International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

230

FPGAs and the Cloud — An Endless Tale of Virtualization, Elasticity and Efficiency

Oliver Knodel**, Paul R. Genssler'*, Fredo Erxlebent and Rainer G. Spallekit

* Department of Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
T Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
1 Department of Computer Science, Technische Universitit Dresden, Dresden, Germany
Email: *o0.knodel@hzdr.de, Tgenssler@kit.edu, i{ﬁrstname.lastname}@tu-dresden.de

Abstract—Field Programmable Gate Arrays (FPGAs) provide
a promising opportunity to improve performance, security and
energy efficiency of computing architectures, which are essential
in modern data centers. Especially the background acceleration
of complex and computationally intensive tasks is an important
field of application. The flexible use of reconfigurable devices
within a cloud context requires abstraction from the actual
hardware through virtualization to offer these resources to service
providers. In this paper, we present our Reconfigurable Common
Computing Frame (RC2F) approach — inspired by system virtual
machines — for the profound virtualization of reconfigurable
hardware in cloud services. Using partial reconfiguration, our
framework abstracts a single physical FPGA into multiple inde-
pendent virtual FPGAs (VFPGAs). A user can request vVEPGAs of
different size for optimal resource utilization and energy efficiency
of the whole cloud system. To enable such flexibility, we create
homogeneous partitions on top of an inhomogeneous FPGA fabric
abstracting from physical locations and static areas. The RC2Fgsgc
extension combines this virtualization with a security system
to allow for processing of sensitive data. On the host side our
Reconfigurable Common Cloud Computing Environment (RC3E)
offers different service models and manages the allocation of
the dynamic vFPGAs. We demonstrate the possibilities and the
resource trade-off of our approach in a basic scenario. Moreover,
we present future perspectives for the use of FPGAs in cloud-
based environments.

Keywords—Cloud Computing; Virtualization; Reconfigurable
Hardware; Partial Reconfiguration.

I. MOTIVATION

The idea of FPGAs as virtualized resources in Cloud
environments in the projects RC3E and RC2F was temporarily
completed with introducing homogeneous virtualized FPGAs
in 2017 by Knodel etal. in [1]. This article henceforth describes
the two parts of out project — RC3E and RC2F — beginning
with first considerations related to FPGA-Clusters in [2]. First
cloud approaches with service models were introduced in [3]
and [4], the overall RC3E-Cloud description in [5], a hardware
migration in [6] and additional security considerations by
Genssleretal. in [7].

Cloud computing itself is based on the idea of computing
as a utility [8]. The user gains access to a shared pool of
computing resources or services that can rapidly be allocated
and released “with minimal management effort or service
provider interaction” [9]. An essential advantage, compared
to traditional models in which the user has access to a fixed
number of computing resources, is the elasticity within a cloud.
Even in peak load situations, a sufficient amount of resources
are available [8].

With the theoretically unlimited number of resources, their
enormous energy consumption arises as a major problem
for data centers housing clouds. One possibility to enhance
computation performance by simultaneously lowering energy
consumption is the use of heterogeneous systems, offloading
computationally intensive applications to special hardware
coprocessors or dedicated accelerators. Especially reconfig-
urable hardware, such as FPGAs, provide an opportunity to
improve computing performance [10], security [11] and energy
efficiency [12].

A profound and flexible integration of FPGAs into scalable
data center infrastructures, which satisfies the cloud char-
acteristics, is a task of growing importance in the field of
energy-efficient cloud computing. In order to achieve such an
integration, the virtualization of FPGA resources is necessary.
Provisioning VFPGAs makes reconfigurable resources avail-
able to customers of the data center provider. These customers
are usually service providers themselves — nevertheless, they
will be called users throughout this paper. Those users can
accelerate their specific services, reduce energy consumption
and thereby service costs.

The virtualization of reconfigurable hardware devices is a
recurring challenge. Decades ago, the virtualization of FPGA
devices started due to the limitation of logical resources [13].
Nowadays, FPGAs have grown in size and full utilization
of the devices cannot always be achieved in practice. One
possibility to increase utilization is our virtualization approach,
which allows for flexible design sizes and multiple hardware
designs on the same physical FPGA. One challenge of this
approach are the unsteady load situations of elastic clouds,
which process short- and long-running acceleration tasks.

In this paper, we introduce our virtualization concept for
FPGAs, which is inspired by traditional virtual machines
(VMs). One physical FPGA can consist of multiple vVFPGAs
belonging to different services with different runtimes. Each
VFPGA can be configured using partial reconfiguration [14]
and the internal configuration access port (ICAP). The vFPGAs
are, therefore, flexible in their physical size and location.
This vertical scalability of VFPGAs from a small design
up to a full physical FPGA enables an efficient utilization
of the reconfigurable resources. Moreover, the VFPGAs are
fully homogeneous among each other and thereby become a
wholesome virtualized cloud component, which also supports
an efficient migration of a whole vVFPGA context.

The paper is structured as follows: Section II introduces
similar concepts and related research in the field of vir-

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tualization of reconfigurable hardware, cloud architectures
and bitstream relocation. The requirements for a profound
provision of FPGAs in a cloud environment are discussed
in Section IIl. Section IV introduces the prototypical cloud
management system RC3E followed by definitions necessary
for the virtualization of the FPGAs themselves in Section V.
In Section VI, we give an overview on our FPGA related
virtualization concept RC2F. Our prototype, which implements
our concept with homogeneous and in their size flexible
vFPGAs, is presented in detail in Section VII. The additional
security extension RC2Fsgc is introduced in Section VIII,
followed by device utilization, vVFPGA sizes and performance
results of the simulation of our FPGA-Cloud in Section IX.
Section X concludes and gives an outlook.

II. RELATED WORK

The provisioning of reconfigurable hardware in data centers
and cloud environments has gained more and more importance
in the last years as shown by the overview from Kachris et al.
[15]. Initially used mainly on the network infrastructure level,
FPGAs are now also employed on the application level of data
centers [12]. Typical use cases in this field are background
accelerations of specific functions with static hardware designs.
The FPGAs’ special feature to reconfigure hardware at runtime
is still used rather rarely. Examples are the anonymization of
user requests [16] and increasing security [11] by outsourcing
critical parts to attack-safe hardware implementations. In most
cases, the FPGAs are not directly usable or configurable by the
user, because the devices are, due to a missing provisioning or
virtualization, hidden deeply in the data center.

The development of methods for the deployment of FPGA
related projects in a cloud infrastructure is performed by
Kulanov etal. in [17]. A comparable contribution with stronger
focus on the transfer of applications into an FPGA grid for high
performance computing is shown in [18]. The application focus
on a single cloud service model with background acceleration
of services using FPGAs. An approach, which places multiple
user designs on a single FPGA, is introduced by Fahmy etal.
[19], using tightly attached FPGAs to offload computationally
intensive tasks. The FPGAs are partially reconfigurable and
can hold up to four individual user designs. The approach was
extended by Asiaticietal. in [20] with additional memory vir-
tualization. A cloud integration model with network-attached
FPGAs and multiple user designs on one FPGA was introduced
by Weerasinghe etal. [21].

The term virtualization itself is used for a wide range of
concepts as shown by Vaishnavetal. in [22]. An example for
abstractions on the hardware description level is VirtualRC
[23], which uses a uniform hardware/software interface to
realize communication on different FPGA platforms. BORPH
[24] provides a similar approach, employing a homogeneous
UNIX interface for hardware and software. The FPGA par-
avirtualization pvFPGA [25], which integrates FPGA device
drivers into a paravirtualized Xen virtual machine, presents a
more sophisticated concept. A framework for the integration
of reconfigurable hardware into cloud architecture is devel-
oped by Chenetal. [26] and Bymaetal. [27]. The framework
of Bymaetal. allows user-specific acceleration cores on the
reconfigurable hardware devices, which are accessible via an
Ethernet connection. In [28] Chen et al. use FPGAs for process-
ing network streams on virtualized FPGA resources similar

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

231

to our approach. A virtualized execution runtime for FPGA
accelerators in the cloud is shown by Asiaticietal. in [29].
They demonstrated a complete methodology and a resource
management framework that allows a dynamic mapping of the
FPGA resources in a simple cloud environment.

Approaches more closely related to the context-save-and-
restore mechanism required by our migration concept can
be found in the field of bitstream readback, manipulation
and hardware preemption. In ReconOS [30], hardware task
preemption is used to capture and restore the states of all flip-
flops and block RAMs on a Virtex-6 to allow multitasking
with hardware threads. In combination with homogeneous bit-
streams for different physical vVFPGA positions, methods like
relocation of designs as shown in [31], provide an opportunity
for an efficient context migration of virtualized FPGAs. A
preemption of the reconfiguration process itself is shown by
Rossietal. in [32].

The outlined systems virtualize FPGAs and makes them
easily available in the cloud. But not every user can utilize such
a service, because their sensitive data is at risk in a data center.
Security audits are well established in traditional systems, but
new cloud environments provide new challenges [33, 34]. In
[35] the idea of securing FPGAs in the cloud is outlined, but
no prototype realized or protocol described. A secure cloud
featuring FPGAs was proposed in [16] relying on a third party,
called trusted authority, to establish any trust in the hardware
in the cloud. In [36] a simple public key based systems was
implemented, however, their protocols fail to protect against,
e.g., replay attacks. But none of these proposals virtualizes the
FPGA to increase their flexibility and utilization.

Productive cloud for
acceleration- and security-tasks

FPGA-Prototyping

| RC2F Host—Hypervisor| | RC2F Host-Hypervisor |
\

S~ \, -

| RC2F Host-Hypervisor |
S< N

N S . Pis
N ~ . \ -
\ S . \ -

[
RSaa$S i RAaa$S BAaaS
RC2Fgpe: X ! v
User VM : Compute VM Service VM
FPGA vsor IRRRGESE ... VFPGA | (R
) | partial partial
Bitstream
|| e
: RC2F Driver [Rc2FDriver |
[
{
I\
|

physical physical
FPGA cPU FPGA

Compute Node

user-modifiable

Visibility of the hardware
Hardware accessibility

Figure 1. The three service models provided in our cloud environment. In
the RSaaS model, users can allocate full physical FPGAs. The RAaaS and
BAaaS model allow concurrent user designs on a single physical FPGA.

III. POSSIBILITIES AND REQUIREMENTS FOR FPGAS IN
THE CLOUD

The overall motivation is to build a system providing the
FPGA for a wide range of service providers with various
requirements. The particularity hereby is that we have a data

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

center provider with physical FPGAs, a cloud provider offering
a virtual infrastructure and a service provider who offers only
a background acceleration, which requires a virtualized FPGA
as shown in Section VIL In the following we introduce three
key service perspectives as shown in Figure 1. The figure gives
also an overview on modifiable and fixed components for each
of the service models and shows also the different levels of
visibility, accessibility, flexibility and security.

A. Reconfigurable Silicon as a Service — RSaaS

This model provides full access to the reconfigurable
resource and is primarily intended for a cloud provider to
develop special acceleration cores without the use of a virtu-
alized FPGA or with a dedicated secured access to the cloud.
A cloud provider can allocate a full physical FPGA from the
data center operator to implement the hardware of their choice.
The FPGA is forwarded and passed through to a VM by
the management environment. This model allows developers
to reconfigure the full physical FPGA, thus, the RC2Fgsgc
extension cannot protect the users’ data. It also opens new
attack vectors that do not exist in current cloud environments
and so this model should be limited to cloud providers. The
concept can be compared to bare-metal cloud services and is
related to the traditional cloud service models Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS).

B. Reconfigurable Accelerators as a Service — RAaa$S

A model with less freedom for the developer (service
provider) and typically used by service providers is the Re-
configurable Accelerators as a Service (RAaaS) model. Only
vFPGAs of different sizes are visible, allocatable and usable.
The model allows the development of hardware designs, which
can be used for background acceleration of a specific service
and the communication is performed via the framework in-
troduced in Section VIIL. Such restrictions have the advantage
that the RC2Fggc extension can be used, which significantly
increases the security of the system compared to the RSaaS
model. The RAaaS model can be compared to the PaaS model.

C. Background Acceleration as a Service — BAaaS

The third model is suitable for applications and services
using background acceleration running in common data cen-
ters. The VFPGA is not visible or accessible by the service
users. Instead, services are using VFPGAs in the background
to accelerate specific tasks. The pre-build configuration files
and host applications are used by the cloud service provider.
Resource allocation and vFPGAs reconfiguration occurs in the
background using the RC3E resource management system.
Because this model provides concrete service applications to
the user, it is similar to the PaaS model. Especially the BAaaS
service model demands resource pooling and a rapid elastic-
ity for typical workloads. FPGAs allow a higher flexibility
than virtual machines due to faster booting times. From a
security perspective, this model is similar to current cloud
environments, because of the limited reconfigurability of the
FPGA. The RC2Fsgc extension cannot be used in this model.
In Section IX we demonstrate the cloud’s performance with a
workload using our background acceleration service model.

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

232

FPGA PCle
% % \/|rtua||zat\on %Passthrough %
Developer

End User

Datacenter

Provider | Provider Operator

|
Service Cloud |
|
|

physical architecture

|abslracllon fromthehardware Tooem— _

Figure 2. Involved stakeholders and the visibility of resources in a flexible
environment. Background acceleration is primarily used in systems were
service provider and datacenter operator are the same.

D. Chaining it all together: RSaaS — RAaaS — BAaaS

Figure 2 illustrates how a physical FPGA is abstracted
by multiple layers into a transparent background accelerator.
First, the datacenter operator makes the FPGAs available
to the cloud providers (RSaaS). Their developers implement
applications for the VFPGAs (RAaaS) and package them in
Virtual Reconfigurable Acceleration Images (vVRAIs), which
are described in Section IV-C. Such a vRAI is used by the
service provider as a black box in the BAaaS model (see
Section IV-C and Section VII-F). At this point a virtual FPGA
infrastructure is provided, which can be used to accelerate
services executed by end users. Combined with the classic
Software as a Service (SaaS) model, this allows for a seamless
integration of VFPGAs to accelerate the service, reduce energy
consumption and thus, saving operating costs. At this highest
level of abstraction, the FPGA is transparent to the end user.

IV. RECONFIGURABLE COMMON CLOUD COMPUTING
ENVIRONMENT — RC3E

In this section, we will present the Reconfigurable
Common Cloud Computing Environment — RC3E — and ex-
plain the components depicted in Figure 3 in detail. In contrast
to other cloud architectures with FPGA integration presented
in Section II, the RC3E environment is designed especially for
an integration of virtualized FPGA resources and the service
models described in Section III. The system is a proof-of-
concept to study different approaches for the virtualization and
the flexible integration of reconfigurable hardware into a cloud
management system. The evaluation results will be used for
future integrations of specific RC3E components into a cloud
management system such as OpenStack [37].

A. Overall System Architecture

The overall system design is a distributed three tier client-
server architecture to provide a high degree of scalability and
flexibility. RC3E offers three access possibilities to use and
administer the RC3E system. The most common way is a login
shell either on a local computer with our RC3E client or via
secure shell login to the remote login server. Additionally, it is
possible to connect a web frontend (see Section IV-B) to the
core system’s APIL

The RC3E core system running on the management node,

which itself is a three tier architecture, orchestrating the
connected clients and all registered compute nodes. It uses

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

233

: f Compute-Node
Client-Terminal Sl ..
* Available Resources i |1 Local Management - Dom0O
o User Statistics/Preferences : | Local Node-Management — RC3E RC2F Host-Hypervisor
* VM and VFPGA Management ¢ ', | e Local VM-Management * Monitoring
¢ System-Configuration ® (v)FPGA Assignment / Configuration * Assignment of devices
. . e Configuration of virtual devices * FPGA Configuration

\4
FPGA-Hypervisor
e States

® Configuration

!
Cloud-Management — RC3E b !
* System Preferences S I
® Resource-Management |
* Management of Resources |
® User-API (for user requests) |

|
|
|
|
|

Load Distribution and Scheduling

* Global Resource-Assignment System-Hypervisor

e Provision of VMs

® BAaaS Job Queue Operating System

® Global Resource-Monitoring

o

. |

. .

* Network e Virtualization-API ! !

o . ® Physical devices ' |

_ _ _ _ _ _ _ _ _ _ _ _ _ : |

I | iR i
RC3E k System- el Distributed VFPGA- Pl i

Database I | . Images Images Filesystem Images/Instances |l l
. — L‘:;:-_-.-_-_-_-:;:-_-_-_-.-_-:;:-_-.-_-_-_-:;:-_-_-_-:_-:;:-_-.-_-:_-:;:-_-_’_J,,

| RC3E-Components | _ |System-Components|

Figure 3. Architecture of the resource management and hypervisor RC3E consisting of core system (management, monitoring and job scheduling) and compute
node providing VMs and vFPGAs.

a centralized database to store all required information and
manages a distributed file system, which is shared between all
compute nodes and the management nodes.

B. Web-based User Interaction and Database Backend

In a cloud environment it is common that the majority of
users does not have administrative access to the system. A
web-based frontend allows these users a fast and comfortable
way to reserve FPGA slices on the server, upload and run their
designs. The Django framework was used as a foundation of
such a web frontend. All data required for the frontend is stored
in a My SQL database, which interacts directly with Django’s
web-server. The RC3E tools discussed in the other sections
have to be present on the same machine as the web-UI in
current implementations. Separating the cloud systems control
instance from the web-server is desirable and expected to be
done with a reasonable effort in the future.

In Figure 5 the modeled entities and their reference rela-
tions are shown. Data types and classes provided by Django
itself are printed in italics for distinction. Attributes that only
serve framework-internal purposes and are added by Django
automatically have been omitted for clarity.

The models focus points and their synergies will be ex-
amined in the following. Words in bold typeface thereby
correspond with the entities in the model.

To avoid ambiguity, the term user refers to any human
interacting with the system, while administrators refers to
users with the privileges to access and modify the system’s
internal state. Persons without such privileges will be called
consumers. Django’s integrated user group and permission
management system is used to reflect user categories and
facilitate access control across the web-UL

It was decided to use a fine-grained modeling approach to
retain flexibility and changeability in an attempt to create a
future-proof software base for future development iterations.
This also includes the avoidance of unmanaged data redun-
dancy by preferred usage of foreign references.

Entities are represented on the database level as separate
tables with each of the entity’s attributes as a table column
and each instance of the entity as a table row, containing the
actual attribute values within the respective cells.

The modeling is heavily influenced by the operation prin-
ciples of foreign key references in SQL-based data storage
systems. Thus, in situations where two entities A and B form
a [A]l:n[B]-relationship, the foreign key has been placed on
the B side referencing A to avoid creating a separate associative
entity each time such a relation shows up. In [AJm:n[B]
scenarios such a separate entity can not be avoided though.
The UML-style B contains A symbolization should therefore
be read as B contains a reference to A. Foreign key references
are set up to execute cascading deletions and modifications,
since the entity containing the reference would enter an invalid
state if not deleted/modified as well.

1) Nodes, FPGAs and Regions: A mnode represents the
physical cloud server in which FPGAs are installed. Each
node is named and identified by an unique IP-address. An
optional comment allows the node’s administrator to easily
convey additional information to the consumer aside from the
installed FPGAs.

Installed FPGAs are initialized by the RC3E management
system, which provides PCI-addresses for the node and the
device itself. The latter are queried during the registration
of the FPGA with the web-frontend and associated database
entries are created automatically.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

234
Cloud- Compute-Node with Physical
B C
A Management Node vFPGA-Resources FPGA-Resource
s A - A - A -
. | - Local Node-
Middleware - il User-VM m vFPGA
Management Management Hypervisor

T T [T [[

] |] | [} [}

(1) Allocation of a VFPGA resource with additional VM | | | |

T T T == " r—-—-——— - T -
% alllc;?;e 7] system.rcfg]] :] : -!
\Y] ' resources
! F‘available? : : !
: " : '
| register in : : !
: database) | 1 |
| . ; assignment |) |
i system.rcrg > VM/NVFPGA : : i
: . :| system.rcfg : : :
————————— I
| assign :ltlchannel I : !
H I]
i <« occupancy set up | | |
_________ (!

: in database startVM = configure HCS : H
| > with vFPGA data | I
: start - | 1
| VFPGA g ! |
l initialize | :
| VM ready | FPGA | |
€ DR VFPGAeady | BV ! I
| D) , . |
S VLR | configure .| [configure S '
<M« VFPGA T| [vFPGA !

Figure 4. Sequence diagram showing interaction of levels in the RC3E system via cloud management nodes, the compute node with a (free) VFPGA resource
up to the physical FPGA for three exemplary scenarios.

To offer a uniform description of an FPGA, the FPGA
model has been introduced as an abstraction of generic and
structural information. The producer entity has been exter-
nalized with the prospect of providing additional information
about it in future implementations. An FPGA model references
a region type and holds the amount of regions an FPGA of
this model has. With this approach only homogeneous FPGA
architectures can be modeled. For heterogeneous architectures
the region type and -count would have to be externalized and
act as associative entity between the FPGA model and the
region type.

One or multiple region instances are created alongside with
an FPGA instance, the amount depending on the FPGAs region
count. Its region type is determined by the associated FPGA
model and an region index is determined. These indices are
unique per FPGA, 0-based and continuous, with the purpose
of identifying regions on an FPGA and determine whether
they are neighbors and can therefore be reserved together. For
programming purposes the RC3E-system provides a file path
to a memory device, which is also stored.

2) Reservations and Virtual FPGAs: The most common
interactions of customers with the system are the reservation
of VFPGAs and the programming of such. For the first step,
the customer provides points in time for the start and end of
the reservation period and selects a region type suitable for
his use case along with the required amount of consecutive
regions. The database-backend will then be queried for match-
ing FPGA regions. Already existing reservations are taken
into account when selecting a sufficient amount of consecutive
FPGA regions to reserve. On success, a new VFPGA instance

is created, alongside with a region reservation for each
affected region. The latter is an association entity to facilitate
the [VFPGA n:m[Region]-relation. While region reservation
database entries are removed after the reservation period has
passed, VFPGA entries are retained for bookkeeping purposes.

3) Programming the Virtual FPGA: The administrators
provide information about the installed programmers and the
programming script for the available FPGA models. Both en-
tities are used to determine which programmer-FPGA model-
combinations are supported and thus, which programmers are
offered to the customer for usage with his reserved vFPGA.
Upon programming, the script’s template gets parsed and
placeholders within it matched against the available device
variables and runtime variables. If a match occurs, it is
replaced by the variables’ value. Device variables are bound to
specific FPGAs and are set by the administrator while runtime
variables may be python expressions or fixed values and will
be evaluated at the point of replacement. Within the reservation
period the user may upload a bitfile, which will then be passed
on to the programmer alongside with the appropriate script and
variables. In case of a reservation spanning multiple regions,
the memory device path of the region with the lowest index is
the one used by the programmer for the whole reserved section.
Uploaded bitfiles are currently not stored in the database
backend.

C. Description of vFPGAs (RCFG and vRAI)

All necessary information for the execution of a back-
ground accelerator is combined in a so called VRAI. The
vRAI can be delivered as fully encapsulated accelerators to

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

region_type

producer

name : character[255]

lut_count . integer

register_count : integer

blockram_size :integer

: integer

dsp_count

pci_address ‘ ‘ node

system : character[4] name : character[255]

: generic_ip_address
: text_field

bus : character(2]

ip_address

device : character[2] comment

function : character(1]

fpga_model

producer : producer
node : node . "

designation : charachter[255]
fpga_model : fpga_model . .

region_type : region_type
node_pci : pci_address . ;

region_count : integer
device_pci : pci_address

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

235

programmer ‘

name : character[255]

device_path : file_path

django.auth_user_groups K> django.auth_group
Q
[django.auth _group permissions]
%

django.auth_permission

[django.authﬁuser]—0[django.auth_user_user_permission]

script

programmer : programmer

fpga_model : fpga_model

region device_variable
region_type : region_type fpga :fpga
in_fpga : fpga name : character[255]
index : integer value : text field
memory_device_path : file_path
runtime_variable
o name : character[255]
value : text_field

region : region

template

: text_field

vfpga

by_user :user

creation_date : datetime

reserved_by :vfpga

reservation_start : datetime

reservation_end : datetime

Figure 5. Overview over the entities involved in modeling a database backend. Italic text represents primitives provided by the Django framework.

the higher-level cloud service developers. From the point of
view of the provider of a service, there is the requirement to
process a request in the form of a function call as compact, safe
or energy-efficient as possible, without having any knowledge
of the physical hardware in the background. The execution
of a VRAI requires allocation of a vVFPGA, which fulfills
all requirements described in the Reconfigurable (Device)
Configuration (RCFG). In order to allocate and execute an
accelerator from a VM, several components are required within
the VRAI package (see Figure 6):

e The required vFPGA-Images for all possible VFPGA-
Slots (necessary for a migration of a vVFPGA-Instance).

e The RCFG file describing the required vVFPGA suitable
for the vFPGA image.

e The host application for initialization and interaction with
the VFPGA-Instance, which is embedded directly into the
user’s offloading service (BAaaS).

e Virtual Context Bit Mask (VCBM) to read the relevant
bits within the vVFPGA instances that identify the current
state (see Section VII-E).

Since different RCFGs are required depending on the dif-
ferent service models, these are outlined below and explained
accordingly. Figure 7 shows an exemplary RCFG, which
describes a complete physical FPGA in the model RSaaS
service="'rs’ with the name name ="' fpga0’ gets and
in the VM instance vim =’ vml-hvm’ via hardware virtualiza-
tion and PCI passthrough at a certain address in the PCI tree
pci ='01:00.0" is displayed. The virtual network address
is sent to the system viavif='10.0.0.43". The VM must

have its own configuration file depending on the virtualization,
and the embedding of the VM configuration in the RCFG
for the FPGA is also possible. Since different FPGAs are
to be provided in this model, there is a corresponding entry
with the name of the FPGA board board="'"vc707’. The
configuration of the FPGA is done using the JTAG interface
config= ' jtag’, where an initial design is additionally
specified: design =’led.bit’. Using a RCFG file, the
RSaaS model can allocate only one FPGA and its associated
VM, otherwise the requested system may become too complex
and it may not necessarily be mapped to the physical hardware
resources.

VRAI

VFPGA-Slots
(FARs)

VFPGA-Image

Bitmask

(for Context
relocation)

| .

Figure 6. Virtual Reconfigurable Acceleration Image (VRAI) package with
all the files required to run a VFPGA-Instance, such as vVFPGA-Image
(partial bitstreams), RCFG, host program and optional bitstream masks for
the bitstream relocation.

i
I
|
| | Application
|
i

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service = 'rs’ #Service Model RSaaS$S
name = ’fpgal’ #FPGA-Instance Name
vm = "vml-hvm’ #VM-Instance Name

board = "vc707’ #FPGA-Board

vif = 7ip=10.0.0.43" #FPGA-IP

vpci = 701:00.0" #PCI Node in VM-Instance
design = ’'led.bit’ #Initial Design

config = ’jtag’ #Configuration Method

Figure 7. Configuration file for the allocation of a physical FPGA in the
Service Model RSaaS.

More complex is the description of the VFPGAs in the
model RAaaS service=ra as shown in Figure 8. In ad-
dition to the already known parameters, in this example two
vFPGAs with different number of vFPGA slots size=[2,
1] are allocated via vfpga= [2], where both are passed
to the same VM vm= [’ vml-pvm’]. The number of front-
end interfaces is determined by frontends=[2, 1] for
each VFPGA, where the number must be less than or equal
to the number of VFPGA slots. At this point, the cloud
management must try to map the desired virtual system to
a physical system, where in the model RAaaS additionally the
position of the vVFPGA on the physical FPGA can be specified
by the field loc=1[0,2]. Via debug=[’csp’] in the
resource management model RAaaS it is communicated which
debug/tracing interface is to be additionally instantiated. The
capacity of the external DDR memory can also be specified
(memory=[2000,10001]), as well as the desired state of
VFPGAs boot = [’ paused’]. The location of the values
within the lists, such as size, loc, vif, or design, decides
how to map the entries. Furthermore, if there is only one entry
in a list, such as key, it will be applied equally to all vFPGAs.
If no clear assignment is possible or if this is not permitted,
an error message is output.

service = 'ra’ #Service Model RAaaSs
name = [’vfpga-bsmc’] #VFPGA/User Design Name
vm = [/vml-pvm’] #VM-Instance Name
vipga = [2] #Number of vFPGAs

size = [2, 1] #VvFPGA-Slots

frontends = [2, 1] #Frontend-Interfaces
loc = [0,2] #VFPGA-Slot on device
memory = [2000,1000] #DDR-Memory Size in MByte
vif = ["ip=10.0.0.42", ...] #VFPGA-IPs

boot= ['paused’] #Initial vFPGA-State
design = [’bsmc-2.bit’, ...] #Initial Designs

Figure 8. Configuration file for the allocation of a VFPGA-Cluster in the
Service Model RAaaS.

In the model BAaaS, the actual user has no knowledge
of the VFPGA resources. The RCFG file, which is stored
together with all the required vVFPGA images in the VRAI,
is reduced. For example, as shown in Figure 9, there are no
locations of the VFPGA slots (1oc) or information about the
debug/tracing interface (debug) required. The RCFGs must
be checked by the resource manager for the rights of the users
within the service model before the global allocation of the
appropriate resource is first performed and assigned to the user.
The concrete processing of the content then happens within the
Dom0 of the assigned node as introduced in Section IV-B1.

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

236
service = ’‘ba’ #Service Model BARaaSs
name = [’vfpga-kmeans’] #VFPGA/User Design Name
vm = ["vml-pvm’] #VM-Instance Name
vipga = [1] #Number of vFPGAs
size = [4] #VFPGA-Slots
frontends = [2] #Frontend-Interfaces
memory = [4000] #DDR-Memory Size
vif = ['"ip=10.0.0.151"] #VEPGA-IP
key = [’AAAABClyc2 ... BuHNE’] #User AES-Key
boot= [’booting’] #Initial vFPGA-State
design = [’kmeans—quad.vrai’] #Initial Design

Figure 9. Configuration file for the allocation of a single VFPGA in the
service model BAaaS

static partially reconfigurable regions
A
N\ N
— T T —
Dom0 DomU DomU DomU DomU
o o o
Mana?emel?t/ s VEPGA 1 g s
reconfiguration a o o
™ ™S ™
> > >

Frontend

static

FPGA-Hypervisor — RC2F-Infrastructure

physical FPGA (Resources, PCI-Endpoint, ...)

Figure 10. Paravirtualization concept used in RC2F to provide virtual
FPGAs (vFPGAs) using partial reconfiguration. vVFPGAs can be combined to
group larger regions and thereby provide more resources.

Hardware | Backend Frontend Frontend| | |Frontend| | |Frontend| | |Frontend
{ [Interface | Interface 0 1 2 3 4

V. DEFINITIONS FOR FPGA VIRTUALIZATION IN THE
CLOUD-CONTEXT

In order to establish a common name for the following
chapters with regard to the virtualized FPGAs, the necessary
terms are defined in order to better distinguish the VFPGAs
(see Definition 1) according to their life cycle based on the
requirements analysis in this chapter to be able to. The terms
are based on those of system virtualization after [38].

Definition 1: vFPGA A virtual FPGA (vFPGA) is
located within a physical FPGA on one or more vVFPGA
slots (see Definition 2). A vFPGA is perceived by the
user as a stand-alone resource with a dynamic number
of hardware resources (slices, LUTs, registers, etc.).

Definition 2: vFPGA-Slots A vFPGA is mapped to
individual physical regions with a fixed number of hard-
ware resources, and thus fixed size within the physical
FPGA, called vFPGA-Slots.

Definition 3: vFPGA-Design The vFPGA-Design is
the hardware design/the user’s hardware design, which
is placed and wired from a netlist (RTL level) within a
vFPGA with its frontend interfaces.

Definition 4: vVFPGA-Instance A vFPGA-Image (see
Definition 5) within a vFPGAs that is directly associated
with a user and can contain user-specific data (context)
is called a vFPGA-Instance and can be detached from
vFPGA-Slots (see Definition 2).

Definition 5: vVFPGA-Image A partial bitstream, which
forms the basis for a vFPGA-Instance, is called vFPGA-
Image, the specific vVFPGA slots is assigned.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In addition to the definitions just made, which relate to the
specific VFPGAs and their life cycle, furthermore, the different
hypervisors in the overall system are to be differentiated and
defined. The term hypervisor, is defined as a system for
managing and allocating guest-to-host resources, forms the
basis for the following definitions.

Definition 6: System-Hypervisor The System-
Hypervisor corresponds to the classic hypervisor
(VMM), which provides the VMs within the system
virtualization on the host system.

Definition 7: RC2F Host-Hypervisor The manage-
ment structure for the vVFPGAs on their host system is
called RC2F Host-Hypervisor, or just Host-Hypervisor.

Definition 8: FPGA-Hypervisor The FPGA-
Hypervisor is the management structure on the FPGA
that monitors the accesses of the vFPGAs within the
physical FPGA.

VI. FPGA VIRTUALIZATION

As the cloud itself is based on virtualization, the integration
of FPGAs requires a profound virtualization of the reconfig-
urable devices in order to provide the vVFPGAs as good as other
resources in the cloud. Furthermore, it is necessary to abstract
from the underlying physical hardware.

A. Requirements for Virtual FPGAs in a Cloud Environment

As discussed in Section II, the term virtualization is used
for a wide range of concepts. The application areas of FPGAs
in clouds require a direct use of the FPGA resources to be
efficient. Thus, an abstraction from the physical FPGA infras-
tructure is only possible in size and location. Our approach
is related to traditional system virtualization with VMs that
corresponds to a Type-1 bare-metal virtualization with use of
a hypervisor [39]. This kind of virtualization is designed for
the efficient utilization of the physical hardware with multiple
users. Therefore, it is necessary to adapt the required FPGA
resources closely to the requirements of the users’ hardware
design capsuled by VFPGAs. By this, an efficient utilization
of the physical hardware with multiple concurrent vVFPGAs on
the same hardware can be achieved.

Furthermore, the VFPGA has to appear as a fully us-
able physical FPGA with separated interfaces and its own
infrastructure management like clocking and resetting. For an
efficient cloud architecture, which requires elasticity [9], it is
necessary to migrate VFPGAs with their complete context (reg-
isters and BlockRAM), which requires to enclose a complete
state management of the VFPGA as described in [6] and [1].
An extraction of internal DSP registers is not supported in
recent Xilinx FPGAs and must be considered in the design.

One of the first virtualized systems was the IBM Virtual
Machine Facility/370 (VM/370) [40] in 1960 with a first
abstraction and partitioning in host and guest. Nowadays a
common definition is that

“Virtualization provides a way of relaxing the forgoing con-
straints and increasing flexibility. When a system device (...),
is virtualized, its interface and all resources visible through
the interface are mapped onto the interface and resources of
a real system actually implementing it.” [38, p. 3]

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

237

The two classic approaches are either the use of a VMM,
a small operating system controlling the guest system’s access
to the hardware, or multiple guest systems embedded into a
standard host operating system [41]:

e Type 1: Bare metal (VMM or Hypervisor)
e Type 2: Host operating system

Another distinction can be made on the level of code
execution and driver access, where the relevant approaches are
[38]:

e Hardware virtualization (full virtualization)
e Paravirtualization
e Hardware-assisted virtualization

An interesting starting point for FPGA virtualization is
especially the VMM concept with paravirtualization in which
the interfaces to the VMs are similar to those of the underlying
hardware. The VM interfaces are modified to reduce the
time spent on performing operations, which are substantially
more difficult to run in a virtualized than in a non-virtualized
environment. This kind of paravirtualized system is introduced
in Section VII-C. The unprivileged guests (DomU) run on a
hypervisor, which forwards calls from frontend driver to the
backend driver of the management VM (Dom0).

B. FPGA Virtualization Approach

We decided to virtualize the FPGA similar to a paravirtu-
alized system VM executed by a hypervisor to provide access
to the interfaces. Figure 10 shows an FPGA virtualization
inspired by the paravirtualization introduced before. The virtu-
alization is limited to the interfaces and the designs inside the
reconfigurable regions, which constitute the actual vFPGAs
as unprivileged Domain (DomU). Each vFPGA design is
generated using the traditional design flow with predefined
regions for dynamic partial reconfiguration [14] and static
interfaces. The vVFPGAs can have different sizes (Figure 10)
and operate completely independent from each other. The
infrastructure encapsulating the vFPGAs has to be located in
the static region corresponding to a privileged domain (DomO)
or hypervisor.

The interface providing access to the VFPGAs is a so-called
[frontend interface, which is connected inside the hypervisor to
the backend interface in the static FPGA region. There, all
frontends are mapped to the static PCle-Endpoint and the on-
board memory controller inside the Dom0, which also manages
the states of the vFPGAs.

VII. FPGA PROTOTYPE RC2F

Our prototype RC2F introduced in [4] provides multiple
concurrent VFPGAs allocated by different users on a single
physical FPGA. The main part of the FPGA frame(work)
consists of a hypervisor managing configuration and user cores,
as well as monitoring of status information. The controller’s
memory space is accessible from the host through an APIL.
Input- and output-FIFOs are providing high throughput for
streaming applications. The vVFPGAs appear to the user as
individual devices inside the System VM on the host.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A symmetric

AP asymmetric

{BBRAM A TFiash 1 JTAG 1

Hardware-
Interface

Hypervisor
Control Unit
-HCU -

PCl Virtualization VLAN/IP
Iilllilllililllll Config Space (HCS) RCZFSE(:

— System Status AES, ECC, PUF;
Channel-Virtualization A-Control SHA256

Backend-

Clocking
Interface Vi

FPGA Monitoring

Channel-
-

Interface

Frontend-
-

Interface

Frontend-
Interface

—

Backend-
Interface

Memory-Controller

Hardware- 5

Interface

Figure 11. Virtualization frame RC2F with hypervisor, I/O components and
partial reconfigurable areas housing the VFPGAs. The vFPGAs have access
to the host using PCIe (FIFO interface and config space), to the Cloud
network using Ethernet and the virtualized DDR3 memory.

A. System Architecture

The physical FPGAs are located inside a host system
and are accessible via PCle. On both hardware components
(host and FPGA), there are hypervisors managing access,
assignment and configuration of the (v)FPGAs. Based on
our concept, we transform the FPGAs into vFPGAs with an
additional state management and a static frontend interface
as shown in Figure 10. Our architecture, designed to provide
the vVFPGAs, is shown in Figure 11. The hypervisors manage
the on-chip communication between backend and frontend
interfaces for PCle (Our prototype uses a PCle-Core from
Xillybus for DMA access [42]), Ethernet and a DDR3 RAM.
The RAM is virtualized using page tables, managed by the
host hypervisor, which also manages the VFPGA states we
introduced in [6]. The number of frontends and their locations
are defined by the physical FPGA architecture as shown in
Figure 16. The Hypervisor Control Unit manages the ICAP
controller and the vControl units, which maintain and monitor
the vFPGAs.

1) vFPGAs: To exchange large amounts of data between
the host (VM) and the vFPGAs a FIFO interface is used. To
exchange state and control information the vVFPGAs can be
controlled by the user via a memory interface as shown in
Figure 13. The memory is mainly intended for simple transfers
and configuration tasks like resets, state management (pause,
run, readback, migrate) and the selection of a VFPGA system
clock. In addition to these static fields, there is also a user-
describable memory region, which can be used as virtual I/O.
The communication using Ethernet is also provided but out of
the scope of this paper.

2) Components of the RC2F infrastructure: The RC2F
infrastructure is exemplarily implemented within the static
area with the components as shown in Figure 11. For the

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

238

Channel-Virtualization

_» vControl Unit
-vCU -
Config Space (vCS)
Frontend-
Interface
-

Memory-Virtualization

Figure 12. Architecture of a RC2F-vFPGA with (C) the local vVFPGA
Control Unit (vCU) containing the Virtual Control Space (vCS). The data
lines for the memory interface (D) and the two FIFOs are each available for
input (A) and output (B) streams.

31 2423 16 15 8 7 0

VFPGA Design Name 00h
(ASCIl)
01h
Static

User Resets ‘ Clock Select Design Status 02h

VFPGA State
(current and upcoming) Test Loopbacks ‘ Reserved 03h
User Describable 04h

Reconfigurable \

1Fh

Figure 13. Register and memory interface for the management of VFPGAs
accessible by the user VM (rc2f_cs).

infrastructure, as shown in Figure 16, both the right side of
the physical FPGA and the lower clock region are provided.
The constant components of the static infrastructure within the
RC2F infrastructure are:

FPGA-Hypervisor: At the heart of the implementation is the
FPGA hypervisor, which provides the frontends to the
vFPGAs as shown in Figure 11. Essential components
are the configuration memory of the FPGA hypervisor
explained in Figure 14, which transmits all control com-
mands and signals to the FPGA, and the ICAP controller
for reconfiguring the VFPGA slots and to read out a
partially reconfigurable vVFPGA instance for migration.
The memories are built from components of the Pile of
Cores (PoC) library [43] and constructed as shown in
Figure 14. The internal clock rate (system clock) of the
FPGA hypervisor and device virtualization is 250 MHz.
To decouple the FPGA hypervisor from the internal logic
of the vVFPGAs as well as the I/O components, there are
cross-clocking FIFOs at the interfaces between the clock
domains.

PCle-Controller: The PCle controller is Xilinx’s provided
Intellectual Property Core (IP-Core) 7 Series FPGAs In-
tegrated Block for PCI Express v3.3 [44] with a Xillybus
controller [42], which provides both FIFO and memory
interfaces on the FPGA, as well as a driver within the
host hypervisor.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DDR3-Controller and Memory-Virtualization: The used
DDR3 controller is the IP Core Xilinx MIG V1.4 [45],
which is the hardware endpoint to the backend interface
as introduced in Section VI-B and illustrated in Figure 11.
The resulting storage virtualization managed by the host
hypervisor organizes the specific translation from the
virtual to the physical addresses, thus, separating the
user areas in the memory from each other.

Ethernet-Controller: The Ethernet controller used is based
on the IP Core LogiCORE IP Tri-Mode Ethernet MAC
v5.2 [46], which is an interface on the Media-Access-
Control (MAC) layer of Open Systems Interconnection
(OSI) Reference Model [47] offers. Based on this, parts of
the PoC library [43] are used to implement the interfaces
to the vFPGAs.

In addition to the previously discussed components of
the RC2F infrastructure, additional components are required
whose hardware resources depend on the number of physical
vFPGA-Slots. These components are also in the static region:

Device-Virtualization: Device-Virtualization provides the
concurrent communication channels for the vFPGAs. The
realization of the PCle-Virtualization is done by means
of the Xillybus-Controller [42] provided components.
The provided FIFOs are passed on to the VFPGAs
and decoupled (cross-clocking) to allow different clock
domains for the FPGA hypervisor and the vFPGA
design. Memory virtualization requires one page table
per user. The prototypical implementation uses page
sizes of 8 MByte.

vFPGA-Frontends: The frontends are implemented as out-
lined in Figure 12 and Figure 15. The configuration
memories are constructed according to Figure 13 and
consist on the one hand of a part located in the static area
of the FPGA and on the other hand of a user area, which
can be used freely. In addition to the stores, the states of
each vFPGAs are managed as outlined in Section VII-E.

B. Configuration of the FPGA Hypervisor

The tasks of the FPGA hypervisor are the management
of its local vFPGAs and their encapsulation, the state man-
agement, as well as the reconfiguration using the ICAP. The
interaction between host and FPGA hypervisor is based on
the configuration memory shown in Figure 14, which includes
configuration of the FPGA hypervisor (system status, reconfig-
uration data and status) and the administration of the VFPGAs.
Other important vVFPGA-related entries are an AES-key for
encryption of the VFPGA-bitsteam and the allocated VFPGA
region(s) for additional validation during reconfiguration.

C. The Role of the Host-Hypervisor

Our virtualization concept on the host-system includes
passing through the vVFPGAs’ FIFO channels and the config-
uration memories from the host-hypervisor to the user VMs
(DomU) and the FPGA hypervisor memory to the management
VM (Dom0). The overall system architecture is shown in
Figure 15. The frontend FIFOs and the FPGA memories are
mapped to device files inside the host hypervisor. There, the
system forwards the user devices to the assigned VM using
inter-domain communication based on vChan from Zhang et al.
[48] in our Xen virtualized environment, similar to the FPGA
device virtualization pvFPGA [25].

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

31 2 23 1 15 s 7 0
Design Name
I(gASCH] 00h
01h
Version
(ASCIN) 02h
System Status ‘ Resets v\IZTmeﬁ)s Reconfig Status 03h
Hypervisor
Reserved 04h
IPv4-Address (Hypervisor) 05h
Channel Configuration 06h
Encryption Configuration 07h

D ‘ Reserved ‘ xfﬁgﬁﬁfﬂfﬁm Channel Parameter | Memory Parameter | 08h

IPv4-Address 09h
AES-Key 0Ah

(128810
0Bh

VFPGA 0

0Ch
0Dh
VFPGA Location OEh

(range)

OFh

0Ch

VFPGA N-1

FFh

Figure 14. Register and memory interface for the management of the FPGA
hypervisor accessible by the host hypervisor (rc2f_gcs).

The management VM thereby accesses the FPGA hypervi-
sor’s configuration memory and the ICAP on the FPGA via a
dedicated FIFO interface for the configuration stream (read and
write). Thus, only the hypervisors can configure the VFPGA
regions on the physical FPGA whereby a sufficient level of
security can be guaranteed.

D. Mapping vFPGAs onto physical FPGAs

In our example we use six frontends on a Xilinx Virtex-7.
Depending on the resources required, the utilization of up to
six different-sized VFPGAs is possible with the same static
without reprogramming. If one of the VFPGAs covers more
than one region, only one frontend connection is used as
shown in Figure 10. Among the VFPGAs, the partition pins
(PP) between the static and the reconfigurable regions are
placed with identical column offset as shown in Figure 16. The
regions forming the vVFPGAs are not free from static routes as
for example the region vVFPGA 5 shows.

To reduce migration times, all components, which hold
the context of the current vVFPGA design as registers, FIFOs
or BlockRAM, are placed at the same positions inside each
vFPGA. Therefore, it is necessary that all of these positions
exist in each region. Hardmacros like PCle-Endpoints or
parts of the FPGA infrastructure interrupt the homogeneous
structures. Thus, we establish homogeneous VFPGAs, which
are identical among each other by excluding these areas in
all vFPGAs as shown in Figure 16. The advantage of this
approach is that only one mask file is necessary to extract
the content of the different vFPGAs. Furthermore, it allows
the provision of almost identical vVFPGAs. Figure 17 shows
the breakdown of the FPGA resources to the three different
areas: static infrastructure, partial reconfigurable vVFPGAs and
unusable due to the homogeneity.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

240

FPGA

|
Host
|
Dom0 — Management | £ g I
T g Al s
= Qi e s
/devy > [a} g O
= '3 2 |
---rc2f_config_write | < ° |
E---cmf_config_read g g S Inter- 5 |
&--rc2f_system_write | 'S 5 il Domain o) !
L --rc2f_system_read 'a & E Channel > :
1 o
% |
T [
DomU —VM 0 L T T \
/devi S 068 =
+--rc2f_vcs S Ole | %) 4
L = DTS5 Q8 e} |
+--rc2f_write o+ 2 e
“--rc2f_read : = :
|
|
|

<G==)> physical connection <& - % virtual connection

Hardware
Interface

FPGA Hypervisor

Mem | rc2f_hcs

||||||||<l o

I re2f_config_write
M| re2f_config_read

Dom0 — Management
FPGA configuration,
user assignment and

I | re2f_system_write access control

I | re2f_system_read

Backend
Interface

Mem | re2f_ves

DomU — vFPGA 0

mllm 7 reaf_write
I | re2f_read

Frontend
Interface

FIFO-Memory

Figure 15. System architecture on the hypervisor level of the host system. FIFOs (rc2f_write, rc2f_read) and configuration memories (rc2f_cs) are displayed in
the different host memories.

Partition Pin
Regions (PPR)

inhomogeneous
columns

’7" vFPGA-Slot 0 |

H—---vwm—s&m -----
VEPGA I

--t---vFPGA-Slot 2

1 ------ ¥FPGSlot—3 -------------- VFPGA-Slot 3
B VEPGA 3 |}

vFPGA-Slot 4

inhomogeneous
columns

vFPGA-Slot 0

e

VFPGA-Slot 1
2sVFPGA 1

vFPGA-Slot 2

end 3 | Frontend 2| Frontend 1 | Frontend 0

VFPGA-Slot 4

rastructure

o
e
)
() Bif IS
=D
=t
(@) ol
D SIEH
55
D
A g
omn | BiL
C o
il
L Z TR
~N
il
o <
&)
il 1
=

L= vFPGA-Slot 5 | |
RC2F-Infrastructure
(Ethernet + ICAP)

vFPGA-Slot 5

Frontend 5 | Fr

Figure 16. Layout of a Xilinx Virtex-7 XC7VX485T with six vVFPGA
regions configurable using dynamic partial reconfiguration. The regions and
their number are determined by the height of the configuration frames,
which consist of one complete column inside a clock region. Regions are
homogeneous to allow migration of VFPGAs.

E. vFPGA States

Our FPGA virtualization includes states and transitions
similar to traditional VMs. The virtualization of an FPGA
requires off-chip monitoring and administration of the vVFPGA
bitstream database, connected to our cloud management system
[3] as well as additional on-chip state transitions. Figure 18
gives an overview of these two parts in our FPGA virtualiza-
tion. A state with a control flow transition between host and
FPGA is called transition state.

The global design database and the scheduling of the
acceleration tasks (VFPGAS), the allocation to a node and a free
region are performed by the cloud system, which also sends
commands triggering state transitions on hosts and FPGA
devices. In the following, the most important states on host
and FPGA - as introduced in Figure 18 — are in detail:

Ready/Shelved: The VFPGA design is located in the global
database on a management node.

Booting: First, the node containing the selected vVFPGA has
to verify if the actual vFPGAs is marked free. In a second
step the boot process starts, where the partial bitstream is
loaded from the database and written into the respective
vFPGA location using PCle and ICAP.

Active: After initialization the VFPGA accelerator is Active
and the corresponding host application can send/receive
application data until a state transition occurs. In case
of a reboot or stop command, the design is halted and
reconfigured using the initial or an empty VFPGA design.

Wait for Idle: When a migration or pause command is re-
ceived during the active state by the host, it forwards the
command to the FPGA and both stop the computation
and the transmission of further data. Host and vFPGA
both wait a limited duration (timeout) until the last data
packages are received and stored in the VFPGA’s input
FIFO and the application’s memory.

Snapshot: After the timeout the context of the VFPGA is
stable and the actual readback of the VFPGA design is
performed by the host using the ICAP. Moreover, the
context extraction is performed (see Figure 19) and it is
stored in the virtual register content file (.vrc). At the
same time the context of the host application is stored on
disk.

Paused: In case of a pause command the software and
hardware context are stored on disk. If an abort com-
mand follows, the vFPGA’s context in the .vrc file
becomes invalid (also the host application’s context) and
the VFPGA gets into the initial Ready state. In case of a
resume command, the initial vFPGA’s context is restored
by modifying the bitstream using the . vrc file as shown
in Section VII-F2.

Context Relocation: If the state transition is triggered by a
migration command, the next vVFPGA region is known
and the context relocation (bitstream modification) can
be performed immediately with the bit positions provided
by the .vrc file. The modified bitstream and the host
application are transferred to the new vFPGA/Node.

Resuming: The modified bitstream with the context from the
previous run is used to boot or restore the old context on
a different vFPGA.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

80 %

72,86 %

60 %

40 %
34,76 %

32,78 %

20 %

utilization of the FPGA resources

61,17 %
58,30 % I 58,50.%

partial reconfigurable areas

Qo

0 %

B slice registers

32,78 %

static area containing the RC2F-
containing the vFPGA-Slots infrastructure and 6 vFPGA-Frontends

B Block-RAM tiles

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

241

static area containing the RC2F-infrastructure and frontends
@ areas not useable due to inhomogeneity
@ partial reconfigurable areas containing the vVFPGA-Slots

24,71 %
8.92 % 11,09 %
,92 %

4,08 % 243%
[] —
areas not useable due to
inhomogeneity

slice LUTs B DSPs

Figure 17. FPGA resources of the three different regions of a Xilinx Virtex-7 XC7VX485T with six VFPGA-Slots, the static region with the FPGA hypervisor
and the unusable regions due to homogenization.

Deleting
Design from DB,

Cloning
Design from DB

Booting

Initialization

Stop or ,’

/
T SW App Running !

Abort Stop or < _Monitoring _ #
prill

Shutdown

7

’
7 Ready or
4 Error

/ PN

/ ’a . ~
s/ ¢° Wait for 5
/ N Idle ’
~ -

-

Snapshot
Readback

Transition

State

N Resuming
Configuration

Resuming
Initialization

Figure 18. State transitions of a VFPGA (on the host and FPGA).

The context of the VFPGA’s DDR3 memory also needs to
be saved and restored in the snapshot or resuming stage using
the PClIe connection.

FE. Virtualization and Migration Process

Our extended design flow, which generates partial bit-
streams and supports VFPGA snapshots as well as the context

resumption, is shown in Figure 19. In the following, the
components, all additional design flow steps and the generated
metadata are described in detail.

For our virtualization we extend the Xilinx Vivado design
flow to generate VFPGA bitstreams from user-netlists for
every possible VFPGA position. First, directly after synthesis
the required region size (single, double, etc.) is chosen (see
Table III for appropriate VFPGAs). Afterwards, the design is
placed at a first vVFPGA region. Before the routing step, the
VFPGA region is expanded over the full width of the vVFPGA
for unlimited routing of the design inside the uninterrupted
region. The placements of the same design for all the other
vFPGA positions are created by setting the LOC (Location)
and BEL (Basic Element Location) information accordingly
to the initial placed design. Only the routing is carried out for
the additional vFPGA designs to allow static routes inside the
different vVFPGAs, resulting in designs with identical register
and BlockRAM positions for each vFPGA locations on the
physical FPGA. After generation of the first bitstream, a
mask for extracting the context bits is generated to allow an
efficient migration in significantly less time compared to our
first approach in [6]. This allows flexible placement of the
vFPGA designs at various positions in a cloud system, as
well as the migration between VFPGAs on the same or to
other physical FPGAs. The bitstreams required for all possible
vFPGA positions belonging to a single user design are stored
as VRAI as shown in Figure 19.

1) vVFPGAs Bitstream Generation and Boot: In the initial
step, the full bitstream containing the static design is generated
with the traditional Xilinx flow as shown in Figure 19. The bit-
stream produced contains the basic components, such as PCle
endpoint, memory controller, virtualization layer including the
ICAP controller and the static frontend interfaces as well as the
local state management for the vVFPGAs. The vFPGAs regions
themselves are completely empty. The corresponding netlist
(.ngc) of the static part and all bit positions are stored in the
global database and are accessible for the production of partial
bitstreams.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

.bit Bitstream .vebm Virtual Context Bit Mask
.pbit Partial Bitstream vel Virtual Context Locations

Static : Partial rdok Readback Bitstream .vcc Virtual Context Content

RC2F-Infrastructure :

‘

| Placement |

Lo

| Routing |

Logic Location File

VFPGA-Design .

VFPGA-SIoS) Production of a

(.xdc) VRAI containing
migrateable

VvFPGA-Images

VFPGA Placement for
homogeneous VFPGA-Slots

Context
Locations
(.vel)

Nx

VFPGA-Images

Post Route

RC2F-Infrastructure

N

Generation of
homogeneous
VvFPGA-Images

VvFPGA-Image
(.pbit)

(.vebm)

warm migration

Full * (homogeneous Region)
Configuration

1

1

RC3E Management/ |

Hypervisor ICAP |

RC2F- Readback (homogeneous Region) :

Hypervisor J

Figure 19. Extended design flow generating partial VFPGA bitstreams and
the additional metadata (Beginning with the VFPGA Placement ®).

'
'
| . Partial Reconfiguration
'
'
'
!

The following step includes the generation of a partial
bitstream based on the static design and a netlist containing
the VFPGA design. To achieve an efficient load-balancing
and placement on the vFPGA, all possible bitstreams are
produced in a single design flow run. For designs which require
more than one VFPGA slots, additional partial bitstreams are
generated in separate runs. The overall runtime will be reduced
in the future by using relocation of placed VFPGAs using
homogeneous regions [49]. For the context resumption it is
essential to set the option RESET_AFTER_RECONFIG for
each vFPGA region.

A significant step is the generation of metadata out of
these files, which is required to find the register and memory
locations in all vFPGA bitstreams. We store the metadata in
our virtual context content file (.vcc) as shown in Figure 19.
The information required is extracted from the additional Logic
Location files (.11) and the Xilinx Design Language files
(.xdl), which are generated during the design flow. The
result of this step are partial bitstreams and the corresponding
metadata for every possible region. Everything together is
stored in the global vFPGA database.

In case of a pause or migration command, the FPGA is
stopped as explained in Section VII-E. After the state became
stable, the clock of the corresponding VFPGA is deactivated
and the whole context (flip-flops and block RAMsS) is frozen.
At this point a readback for the CLB/I0/CLK and the BRAM
block is performed and the context is extracted from the
bitstream using the .vcc file. By the use of the location
metadata we only save the registers and the memory used in
the design. The readback itself is performed on configuration
frame level. In case of a migration the location of the new

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

242

vFPGA is known and the context is written directly into a new
bitstream. In case of pause, the extracted content is stored in
the database as a copy of the .vrc file.

2) vFPGA Migration and Context Resumption: In this final
step, the relocation and the context resumption are performed.
The initial vFPGA bitstream and the corresponding . vrc file
are used to generate a new bitstream by modifying certain
configuration bits. The old flip-flop values are written into the
positions of the register initialization bits using the information
in the .vrc file. To load the values into the flip-flops, the
global set/reset (GSR) is triggered for the single VFPGA (not
global). The Cyclic Redundancy Check (CRC) at the end of the
readback bitstream is replaced by a nop command to ignore
the old CRC.

VIII. RC2Fggc EXTENSION

Security is now more important than ever. Therefore our
RC2Fsgc extension provides a high level of security for
client’s data and algorithms. To achieve this, we propose
a novel combination of existing security features, a subset
of the Transport Layer Security (TLS) protocol and a filter
for the partial bitstreams. However, due to various degrees
of flexibility show in Figure 1, the extension is only fully
available to the production-ready service model RAaaS. But
with changes to current FPGA architectures, which will be
described later, it would also be available in the BAaaS service
model.

A. Security Model

Various adversaries challenge the system’s security through
multiple vectors. But before these challenges are formalized
as requirements for the design, a few assumptions have to be
made.

Assumption §A1: The selected cryptographic algo-
rithms cannot be computationally broken by state-of-
the-art attackers. Encrypted data cannot be decrypted
or messages signed without access to the keys.

Assumption §A2: Naive implementations of crypto-
graphic algorithms are susceptible to side channel at-
tacks, but hardened implementations can withstand bet-
ter and protect the keys, both shown in [50]. Providing
such implementations is not within the scope of this
paper. Hence, it is assumed that any cryptographic keys
and sensitive intermediate values are secure inside the
chip.

Assumption §A3: The client’s workplace can be trusted
and is inaccessible to an attacker.

Assumption §A4: The FPGA vendor can be trusted and
tries to detect backdoors introduced by manufacturers,
tools suppliers or IP vendors, e.g., through analyzing
the hardware to find unwanted modifications as shown
in [51, 52]. This is the same level of trust the client has
to have into hardware in general: CPUs, hard drives
and other components might be modified as well.

Assumption §AS: Denial of service attacks, interrup-
tions or even physical destruction are secondary and
more a concern of the providers, because quality-of-
service is an important business factor. The security of
data and algorithms has the highest priority.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

243

FPGA n with

VvFPGA m in
FPGA n

J VFPGA request s

RC2Fsgc in node X
T

reset requested VFPGA m

client random (CR) & key share (CKS)

session random (SR) & SKS

|certificate & |“verifyhash|pprk & “final” hash gy

sym = PRNG(CR, ECDH(SKS, CPK), SR)
verify certificate
verify hash

|client’s “final” hash & bitstream sym

]

generate ECDHE-keys: SPK, SKS
sym = PRNG(CR, ECDH(CKS, SPK), SR)

decrypt, verify and program bitstream

-

Figure 20. The TLS protocol was adapted to enable the secure and authentic transfers of VFPGA bitstreams. The configuration is protected by symmetric
encryption with the key “sym”, which is created during the TLS handshake.

Based on theses assumptions, the requirements for the system’s
design can be defined.

Requirement §R1: A dedicated third party or trusted
authority offering special services only for this system
should be avoided.

Requirement §R2: A client must be able to establish
an authenticated and secured connection from a trusted
workplace to the system.

Requirement §R3: The FPGA cannot rely on soft-
ware running on the host machine. The untrusted laaS
provider has direct access and can manipulate anything
but the chip.

Requirement §R4: The allocation of a vFPGA by an
attacker should not interfere with a legitimate client. A
strict separation of clients’ data is mandatory and the
reconfigurable partitions have to be isolated to prevent
any interference.

B. Design

The RC2Fgsgc extension has to provide two fundamental
capabilities:

o Authentication: The FPGA can prove its genuineness to
a client.
e Confidentiality: Tamper-proof and secure data transfer.

Microsemi FPGAs already offer similar features, but they
do not allow partial reconfiguration preventing virtualization
and thus, an efficient cloud deployment. Furthermore, their
reputation got a big hit when a backdoor was discovered, which
reveals sensitive private keys [51]. The impact of this backdoor
could have been minimized, if a more sophisticated protocol
offering perfect forward secrecy would have been used. Thus,
the RC2Fsgc extension implements the well established and
thoroughly researched TLS protocol for bitstream and data
transfers.

Hence, an embedded TLS processor is required, which
is implemented as part of the RC2Fsgc extension shown in
Figure 11. It does not feature all possible algorithms due
to resource constraints, only efficient primitives in terms of
performance per logic gate were selected. The initial key
exchange follows the Diffie-Hellman algorithm using ellip-
tic curves (ECDH). An advantage over RSA is the cheap

generation of new key pairs, making perfect forward secrecy
available. Thus, every connection is encrypted with a unique
key, compromising one does not affect other connections
to the same FPGA. The device’s permanent private key is
only used to authenticate it through the elliptic curve digital
signature algorithm (ECDSA). It reuses the elliptic curve
primitives, saving a significant number of resources. Resources
can also be saved by combining encryption with authentication.
AES128-GCM is an authenticated encryption scheme with
high performance hardware implementation, which are also
available for CPUs. Finally, SHA256 computes hashes during
the handshake.

C. Transfer Protocol

Figure 20 shows the handshake procedure. The client
initiated it with a vVFPGA request, a key share (CKS) and some
random data (CR). The unencrypted request can be used by
the cloud provider for billing and scheduling. If the request
is unjustly blocked by a cloud provider or evicts another
legitimate client, only their quality of service suffers, but not
the security of clients’ data. Through a complete reset of the
vFPGA previous configurations are no longer accessible, and
even if data remains in buffers or external memory it is still
encrypted.

After the VFPGA reset, a TRNG, which is part of the
RC2Fggc extension, generates the session random (SR) and
an ephemeral session private key (SPK). With the SPK the
public session key share (SKS) is calculated. This new key pair
is used to complete the ECDHE key exchange. The resulting
shared secret is along with the CR and SR feed into a well
defined PRNG. Its output is used to derive various symmetric
keys and nonces ("sym"), which are right away utilized to
encrypt the FPGA’s certificate. Additionally, a hash over the
transaction so far is calculated, signed through ECDSA with
the device’s private key, encrypted and then appended to the
certificate. Finally, a second hash over the whole handshake
including the CR, CKS, SR, SKS, the encrypted certificate and
first hash is calculated, then encrypted and the package is send
to the client. Upon receiving it, the unencrypted SR and SKS
are used in the same way to derive the symmetric keys and
nonces ("sym") through ECDHE and the PRNG. With them,
the rest can be decrypted, the certificate and public key verified
and the hashes checked. At last, the client also calculates a hash
over the whole transaction, now including the second hash, and

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prepends it to the bitstream. Together they are encrypted with
"sym" and transferred to the FPGA. There, after the hash was
compared to a locally computed one, the VFPGA bitstream is
programmed and the partition ready for use.

If any errors occur or the client uses standardized but not
implemented functionalities, the handshake aborts, resets and
returns the system into a safe state in which it accepts new
connections.

D. Configuration Filter

The configuration filter protects the RC2F as well as other
clients’ VFPGAs from unwanted modifications, thus, satisfying
§R 4. This is possible due to the frame based structure of
a bitstream, which is a sequence of commands and data.
After a synchronization pattern and some set up, the actual
configuration is represented by a repeating series of addresses
and data. On a Xilinx 7 Series FPGA each frame consists
of 101 words and a full bitstream of a XC7VX485T contains
50176 frames [53]. A VFPGA is smaller and constraint to a
specific area on the chip, which is described by a certain set
of frames. The addresses of those frames are extracted during
the design phase and do not change later on. They determine
the allowed area a client’s bitstream can influence.

The configuration filter, shown in Figure 21, acts as a
proxy and is located before the ICAP. It receives the decrypted
bitstream, scans for interrupting commands like global reset
or shut down and blocks them. Its analyzer also detects the
command to set the frame address. The address is passed to a
set of six detectors, one for each vFPGA slot.

Each checker uses a set of predefined ranges, in Figure 21
five ranges are illustrated, to determine if the current address
is within the enabled area. Their results are masked by the slot
signal so that the check is only valid for the newly allocated
vFPGA. If there is a match, i.e., the address is within the
allowed ranges of the current slot, the configuration is passed
on to the ICAP. Otherwise, this part of the bitstream is replaced
with no-operation (NOP) commands.

The bitstream format is designed as a continuous stream
with implicit addresses, in other words not each frame has
to have a header specifying its address. A modified bitstream
could start at a valid location and write a continuous sequence
until the implicit address is outside of the allowed ranges.
Thus, the configuration filter cannot only scan for commands
to set the frame address. Through an internal counter the end
of a 101-word frame is detected and, if another one follows
directly afterwards, its address is calculated based on the start
address and the current offset. This implicit address is than
passed to the range checkers for verification.

E. Implementation

The RC2Fggc extension comprises an elliptic curve multi-
plier [54], which is shared by the ECDH and ECDSA cores.
Furthermore, SHA3 and AES cores, developed by Hsing [55,
56], are used. A so called CMD Decoder handles the hand-
shake and manages the other modules. The resource utilization
is shown in Table I.

IX. IMPLEMENTATION RESULTS AND SCENARIO
The resources required for the implementation described in
the previous section are shown in the following with a real-
world scenario based on our motivation from Section I.

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

244

word frame counter

n range checker

counter inc load #

bitstream

to ICAP

Configuration Filter

Figure 21. Only if a configuration frame is within the ranges (A..B, ...) of
the newly allocated VFPGA slot, it is passed onto the ICAP, otherwise a
NOP command is sent instead.

TABLE I. THE RC2Fggc EXTENSION’S RESOURCE UTILIZATION OF A
XILINX VIRTEX-7 XC7VX485T.

Submodule Slice LUTs Slice Register =~ BRAM Tile
EC Key Processor®® 30,766 15,158 0
CMD Decoder 7,279 8,714 87
Key Store 269 4,379 0
Configuration Filter 119 99 0
AES De-/Encryption® 9,207 11,640 172
Cross clock FIFOs 1,358 3,000 50
Overall 48,878 42,891 309

* EC processor by [57] ® SHA3 core by [55] ¢ provided by [56]

A. Implementation

The resource consumption of our prototype introduced
in Figure 11 is shown in Table III. Furthermore, the table
introduces the size of homogeneous VFPGA regions as outlined
in Figure 16. The FPGA resources of every VFPGA can be
described with the vector p, which can be defined as shown

in Equation (1):
Slice LUT' s
— SliceRegister (1)
- BlockRAM
DSP

|

The vector 7 is used in the following to calculate the
FPGA resources inside a VFPGA. The aggregated FPGA
resources of the homogeneous VFPGAs p.,rpga can be
calculated using Equation (2):

?’UFPGA (N’UFPGA—SZOtS’ NF'rontends) = N’L)FPGA—SlOtS (2)

'?UFPGAfslot + NFrontends . ?PPR

In Equation (2), the vector 71,FPG A—siot describes the
resources of a single VFPGA region, Ny,rpca—siots 1S the
number of aggregated VFPGAS, N ontends 15 the number of
used frontends for the VFPGA and p,,, represents the partition

TABLE II. SIZE OF A SINGLE BITSTREAM FOR A VFPGA REGION, NUMBER
OF POSSIBLE POSITIONS INSIDE THE FPGA AND SIZE OF THE VRALIS.

Single Dual Triple Quad Quint Hexa
Bitstream (MB) 4.8 9.0 13.0 17.3 21.3 253
Locations 6 5 4 3 2 1
vRAI (MB) 336 54.0 65.0 69.2 63.9 50.6

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

245

TABLE III. NUMBER OF AVAILABLE RESOURCES INSIDE THE STATIC AND THE AGGREGATED VFPGA REGIONS AND UTILIZATION OF STATIC CONTAINING
INFRASTRUCTURE AND HYPERVISOR. THE PARTITION PIN REGION (PPR) IS NECESSARY TO EXCLUDE AND ISOLATE UNUSED PARTITION PINS (PP).

FPGA-Ressource Static Utilization of static region PPR Into aggregated vVFPGA regions and maximal number of frontends

region HF* P* E° M¢ Total Single Dual Triple Quad Quint Hexa®
Slice LUTs 94824 26% 3% 2% 11% 42% 1,200 28,400 56,800 85,200 113,600 142,000 188,400
Slice Register 189,648 11% 2% 1% 4% 18% 2,400 59,000 118,000 177,000 236,000 295,000 376,800
Block RAM Tile 369 23% 2% 2% 3% 30% 0 105 210 315 420 525 630
DSPs 726 - - - - - 20 340 680 1,020 1,360 1,700 2,040

“HF: Hypervisor and Frontends bp: PCle-Endpoint “E: Ethernet

TABLE IV. RECONFIGURATION AND MIGRATION TIMES IN SECONDS FOR
DIFFERENT SIZED VFPGA-INSTANCES.

Operation Size of the vVFPGAs

Single Dual Triple Quad Quint Hexa
(1) Readback (s) 076 143 207 276 339 4.04
(2) Relocate (s) 005 007 010 0.13 0.15 0.18
(3) Configuration (s) 0.04 006 009 011 0.13 0.15
Migration (s) 172 315 451 598 734 879

pin region (PPR) necessary to exclude the unused frontend
interfaces from the grouped vFPGAs. When a frontend is used
by a VFPGA, the resources inside the PPR are available to the
user design inside the VFPGA. The open frontends, which are
not used by the VFPGA are therefore treated as stubs and are
securely sealed using a partial vVFPGA bitstream. The resources
of the corresponding PPR are not available inside a vVFPGA.
All regions except the largest one (Hexa), which has only one
possible position, are homogeneous.

The throughput between VFPGAs and host (PCIe Gen2 8x
on a Xilinx VC707) with different numbers of concurrently
active VFPGAs is shown in Figure 22. The throughput of a
single design is limited by a user clock of 100 MHz and a 64-
bit data interface. Starting from three vFPGAs, a limitation
due to the concurrent users occurs. The throughput shown
in Figure 22 is the minimal guaranteed throughput for each
vFPGA.

The size of the VRAI packages and the number of possible
locations on the physical device are shown in Table II. With
69.2 MByte, a quad vVFPGA with bitstreams for three possible
positions and a mask file for context migration is the largest
vRALI package. Table IV shows the times for configuration, de-
sign readback and relocation, as well as a complete migration
process for different sized vVFPGAs.

B. Scenario

In the following, we show a scenario based on a typical
real-world application for our virtualization approach. The goal
is to migrate VFPGA designs to achieve a high utilization as
shown in Figure 23(e). In a system with jobs arriving and
being finished at different points in time, situations as shown
in Figure 23(c) can occur. The fragmentation of the physical
FPGA restricts only one small vVFPGA and one aggregated
double sized vVFPGA. By migrating the design from user 3 from
vFPGA 5 to vVFPGA 0 as shown in Figure 23(d), an area for a

IM: DDR3 Memory

©Largest region without considering homogeneity

2
I9)
g
a
>
£
5
a
Ny
[*)
=}
o
e
=
0.5 1 2 4 8 16 32 64 128 256 512 1,024
Data size in MByte
Z One Two * Three Four <& Five O Six vFPGAs -+ Aggregated

Figure 22. Throughput between host and FPGA with different numbers of
concurrent VFPGAs. The diagram shows for each number of VFPGAs the
average throughput of one representative VFPGA. The aggregated throughput
is thereby the average throughput of all VFPGA compositions on the device.

group of three VFPGAs (triple) becomes available and makes
higher utilization of the physical device possible.

C. RC3E Large-Scale Datacenter Simulation

To evaluate the behavior of resource management, and in
particular the benefits of virtualized FPGAs as well as their
migration in a cloud, the RC3E simulator was developed.
The results of the simulation are shown in Figure 24. In
addition to the average number of allocated compute nodes,
the table shows their energy requirements and the utilization
of the FPGA resources available to the user. The Service Level
Agreement (SLA) also specifies what proportion of the work
packages will be processed within a certain time period (2.5s)
in order to be able to assess the system behavior with regard
to the quality of the provision of the resources.

The energy requirement of the cloud is reduced to 69.35 %
in the RC3E simulation in the reference scenario in load
scenario (I) through the use of FPGAs and the utilization of
the physical FPGAs is 27.34 %. RC2F virtualization reduces
energy consumption to 24.43 % and increases the physical
FPGA utilization to 78.14 %. An additional migration of the
vFPGA instances to defragment the system increases utiliza-
tion to 85.07 % and reduces energy consumption to 22.99 %.
The SLA increases slightly by 0.04, or 0.02, as the virtualized
resources are available faster than a re-allocating compute
node. The additional migration contributes only marginally to
saving resources and energy. However, the process of migration

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

246

FPGA: 32x32 Matrix with
Infrastructure VFPGA-Slot 0: 10 - BSMC8-VFPGA

vFPGA-Slot 1: 11 - Crypto-vFPGA

VFPGA-Slot 2: 12 - BSMC8-VFPGA

vFPGAirSlot 3: 13- Crypto-vFPGA

VFPGA-Slot 4: 14 - Crypto-vFPGA

PCle-Controller
RC2F-Infrastructure

(FPGA-Hypervisor, PCle, DDR)

VFPGA-Slot 5:| 15 - BSMC8-VFPGA

RC2F-Infrastructure
(Ethernet + ICAP)

(a) Single userdesign in the classic RSaaS model, which allocates a full ~ (b) Approximate full utilization of the FPGA with six independent users
physical FPGA without utilizing the entire FPGA. and designs.

VFPGA 0: — VEPGA-Slot 0: |5 - BSMC8-vFPGA

vFPGA-Slot 1: 11 - Crypto-vFPGA

vFPGA-Slot 1: |1 - Crypto-vFPGA

| ——

VFPGA-Slot 2: '12 - BSMC8-vFPGA

vFPGA|3: e

VFPGA 4: —

VFPGA-Slot 2: |2 - BSMC8-vFPGA

vFPGb{B: —

VFPGA 4: —

RC2F-Infrastructure
(FPGA-Hypervisor, PCle, DDR)

Frontend 4

RC2F-Infrastructure
(FPGA-Hypervisor, PCle, DDR)

VEPGA-Slot 5: 15 - BSMC8-VFPGA VFPGA5: —

Frontend 5

RC2F-Infrastructure l RC2F-Infrastructure
(Ethernet + ICAP) (Ethernet + ICAP)

(c) Fragmentation of the physical FPGA caused by dynamic de- and (d) Defragmentation providing aggregated vVFPGA regions for larger
allocation. designs.

VFPGA-Slot 0: |5 - BSMC8-vyFPGA

Frontend O

vFPGA-Slot 1: 11 - Crypto-vFPGA

VvFPGA-Slot 2: |2 - BSMC8-VFPGA
VFPGA-Slot 3: 17 - k-Means-vFPGA

d 4 | Frontend 3 | Frontend 2 | Fr

VEPGA-Slot 3:/ 1 6 - 32x32 Matrix-vFPGA

RC2F-Infrastructure
(FPGA-Hypervisor, PCle, DDR)

o
)
)
(D)) 16 S
= g
2
(@) Blel
i 8181
PSS Yoy
=

® 3
ol i
S—
[S
07| 3fab.8
LE S5
(Q\]

il
o <
(@]
a
e

RC2F-Infrastructure 7 RC2F-Infrastructure
(Ethernet + ICAP) ‘ (Ethernet + ICAP)

(e) Utilization of the free region with a design using three aggregated (f) Example of a k-Means design using the largest VFPGAs with six
vFPGAs (Triple). Slots (Hexa).

Figure 23. Scenario with different users and designs on a Xilinx Virtex-7 XC7VX485T with six (vertically) scalable vFPGAs.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

100 %
75 %

50 %

- II I I
0% | |

FPGA-Cloud + RC2F + Migration

Il Computing Nodes I Energy consumption FPGA Utilization
Figure 24. Comparison of the different system configurations within the

RC3E simulation.

TABLE V. RESULTS OF THE RC3E SIMULATION FOR THE SYSTEM
CONFIGURATIONS WITH (1) SIMPLE COMPUTE NODES WITHOUT FPGAS,
(2) ADDITIONAL FPGAS WITHOUT VIRTUALIZATION, (3) RC2F FPGA
VIRTUALIZATION, AND (4) ADDITIONAL MIGRATION. THE SCENARIOS ARE
THE LOAD DATA OF A REAL WEB SERVER [58] WITH 47,748 WORK
PACKAGES OVER 1,440 MINUTES.

Cloud (1) +FPGA (2) +RC2F (3) +Mig4)

Compute Node? 376 128 25 24
FPGA Utilization (%) — 26.74 94.24 97.82
Energy Demand (kWh) 287.37 225.12 89.48 83.06
Energy Demand (%) 100.00 78.34 31.14 28.90
SLAP 0.96 0.90 0.92 0.91

@ Average number of allocated compute nodes.
b SLA: Share of work packages being processed within 2.5s.

adversely affects the SLA because migration is a high priority
and new resources are delayed.

Based on the results of the RC3E simulation, it can be
expected that both virtualization and the associated migration
of VFPGAs can result in resource savings and thus energy
without significantly reducing the SLA. The high savings
can be explained by the chosen demonstrators and the work
packages based on them. If the vVFPGA designs completely
expose the physical FPGA, virtualization can not save compute
nodes and reduce power consumption. However, the migration
allows the migration of the VFPGA images to other compute
nodes, providing the ability to move parts of the system locally
for maintenance, for example.

In addition to evaluating how virtualization and migration
affect the optimization of utilization and energy consumption,
the RC3E simulator also validated the mapping of VFPGAs to
physical FPGAs and compute nodes.

X. CONCLUSION AND OUTLOOK

This paper presented a comprehensive virtualization con-
cept for reconfigurable hardware and its integration into a
cloud environment. Our definition of the term virtualization
is inspired by traditional VMs whose functionalities are trans-
ferred to reconfigurable hardware. We develop a paravirtual-
ized infrastructure on a physical FPGA device with multiple
vFPGAs. The concept is integrated into a framework, which
allows for interaction with the vVFPGAs similar to traditional
VMs. We create homogeneous regions for the VFPGAs on the

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

247

static area containing the RC2F-infrastructure and frontends
@ areas not useable due to inhomogeneity
@ partial reconfigurable areas containing the vFPGA-Slots

31,07 %

83,04 %

RC2F-Prototype
Virtex-7 XC7VX485T

estimation for a productive cloud
Virtex-7 UltraScale+ XCVU9P

Figure 25. Size of the different regions of the RC2F virtualization
transferred to a Xilinx Ultrascale+ FPGA.

physical FPGA to optimize the process of VFPGA migration
between different physical FPGAs. Implementation details
are described, the necessary resources and the virtualization
overhead are presented.

The hardware accelerators used by Amazon in the EC2-F1
instances are Virtex-7 UltraScale+ FPGAs [59] on a VCU1525
Acceleration Development Kit with an XCVU9P [60]. A
prognostic transfer of RC2F virtualization to an UltraScale+
(XCVU9P) FPGA provides the partitioning of FPGA resources
into the different domains shown in Figure 25. The usable
range for the VFPGAs is therefore 83.04 % and does not
scale linearly with the size of the FPGA, which is 4.55 times
larger than the Virtex-7 XC7VX485T. Due to the homogeneous
structure of the UltraScale+ FPGAs, the unusable area has
dropped to 0.44 % but still exists, so homogenization is still
required.

One significant result of this paper is that the provision of
homogeneous FPGA resources is possible with state-of-the-
art FPGAs. We think that such approaches are necessary for
establishing FPGAs in modern data centers housing clouds.
Certainly, when cloud providers like Amazon expand their
cloud architectures with high-end FPGAs, such as Xilinx
Virtex-7 UltraScale devices [59] it is necessary to utilize the
hardware efficiently with multiple designs in a scalable frame
inside one physical FPGA. Such kind of flexible approach
allows for adaption the individual resources to the users’
requirements.

In the future, we plan to establish a productive cloud
environment based on RC3E and RC2F at the Helmholtz-
Zentrum Dresden-Rossendorf. The system should serve for
background acceleration (BAaaS) of scientific applications like
[61] and also for FPGA-prototyping (RSaaS) in combination
with continuous integration (CI) [62] to optimize the process
of hardware design and to satisfy the demands for automated
tested FPGA designs for advanced research applications such
as [63]. Other promising application areas are the mapping
of applications and their distribution on a scalable FPGA
cluster [64] and the evaluation of dynamic task offloading
from CPUs to (virtualized) FPGAs during run-time, which
will be developed on a similar system located at the chair of
adaptive dynamic systems at Technische Universitit Dresden.
Furthermore, the systems are used to investigate economic
impacts on hybrid (FPGA) cloud systems.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

[11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

REFERENCES

0. Knodel, P. R. Genssler, and R. G. Spallek, “Virtualizing re-
configurable hardware to provide scalability in cloud architec-
tures”, Reconfigurable Architectures, Tools and Applications,
RECATA 2017, ISBN: 978-1-61208-585, vol. 2, 2017.

O. Knodel, A. Georgi, P. Lehmann, W. E. Nagel, and R. G.
Spallek, “Integration of a highly scalable, multi-fpga-based
hardware accelerator in common cluster infrastructures”, in
42nd International Conference on Parallel Processing, ICPP
2013, Lyon, France, October 1-4, IEEE, 2013, pp. 893-900.
O. Knodel and R. G. Spallek, “RC3E: provision and man-
agement of reconfigurable hardware accelerators in a cloud
environment”, CoRR, vol. abs/1508.06843, 2015. [Online].
Available: http://arxiv.org/abs/1508.06843.

, “Computing framework for dynamic integration of
reconfigurable resources in a cloud”, in 2015 Euromicro
Conference on Digital System Design, DSD 2015, IEEE, 2015,
pp- 337-344.

O. Knodel, P. Lehmann, and R. G. Spallek, “Rc3e: Re-
configurable accelerators in data centres and their provision
by adapted service models”, in 9th Int’l Conf. on Cloud
Computing, Cloud 2016, June 27 - July 2, San Francisco, CA,
USA, IEEE, 2016.

0. Knodel, P. GenBler, and R. Spallek, “Migration of long-
running tasks between reconfigurable resources using virtu-
alization”, in ACM SIGARCH Computer Architecture News
Volume 44, HEART 2016, ACM, 2016.

P. Genssler, O. Knodel, and R. G. Spallek, “A New Level
of Trusted Cloud Computing - Virtualized Reconfigurable
Resources in a Security-First Architecture”, in Informatik
2017, 47. Jahrestagung der Gesellschaft fiir Informatik, 25.-
29. September 2017, Chemnitz, Deutschland, 2017.

M. Armbrust, A. Fox, R. Griffith, et al., “A view of cloud
computing”, Communications of the ACM, vol. 53, pp. 50-58,
2010.

P. Mell and T. Grance, “The NIST definition of cloud com-
puting, Revised”, Computer Security Division, Information
Technology Laboratory, NIST Gaithersburg, 2011.

T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kin-
dratenko, and D. Buell, “The promise of high-performance
reconfigurable computing”, IEEE Computer, vol. 41, no. 2,
pp. 69-76, 2008.

J.-A. Mondol, “Cloud security solutions using FPGA”, in
PacRim, Pacific Rim Conf. on, IEEE, 2011, pp. 747-752.

A. Putnam, A. M. Caulfield, E. S. Chung, et al., “A reconfig-
urable fabric for accelerating large-scale datacenter services”,
in Computer Architecture (ISCA), 41st Int’l Symp. on, 2014.
W. Fornaciari and V. Piuri, “Virtual FPGAs: Some steps
behind the physical barriers”, in Parallel and Distributed
Processing, Springer, 1998, pp. 7-12.

Xilinx Inc., Vivado Design Suite User Guide — Partial Recon-
figuration, UG909 (v2017.1), April 5, 2017.

C. Kachris and D. Soudris, “A survey on reconfigurable
accelerators for cloud computing”, in Field Programmable
Logic and Applications (FPL), 26th Int’l Conf. on, 2016.

K. Eguro and R. Venkatesan, “FPGAs for trusted cloud
computing”, in Field Programmable Logic and Applications
(FPL), 22nd Int’l Conf. on, IEEE, 2012, pp. 63-70.

V. Kulanov, A. Perepelitsyn, and 1. Zarizenko, “Method of
development and deployment of reconfigurable FPGA-based
projects in cloud infrastructure”, in 2018 IEEE 9th Inter-
national Conference on Dependable Systems, Services and
Technologies (DESSERT), May 2018, pp. 103-106. por: 10.
1109/DESSERT.2018.8409108.

J. Dondo Gazzano, F. Sanchez Molina, F. Rincon, and J. C.
Lépez, “Integrating reconfigurable hardware-based grid for

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

248

high performance computing”, The Scientific World Journal,
2015.

S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA
accelerators for efficient cloud computing”, in Cloud Comput-
ing Technology (CloudCom), Int’l Conf. on, IEEE, 2015.

M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne,
“Designing a virtual runtime for FPGA accelerators in the
cloud”, in Field Programmable Logic and Applications, Int’l
Conf. on, 2016.

J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf,
“Enabling FPGAs in Hyperscale Data Centers”, in Cloud and
Big Data Computing (CBDCom), Int’l Conf. on, IEEE, 2015.
A. Vaishnav, K. D. Pham, and D. Koch, “A survey on fpga
virtualization”, 28th FPL, 2018.

R. Kirchgessner, G. Stitt, A. George, and H. Lam, “VirtualRC:
a virtual FPGA platform for applications and tools portability”,
in FPGAs, Proc. of the ACM/SIGDA Int’l Symp. on, 2012.
H. K.-H. So and R. Brodersen, “A unified hardware/soft-
ware runtime environment for FPGA-based reconfigurable
computers using BORPH”, ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 2, p. 14, 2008.

W. Wang, M. Bolic, and J. Parri, “pvFPGA: Accessing an
FPGA-based hardware accelerator in a paravirtualized envi-
ronment”, Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2013 Int’l Conf. on, pp. 1-9, 2013.

F. Chen, Y. Shan, Y. Zhang, et al., “Enabling FPGAs in the
cloud”, in Computing Frontiers, Proc. of the 11th ACM Conf.
on, ACM, 2014, p. 3.

S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and
P. Chow, “FPGAs in the Cloud: Booting Virtualized Hardware
Accelerators with OpenStack”, in Field-Programmable Cus-
tom Computing Machines (FCCM), 22nd Annual Int’l Symp.
on, IEEE, 2014, pp. 109-116. por: 10.1109/FCCM.2014.42.
Q. Chen, V. Mishra, J. Nunez-Yanez, and G. Zervas, “Recon-
figurable Network Stream Processing on Virtualized FPGA
Resources”, International Journal of Reconfigurable Comput-
ing, vol. 2018, 2018.

M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne,
“Virtualized Execution Runtime for FPGA Accelerators in the
Cloud”, IEEE Access, vol. 5, pp. 1900-1910, 2017, ISSN:
2169-3536. por: 10.1109/ACCESS.2017.2661582.

M. Happe, A. Traber, and A. Keller, “Preemptive Hardware
Multitasking in ReconOS”, in Applied Reconfigurable Com-
puting, Springer, 2015, pp. 79-90.

J. Rettkowski, K. Friesen, and D. Gohringer, “RePaBit: Au-
tomated generation of relocatable partial bitstreams for Xilinx
Zynq FPGAs”, in ReConFigurable Computing and FPGAs
(ReConFig), 2016 International Conference on, IEEE, 2016,
pp. 1-8.

E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel,
“Preemption of the Partial Reconfiguration Process to Enable
Real-Time Computing With FPGAs”, ACM Trans. Reconfig-
urable Technol. Syst., vol. 11, no. 2, 10:1-10:24, Jul. 2018,
ISSN: 1936-7406. DOI: 10.1145/3182183.

S. Rachana and H. Guruprasad, “Emerging security issues
and challenges in cloud computing”, International Journal
of Engineering Science and Innovative Technology, vol. 3, 2
2014, 1SSN: 2319-5967.

J. Ryoo, S. Rizvi, W. Aiken, and J. Kissell, “Cloud security au-
diting: Challenges and emerging approaches”, IEEE Security
Privacy, vol. 12, no. 6, pp. 68-74, Nov. 2014, ISSN: 1540-
7993. por: 10.1109/MSP.2013.132.

M. A. Will and R. K. L. Ko, “Secure FPGA as a Service - To-
wards Secure Data Processing by Physicalizing the Cloud”, in
2017 IEEE Trustcom/BigDataSE/ICESS, Aug. 2017, pp. 449—
455.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http.//www.iariajournals.org/systems_and_measurements/

(36]

(37]

(38]

(39]
(40]
(41]

(42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(501

(51]

B. Hong, H.-Y. Kim, M. Kim, L. Xu, W. Shi, and T. Suh,
“FASTEN: An FPGA-based Secure System for Big Data
Processing”, IEEE Design & Test, 2017.

OpenStack. (2017). OpenStack - Open Source Cloud Comput-
ing Software, [Online]. Available: http://www.openstack.org/
(visited on 2018-11-25).

J. E. Smith and R. Nair, Virtual machines - versatile platforms
for systems and processes. Elsevier, 2005, ISBN: 978-1-55860-
910-5.

, “The architecture of virtual machines”, Computer,
vol. 38, no. 5, pp. 32-38, 2005.

R. P. Goldberg, “Survey of virtual machine research”, Com-
puter Journal, vol. 7, no. 6, pp. 3445, 1974.

M. Rosenblum, “The Reincarnation of Virtual Machines”,
ACM Queue, vol. 2, no. 5, pp. 34—40, 2004.

Xillybus Ltd. (2017). An FPGA IP core for easy DMA over
PCle, [Online]. Available: http://xillybus.com (visited on
2018-11-25).

T. B. PreuBer, M. Zabel, P. Lehmann, and R. G. Spallek,
“The portable open-source ip core and utility library poc”, in
2016 Int’'l Conf. on ReConFigurable Computing and FPGAs
(ReConFig), Nov. 2016, pp. 1-6. pOI: 10.1109/ReConFig.
2016.7857191.

Xilinx Inc., 7 Series FPGAs Integrated Block for PCI Express
v3.3 — LogiCORE IP Product Guide, PG054, 5. April, 2017.
, 7 Series FPGAs Memory Interface Solutions — User
Guide, UG586, 18. Januar, 2012.

, LogiCORE IP Tri-Mode Ethernet MAC v5.2 — User
Guide, UG777, 18. Januar, 2012.

H. Zimmermann, “Osi reference model - the iso model of
architecture for open systems interconnection”, IEEE Trans-
actions on Communications, vol. 28, no. 4, pp. 425-432, Apr.
1980, 1SSN: 0090-6778. DOI: 10.1109/TCOM.1980.1094702.
X. Zhang, S. Mclntosh, P. Rohatgi, and J. L. Griffin,
“Xensocket: A high-throughput interdomain transport for vir-
tual machines”, in Middleware 2007, Springer, 2007, pp. 184—
203.

R. Backasch, G. Hempel, S. Werner, S. Groppe, and T.
Pionteck, “Identifying homogenous reconfigurable regions in
hetero"-gene"-ous fpgas for module relocation”, in ReConFig-
urable Computing and FPGAs (ReConFig), Int’l Conf. on,
IEEE, 2014, pp. 1-6.

H. Gross, S. Mangard, and T. Korak, “An efficient side-
channel protected aes implementation with arbitrary protection
order”, in Cryptographers’ Track at the RSA Conference,
Springer, 2017, pp. 95-112.

S. Skorobogatov and C. Woods, “Breakthrough silicon scan-
ning discovers backdoor in military chip”, in Cryptographic
Hardware and Embedded Systems — CHES 2012: 14th Inter-

[52]

(53]

[54]

[55]

(561

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

249

national Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 23-40, 1SBN: 978-3-642-33027-8. po1: 10.1007/
978-3-642-33027-8_2.

D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B.
Sunar, “Trojan detection using ic fingerprinting”, in 2007
IEEE Symposium on Security and Privacy (SP *07), May 2007,
pp. 296-310. por1: 10.1109/SP.2007.36.

Xilinx Inc., 7 series fpgas configuration, User guide 470, 1.11,
Sep. 27, 2016.

C. Rebeiro and D. Mukhopadhyay, “High Speed Compact
Elliptic Curve Cryptoprocessor for FPGA Platforms”, in In-
docrypt, Springer, vol. 5365, 2008, pp. 376-388. DoI: 10.
1007/978-3-540-89754-5_29.

H. Hsing. (Jan. 29, 2013). Opencores - sha3 core, [Online].
Available: https://opencores.org/project,sha3 (visited on 2018-

11-25).
, (Dec. 14, 2015). Opencores - tiny aes, [Online]. Avail-

able: https://opencores.org/project,tiny_aes (visited on 2018-
11-25).

D. Mukhopadhyay, C. Rebeiro, and S. Roy. (Dec. 9, 2008).
Elliptic Curve Crypto Processor for FPGA Platforms, [Online].
Available: http://cse.iitkgp.ac.in/~debdeep/osscrypto/eccpweb/
index.html (visited on 2018-11-25).

ITA — The Internet Traffic Archive, EPA-HTTP — A day
of HTTP logs from a EPA WWW server. 2016. [Online].
Available: http://ita.ee.Ibl.gov/html/contrib/EPA-HTTP.html
(visited on 2018-11-25).

Amazon Inc. (2018). Amazon EC2 F1 Instances — Run Custom
FPGAs in the AWS Cloud, [Online]. Available: https://aws.
amazon.com/ec2/instance-types/f1/ (visited on 2018-11-25).
Xilinx Inc., VCU1525 Reconfigurable Acceleration Platform
— User Guide, UG1268 (v1.0), 13. November, 2017.

H. Burau, R. Widera, W. Honig, et al., “Picongpu: A fully
relativistic particle-in-cell code for a gpu cluster”, IEEE Trans-
actions on Plasma Science, vol. 38, no. 10, pp. 2831-2839,
2010.

A. Schaefer, M. Reichenbach, and D. Fey, “Continuous inte-
gration and automation for devops”, in IJAENG Transactions
on Engineering Technologies, Springer, 2013, pp. 345-358.
R. Steinbriick, M. Kuntzsch, M. Justus, T. Bergmann, and
A. Kessler, “Trigger generator for the superconducting linear
accelerator elbe”, 2016. DOI: 10.18429/JACoW -1BIC2015-
MOPBO11.

L. Kalms and D. Gohringer, “Clustering and Mapping Al-
gorithm for Application Distribution on a Scalable FPGA
Cluster”, in 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 1EEE, 2016,
pp. 105-113.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

