) in module (L2,Gp) from laws governing
biological and chemistry processes in module (L2, Go). The
Allen Temporal Interval Calculus (ATIC) is a well-suited
cross-domain theory that has been shown effective for formal
description and reasoning in the temporal domain [14]. In the
absence of a valid theory to support the formal description of
a domain in the framework, well-accepted domain standards
(e.g., CDC Standard for Adult Immunization Practice) as well
as heuristics and expert knowledge can be used to fill the
void. This offers the possibility for the modelers to inject
new theories in the framework for test or evaluation purposes
and assess their effectiveness or suitability for given family of
problems/analysis. However, the scope and depth of knowledge
to be used depends on the application of interest and the goals
pursued by the modelers/researchers.

C. Component Layer (L)

The component layer enables the modeler to makes use
of the formalisms provided by the semantic layer below (i.e.,
Ls) to create and manage domain knowledge and behavior
models that can be reusable across applications. In the context
of the VDLC, the knowledge (see module (L1, (G1)) can be
organized and classified in three categories based on their
function in a modular way. Core domain (e.g., vaccine antigen,
host) knowledge is segregated from cross-cutting domains
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Figure 4. Schematic of a semantic block for the formal description and reasoning about the Vaccine (bioDomain).

(e.g., storage condition, vaccine schedule) knowledge, which in
turn, is separated from foundation domain (e.g., time, physical
quantity) knowledge. DLs provide the formalisms needed by
core domains knowledge while theories such as the ATIC will
constraint models of some cross-cutting domains (e.g., vaccine
schedule, clinical trial planning). Each domain knowledge in
encoded into a “Semantic block™ that encapsulates (domain)
knowledge in a formal and well-defined manner. Each of the
blocks is made of, (1) a domain ontology, (2) set of domain
rules, (3) custom computation functions and, (4) interfaces that
enable communication between semantic blocks as illustrated
in Figure 4. The built-in functions are the glue linking the
ontologies to specialized computation platforms and Markov
models of system biology (in module (L1, Gg)) via domain
rules as encoded by the reasoner’s rules engine. Data-models
are templates interfacing input data and ontologies. They
enable the modeler to draw from the problem’s data stored in
input files (module (L1, G2)) then, populate the ontology with
initial facts in an accurate, systematic and traceable manner.
This modular approach adds further rigor and flexibility in
the ability of the modeler to build complex applications using
reusable semantic blocks (as composite knowledge model).

D. System Layer (L)

Leveraging the capabilities of the framework requires
bringing together its various modules and pieces in an or-
ganized but systematic way. This is needed to close the
knowledge gaps between disciplines and stakeholders in along
the VDLC as discussed in Section I and answer increasingly
complex questions as pictured in Figure 1. Therefore, two
tasks need to be performed, i.e., (1) integrate various domain
specific knowledge at level L; on both the semantic and
stochastic behavior sides and, (2) link them and configure
the framework accordingly to emulate system level behavior
for the application under consideration. Next, the resulting
semantic graph (module (L, G1)) is transformed as rules
— integrated to stochastic models of the system behavior
(module (Lo, Gp)) — are fired. Here, a linkage between the
system and component level behaviors to ensure consistency
in representations. An “integrator” semantic block can be used
as a “semantic controller” that encodes defined system metrics
whose instances are checked against system requirements (as
constraints). Given the complexity of the integration task,
advanced computation capabilities — for controlled and sys-
tematic assembly of the models as well as simulation and
output generation — such as the ones provided by the Whistle
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Figure 5. Illustration of rule-based reasoning for vaccine preservation using the temporal domain.

scripting environment are needed. Whistle [19] is a tiny
scripting language where physical units are deeply embedded
within the basic data types, matrices, branching and looping
constructs, and method interfaces to external object-oriented
software packages. It is designed for rapid, high-level solutions
to software problems, ease of use, and flexibility in gluing
application components together. Computational support is
added, enabling the language to handle input and output of
model data from/to files in various formats (XML, Java, etc.).

E. Working Example of the Usage of the Framework

We describe in this section a configuration and usage of
the framework in a scenario where a researcher investigating
formulations at step 2 of the VDLC (see Figure 1) looks
ahead in step 6 for an answer to the question: “What is the
expected preservation performance of a Matrix My for a
vaccine v currently under study ?”. To that aim, (s)he must
leverage the infrastructure of the framework as pictured in
Figure 3, in a step-by step configuration and assembly of the
various modules as required by the needs of the study then,
perform an analysis of the results. In this case, the query
is subject to three simplifying assumptions: (A1) the matrix
M; (i.e., mainly stabilizers in the formulation), has been

properly characterized and the “degradation resistance” C'y,
of the formulation is known, (A5) there are no significant or
unknown biological/chemical phenomenons not captured in
the framework, and (A3) computations and reaction times are
negligible. The step-by-step details are as follows.

(i) The researcher prepares the input data (e.g., XML file)
of the problem as per the framework predefined DataModel:
formulation’s unique id (f), degradation resistance (Cg,),
expected en-route preservation temperature (T ), initial known
stability level of the formulation (S;), value of time instants
when the exposure to Ty starts (tx), and ends (tg).

(ii)) The data is loaded into the system and the various
ontologies (e.g., Time, BioDomain, etc) are populated with
instances, i.e., initial facts, as shown on the left side of
Figure 5. These are now statements in individual, separated
domain knowledge-based as defined in Section IV-C and in
module (L1, G1) of Figure 3. Specifically, temporal data (i.e.,
tx and tp) are collected as per the template defined in the
DataModel, then are deposited in the time ontology while
vaccine and formulation data (e.g., C¢,, Si, etc.) populate the
BioDomain ontology.

(iii) Rule sets for individual domains and parametrized MC
models for bio subdomains (e.g., formulation, vaccine antigen)
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are provided by the component layer to be used for lower
level integration and computation. When and if needed (not in
this case), the MC — encoded as built-in function called by the
rules engine when the state of the component is needed for
inferencing as illustrated in Figure 4 — computes the state of
the component and the result is stored in the knowledge base.
As indicated in Section IV-B, ontologies and MCs implement
foundational theories and system biology/chemistry laws.

(iv) The system integration (layer L) is performed by
assembling the semantic blocks (ontology + rules + built-ins).
The ontologies are integrated and new entity (tyxg) and
relationship hasExpoInt are created to bridge the bio and
temporal domains. However, tyg at this point is a placeholder
for a proper time interval in the terminology box (TBox) of
the time ontology.

(v) Rule 1 is fired, resulting in the creation of
happensBefore relationship between ty and tg. This
rule belongs solely to the temporal domain and could have
been called and executed in step (iii) too.

(vi) Temporal properties beginsAt and endsAt of tys
created in (iv) are populated after rule 2 is fired. This is
made possible thanks to the fact that the corresponding values
are inputs to the built-in function getDuration() that
computes the duration of temporal intervals (duration of the
exposition in this case). The relationship hasDuration
is created in the temporal domain to store the result of the
duration calculated by the built-in function.

(vii) Rule 3 is fired, resulting in the update of the value of
property hasStability characterizing the stability of the
vaccine antigen vi. For this result to occur, the system level
rules engine must pass (via registered built-in) the parameters
(i.e.Cs,, di, S1, T1) needed by the MC to compute the new
state of the system. As in step (iii), the MC model and the
ontology are integrated via the built-in function embedded
in the rules engine. The new value (S2) of the property
hasStability is the answer to the initial question. This,
as well as intermediary results, are stored in an output file
(e.g., txt format) to be analyzed further by the researcher.

V. EXPERIMENTAL VACCINE PRESERVATION STUDY
A. Previous Work and Goal of the Study

In [1], we have illustrated the basic implementation and
use of our framework in a simplified Oral Polio Vaccine (OPV)
formulation under the set of assumptions listed in Section I'V-E.
An empirical MC model of the degradation of the vaccine
stability S, (p € P = {20, 40, 60, 80, 100} %) — when exposed
continuously to temperature 7'; for dj, days — was developed
with several parameters. The “degradation factor ” kfjf 1> Which
characterizes the ability of the system to maintain itself in a
state .S, under the given experimental set up, was found to be
given by Equation (1).

di
B = Thaz — T; Tt
ik TrazT;(100 — Cy,)
where T4, 1S the maximum allowable exposure temperature
for the experiment and C'y, € (0,100) is the “degradation re-
sistance” of a given formulation. Also, the transitions between
states (S,) were computed as per Equation (2).

t t
az‘]fk|p,q =(1- Aijfk

&)

g kb, )
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where Agﬂp,q is the gap of virulence between a state of
stability p and one of stability ¢ < p in P and, k, > 0 is
a balancing coefficient allowing the probabilities to sum to 1
as per MC modeling rules.

As pointed out in Section II-B, vaccine and vaccination
are complex systems and processes not fully understood yet.
The current state of vaccine research and development prac-
tices does no provide means to characterize key MC model
parameters (e.g., C'y, ) or ensure that all relevant phenomenons
and interactions are captured in models of system biology at
the chosen level of abstraction of the representation. Thus,
assumptions (A;) and (As) can hardly sustain real-world
applications of the framework. Much needed detailed study
(outside the scope of this work) is required to address those
challenges. Until that becomes a reality, we will develop
and use deterministic models to support the computation and
predict of the degradation of the vaccine with the lowest
possible margins of error. Such models of system biology must
be amenable to a smooth integration with the semantic ones in
the framework for usage in real-world applications across the
VDLC. Therefore, we will conduct laboratory experiments to
satisfy those needs.

B. Overview of the Study and Hypotheses

Vaccine antigens are mostly protein. Thus, we use a protein
(enzyme) Horse Radish Peroxidase (HRP) as a vaccine model
for the preservation study. To perform the preservation studies
we use a commercially available HRP. This 40 kDa protein is
similar in size to the popular vaccine mimic ovalbumin. The
unique structural features of HRP make it a good model protein
for analyzing the influence of various excipient properties
on protein stability. Because any conformational or structural
perturbations of HRP during storage loss of protein activity this
is an excellent candidate to study protein stability. The protein
also contains four disulfide bonds and numerous metal-binding
sites that attract two divalent calcium ions to bind to the protein
as enzymatic cofactors. HRP protein is a metalloenzyme that
has a noncovalently bound to a heme prosthetic group at the
active site. This allows the protein to catalyze the reduction of
hydrogen peroxide to water.

C. Laboratory Experiments Setup and Data Collection

The stability of HRP would be tested in three different
temperatures at 220C, 30°C' and 37°C in three different
excipient formulations containing varying percentages (1-10
w/v%) of a well established excipients used in commercial
vaccine formulations. Formulations were also constituted with
a constant amount of preservative neomycin (0.01 w/v%), and
adjuvant alum (0.02 w/v%) and the dispersant used was phos-
phate buffer saline (PBS, 0.25 mM) at pH 7.4. Formulations are
as follows : (1) F; - 1% M gCls, neomycin (0.01%) and alum
0.02%); (2)F> - 5% sucrose, neomycin (0.01%) and alum
(0.02%); (3)F3 - 2.5% trehalose, neomycin (0.01%) and
alum (0.02%). The amount of HRP added to each formulation
(Fi-F3) was 1.33 pug. The stability of the HRP protein at
different temperatures in different formulations was tracked
using an analytical fluorimetric redox based assay — Ample
Red. The stability of the protein HRP was monitored at regular
intervals by a redox based fluorimetric assay. A control formu-
lation of HRP formulated in buffer PBS without excipients was
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Figure 6. Analysis of the stability of HRP protein in three formulations

kept at —20°C' (FC). Formulations (F-F3) were sealed in 20
mL borosilicate vials kept at the three temperatures mentioned
above (22°C, 30°C and 37°C). At regular intervals 50 uL of
each formulation with HRP was taken out of each vial added
to 50 pL (0.2 mM) of assay reagent Amplex Red in a micro-
centrifuge tube. After thoroughly mixing 50 uL was aliquoted
and added to 50 pL (4 puM ) aliquot of H2O2 in a 96 well
Costar clear polystyrene plate. The plate was incubated for 1
hour under dark and fluorescence emission was obtained at 590
nm after excitation at 530 nm using a Molecular Devices (M 5)
plate reader. The emission intensity of each formulation (F';-
F3) was recorded and compared to the control (FC) at —20°C
and percent degradation of HRP was calculated for F';-F3 at
the three different temperatures 22°C, 30°C and 37°C.

D. Experiment Results, Analysis and Limitations

A wide variety of protein stabilizing excipients are used
in vaccine development for enhancing the stability of vac-
cine protein antigens and they are referred to as stabilizing
excipients. These excipients have been reported to stabilize
the structure of native proteins at moderate (1 w/v%) to
high concentrations (30 w/v%). Carbohydrates excipients (i.e.,
sucrose and trehalose) and polyols (i.e., mannitol, sorbitol) are
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often used to stabilize protein antigens and protect them from
aggregation during lyophilization. Carbohydrates are known
to be highly effective in increasing the melting temperature
(Tm) of proteins, preventing them from denaturing. Among
sugars, sucrose and trehalose have been the most frequently
used in thermostabilization. Even though HRP stability data
(see Figure 7), at a glance looks erratic, a general trend can
be perceived that at higher temperatures (30°C and 37°C),
trehalose and M gCls fail to stabilize the protein HRP. But
looking at the stability data of HRP with sucrose (see Figure
7(b)), it is apparent that sucrose could stabilize HRP even at el-
evated temperatures. Carbohydrates like sucrose and trehalose
have high glass transition temperatures (Tg) are known to be
more effective in thermostabilizing proteins than other excip-
ients. Salts (i.e., MgCls) affect in widely different manner
when stabilizing proteins. For example, at low concentrations,
they could stabilize proteins through non-specific electrostatic
interactions while at high concentrations, salting in or salting
out would occur. Salting in would preferentially stabilize the
protein while salting out would destabilize the protein. At low
concentration the hydrated forms of the divalent cation M g2+
has been known to bind to the peptide units through stabilizing
hydrogen bonds. Looking at the stability data of HRP protein
with M gCls compared to the carbohydrate sucrose, MgClo
has provided very little stability.

E. Regression Analysis: Procedure and Results

In the absence of means to properly identify parameters
characterizing individual formulations as needed by the MC
stochastic model described in Equations (1) and (2), we seek
to develop indirect means for predicting the degradation of a
given formulation. Thus, we formulate and construct regres-
sion models correlating (statistically) independent experiment
variables (introduced in Section V-C) and the percentage of
degradation of the protein (i.e., our surrogate vaccine antigen)
as response. The variables considered for this analysis are
primary the temperature at which the formulated protein is
exposed to (x2) and the duration of exposition at that temper-
ature (1) for formulations M gCl5 and sucrose. In the case of
trehalose, a third variable — the percentage of stabilizer (z3)
in the formulation solution — is added to the mix. We use the
data collected in Section V-C to perform the analysis. Simple
and multiple regression models accounting for the variables
individually or together and their interactions are constructed
and identified using the following nomenclature.

M Y = f(z1, 20, 73) 3)

where M € {L,Q, P} is the regression model, i.e., Linear(L),
Quadratic(Q) or Polynomial(P) of order 3 for the formulation
under study; j € {1,2,3} is the type of the formulation, i.e.,
MgCly(1), sucrose (2) and trehalose(3); k € {1,2,3,4,5,6}
is the percentage of the stabilizer in the formulation of in-
terest, i.e., 1%(1), 2.5%(2), 5%(3), 10%(4), 20%(5), and a
combination of several percentages(6). Also, [ € {1,2,3,4} is
the temperature at which the protein is exposed, i.e., average
room temperature of 22°C(1), high temperature of 30°C(2),
body temperature of 37°C(3) and All temperatures(4). Even
though this representation allows us to cover all configurations
of regressions, we will be focusing on ones enabling us to
capture, represent and identify multiple regressions in a very
unique ways. Thus, [ = 4 in such models.
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Figure 7. Stability of HRP at temperatures 22°C', 30°C and 37°C' (a) in Formulation F - 1% M gCls, (b) in Formulation F» 5% sucrose and, (c) in

Formulation F3 2.5% trehalose for a period of 72 hours

We follow a rigorous data analysis process to generate and
ensure the quality of the resulting regression models for the
each of the formulations. First, the data is cleaned from outliers
using 95% confidence interval for the response. Second, the
data is checked for confounding to make sure the independent
variables are independent from one another. This is done by
plotting scatter plot for pairs of independent variables and
checking for collinearity. In this study, no such relationship
were found in any of our formulation data sets. With those
foundations in place, the next move is to fit response surface
models to individual formulation stability percentage (%HRP),
as a function of controllable factors z;, (i € {1,2,3}) as
defined above. One model of each of the three types, i.e.,
Linear(L), Quadratic(Q) or Polynomial(P) is created. Plots of

residuals versus fitted values are generated and used each time
to check for violation of assumptions for error in regression
models. This exercise has helped us uncover inconsistencies in
the regression models for the trehalose formulation. However,
applying a logarithmic transformation to the data has resulted
in more normal (randomly distributed points) residual plots,
and better regression models. Finally, the best model for
each of the formulation was selected by comparing models’
coefficient of determinations or goodness-of-fit statistic (i.e.,
R?). Table I summarizes our findings.

Polynomial models’ coefficients of determination (R?2) are
the highest of all model types for all formulations. Thus, they
are the best fitted models for the response as shown in Table
I. We note here that the response function for the trehalose is
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TABLE I. Selected multiple regression models for each candidate formulation. The % of trehalose in model 1513'6 comprises 2.5%(2), 10%(4) and 20%(5)

Formulation Model Coef. det.(R?) Response function: Y = f(x1, z2, x3)
MgCl, Pyt 82.91 % Y = 96 + 1.90x; — 0.8x2 — 0.04992% 4 0.021z3 + 0.015x 122 + 0.00024925 + 0.000662722 — 0.002442 122
sucrose pP;3 7236 % Y = —12.940.4621 +7.88z2 —0.0299zF —0.135z3 +0.118z1 22 +0.000115z% +0.000206zT x2 —0.00219z1 x5
trehalose PJS 88.94 % in(Y) = 9.39 + 0.4388x1 — 0.33722 — 0.254a3 — 0.00316427 + 0.00582x3 + 0.01464x3 — 0.02049z 22 —
0.00820z 123 40.0074z223+0.0000172F +0.00003623 2 +0.000032z 7 £3+0.000230z1 23 +0.000162z1 T2w3+
0.000018z; 2 — 0.000000z2x; — 0.000453z2x2
40
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Figure 8. Response surface (a) and contour (b) plots for M gC'ly based on multiple regression model P41'1

logarithmic thanks to the data transformation and the presence
of three — instead of two — independent variables. A plot of
the response surface for model P} (MgCly formulation)
is shown in Figure 8(a). The hyperplane representing the
response, i.e., the percentage of HRP is bended downward
as both the duration of exposition and temperature increase.
This is consistent with the expected behavior of the system
but also as previously found with the empirical model. How-
ever, we gain additional insight in the observation that, for
this particular formulation, its stability clearly takes a dive
as temperature at which the formulated antigen is exposed
increases. This suggests that temperature (i.e., intensity of the
heat), more than duration of exposure, is the main driver of
the breakdown of the stabilization property of the formulated
protein. Figure 8(b) is the contour plot for the same response
surface. It offers a better view of the devastating effect of
temperature on the stability of the formulation. For instance,
considering a targeted minimum threshold of 40% stability (as
for the Oral Polio Vaccine), one can clearly see that it will
take less than 40 hrs (1.6 day) of exposure of the formulated
antigen at body temperature (ie., z; = 37°C) to loose 60%
of its stability. For the same duration, it looses only 30% of
its stability at x5 = 30°C and less than 10% stability loss
at room temperature (r3 = 229C). These results also explain
well-established state-of-the-art vaccine preservation practices
of keeping vaccines at lower temperatures (i.e., higher logistic
costs) to maintain its stability over a long period of time.
Finding the formulations that can achieve the same results or
better at higher temperatures (i.e., lower logistic costs) remains
the holy grail of vaccine preservation research.

VI. DISCUSSIONS

As of now, it is difficult for real-world applications to sus-
tain assumptions (A;) and (A-) stated in the working example
of the framework described in Section IV-E. When it comes
to assumption (A;), the case study highlights the challenge
of developing accurate and precise system biology models
to be integrated with semantic models in our framework as
described in Section III and pictured in Figure 3. This is
needed to support prediction and reasoning in the framework.
In the face of challenges regarding the characterization of
formulations to support the full definition of stochastic models
(MC), we have developed regression-based models for stability
prediction in our prototype implementation on a preservation
study. Such models can be used under specific conditions — in
lieu of actual MC models — for build-in functions enabling
computations such as the ones in rule 3 (see Figure 5).
Regression models establish statistical (not causal) correlations
between independent variable(s) and a response under specific
and well-defined set of conditions. This limits its scope of
use and its ability to support the explanation of underlining
biological/chemical phenomenon. This will not be resolved
until proven and full characterizations of biological agents
(e.g., vaccine antigens) are available to be used for models
(such as the MC models) used in this framework.

Inconsistencies and out of range results in selected re-
gression models for sucrose (P#?) and trehalose (P3°)
suggests that there are important underlining chemical/biolog-
ical phenomenons unaccounted for by the model. This is a
translation of a clear violation of assumption (A5). Address-
ing this problem will require uncovering such phenomenons
for the given formulation followed by the identification of
explanatory variables to be tracked during experiments and
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refinement of current regression models to account for the
new variable(s). The complexity of the problem significantly
increases if we consider that, to date, there are 380 established
antigen stabilizing compounds or generally-regarded-as-safe
(GRAS) excipients candidates that could possibly be used in
a vaccine formulation [20].

The ability of the framework to survive assumption (A3)
in real-world applications depends on the capability of the
underlining software infrastructure supporting implementation.
Even though one running VDLC-related applications using
the framework would not want them to last for ever, they
are not safety-critical. Thus, real-time computations are not
a “must” but, fast computations — especially when faced with
large volume and heterogeneous data — are needed. As pointed
out in Section III-B, OWL - the language we use to develop
semantic models in this framework — enables both human
and machine processing of vaccine and domains knowledge
over the World Wide Web (WWW). Proper integration with
databases, web-based interfaces, and cloud computing as well
as with the appropriate configurations, fast, integrated yet
distributed solutions are possible. Therefore, both batch and
streaming-based processing of data through the framework are
possible.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced and described a
knowledge-intensive framework for behavior specification,
modeling and reasoning for efficient vaccine systems engineer-
ing. This research is motivated by limitations of state-of-the-art
vaccine development approaches in capturing, representing and
reconciling domains and disciplines knowledge and viewpoints
across the vaccine development life cycle in an effective
manner. The inherent highly stochastic behavioral nature of
biological elements such as vaccines coupled with knowledge
disconnect between stakeholders (e.g., chemists, biologists,
clinicians, the public, big pharma, etc.) with sometimes con-
flicting interests add to the numerous technological challenges
of engineering such complex biological systems. This leads
to long, complex, and costly efforts with high failure rates
currently observed in vaccine development initiatives. Also,
potency of successful vaccines is difficult to predict and very
expensive to preserve in the face of changing and challenging
environmental conditions as well as limited resources.

The knowledge-intensive framework is shown to be a
possible solution to successful vaccine systems engineering
moving forward. Description logic semantics provide the nec-
essary formalisms needed to capture, represent and reason
about vaccine and foundational domains knowledge in a clear,
unambiguous way with respect to the associated domain and
the context of use while enabling automated processing and
reasoning by machines through semantic web technologies.
Library of reusable semantic components — i.e, semantic blocks
comprising an ontology, rules, computation and communi-
cation interfaces — encapsulate knowledge in a formal and
well-defined manner. They are integrated to stochastic models
of vaccine system biology — Markov Chains (MC) — of the
underlining unfolding biological and/or chemical processes at
various level of abstractions throughout the development life-
cycle of the vaccine, when needed. This layered and modular
structure enables flexibility in the assembly — via integration —
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of models of various level of complexity and types in support
of the investigation of research issues that cut across domains
in the vaccine development lifecycle. Thus, this will help
bridge the gap between domains and stakeholders along the
development lifecycle, with the ripple effect of shortening the
development cost, length and complexity.

A step-by-step implementation procedure coupled with a
prototype vaccine preservation study have shined some light
in the implementation of the framework. Such studies, if suc-
cessful, can replicate actual preservation conditions in extreme
weather (e.g., subsaharan Africa) and guide the design and
selection of the most effective formulation able to stabilize
the vaccine in given situations. However, limitations in the
current state of vaccine research and development practices
in, (1) providing means to characterize key MC model pa-
rameters and, (2) ensuring that all relevant phenomenons and
interactions are properly have appeared to be a challenge
to the proper account of system have stood on the way.
Thus, we have designed and conducted laboratory experiments,
which coupled with regression analysis of stability data has
resulted into multiple regression models that were used as an
alternative path. The resulting deterministic models are shown
to provide statistically significant and satisfactory results under
the specific set of experimental conditions. Responses surfaces
and contour for on the “on-the-fly” prediction have been
produced.

Future work needs to address challenges related to the full
and accurate characterization of vaccines properties standing
on the way of the creation of stochastic models of biolog-
ical elements (e.g., antigens) to be used in the framework.
Therefore, advanced laboratory experiments are needed to that
aim but also to uncover and understand relevant phenomenons
of interest contributing to the system response (e.g., stability
of the vaccine). The application of the appropriate design of
experiments will be needed to ensure cost effectiveness and
overall efficiency in studies and analyses. Bringing the benefits
of the framework introduced in this work to day-to-day work
of stakeholders across the vaccine development lifecycle will
also necessitates further work on the refinement and validation
of the framework for various vaccine types, analyses and
cross-cutting concerns (e.g., potency, preservation, safety) and
various environmental conditions. Finally, the collaborative
development of domain and discipline knowledge across the
development lifecycle — e.g., vaccine ontology as in [21] —
is highly suitable to foster dialogue and synergy between
stakeholders.
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