
230

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FPGAs and the Cloud – An Endless Tale of Virtualization, Elasticity and Efficiency

Oliver Knodel∗‡, Paul R. Genssler†‡, Fredo Erxleben‡ and Rainer G. Spallek‡

∗ Department of Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
† Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
‡ Department of Computer Science, Technische Universität Dresden, Dresden, Germany

Email: ∗o.knodel@hzdr.de, †genssler@kit.edu, ‡{firstname.lastname}@tu-dresden.de

Abstract—Field Programmable Gate Arrays (FPGAs) provide
a promising opportunity to improve performance, security and
energy efficiency of computing architectures, which are essential
in modern data centers. Especially the background acceleration
of complex and computationally intensive tasks is an important
field of application. The flexible use of reconfigurable devices
within a cloud context requires abstraction from the actual
hardware through virtualization to offer these resources to service
providers. In this paper, we present our Reconfigurable Common
Computing Frame (RC2F) approach – inspired by system virtual
machines – for the profound virtualization of reconfigurable
hardware in cloud services. Using partial reconfiguration, our
framework abstracts a single physical FPGA into multiple inde-
pendent virtual FPGAs (vFPGAs). A user can request vFPGAs of
different size for optimal resource utilization and energy efficiency
of the whole cloud system. To enable such flexibility, we create
homogeneous partitions on top of an inhomogeneous FPGA fabric
abstracting from physical locations and static areas. The RC2FSEC
extension combines this virtualization with a security system
to allow for processing of sensitive data. On the host side our
Reconfigurable Common Cloud Computing Environment (RC3E)
offers different service models and manages the allocation of
the dynamic vFPGAs. We demonstrate the possibilities and the
resource trade-off of our approach in a basic scenario. Moreover,
we present future perspectives for the use of FPGAs in cloud-
based environments.

Keywords–Cloud Computing; Virtualization; Reconfigurable
Hardware; Partial Reconfiguration.

I. MOTIVATION

The idea of FPGAs as virtualized resources in Cloud
environments in the projects RC3E and RC2F was temporarily
completed with introducing homogeneous virtualized FPGAs
in 2017 by Knodel et al. in [1]. This article henceforth describes
the two parts of out project – RC3E and RC2F – beginning
with first considerations related to FPGA-Clusters in [2]. First
cloud approaches with service models were introduced in [3]
and [4], the overall RC3E-Cloud description in [5], a hardware
migration in [6] and additional security considerations by
Genssler et al. in [7].

Cloud computing itself is based on the idea of computing
as a utility [8]. The user gains access to a shared pool of
computing resources or services that can rapidly be allocated
and released “with minimal management effort or service
provider interaction“ [9]. An essential advantage, compared
to traditional models in which the user has access to a fixed
number of computing resources, is the elasticity within a cloud.
Even in peak load situations, a sufficient amount of resources
are available [8].

With the theoretically unlimited number of resources, their
enormous energy consumption arises as a major problem
for data centers housing clouds. One possibility to enhance
computation performance by simultaneously lowering energy
consumption is the use of heterogeneous systems, offloading
computationally intensive applications to special hardware
coprocessors or dedicated accelerators. Especially reconfig-
urable hardware, such as FPGAs, provide an opportunity to
improve computing performance [10], security [11] and energy
efficiency [12].

A profound and flexible integration of FPGAs into scalable
data center infrastructures, which satisfies the cloud char-
acteristics, is a task of growing importance in the field of
energy-efficient cloud computing. In order to achieve such an
integration, the virtualization of FPGA resources is necessary.
Provisioning vFPGAs makes reconfigurable resources avail-
able to customers of the data center provider. These customers
are usually service providers themselves – nevertheless, they
will be called users throughout this paper. Those users can
accelerate their specific services, reduce energy consumption
and thereby service costs.

The virtualization of reconfigurable hardware devices is a
recurring challenge. Decades ago, the virtualization of FPGA
devices started due to the limitation of logical resources [13].
Nowadays, FPGAs have grown in size and full utilization
of the devices cannot always be achieved in practice. One
possibility to increase utilization is our virtualization approach,
which allows for flexible design sizes and multiple hardware
designs on the same physical FPGA. One challenge of this
approach are the unsteady load situations of elastic clouds,
which process short- and long-running acceleration tasks.

In this paper, we introduce our virtualization concept for
FPGAs, which is inspired by traditional virtual machines
(VMs). One physical FPGA can consist of multiple vFPGAs
belonging to different services with different runtimes. Each
vFPGA can be configured using partial reconfiguration [14]
and the internal configuration access port (ICAP). The vFPGAs
are, therefore, flexible in their physical size and location.
This vertical scalability of vFPGAs from a small design
up to a full physical FPGA enables an efficient utilization
of the reconfigurable resources. Moreover, the vFPGAs are
fully homogeneous among each other and thereby become a
wholesome virtualized cloud component, which also supports
an efficient migration of a whole vFPGA context.

The paper is structured as follows: Section II introduces
similar concepts and related research in the field of vir-

231

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tualization of reconfigurable hardware, cloud architectures
and bitstream relocation. The requirements for a profound
provision of FPGAs in a cloud environment are discussed
in Section III. Section IV introduces the prototypical cloud
management system RC3E followed by definitions necessary
for the virtualization of the FPGAs themselves in Section V.
In Section VI, we give an overview on our FPGA related
virtualization concept RC2F. Our prototype, which implements
our concept with homogeneous and in their size flexible
vFPGAs, is presented in detail in Section VII. The additional
security extension RC2FSEC is introduced in Section VIII,
followed by device utilization, vFPGA sizes and performance
results of the simulation of our FPGA-Cloud in Section IX.
Section X concludes and gives an outlook.

II. RELATED WORK

The provisioning of reconfigurable hardware in data centers
and cloud environments has gained more and more importance
in the last years as shown by the overview from Kachris et al.
[15]. Initially used mainly on the network infrastructure level,
FPGAs are now also employed on the application level of data
centers [12]. Typical use cases in this field are background
accelerations of specific functions with static hardware designs.
The FPGAs’ special feature to reconfigure hardware at runtime
is still used rather rarely. Examples are the anonymization of
user requests [16] and increasing security [11] by outsourcing
critical parts to attack-safe hardware implementations. In most
cases, the FPGAs are not directly usable or configurable by the
user, because the devices are, due to a missing provisioning or
virtualization, hidden deeply in the data center.

The development of methods for the deployment of FPGA
related projects in a cloud infrastructure is performed by
Kulanov et al. in [17]. A comparable contribution with stronger
focus on the transfer of applications into an FPGA grid for high
performance computing is shown in [18]. The application focus
on a single cloud service model with background acceleration
of services using FPGAs. An approach, which places multiple
user designs on a single FPGA, is introduced by Fahmy et al.
[19], using tightly attached FPGAs to offload computationally
intensive tasks. The FPGAs are partially reconfigurable and
can hold up to four individual user designs. The approach was
extended by Asiatici et al. in [20] with additional memory vir-
tualization. A cloud integration model with network-attached
FPGAs and multiple user designs on one FPGA was introduced
by Weerasinghe et al. [21].

The term virtualization itself is used for a wide range of
concepts as shown by Vaishnav et al. in [22]. An example for
abstractions on the hardware description level is VirtualRC
[23], which uses a uniform hardware / software interface to
realize communication on different FPGA platforms. BORPH
[24] provides a similar approach, employing a homogeneous
UNIX interface for hardware and software. The FPGA par-
avirtualization pvFPGA [25], which integrates FPGA device
drivers into a paravirtualized Xen virtual machine, presents a
more sophisticated concept. A framework for the integration
of reconfigurable hardware into cloud architecture is devel-
oped by Chen et al. [26] and Byma et al. [27]. The framework
of Byma et al. allows user-specific acceleration cores on the
reconfigurable hardware devices, which are accessible via an
Ethernet connection. In [28] Chen et al. use FPGAs for process-
ing network streams on virtualized FPGA resources similar

to our approach. A virtualized execution runtime for FPGA
accelerators in the cloud is shown by Asiatici et al. in [29].
They demonstrated a complete methodology and a resource
management framework that allows a dynamic mapping of the
FPGA resources in a simple cloud environment.

Approaches more closely related to the context-save-and-
restore mechanism required by our migration concept can
be found in the field of bitstream readback, manipulation
and hardware preemption. In ReconOS [30], hardware task
preemption is used to capture and restore the states of all flip-
flops and block RAMs on a Virtex-6 to allow multitasking
with hardware threads. In combination with homogeneous bit-
streams for different physical vFPGA positions, methods like
relocation of designs as shown in [31], provide an opportunity
for an efficient context migration of virtualized FPGAs. A
preemption of the reconfiguration process itself is shown by
Rossi et al. in [32].

The outlined systems virtualize FPGAs and makes them
easily available in the cloud. But not every user can utilize such
a service, because their sensitive data is at risk in a data center.
Security audits are well established in traditional systems, but
new cloud environments provide new challenges [33, 34]. In
[35] the idea of securing FPGAs in the cloud is outlined, but
no prototype realized or protocol described. A secure cloud
featuring FPGAs was proposed in [16] relying on a third party,
called trusted authority, to establish any trust in the hardware
in the cloud. In [36] a simple public key based systems was
implemented, however, their protocols fail to protect against,
e.g., replay attacks. But none of these proposals virtualizes the
FPGA to increase their flexibility and utilization.

Visibility of the hardware

FPGA-Prototyping Productive cloud for
acceleration- and security-tasks

Hardware accessibility

physical
FPGA

physical
FPGA

Compute Node

CPU user-modifiable

static

FPGA

Bitstream

User
App

Design Tools

Driver

RC2F Host-Hypervisor

User VM

RSaaS

vFPGA
partial

Bitstream

User
App

Design Flow

RC2F Driver

RC2F Host-Hypervisor

Compute VM

RAaaS

vFPGA
partial

Bitstream

Service

RC2F Driver

RC2F Host-Hypervisor

Service VM

BAaaS

Bitstream
DB

Flexibility

✘ !✔RC2F :SEC

Figure 1. The three service models provided in our cloud environment. In
the RSaaS model, users can allocate full physical FPGAs. The RAaaS and
BAaaS model allow concurrent user designs on a single physical FPGA.

III. POSSIBILITIES AND REQUIREMENTS FOR FPGAS IN
THE CLOUD

The overall motivation is to build a system providing the
FPGA for a wide range of service providers with various
requirements. The particularity hereby is that we have a data

232

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

center provider with physical FPGAs, a cloud provider offering
a virtual infrastructure and a service provider who offers only
a background acceleration, which requires a virtualized FPGA
as shown in Section VII. In the following we introduce three
key service perspectives as shown in Figure 1. The figure gives
also an overview on modifiable and fixed components for each
of the service models and shows also the different levels of
visibility, accessibility, flexibility and security.

A. Reconfigurable Silicon as a Service – RSaaS

This model provides full access to the reconfigurable
resource and is primarily intended for a cloud provider to
develop special acceleration cores without the use of a virtu-
alized FPGA or with a dedicated secured access to the cloud.
A cloud provider can allocate a full physical FPGA from the
data center operator to implement the hardware of their choice.
The FPGA is forwarded and passed through to a VM by
the management environment. This model allows developers
to reconfigure the full physical FPGA, thus, the RC2FSEC
extension cannot protect the users’ data. It also opens new
attack vectors that do not exist in current cloud environments
and so this model should be limited to cloud providers. The
concept can be compared to bare-metal cloud services and is
related to the traditional cloud service models Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS).

B. Reconfigurable Accelerators as a Service – RAaaS

A model with less freedom for the developer (service
provider) and typically used by service providers is the Re-
configurable Accelerators as a Service (RAaaS) model. Only
vFPGAs of different sizes are visible, allocatable and usable.
The model allows the development of hardware designs, which
can be used for background acceleration of a specific service
and the communication is performed via the framework in-
troduced in Section VII. Such restrictions have the advantage
that the RC2FSEC extension can be used, which significantly
increases the security of the system compared to the RSaaS
model. The RAaaS model can be compared to the PaaS model.

C. Background Acceleration as a Service – BAaaS

The third model is suitable for applications and services
using background acceleration running in common data cen-
ters. The vFPGA is not visible or accessible by the service
users. Instead, services are using vFPGAs in the background
to accelerate specific tasks. The pre-build configuration files
and host applications are used by the cloud service provider.
Resource allocation and vFPGAs reconfiguration occurs in the
background using the RC3E resource management system.
Because this model provides concrete service applications to
the user, it is similar to the PaaS model. Especially the BAaaS
service model demands resource pooling and a rapid elastic-
ity for typical workloads. FPGAs allow a higher flexibility
than virtual machines due to faster booting times. From a
security perspective, this model is similar to current cloud
environments, because of the limited reconfigurability of the
FPGA. The RC2FSEC extension cannot be used in this model.
In Section IX we demonstrate the cloud’s performance with a
workload using our background acceleration service model.

FPGA

Virtualization

PCIe

Passthrough

Datacenter
Operator

physical architecture

CPU FPGA

visibility of the hardware

RSaaS

virtual architecture

Cloud
Provider

VM vFPGA

RAaaS / BAaaS

Developer

access-rights

abstraction from the hardware

Service
Provider

virtual infrastructure

VM vRAI

SaaS BAaaS

application/

service

End User

execution

Figure 2. Involved stakeholders and the visibility of resources in a flexible
environment. Background acceleration is primarily used in systems were

service provider and datacenter operator are the same.

D. Chaining it all together: RSaaS – RAaaS – BAaaS
Figure 2 illustrates how a physical FPGA is abstracted

by multiple layers into a transparent background accelerator.
First, the datacenter operator makes the FPGAs available
to the cloud providers (RSaaS). Their developers implement
applications for the vFPGAs (RAaaS) and package them in
Virtual Reconfigurable Acceleration Images (vRAIs), which
are described in Section IV-C. Such a vRAI is used by the
service provider as a black box in the BAaaS model (see
Section IV-C and Section VII-F). At this point a virtual FPGA
infrastructure is provided, which can be used to accelerate
services executed by end users. Combined with the classic
Software as a Service (SaaS) model, this allows for a seamless
integration of vFPGAs to accelerate the service, reduce energy
consumption and thus, saving operating costs. At this highest
level of abstraction, the FPGA is transparent to the end user.

IV. RECONFIGURABLE COMMON CLOUD COMPUTING
ENVIRONMENT – RC3E

In this section, we will present the Reconfigurable
Common Cloud Computing Environment – RC3E – and ex-
plain the components depicted in Figure 3 in detail. In contrast
to other cloud architectures with FPGA integration presented
in Section II, the RC3E environment is designed especially for
an integration of virtualized FPGA resources and the service
models described in Section III. The system is a proof-of-
concept to study different approaches for the virtualization and
the flexible integration of reconfigurable hardware into a cloud
management system. The evaluation results will be used for
future integrations of specific RC3E components into a cloud
management system such as OpenStack [37].

A. Overall System Architecture
The overall system design is a distributed three tier client-

server architecture to provide a high degree of scalability and
flexibility. RC3E offers three access possibilities to use and
administer the RC3E system. The most common way is a login
shell either on a local computer with our RC3E client or via
secure shell login to the remote login server. Additionally, it is
possible to connect a web frontend (see Section IV-B) to the
core system’s API.

The RC3E core system running on the management node,
which itself is a three tier architecture, orchestrating the
connected clients and all registered compute nodes. It uses

233

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RC3E
Database

User-
Statistics

vFPGA-
Images/Instances

System-
Images

Compute-Node

Local Node-Management — RC3E
• Local VM-Management
• (v)FPGA Assignment / Configuration
• Configuration of virtual devices

Operating System
• Network
• …

Block-
Images

Local Management - Dom0

VMs (DomU)

RC2F Host-Hypervisor
• Monitoring
• Assignment of devices
• FPGA Configuration

 vFPGA
• Configuration
• States
• vCS

Physical FPGA

 User-VM
• Application
• Tools / Datasets
• vFPGA-API

Local Management - Dom0

System-Hypervisor
• Provision of VMs
• Virtualization-API
• Physical devices

Cloud-Management — RC3E
• System Preferences
• Resource-Management
• Management of Resources
• User-API (for user requests)

Load Distribution and Scheduling
• Global Resource-Assignment
• BAaaS Job Queue
• Global Resource-Monitoring

RC3E-Components System-ComponentsUser-Resources

FPGA-Hypervisor
• States
• Configuration

Client-System

• VM and vFPGA Management
• System-Configuration
• …

Client-Terminal
• Available Resources
• User Statistics/Preferences

Management-Node

Distributed
Filesystem

Figure 3. Architecture of the resource management and hypervisor RC3E consisting of core system (management, monitoring and job scheduling) and compute
node providing VMs and vFPGAs.

a centralized database to store all required information and
manages a distributed file system, which is shared between all
compute nodes and the management nodes.

B. Web-based User Interaction and Database Backend
In a cloud environment it is common that the majority of

users does not have administrative access to the system. A
web-based frontend allows these users a fast and comfortable
way to reserve FPGA slices on the server, upload and run their
designs. The Django framework was used as a foundation of
such a web frontend. All data required for the frontend is stored
in a MySQL database, which interacts directly with Django’s
web-server. The RC3E tools discussed in the other sections
have to be present on the same machine as the web-UI in
current implementations. Separating the cloud systems control
instance from the web-server is desirable and expected to be
done with a reasonable effort in the future.

In Figure 5 the modeled entities and their reference rela-
tions are shown. Data types and classes provided by Django
itself are printed in italics for distinction. Attributes that only
serve framework-internal purposes and are added by Django
automatically have been omitted for clarity.

The models focus points and their synergies will be ex-
amined in the following. Words in bold typeface thereby
correspond with the entities in the model.

To avoid ambiguity, the term user refers to any human
interacting with the system, while administrators refers to
users with the privileges to access and modify the system’s
internal state. Persons without such privileges will be called
consumers. Django’s integrated user group and permission
management system is used to reflect user categories and
facilitate access control across the web-UI.

It was decided to use a fine-grained modeling approach to
retain flexibility and changeability in an attempt to create a
future-proof software base for future development iterations.
This also includes the avoidance of unmanaged data redun-
dancy by preferred usage of foreign references.

Entities are represented on the database level as separate
tables with each of the entity’s attributes as a table column
and each instance of the entity as a table row, containing the
actual attribute values within the respective cells.

The modeling is heavily influenced by the operation prin-
ciples of foreign key references in SQL-based data storage
systems. Thus, in situations where two entities A and B form
a [A]1:n[B]-relationship, the foreign key has been placed on
the B side referencing A to avoid creating a separate associative
entity each time such a relation shows up. In [A]m:n[B]
scenarios such a separate entity can not be avoided though.
The UML-style B contains A symbolization should therefore
be read as B contains a reference to A. Foreign key references
are set up to execute cascading deletions and modifications,
since the entity containing the reference would enter an invalid
state if not deleted/modified as well.

1) Nodes, FPGAs and Regions: A node represents the
physical cloud server in which FPGAs are installed. Each
node is named and identified by an unique IP-address. An
optional comment allows the node’s administrator to easily
convey additional information to the consumer aside from the
installed FPGAs.

Installed FPGAs are initialized by the RC3E management
system, which provides PCI-addresses for the node and the
device itself. The latter are queried during the registration
of the FPGA with the web-frontend and associated database
entries are created automatically.

234

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Allocation eines vFPGAs mit VM

Starten eines vRAI Paketes

vFPGA von VM entfernen

FPGA
Hypervisor

Cloud-
Management User-VMMiddleware vFPGA

Local Node-
Management

Freigabe
vFPGA Freigabe

vFPGA
Freigeben

vFPGA
entfernen

vFPGA
löschen

vFPGA
stoppen

Kanäle
entfernen

Belegung DB
aktualisieren

Zuordnung
entfernen

Status

allocate
vFPGA

Cloud-
Management NodeA

Compute-Node with
vFPGA-ResourcesB Physical

FPGA-Resource C

Anwendung
starten

Datenkanal

Start vRAI

vFPGA
konfigurieren

vFPGA status

vCS
initialisieren

vFPGA status

vFPGA
konfigurieren

Status

configure
vFPGA

initialize
vFPGA

configure HCS
with vFPGA data

channel
set up

assign
occupancy
in database

system.rcfg

assignment
VM/vFPGA
system.rcfg

resources
available?

system.rcfg

register in
database

start VM

start
vFPGA

configure
vFPGA

vFPGA ready
VM ready

Status, VM-IP

(I) Allocation of a vFPGA resource with additional VM

(II) Starten eines vRAI-Paketes

(III) Freigabe einer vFPGA-Ressource

Figure 4. Sequence diagram showing interaction of levels in the RC3E system via cloud management nodes, the compute node with a (free) vFPGA resource
up to the physical FPGA for three exemplary scenarios.

To offer a uniform description of an FPGA, the FPGA
model has been introduced as an abstraction of generic and
structural information. The producer entity has been exter-
nalized with the prospect of providing additional information
about it in future implementations. An FPGA model references
a region type and holds the amount of regions an FPGA of
this model has. With this approach only homogeneous FPGA
architectures can be modeled. For heterogeneous architectures
the region type and -count would have to be externalized and
act as associative entity between the FPGA model and the
region type.

One or multiple region instances are created alongside with
an FPGA instance, the amount depending on the FPGAs region
count. Its region type is determined by the associated FPGA
model and an region index is determined. These indices are
unique per FPGA, 0-based and continuous, with the purpose
of identifying regions on an FPGA and determine whether
they are neighbors and can therefore be reserved together. For
programming purposes the RC3E-system provides a file path
to a memory device, which is also stored.

2) Reservations and Virtual FPGAs: The most common
interactions of customers with the system are the reservation
of vFPGAs and the programming of such. For the first step,
the customer provides points in time for the start and end of
the reservation period and selects a region type suitable for
his use case along with the required amount of consecutive
regions. The database-backend will then be queried for match-
ing FPGA regions. Already existing reservations are taken
into account when selecting a sufficient amount of consecutive
FPGA regions to reserve. On success, a new vFPGA instance

is created, alongside with a region reservation for each
affected region. The latter is an association entity to facilitate
the [vFPGA]n:m[Region]-relation. While region reservation
database entries are removed after the reservation period has
passed, vFPGA entries are retained for bookkeeping purposes.

3) Programming the Virtual FPGA: The administrators
provide information about the installed programmers and the
programming script for the available FPGA models. Both en-
tities are used to determine which programmer-FPGA model-
combinations are supported and thus, which programmers are
offered to the customer for usage with his reserved vFPGA.
Upon programming, the script’s template gets parsed and
placeholders within it matched against the available device
variables and runtime variables. If a match occurs, it is
replaced by the variables’ value. Device variables are bound to
specific FPGAs and are set by the administrator while runtime
variables may be python expressions or fixed values and will
be evaluated at the point of replacement. Within the reservation
period the user may upload a bitfile, which will then be passed
on to the programmer alongside with the appropriate script and
variables. In case of a reservation spanning multiple regions,
the memory device path of the region with the lowest index is
the one used by the programmer for the whole reserved section.
Uploaded bitfiles are currently not stored in the database
backend.

C. Description of vFPGAs (RCFG and vRAI)

All necessary information for the execution of a back-
ground accelerator is combined in a so called vRAI. The
vRAI can be delivered as fully encapsulated accelerators to

235

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Overview over the entities involved in modeling a database backend. Italic text represents primitives provided by the Django framework.

the higher-level cloud service developers. From the point of
view of the provider of a service, there is the requirement to
process a request in the form of a function call as compact, safe
or energy-efficient as possible, without having any knowledge
of the physical hardware in the background. The execution
of a vRAI requires allocation of a vFPGA, which fulfills
all requirements described in the Reconfigurable (Device)
Configuration (RCFG). In order to allocate and execute an
accelerator from a VM, several components are required within
the vRAI package (see Figure 6):

• The required vFPGA-Images for all possible vFPGA-
Slots (necessary for a migration of a vFPGA-Instance).

• The RCFG file describing the required vFPGA suitable
for the vFPGA image.

• The host application for initialization and interaction with
the vFPGA-Instance, which is embedded directly into the
user’s offloading service (BAaaS).

• Virtual Context Bit Mask (VCBM) to read the relevant
bits within the vFPGA instances that identify the current
state (see Section VII-E).

Since different RCFGs are required depending on the dif-
ferent service models, these are outlined below and explained
accordingly. Figure 7 shows an exemplary RCFG, which
describes a complete physical FPGA in the model RSaaS
service=’rs’ with the name name=’fpga0’ gets and
in the VM instance vm=’vm1-hvm’ via hardware virtualiza-
tion and PCI passthrough at a certain address in the PCI tree
pci =’01:00.0’ is displayed. The virtual network address
is sent to the system via vif=’10.0.0.43’. The VM must

have its own configuration file depending on the virtualization,
and the embedding of the VM configuration in the RCFG
for the FPGA is also possible. Since different FPGAs are
to be provided in this model, there is a corresponding entry
with the name of the FPGA board board=’vc707’. The
configuration of the FPGA is done using the JTAG interface
config= ’jtag’, where an initial design is additionally
specified: design =’led.bit’. Using a RCFG file, the
RSaaS model can allocate only one FPGA and its associated
VM, otherwise the requested system may become too complex
and it may not necessarily be mapped to the physical hardware
resources.

Host
Application

vRAI

RCFG

vFPGA

vFPGA
Bereich

vFPGA

vFPGA
Bereich

vFPGA-Image

vFPGA-Slots
(FARs)

Bitmask
(for Context
relocation)

Figure 6. Virtual Reconfigurable Acceleration Image (vRAI) package with
all the files required to run a vFPGA-Instance, such as vFPGA-Image

(partial bitstreams), RCFG, host program and optional bitstream masks for
the bitstream relocation.

236

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service = ’rs’ #Service Model RSaaS
name = ’fpga0’ #FPGA-Instance Name
vm = ’vm1-hvm’ #VM-Instance Name

board = ’vc707’ #FPGA-Board
vif = ’ip=10.0.0.43’ #FPGA-IP
vpci = ’01:00.0’ #PCI Node in VM-Instance
design = ’led.bit’ #Initial Design
config = ’jtag’ #Configuration Method

Figure 7. Configuration file for the allocation of a physical FPGA in the
Service Model RSaaS.

More complex is the description of the vFPGAs in the
model RAaaS service=ra as shown in Figure 8. In ad-
dition to the already known parameters, in this example two
vFPGAs with different number of vFPGA slots size=[2,
1] are allocated via vfpga=[2], where both are passed
to the same VM vm=[’vm1-pvm’]. The number of front-
end interfaces is determined by frontends=[2, 1] for
each vFPGA, where the number must be less than or equal
to the number of vFPGA slots. At this point, the cloud
management must try to map the desired virtual system to
a physical system, where in the model RAaaS additionally the
position of the vFPGA on the physical FPGA can be specified
by the field loc=[0,2]. Via debug=[’csp’] in the
resource management model RAaaS it is communicated which
debug / tracing interface is to be additionally instantiated. The
capacity of the external DDR memory can also be specified
(memory=[2000,1000]), as well as the desired state of
vFPGAs boot=[’paused’]. The location of the values
within the lists, such as size, loc, vif, or design, decides
how to map the entries. Furthermore, if there is only one entry
in a list, such as key, it will be applied equally to all vFPGAs.
If no clear assignment is possible or if this is not permitted,
an error message is output.

service = ’ra’ #Service Model RAaaS
name = [’vfpga-bsmc’] #vFPGA/User Design Name
vm = [’vm1-pvm’] #VM-Instance Name

vfpga = [2] #Number of vFPGAs
size = [2, 1] #vFPGA-Slots
frontends = [2, 1] #Frontend-Interfaces
loc = [0,2] #vFPGA-Slot on device
memory = [2000,1000] #DDR-Memory Size in MByte
vif = [’ip=10.0.0.42’, ...] #vFPGA-IPs

boot= [’paused’] #Initial vFPGA-State
design = [’bsmc-2.bit’, ...] #Initial Designs

Figure 8. Configuration file for the allocation of a vFPGA-Cluster in the
Service Model RAaaS.

In the model BAaaS, the actual user has no knowledge
of the vFPGA resources. The RCFG file, which is stored
together with all the required vFPGA images in the vRAI,
is reduced. For example, as shown in Figure 9, there are no
locations of the vFPGA slots (loc) or information about the
debug / tracing interface (debug) required. The RCFGs must
be checked by the resource manager for the rights of the users
within the service model before the global allocation of the
appropriate resource is first performed and assigned to the user.
The concrete processing of the content then happens within the
Dom0 of the assigned node as introduced in Section IV-B1.

service = ’ba’ #Service Model BAaaS
name = [’vfpga-kmeans’] #vFPGA/User Design Name
vm = [’vm1-pvm’] #VM-Instance Name

vfpga = [1] #Number of vFPGAs
size = [4] #vFPGA-Slots
frontends = [2] #Frontend-Interfaces
memory = [4000] #DDR-Memory Size
vif = [’ip=10.0.0.151’] #vFPGA-IP

key = [’AAAABC1yc2 ... BuHNE’] #User AES-Key
boot= [’booting’] #Initial vFPGA-State
design = [’kmeans-quad.vrai’] #Initial Design

Figure 9. Configuration file for the allocation of a single vFPGA in the
service model BAaaS

partially reconfigurable regions

vF
P

G
A

 0

Frontend
0

Frontend
1

Frontend
3

FPGA-Hypervisor — RC2F-Infrastructurest
at

ic

vFPGA 1

Frontend
2

Backend
Interface

Hardware
Interface

physical FPGA (Resources, PCI-Endpoint, …)

Management/
reconfiguration

static

DomUDomUDom0

Frontend
4

Frontend
5

vF
P

G
A

 0

DomU

vF
P

G
A

 0

DomU

Figure 10. Paravirtualization concept used in RC2F to provide virtual
FPGAs (vFPGAs) using partial reconfiguration. vFPGAs can be combined to

group larger regions and thereby provide more resources.

V. DEFINITIONS FOR FPGA VIRTUALIZATION IN THE
CLOUD-CONTEXT

In order to establish a common name for the following
chapters with regard to the virtualized FPGAs, the necessary
terms are defined in order to better distinguish the vFPGAs
(see Definition 1) according to their life cycle based on the
requirements analysis in this chapter to be able to. The terms
are based on those of system virtualization after [38].

Definition 1: vFPGA A virtual FPGA (vFPGA) is
located within a physical FPGA on one or more vFPGA
slots (see Definition 2). A vFPGA is perceived by the
user as a stand-alone resource with a dynamic number
of hardware resources (slices, LUTs, registers, etc.).

Definition 2: vFPGA-Slots A vFPGA is mapped to
individual physical regions with a fixed number of hard-
ware resources, and thus fixed size within the physical
FPGA, called vFPGA-Slots.

Definition 3: vFPGA-Design The vFPGA-Design is
the hardware design / the user’s hardware design, which
is placed and wired from a netlist (RTL level) within a
vFPGA with its frontend interfaces.

Definition 4: vFPGA-Instance A vFPGA-Image (see
Definition 5) within a vFPGAs that is directly associated
with a user and can contain user-specific data (context)
is called a vFPGA-Instance and can be detached from
vFPGA-Slots (see Definition 2).

Definition 5: vFPGA-Image A partial bitstream, which
forms the basis for a vFPGA-Instance, is called vFPGA-
Image, the specific vFPGA slots is assigned.

237

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In addition to the definitions just made, which relate to the
specific vFPGAs and their life cycle, furthermore, the different
hypervisors in the overall system are to be differentiated and
defined. The term hypervisor, is defined as a system for
managing and allocating guest-to-host resources, forms the
basis for the following definitions.

Definition 6: System-Hypervisor The System-
Hypervisor corresponds to the classic hypervisor
(VMM), which provides the VMs within the system
virtualization on the host system.

Definition 7: RC2F Host-Hypervisor The manage-
ment structure for the vFPGAs on their host system is
called RC2F Host-Hypervisor, or just Host-Hypervisor.

Definition 8: FPGA-Hypervisor The FPGA-
Hypervisor is the management structure on the FPGA
that monitors the accesses of the vFPGAs within the
physical FPGA.

VI. FPGA VIRTUALIZATION

As the cloud itself is based on virtualization, the integration
of FPGAs requires a profound virtualization of the reconfig-
urable devices in order to provide the vFPGAs as good as other
resources in the cloud. Furthermore, it is necessary to abstract
from the underlying physical hardware.

A. Requirements for Virtual FPGAs in a Cloud Environment
As discussed in Section II, the term virtualization is used

for a wide range of concepts. The application areas of FPGAs
in clouds require a direct use of the FPGA resources to be
efficient. Thus, an abstraction from the physical FPGA infras-
tructure is only possible in size and location. Our approach
is related to traditional system virtualization with VMs that
corresponds to a Type-1 bare-metal virtualization with use of
a hypervisor [39]. This kind of virtualization is designed for
the efficient utilization of the physical hardware with multiple
users. Therefore, it is necessary to adapt the required FPGA
resources closely to the requirements of the users’ hardware
design capsuled by vFPGAs. By this, an efficient utilization
of the physical hardware with multiple concurrent vFPGAs on
the same hardware can be achieved.

Furthermore, the vFPGA has to appear as a fully us-
able physical FPGA with separated interfaces and its own
infrastructure management like clocking and resetting. For an
efficient cloud architecture, which requires elasticity [9], it is
necessary to migrate vFPGAs with their complete context (reg-
isters and BlockRAM), which requires to enclose a complete
state management of the vFPGA as described in [6] and [1].
An extraction of internal DSP registers is not supported in
recent Xilinx FPGAs and must be considered in the design.

One of the first virtualized systems was the IBM Virtual
Machine Facility/370 (VM/370) [40] in 1960 with a first
abstraction and partitioning in host and guest. Nowadays a
common definition is that

“Virtualization provides a way of relaxing the forgoing con-
straints and increasing flexibility. When a system device (...),
is virtualized, its interface and all resources visible through
the interface are mapped onto the interface and resources of
a real system actually implementing it.” [38, p. 3]

The two classic approaches are either the use of a VMM,
a small operating system controlling the guest system’s access
to the hardware, or multiple guest systems embedded into a
standard host operating system [41]:

• Type 1: Bare metal (VMM or Hypervisor)
• Type 2: Host operating system

Another distinction can be made on the level of code
execution and driver access, where the relevant approaches are
[38]:

• Hardware virtualization (full virtualization)
• Paravirtualization
• Hardware-assisted virtualization

An interesting starting point for FPGA virtualization is
especially the VMM concept with paravirtualization in which
the interfaces to the VMs are similar to those of the underlying
hardware. The VM interfaces are modified to reduce the
time spent on performing operations, which are substantially
more difficult to run in a virtualized than in a non-virtualized
environment. This kind of paravirtualized system is introduced
in Section VII-C. The unprivileged guests (DomU) run on a
hypervisor, which forwards calls from frontend driver to the
backend driver of the management VM (Dom0).

B. FPGA Virtualization Approach

We decided to virtualize the FPGA similar to a paravirtu-
alized system VM executed by a hypervisor to provide access
to the interfaces. Figure 10 shows an FPGA virtualization
inspired by the paravirtualization introduced before. The virtu-
alization is limited to the interfaces and the designs inside the
reconfigurable regions, which constitute the actual vFPGAs
as unprivileged Domain (DomU). Each vFPGA design is
generated using the traditional design flow with predefined
regions for dynamic partial reconfiguration [14] and static
interfaces. The vFPGAs can have different sizes (Figure 10)
and operate completely independent from each other. The
infrastructure encapsulating the vFPGAs has to be located in
the static region corresponding to a privileged domain (Dom0)
or hypervisor.

The interface providing access to the vFPGAs is a so-called
frontend interface, which is connected inside the hypervisor to
the backend interface in the static FPGA region. There, all
frontends are mapped to the static PCIe-Endpoint and the on-
board memory controller inside the Dom0, which also manages
the states of the vFPGAs.

VII. FPGA PROTOTYPE RC2F

Our prototype RC2F introduced in [4] provides multiple
concurrent vFPGAs allocated by different users on a single
physical FPGA. The main part of the FPGA frame(work)
consists of a hypervisor managing configuration and user cores,
as well as monitoring of status information. The controller’s
memory space is accessible from the host through an API.
Input- and output-FIFOs are providing high throughput for
streaming applications. The vFPGAs appear to the user as
individual devices inside the System VM on the host.

238

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

JTAGFlashBBRAM

PCIe Core Dom0

 FPGA-Hypervisor

Reconfig Area: vFPGA-Slot 0 Reconfig Area: vFPGA-Slot N-1

PCI-Express Endpoint
Hypervisor
Control Unit

- HCU -

Config Space (HCS)
System Status
vFPGA-Control

Infrastructure
Management

Clocking
FPGA Monitoring

vFPGA-Design— DomU vFPGA-Design — DomU
…

||||||||||

Ethernet

 Eth Core

PCI Virtualization VLAN/IP

||||||||||

128

vControl Unit
- vCU -

Config Space (vCS)

||||||||||

||||||||||

32

host
stream

net
packet

32
32 128 32

host
stream

net
packet

3232

… …

vControl Unit
- vCU -

Config Space (vCS)

 Memory Core

Memory-Controller

Memory-Virtualization (Pagetable)

256256

256

ICAP
Config

 AES, ECC, PUF,
SHA256

Network

Host

Backend-
Interface

Frontend-
Interface

Hardware-
Interface

Channel-
Interface

Backend-
Interface

Frontend-
Interface

Hardware-
Interface

Channel-Virtualization
……

asymmetric

symmetric

Filter

RC2F SEC

Figure 11. Virtualization frame RC2F with hypervisor, I/O components and
partial reconfigurable areas housing the vFPGAs. The vFPGAs have access

to the host using PCIe (FIFO interface and config space), to the Cloud
network using Ethernet and the virtualized DDR3 memory.

A. System Architecture
The physical FPGAs are located inside a host system

and are accessible via PCIe. On both hardware components
(host and FPGA), there are hypervisors managing access,
assignment and configuration of the (v)FPGAs. Based on
our concept, we transform the FPGAs into vFPGAs with an
additional state management and a static frontend interface
as shown in Figure 10. Our architecture, designed to provide
the vFPGAs, is shown in Figure 11. The hypervisors manage
the on-chip communication between backend and frontend
interfaces for PCIe (Our prototype uses a PCIe-Core from
Xillybus for DMA access [42]), Ethernet and a DDR3 RAM.
The RAM is virtualized using page tables, managed by the
host hypervisor, which also manages the vFPGA states we
introduced in [6]. The number of frontends and their locations
are defined by the physical FPGA architecture as shown in
Figure 16. The Hypervisor Control Unit manages the ICAP
controller and the vControl units, which maintain and monitor
the vFPGAs.

1) vFPGAs: To exchange large amounts of data between
the host (VM) and the vFPGAs a FIFO interface is used. To
exchange state and control information the vFPGAs can be
controlled by the user via a memory interface as shown in
Figure 13. The memory is mainly intended for simple transfers
and configuration tasks like resets, state management (pause,
run, readback, migrate) and the selection of a vFPGA system
clock. In addition to these static fields, there is also a user-
describable memory region, which can be used as virtual I/O.
The communication using Ethernet is also provided but out of
the scope of this paper.

2) Components of the RC2F infrastructure: The RC2F
infrastructure is exemplarily implemented within the static
area with the components as shown in Figure 11. For the

128 32 32

Channel-Virtualization

Memory-Virtualization

Frontend-
Interface

Reconfig Area: vFPGA-Slot

vFPGA-Design — DomU
||||||||||

||||||||||

vControl Unit
- vCU -

Config Space (vCS)
host
stream

net
packet

256

A B C

D

Figure 12. Architecture of a RC2F-vFPGA with (C) the local vFPGA
Control Unit (vCU) containing the Virtual Control Space (vCS). The data

lines for the memory interface (D) and the two FIFOs are each available for
input (A) and output (B) streams.

4 Virtualisierung der FPGAs für den Einsatz in einer dynamischen Cloud-Architektur

0781516232431

vFPGA Design Name
(ASCII)

00h

01h

User Resets Clock Select Design Status 02h

vFPGA State
(current and upcoming)

Test Loopbacks Reserved

Static

������������������������� 03h

User Describable 04h
hhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhh

Reconfigurable

��������������������������������� 1Fh

Abbildung 4.8: Konfigurationsspeicher für die vFPGAs mit festen und vom Nutzer definierbaren Bereich.

Reconfig Area 1: vFPGA v0

Accelerator Design — DomU

||||||||||

||||||||||

128

vControl
User Config
Virtual Statehost

stream

net
packet

32 32

256

Channel Virtualization

Memory Virtualization

Frontend

Interface

Abbildung 4.9: Architektur eines vFPGAs des RC2F mit Konfigurationsspecher (vControl) und Kommunikationskanä-
len. Die Datenleitungen für den Speicher und die beiden FIFOs sind je doppelt als Ein- und Ausgabe
vorhanden.

Kennung zu ermöglichen. Der Nutzer kann den Zustand seines vFPGAs einsehen und ändern, wobei der
Hypervisor eine höhere Priorität hat. Der Nutzer kann ebenfalls auf Basis des Systemtaktes eine eige-
nen Takt für seinen vFPGA auswählen und diesen auch zurücksetzten. Die Möglichkeiten entsprechen
im Wesentlichen denen eines einfachen vollwertigen physischen FPGAs. Der hintere Teil des Konfigura-
tionsspeicher liegt in der rekonfigurierbaren Region und kann völlig frei vom Nutzer beschrieben werden.
Der Beriech kann als einfache I/O-Ports des vFPGAs angesehen werden, wodurch der Nutzer in seinen
Gestaltungsmöglichkeiten Freiheiten wie auf einem physischen FPGA hat.

4.4.2 Zustände der vFPGAs und deren Verwaltung

Um die vFPGAs wie Virtuelle Maschinen nutzen zu können sind entsprechende Zustandsübergänge und
deren Verwaltung erforderlich. Die Steuerung erfolgt dabei vom Host-Hypervisor aus über den zuvor er-
läuterten Konfigurationsspeicher des FPGA-Hypervisors. Ein direkter Zugriff der Nutzer selbst auf die
Zustände ist ebenso auch vom Konfigurationsspeicher der vFPGAs möglich. Abbildung 4.10 gibt einen
Überblick über die möglichen Zustände und deren Übergänge. Um den kompletten Lebenszyklus abzu-
decken ist dabei neben den Zuständen auf dem FPGA noch weitere Zustände auf dem Host-Systems
innerhalb des Hypervisors erforderlich um analog zu Betriebssystemen die vFPGA-Designs als Instan-
zen anzusehen, welche direkt Nutzern zugeordnet sind und auch Nutzerspezifische Daten enthalten

104

Figure 13. Register and memory interface for the management of vFPGAs
accessible by the user VM (rc2f_cs).

infrastructure, as shown in Figure 16, both the right side of
the physical FPGA and the lower clock region are provided.
The constant components of the static infrastructure within the
RC2F infrastructure are:

FPGA-Hypervisor: At the heart of the implementation is the
FPGA hypervisor, which provides the frontends to the
vFPGAs as shown in Figure 11. Essential components
are the configuration memory of the FPGA hypervisor
explained in Figure 14, which transmits all control com-
mands and signals to the FPGA, and the ICAP controller
for reconfiguring the vFPGA slots and to read out a
partially reconfigurable vFPGA instance for migration.
The memories are built from components of the Pile of
Cores (PoC) library [43] and constructed as shown in
Figure 14. The internal clock rate (system clock) of the
FPGA hypervisor and device virtualization is 250 MHz.
To decouple the FPGA hypervisor from the internal logic
of the vFPGAs as well as the I/O components, there are
cross-clocking FIFOs at the interfaces between the clock
domains.

PCIe-Controller: The PCIe controller is Xilinx’s provided
Intellectual Property Core (IP-Core) 7 Series FPGAs In-
tegrated Block for PCI Express v3.3 [44] with a Xillybus
controller [42], which provides both FIFO and memory
interfaces on the FPGA, as well as a driver within the
host hypervisor.

239

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DDR3-Controller and Memory-Virtualization: The used
DDR3 controller is the IP Core Xilinx MIG V1.4 [45],
which is the hardware endpoint to the backend interface
as introduced in Section VI-B and illustrated in Figure 11.
The resulting storage virtualization managed by the host
hypervisor organizes the specific translation from the
virtual to the physical addresses, thus, separating the
user areas in the memory from each other.

Ethernet-Controller: The Ethernet controller used is based
on the IP Core LogiCORE IP Tri-Mode Ethernet MAC
v5.2 [46], which is an interface on the Media-Access-
Control (MAC) layer of Open Systems Interconnection
(OSI) Reference Model [47] offers. Based on this, parts of
the PoC library [43] are used to implement the interfaces
to the vFPGAs.

In addition to the previously discussed components of
the RC2F infrastructure, additional components are required
whose hardware resources depend on the number of physical
vFPGA-Slots. These components are also in the static region:

Device-Virtualization: Device-Virtualization provides the
concurrent communication channels for the vFPGAs. The
realization of the PCIe-Virtualization is done by means
of the Xillybus-Controller [42] provided components.
The provided FIFOs are passed on to the vFPGAs
and decoupled (cross-clocking) to allow different clock
domains for the FPGA hypervisor and the vFPGA
design. Memory virtualization requires one page table
per user. The prototypical implementation uses page
sizes of 8 MByte.

vFPGA-Frontends: The frontends are implemented as out-
lined in Figure 12 and Figure 15. The configuration
memories are constructed according to Figure 13 and
consist on the one hand of a part located in the static area
of the FPGA and on the other hand of a user area, which
can be used freely. In addition to the stores, the states of
each vFPGAs are managed as outlined in Section VII-E.

B. Configuration of the FPGA Hypervisor
The tasks of the FPGA hypervisor are the management

of its local vFPGAs and their encapsulation, the state man-
agement, as well as the reconfiguration using the ICAP. The
interaction between host and FPGA hypervisor is based on
the configuration memory shown in Figure 14, which includes
configuration of the FPGA hypervisor (system status, reconfig-
uration data and status) and the administration of the vFPGAs.
Other important vFPGA-related entries are an AES-key for
encryption of the vFPGA-bitsteam and the allocated vFPGA
region(s) for additional validation during reconfiguration.

C. The Role of the Host-Hypervisor
Our virtualization concept on the host-system includes

passing through the vFPGAs’ FIFO channels and the config-
uration memories from the host-hypervisor to the user VMs
(DomU) and the FPGA hypervisor memory to the management
VM (Dom0). The overall system architecture is shown in
Figure 15. The frontend FIFOs and the FPGA memories are
mapped to device files inside the host hypervisor. There, the
system forwards the user devices to the assigned VM using
inter-domain communication based on vChan from Zhang et al.
[48] in our Xen virtualized environment, similar to the FPGA
device virtualization pvFPGA [25].

4.4 Virtualisierung von FPGAs im Cloud-Einsatz – RC2F

0781516232431

Design Name
(ASCII)

00h

01h

Version
(ASCII)

02h

System Status Resets vFPGAs
(Number)

Reconfig Status 03h

Reserved 04h

IPv4-Address (Hypervisor) 05h

Channel Configuration 06h

Encryption Configuration

Hypervisor

��� 07h

ID Reserved vFPGA State
(current and upcoming) Channel Parameter Memory Parameter 08h

IPv4-Address 09h

AES-Key
(128-Bit)

0Ah

0Bh

0Ch

0Dh

vFPGA Location
(range)

0Eh

vFPGA 0

��� 0Fh

0Ch
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

vFPGA N-1

��������������������������������������� FFh

Abbildung 4.7: Prototypischer Aufbau des Hypervisor Configuration Space (HCS), innerhalb der Hypervisor Control
Unit (HCU) des FPGA-Hypervisors zur Administration des physischen FPGAs einschließlich der Be-
reiche für die Verwaltung von bis zu 30 vFPGAs.

über den HCS die Kommunikationskanäle global konfiguriert und entsprechend vom FPGA-Hypervisor
zusammen mit der Einheit zur Speicher-Virtualisierung (nachfolgend in Abschnitt 4.4.7 erläutert) gesteu-
ert.

Ein partieller Bitstream kann auf dem FPGA direkt ver- und entschlüsselt sowie verifiziert werden (siehe
Abschnitt 2.1.4.3). Dafür wird für jeden vFPGA entsprechend der private AES-Schlüssel des jeweiligen
Nutzers hinterlegt (siehe Abschnitt 4.4.8). Die vollständige Überprüfung des Inhalts des Bitstreams er-
folgt vor dessen Signatur durch den Anbieter der Cloud. Lediglich die Validierung der Bereiche innerhalb
der vFPGA-Images wird vom FPGA-Hypervisor mit den zuvor vom Host-Hypervisor an den HCS über-
mittelten Daten abgeglichen, um Schäden an vFPGAs anderer Nutzer zu vermeiden.

Neben den Aufgaben der Konfiguration übernimmt der FPGA-Hypervisor ebenfalls die Verwaltung der
Zustände der einzelnen vFPGAs (siehe nachfolgend Abschnitt 4.4.2) sowie die Validierung der vom Host-
Hypervisor übermittelten Daten zu Regionen und den Datenraten der Nutzerkanäle. Um dies zu errei-
chen, ist im HCS in Abbildung 4.7 für jeden vFPGA ein separater Bereich reserviert. Eine Zuordnung der
vFPGAs zu den realen Nutzern erfolgt dabei lediglich innerhalb des Host-Hypervisors.

101

Figure 14. Register and memory interface for the management of the FPGA
hypervisor accessible by the host hypervisor (rc2f_gcs).

The management VM thereby accesses the FPGA hypervi-
sor’s configuration memory and the ICAP on the FPGA via a
dedicated FIFO interface for the configuration stream (read and
write). Thus, only the hypervisors can configure the vFPGA
regions on the physical FPGA whereby a sufficient level of
security can be guaranteed.

D. Mapping vFPGAs onto physical FPGAs

In our example we use six frontends on a Xilinx Virtex-7.
Depending on the resources required, the utilization of up to
six different-sized vFPGAs is possible with the same static
without reprogramming. If one of the vFPGAs covers more
than one region, only one frontend connection is used as
shown in Figure 10. Among the vFPGAs, the partition pins
(PP) between the static and the reconfigurable regions are
placed with identical column offset as shown in Figure 16. The
regions forming the vFPGAs are not free from static routes as
for example the region vFPGA 5 shows.

To reduce migration times, all components, which hold
the context of the current vFPGA design as registers, FIFOs
or BlockRAM, are placed at the same positions inside each
vFPGA. Therefore, it is necessary that all of these positions
exist in each region. Hardmacros like PCIe-Endpoints or
parts of the FPGA infrastructure interrupt the homogeneous
structures. Thus, we establish homogeneous vFPGAs, which
are identical among each other by excluding these areas in
all vFPGAs as shown in Figure 16. The advantage of this
approach is that only one mask file is necessary to extract
the content of the different vFPGAs. Furthermore, it allows
the provision of almost identical vFPGAs. Figure 17 shows
the breakdown of the FPGA resources to the three different
areas: static infrastructure, partial reconfigurable vFPGAs and
unusable due to the homogeneity.

240

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

||||||||

Mem

|||||||| DomU — vFPGA 0

||||||||

Mem

||||||||

||||||||
||||||||

rc2f_vcs

rc2f_read
rc2f_write

rc2f_hcs

rc2f_system_read
rc2f_system_write

rc2f_config_read
rc2f_config_write

FPGAHost

H
os

t
H

yp
er

vi
so

r

FP
G

A
 H

yp
er

vi
so

r
H

ar
dw

ar
e

In
te

rf
ac

e

B
ac

ke
nd

In
te

rf
ac

e
Fr

on
te

nd

In
te

rf
ac

e

||||||||

H
ar

dw
ar

e
D

riv
erDom0 — Management |||||||| Dom0 — Management

FPGA configuration,
user assignment and

access control

…

Fr
on

te
nd

In

te
rf

ac
e

D
ev

ic
e

Fi
le

s

DomU — VM 0

Inter-
Domain

Channel

D
ev

ic
e

Fi
le

s

D
ev

ic
e

 A
ss

ig
nm

en
t

B
ac

ke
nd

In

te
rf

ac
e

… …

physical connection virtual connection |||||||| FIFO-Memory

rc2f_system_read
rc2f_system_write
rc2f_config_read
rc2f_config_write

/dev

rc2f_read
rc2f_write
rc2f_vcs

/dev

Figure 15. System architecture on the hypervisor level of the host system. FIFOs (rc2f_write, rc2f_read) and configuration memories (rc2f_cs) are displayed in
the different host memories.

inhomogeneous
columns

inhomogeneous
columns

FP
G

A
-In

fr
as

tr
uc

tu
re

P
C

Ie
P

C
Ie

 Partition Pin
Regions (PPR)

R
C

2F
-In

fr
as

tr
uc

tu
re

(F
P

G
A
-H

yp
er

vi
so

r,
P

C
Ie

, D
D

R
)

RC2F-Infrastructure
 (Ethernet + ICAP)

Fr
on

te
nd

 0
Fr

on
te

nd
 1

Fr
on

te
nd

 2
Fr

on
te

nd
 3

Fr
on

te
nd

 4
Fr

on
te

nd
 5

vFPGA-Slot 0 vFPGA-Slot 0

vFPGA-Slot 1 vFPGA-Slot 1

vFPGA-Slot 2 vFPGA-Slot 2

vFPGA-Slot 3 vFPGA-Slot 3

vFPGA-Slot 4 vFPGA-Slot 4

vFPGA-Slot 5 vFPGA-Slot 5

Figure 16. Layout of a Xilinx Virtex-7 XC7VX485T with six vFPGA
regions configurable using dynamic partial reconfiguration. The regions and

their number are determined by the height of the configuration frames,
which consist of one complete column inside a clock region. Regions are

homogeneous to allow migration of vFPGAs.

E. vFPGA States
Our FPGA virtualization includes states and transitions

similar to traditional VMs. The virtualization of an FPGA
requires off-chip monitoring and administration of the vFPGA
bitstream database, connected to our cloud management system
[3] as well as additional on-chip state transitions. Figure 18
gives an overview of these two parts in our FPGA virtualiza-
tion. A state with a control flow transition between host and
FPGA is called transition state.

The global design database and the scheduling of the
acceleration tasks (vFPGAs), the allocation to a node and a free
region are performed by the cloud system, which also sends
commands triggering state transitions on hosts and FPGA
devices. In the following, the most important states on host
and FPGA – as introduced in Figure 18 – are in detail:

Ready/Shelved: The vFPGA design is located in the global
database on a management node.

Booting: First, the node containing the selected vFPGA has
to verify if the actual vFPGAs is marked free. In a second
step the boot process starts, where the partial bitstream is
loaded from the database and written into the respective
vFPGA location using PCIe and ICAP.

Active: After initialization the vFPGA accelerator is Active
and the corresponding host application can send/receive
application data until a state transition occurs. In case
of a reboot or stop command, the design is halted and
reconfigured using the initial or an empty vFPGA design.

Wait for Idle: When a migration or pause command is re-
ceived during the active state by the host, it forwards the
command to the FPGA and both stop the computation
and the transmission of further data. Host and vFPGA
both wait a limited duration (timeout) until the last data
packages are received and stored in the vFPGA’s input
FIFO and the application’s memory.

Snapshot: After the timeout the context of the vFPGA is
stable and the actual readback of the vFPGA design is
performed by the host using the ICAP. Moreover, the
context extraction is performed (see Figure 19) and it is
stored in the virtual register content file (.vrc). At the
same time the context of the host application is stored on
disk.

Paused: In case of a pause command the software and
hardware context are stored on disk. If an abort com-
mand follows, the vFPGA’s context in the .vrc file
becomes invalid (also the host application’s context) and
the vFPGA gets into the initial Ready state. In case of a
resume command, the initial vFPGA’s context is restored
by modifying the bitstream using the .vrc file as shown
in Section VII-F2.

Context Relocation: If the state transition is triggered by a
migration command, the next vFPGA region is known
and the context relocation (bitstream modification) can
be performed immediately with the bit positions provided
by the .vrc file. The modified bitstream and the host
application are transferred to the new vFPGA/Node.

Resuming: The modified bitstream with the context from the
previous run is used to boot or restore the old context on
a different vFPGA.

241

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table 1

---inhomogen--- homogen leer 15 x vFPGA infra komplett

CLB LUTs 68.160 63.360 4.800 950.400 188.640 1.182.240

LUT as Logic 68.160 63.360 4.800 950.400 188.640 1.182.240

LUT as Memory 35.040 30.240 4.800 453.600 95.040 591.840

CLB Registers 136.320 126.720 9.600 1.900.800 377.280 2.364.480

Register as Flip Flop 136.320 126.720 9.600 1.900.800 377.280 2.364.480

Register as Latch 136.320 126.720 9.600 1.900.800 377.280 2.364.480

CARRY8 8.520 7.920 600 118.800 23.580 147.780

F7 Muxes 34.080 31.680 2.400 475.200 94.320 591.120

F8 Muxes 17.040 15.840 1.200 237.600 47.160 295.560

F9 Muxes 8.520 7.920 600 118.800 23.580 147.780

CLB 8.520 7.920 600 118.800 23.580 147.780

CLBL 4.140 4.140 0 62.100 11.700 73.800

CLBM 4.380 3.780 600 56.700 11.880 73.980

LUT Flip Flop Pairs 68.160 63.360 4.800 950.400 188.640 1.182.240

Block RAM Tile 120 120 0 1.800 360 2.160

RAMB36/FIFO 120 120 0 1.800 360 2.160

RAMB18 240 240 0 3.600 720 4.320

URAM 64 64 0 960 720 960

DSPs 408 408 0 6.120 360 6.840

Bonded IOB 52 52 0 780 360 832

HPIOB_M 24 24 0 360 28 384

HPIOB_S 24 24 0 360 7 384

HPIOB_SNGL 4 4 0 60 6 64

HPIOBDIFFINBUF 48 48 0 720 14 720

HPIOBDIFFOUTBUF 48 48 0 720 14 720

BITSLICE_CONTROL 16 16 0 240 3 240

BITSLICE_RX_TX 104 104 0 1.560 3 1.560

BITSLICE_TX 16 16 0 240 11.520 240

RIU_OR 8 8 0 120 12 120

GLOBAL CLOCK
BUFFERs

80 80 0 1.200 3 1.560

BUFGCE 48 48 0 720 3 720

BUFGCE_DIV 8 8 0 120 6 120

BUFG_GT 24 24 0 360 3 720

0

Summe 735.136 680.632 54.000 10.209.480 2.031.120 12.726.240

0,004243201448346090,802238524497416 0,159600950477124

V7-485 2.794.220

Diff 4,55448747772187

16,52 %

83,04 %

0,44 %

62,34 %
6,59 %

31,07 %

Statischer Bereich der RC2F-Infrastruktur und Frontends
Aufgrund der Inhomogenität nicht nutzbare Bereiche
Rekonfigurierbarer Bereiche für homogene vFPGAs

30.191 6.709
92.424

RC2F-Prototyp
Virtex-7 XC7VX485T

Prognostische Abschätzung für die Cloud
Virtex-7 UltraScale+ XCVU9P

x 4,55

Table 2

infra inhomogen homogen

Slice LUTs 90560 32600 28400

LUT as Logic 90560 32600 28400

LUT as Memory 36744 14400 13200

Slice Registers 181120 65200 56800

Register as Flip
Flop

181120 65200 56800

Register as Latch 181120 65200 56800

F7 Muxes 45280 16300 14200

F8 Muxes 22640 8150 7100

Slice 22640 8150 7100

SLICEL 13454 4550 3800

SLICEM 9186 3600 3300

LUT Flip Flop Pairs 90560 32600 28400

Block RAM Tile 358 100 100

RAMB36/FIFO 358 100 100

RAMB18 716 210 200

DSPs 692 340 340

GTXE2_COMMON
2

GTXE2_CHANNEL
8

IBUFDS_GTE2 1

BUFGCTRL 7

MMCME2_ADV 2

ICAPE2 1

PCIE_2_1 1

ut
ili

za
tio

n
of

 t
he

 F
P

G
A

 r
es

ou
rc

es

0 %

20 %

40 %

60 %

80 %

partial reconfigurable areas  
containing the vFPGA-Slots

static area containing the RC2F- 
infrastructure and 6 vFPGA-Frontends

areas not useable due to
inhomogeneity

slice registers Block-RAM tiles slice LUTs DSPs

2,43 %

24,71 %

72,86 %

11,09 %

32,78 %

58,50 %

4,08 %

34,76 %

61,17 %

8,92 %

32,78 %

58,30 %

62,34 %
6,59 %

31,07 %

static area containing the RC2F-infrastructure and frontends
areas not useable due to inhomogeneity
partial reconfigurable areas containing the vFPGA-Slots

16,52 %

83,04 %

0,44 %

62,34 %
6,59 %

31,07 %

static area containing the RC2F-infrastructure and frontends
areas not useable due to inhomogeneity
partial reconfigurable areas containing the vFPGA-Slots

RC2F-Prototype
Virtex-7 XC7VX485T

estimation for a productive cloud
Virtex-7 UltraScale+ XCVU9P

x 4,55

Pr
oz

en
tu

al
er

 A
nt

ei
l d

er
 H

ar
dw

ar
e-

R
es

so
ur

ce
n

an
 d

en
 R

es
so

ur
ce

n
de

s
 g

es
am

te
n

FP
G

A
s

0 %

20 %

40 %

60 %

80 %

Dynamisch rekonfigurierbare  
Bereiche für vFPGA-Slots

Statischer Bereich für RC2F- 
Infrastruktur und 6 vFPGA-Frontends

Aufgrund der Inhomogenität  
nicht nutzbare Bereiche

Slice Registers Block-RAM Tiles Slice LUTs DSPs

2,43 %

24,71 %

72,86 %

11,09 %

32,78 %

58,50 %

4,08 %

34,76 %

61,17 %

8,92 %

32,78 %

58,30 %

62,34 %
6,59 %

31,07 %

Statischer Bereich der RC2F-Infrastruktur und Frontends
Aufgrund der Inhomogenität nicht nutzbare Bereiche
Rekonfigurierbarer Bereiche für homogene vFPGAs

�1

Figure 17. FPGA resources of the three different regions of a Xilinx Virtex-7 XC7VX485T with six vFPGA-Slots, the static region with the FPGA hypervisor
and the unusable regions due to homogenization.

Active
Design Running

Snapshot
Readback

Booting
Initialization

Booting
Configuration

Stable
State

Host FPGA

Creating
Synthesis + P&R

Ready/Shelved
Design in DB

Discovering
Design Import

Active
SW App Running

Monitoring

Resuming
Configuration

Snapshot
Context

Extraction

Resuming
Initialization

Transition
State

Context

Relocation
Paused

Design Inactive

Deleting
Design from DB

Cloning
Design from DB

Wait for

Idle

Reboot

Stop or

Shutdown

Migrate

or Pause

MigratePause

Abort

Resume

Free

Boot

Resume

Stop or

Shutdown

Ready or

Error

Error

Wait for

Idle

Monitoring
State

Figure 18. State transitions of a vFPGA (on the host and FPGA).

The context of the vFPGA’s DDR3 memory also needs to
be saved and restored in the snapshot or resuming stage using
the PCIe connection.

F. Virtualization and Migration Process
Our extended design flow, which generates partial bit-

streams and supports vFPGA snapshots as well as the context

resumption, is shown in Figure 19. In the following, the
components, all additional design flow steps and the generated
metadata are described in detail.

For our virtualization we extend the Xilinx Vivado design
flow to generate vFPGA bitstreams from user-netlists for
every possible vFPGA position. First, directly after synthesis
the required region size (single, double, etc.) is chosen (see
Table III for appropriate vFPGAs). Afterwards, the design is
placed at a first vFPGA region. Before the routing step, the
vFPGA region is expanded over the full width of the vFPGA
for unlimited routing of the design inside the uninterrupted
region. The placements of the same design for all the other
vFPGA positions are created by setting the LOC (Location)
and BEL (Basic Element Location) information accordingly
to the initial placed design. Only the routing is carried out for
the additional vFPGA designs to allow static routes inside the
different vFPGAs, resulting in designs with identical register
and BlockRAM positions for each vFPGA locations on the
physical FPGA. After generation of the first bitstream, a
mask for extracting the context bits is generated to allow an
efficient migration in significantly less time compared to our
first approach in [6]. This allows flexible placement of the
vFPGA designs at various positions in a cloud system, as
well as the migration between vFPGAs on the same or to
other physical FPGAs. The bitstreams required for all possible
vFPGA positions belonging to a single user design are stored
as vRAI as shown in Figure 19.

1) vFPGAs Bitstream Generation and Boot: In the initial
step, the full bitstream containing the static design is generated
with the traditional Xilinx flow as shown in Figure 19. The bit-
stream produced contains the basic components, such as PCIe
endpoint, memory controller, virtualization layer including the
ICAP controller and the static frontend interfaces as well as the
local state management for the vFPGAs. The vFPGAs regions
themselves are completely empty. The corresponding netlist
(.ngc) of the static part and all bit positions are stored in the
global database and are accessible for the production of partial
bitstreams.

242

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

.vcc

.ll

Production of a
vRAI containing

migrateable
vFPGA-Images

.rdbk
Context

Relocation

Context
Bitmask

.pbit
warm migration

vRAI

ICAP

ICAP

vFPGA-Image
(.pbit)

Bitgen

RC3E Management/
Hypervisor

 Post Route

vFPGA
1D-Relocation

vFPGA Placement for
homogeneous vFPGA-Slots

vFPGA-Slots
(.xdc)

 Post Place

 Post Route

vFPGA routing
inside a vFPGA-Slot

Nx

Readback (homogeneous Region)

Full
Configuration

Partial Reconfiguration
(homogeneous Region)

1x

1x
 Post Place

Context
Locations

(.vcl)

 Post Place

Selection of a vFPGA (Single, Double, …)

 0

1

2
3

RCFG

.vcbm

.vcl

.vcc

Virtual Context Bit Mask
Virtual Context Locations
Virtual Context Content

.bit

.pbit

.rdbk

.ll

Bitstream
Partial Bitstream
Readback Bitstream
Logic Location File

Bitmask
(.vcbm)

Generation of
homogeneous
vFPGA-Images 4

5

6

vFPGA-ImagesN

Netlist

Partial
vFPGA-Design

Placement

Routing

Bitgen

Netlist

Static
RC2F-Infrastructure

RC2F-Infrastructure
(.bit)

JTAG

RC2F-
Hypervisor

vFPGA-Slots

Figure 19. Extended design flow generating partial vFPGA bitstreams and
the additional metadata (Beginning with the vFPGA Placement À).

The following step includes the generation of a partial
bitstream based on the static design and a netlist containing
the vFPGA design. To achieve an efficient load-balancing
and placement on the vFPGA, all possible bitstreams are
produced in a single design flow run. For designs which require
more than one vFPGA slots, additional partial bitstreams are
generated in separate runs. The overall runtime will be reduced
in the future by using relocation of placed vFPGAs using
homogeneous regions [49]. For the context resumption it is
essential to set the option RESET_AFTER_RECONFIG for
each vFPGA region.

A significant step is the generation of metadata out of
these files, which is required to find the register and memory
locations in all vFPGA bitstreams. We store the metadata in
our virtual context content file (.vcc) as shown in Figure 19.
The information required is extracted from the additional Logic
Location files (.ll) and the Xilinx Design Language files
(.xdl), which are generated during the design flow. The
result of this step are partial bitstreams and the corresponding
metadata for every possible region. Everything together is
stored in the global vFPGA database.

In case of a pause or migration command, the FPGA is
stopped as explained in Section VII-E. After the state became
stable, the clock of the corresponding vFPGA is deactivated
and the whole context (flip-flops and block RAMs) is frozen.
At this point a readback for the CLB/IO/CLK and the BRAM
block is performed and the context is extracted from the
bitstream using the .vcc file. By the use of the location
metadata we only save the registers and the memory used in
the design. The readback itself is performed on configuration
frame level. In case of a migration the location of the new

vFPGA is known and the context is written directly into a new
bitstream. In case of pause, the extracted content is stored in
the database as a copy of the .vrc file.

2) vFPGA Migration and Context Resumption: In this final
step, the relocation and the context resumption are performed.
The initial vFPGA bitstream and the corresponding .vrc file
are used to generate a new bitstream by modifying certain
configuration bits. The old flip-flop values are written into the
positions of the register initialization bits using the information
in the .vrc file. To load the values into the flip-flops, the
global set/reset (GSR) is triggered for the single vFPGA (not
global). The Cyclic Redundancy Check (CRC) at the end of the
readback bitstream is replaced by a nop command to ignore
the old CRC.

VIII. RC2FSEC EXTENSION

Security is now more important than ever. Therefore our
RC2FSEC extension provides a high level of security for
client’s data and algorithms. To achieve this, we propose
a novel combination of existing security features, a subset
of the Transport Layer Security (TLS) protocol and a filter
for the partial bitstreams. However, due to various degrees
of flexibility show in Figure 1, the extension is only fully
available to the production-ready service model RAaaS. But
with changes to current FPGA architectures, which will be
described later, it would also be available in the BAaaS service
model.

A. Security Model
Various adversaries challenge the system’s security through

multiple vectors. But before these challenges are formalized
as requirements for the design, a few assumptions have to be
made.

Assumption §A1: The selected cryptographic algo-
rithms cannot be computationally broken by state-of-
the-art attackers. Encrypted data cannot be decrypted
or messages signed without access to the keys.

Assumption §A2: Naive implementations of crypto-
graphic algorithms are susceptible to side channel at-
tacks, but hardened implementations can withstand bet-
ter and protect the keys, both shown in [50]. Providing
such implementations is not within the scope of this
paper. Hence, it is assumed that any cryptographic keys
and sensitive intermediate values are secure inside the
chip.

Assumption §A3: The client’s workplace can be trusted
and is inaccessible to an attacker.

Assumption §A4: The FPGA vendor can be trusted and
tries to detect backdoors introduced by manufacturers,
tools suppliers or IP vendors, e.g., through analyzing
the hardware to find unwanted modifications as shown
in [51, 52]. This is the same level of trust the client has
to have into hardware in general: CPUs, hard drives
and other components might be modified as well.

Assumption §A5: Denial of service attacks, interrup-
tions or even physical destruction are secondary and
more a concern of the providers, because quality-of-
service is an important business factor. The security of
data and algorithms has the highest priority.

243

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

client
FPGA n with

RC2FSEC in node X
vFPGA m in

FPGA n

vFPGA request
client random (CR) & key share (CKS)

reset requested vFPGA m

generate ECDHE-keys: SPK, SKS
sym = PRNG(CR, ECDH(CKS, SPK), SR)

session random (SR) & SKS
|certificate & |“verify”hash|DPRK & “final” hash|sym

sym = PRNG(CR, ECDH(SKS, CPK), SR)
verify certificate
verify hash

|client’s “final” hash & bitstream|sym decrypt, verify and program bitstream

Figure 20. The TLS protocol was adapted to enable the secure and authentic transfers of vFPGA bitstreams. The configuration is protected by symmetric
encryption with the key “sym”, which is created during the TLS handshake.

Based on theses assumptions, the requirements for the system’s
design can be defined.

Requirement §R1: A dedicated third party or trusted
authority offering special services only for this system
should be avoided.

Requirement §R2: A client must be able to establish
an authenticated and secured connection from a trusted
workplace to the system.

Requirement §R3: The FPGA cannot rely on soft-
ware running on the host machine. The untrusted IaaS
provider has direct access and can manipulate anything
but the chip.

Requirement §R4: The allocation of a vFPGA by an
attacker should not interfere with a legitimate client. A
strict separation of clients’ data is mandatory and the
reconfigurable partitions have to be isolated to prevent
any interference.

B. Design
The RC2FSEC extension has to provide two fundamental

capabilities:

• Authentication: The FPGA can prove its genuineness to
a client.

• Confidentiality: Tamper-proof and secure data transfer.

Microsemi FPGAs already offer similar features, but they
do not allow partial reconfiguration preventing virtualization
and thus, an efficient cloud deployment. Furthermore, their
reputation got a big hit when a backdoor was discovered, which
reveals sensitive private keys [51]. The impact of this backdoor
could have been minimized, if a more sophisticated protocol
offering perfect forward secrecy would have been used. Thus,
the RC2FSEC extension implements the well established and
thoroughly researched TLS protocol for bitstream and data
transfers.

Hence, an embedded TLS processor is required, which
is implemented as part of the RC2FSEC extension shown in
Figure 11. It does not feature all possible algorithms due
to resource constraints, only efficient primitives in terms of
performance per logic gate were selected. The initial key
exchange follows the Diffie-Hellman algorithm using ellip-
tic curves (ECDH). An advantage over RSA is the cheap

generation of new key pairs, making perfect forward secrecy
available. Thus, every connection is encrypted with a unique
key, compromising one does not affect other connections
to the same FPGA. The device’s permanent private key is
only used to authenticate it through the elliptic curve digital
signature algorithm (ECDSA). It reuses the elliptic curve
primitives, saving a significant number of resources. Resources
can also be saved by combining encryption with authentication.
AES128-GCM is an authenticated encryption scheme with
high performance hardware implementation, which are also
available for CPUs. Finally, SHA256 computes hashes during
the handshake.

C. Transfer Protocol
Figure 20 shows the handshake procedure. The client

initiated it with a vFPGA request, a key share (CKS) and some
random data (CR). The unencrypted request can be used by
the cloud provider for billing and scheduling. If the request
is unjustly blocked by a cloud provider or evicts another
legitimate client, only their quality of service suffers, but not
the security of clients’ data. Through a complete reset of the
vFPGA previous configurations are no longer accessible, and
even if data remains in buffers or external memory it is still
encrypted.

After the vFPGA reset, a TRNG, which is part of the
RC2FSEC extension, generates the session random (SR) and
an ephemeral session private key (SPK). With the SPK the
public session key share (SKS) is calculated. This new key pair
is used to complete the ECDHE key exchange. The resulting
shared secret is along with the CR and SR feed into a well
defined PRNG. Its output is used to derive various symmetric
keys and nonces ("sym"), which are right away utilized to
encrypt the FPGA’s certificate. Additionally, a hash over the
transaction so far is calculated, signed through ECDSA with
the device’s private key, encrypted and then appended to the
certificate. Finally, a second hash over the whole handshake
including the CR, CKS, SR, SKS, the encrypted certificate and
first hash is calculated, then encrypted and the package is send
to the client. Upon receiving it, the unencrypted SR and SKS
are used in the same way to derive the symmetric keys and
nonces ("sym") through ECDHE and the PRNG. With them,
the rest can be decrypted, the certificate and public key verified
and the hashes checked. At last, the client also calculates a hash
over the whole transaction, now including the second hash, and

244

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prepends it to the bitstream. Together they are encrypted with
"sym" and transferred to the FPGA. There, after the hash was
compared to a locally computed one, the vFPGA bitstream is
programmed and the partition ready for use.

If any errors occur or the client uses standardized but not
implemented functionalities, the handshake aborts, resets and
returns the system into a safe state in which it accepts new
connections.

D. Configuration Filter
The configuration filter protects the RC2F as well as other

clients’ vFPGAs from unwanted modifications, thus, satisfying
§R 4. This is possible due to the frame based structure of
a bitstream, which is a sequence of commands and data.
After a synchronization pattern and some set up, the actual
configuration is represented by a repeating series of addresses
and data. On a Xilinx 7 Series FPGA each frame consists
of 101words and a full bitstream of a XC7VX485T contains
50 176 frames [53]. A vFPGA is smaller and constraint to a
specific area on the chip, which is described by a certain set
of frames. The addresses of those frames are extracted during
the design phase and do not change later on. They determine
the allowed area a client’s bitstream can influence.

The configuration filter, shown in Figure 21, acts as a
proxy and is located before the ICAP. It receives the decrypted
bitstream, scans for interrupting commands like global reset
or shut down and blocks them. Its analyzer also detects the
command to set the frame address. The address is passed to a
set of six detectors, one for each vFPGA slot.

Each checker uses a set of predefined ranges, in Figure 21
five ranges are illustrated, to determine if the current address
is within the enabled area. Their results are masked by the slot
signal so that the check is only valid for the newly allocated
vFPGA. If there is a match, i.e., the address is within the
allowed ranges of the current slot, the configuration is passed
on to the ICAP. Otherwise, this part of the bitstream is replaced
with no-operation (NOP) commands.

The bitstream format is designed as a continuous stream
with implicit addresses, in other words not each frame has
to have a header specifying its address. A modified bitstream
could start at a valid location and write a continuous sequence
until the implicit address is outside of the allowed ranges.
Thus, the configuration filter cannot only scan for commands
to set the frame address. Through an internal counter the end
of a 101-word frame is detected and, if another one follows
directly afterwards, its address is calculated based on the start
address and the current offset. This implicit address is than
passed to the range checkers for verification.

E. Implementation
The RC2FSEC extension comprises an elliptic curve multi-

plier [54], which is shared by the ECDH and ECDSA cores.
Furthermore, SHA3 and AES cores, developed by Hsing [55,
56], are used. A so called CMD Decoder handles the hand-
shake and manages the other modules. The resource utilization
is shown in Table I.

IX. IMPLEMENTATION RESULTS AND SCENARIO

The resources required for the implementation described in
the previous section are shown in the following with a real-
world scenario based on our motivation from Section I.

Configuration Filter

analyzer

frame counter

loadinc f#

word
counter

1

0
NOP

n range checker

A..B C..D E..F G..H I..K

or&

or

valid

slot

bitstream

n

to ICAP

Figure 21. Only if a configuration frame is within the ranges (A..B, ...) of
the newly allocated vFPGA slot, it is passed onto the ICAP, otherwise a

NOP command is sent instead.

TABLE I. THE RC2FSEC EXTENSION’S RESOURCE UTILIZATION OF A
XILINX VIRTEX-7 XC7VX485T.

Submodule Slice LUTs Slice Register BRAM Tile

EC Key Processora, b 30,766 15,158 0
CMD Decoder 7,279 8,714 87
Key Store 269 4,379 0
Configuration Filter 119 99 0
AES De-/Encryptionc 9,207 11,640 172
Cross clock FIFOs 1,358 3,000 50

Overall 48,878 42,891 309
a EC processor by [57] b SHA3 core by [55] c provided by [56]

A. Implementation
The resource consumption of our prototype introduced

in Figure 11 is shown in Table III. Furthermore, the table
introduces the size of homogeneous vFPGA regions as outlined
in Figure 16. The FPGA resources of every vFPGA can be
described with the vector #»ρ , which can be defined as shown
in Equation (1):

#»ρ =

(
SliceLUTs

SliceRegister
BlockRAM

DSP

)
(1)

The vector #»ρ is used in the following to calculate the
FPGA resources inside a vFPGA. The aggregated FPGA
resources of the homogeneous vFPGAs #»ρ vFPGA can be
calculated using Equation (2):

−→ρ vFPGA(NvFPGA−Slots, NFrontends) = NvFPGA−Slots

·−→ρ vFPGA−Slot +NFrontends · −→ρ PPR
(2)

In Equation (2), the vector −→ρ vFPGA−Slot describes the
resources of a single vFPGA region, NvFPGA−Slots is the
number of aggregated vFPGAs, NFrontends is the number of
used frontends for the vFPGA and # »ρppr represents the partition

TABLE II. SIZE OF A SINGLE BITSTREAM FOR A VFPGA REGION, NUMBER
OF POSSIBLE POSITIONS INSIDE THE FPGA AND SIZE OF THE VRAIS.

Single Dual Triple Quad Quint Hexa

Bitstream (MB) 4.8 9.0 13.0 17.3 21.3 25.3
Locations 6 5 4 3 2 1
vRAI (MB) 33.6 54.0 65.0 69.2 63.9 50.6

245

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. NUMBER OF AVAILABLE RESOURCES INSIDE THE STATIC AND THE AGGREGATED VFPGA REGIONS AND UTILIZATION OF STATIC CONTAINING
INFRASTRUCTURE AND HYPERVISOR. THE PARTITION PIN REGION (PPR) IS NECESSARY TO EXCLUDE AND ISOLATE UNUSED PARTITION PINS (PP).

FPGA-Ressource Static Utilization of static region PPR Into aggregated vFPGA regions and maximal number of frontends

region HFa Pb Ec Md Total Single Dual Triple Quad Quint Hexae

Slice LUTs 94,824 26% 3% 2% 11% 42% 1,200 28,400 56,800 85,200 113,600 142,000 188,400
Slice Register 189,648 11% 2% 1% 4% 18% 2,400 59,000 118,000 177,000 236,000 295,000 376,800
Block RAM Tile 369 23% 2% 2% 3% 30% 0 105 210 315 420 525 630
DSPs 726 – – – – – 20 340 680 1,020 1,360 1,700 2,040
aHF: Hypervisor and Frontends bP: PCIe-Endpoint cE: Ethernet dM: DDR3 Memory eLargest region without considering homogeneity

TABLE IV. RECONFIGURATION AND MIGRATION TIMES IN SECONDS FOR
DIFFERENT SIZED VFPGA-INSTANCES.

Operation Size of the vFPGAs

Single Dual Triple Quad Quint Hexa

(1) Readback (s) 0.76 1.43 2.07 2.76 3.39 4.04
(2) Relocate (s) 0.05 0.07 0.10 0.13 0.15 0.18
(3) Configuration (s) 0.04 0.06 0.09 0.11 0.13 0.15

Migration (s) 1.72 3.15 4.51 5.98 7.34 8.79

pin region (PPR) necessary to exclude the unused frontend
interfaces from the grouped vFPGAs. When a frontend is used
by a vFPGA, the resources inside the PPR are available to the
user design inside the vFPGA. The open frontends, which are
not used by the vFPGA are therefore treated as stubs and are
securely sealed using a partial vFPGA bitstream. The resources
of the corresponding PPR are not available inside a vFPGA.
All regions except the largest one (Hexa), which has only one
possible position, are homogeneous.

The throughput between vFPGAs and host (PCIe Gen2 8x
on a Xilinx VC707) with different numbers of concurrently
active vFPGAs is shown in Figure 22. The throughput of a
single design is limited by a user clock of 100 MHz and a 64-
bit data interface. Starting from three vFPGAs, a limitation
due to the concurrent users occurs. The throughput shown
in Figure 22 is the minimal guaranteed throughput for each
vFPGA.

The size of the vRAI packages and the number of possible
locations on the physical device are shown in Table II. With
69.2 MByte, a quad vFPGA with bitstreams for three possible
positions and a mask file for context migration is the largest
vRAI package. Table IV shows the times for configuration, de-
sign readback and relocation, as well as a complete migration
process for different sized vFPGAs.

B. Scenario

In the following, we show a scenario based on a typical
real-world application for our virtualization approach. The goal
is to migrate vFPGA designs to achieve a high utilization as
shown in Figure 23(e). In a system with jobs arriving and
being finished at different points in time, situations as shown
in Figure 23(c) can occur. The fragmentation of the physical
FPGA restricts only one small vFPGA and one aggregated
double sized vFPGA. By migrating the design from user 3 from
vFPGA 5 to vFPGA 0 as shown in Figure 23(d), an area for a

D
ur

ch
sa

tz
 in

 G
B

yt
e/

s
0

450

900

1,350

1,800

Datenmenge in MByte

0,5 1 2 4 8

Lesen Schreiben

Single Read

package size (MB)MB/s Mean std

0.5 33.2174616128511037.0099899986957032.5508585155362030.54063273334530029.4106747250475026.7850524025633029.0542382832599033.9839261689112029.50413723283130030.47143158443910031.252840325748 2.80200902948665

1 49.4874660602119058.6560425265692 50.15782136775430055.7226276432836062.6323973799364049.1712187617276050.54821868368660055.1973188215500045.6152561008666057.6952277099541053.488359505554 5.02290886560428

2 114.96989561965600119.6287779619770083.8173432303212 109.19387373720900116.8331076265530098.3273192803942 105.7129795679990090.7576040976515082.34858527025100112.17174552161000103.376123191362 13.06041935488240

4 106.39858583683300180.70243192615100173.8340099622420176.75770344848300107.68149731723100171.85612959563300192.49606941994500198.29159964367300156.91812129106900196.80384438961200166.173999283087 31.86969669479020

8 260.02767248275400240.1238990609280271.4802255015990244.97846203689000255.47319325245800287.03977293811500248.08040812223800287.3119546748730 270.83025133885000252.0850835600920261.74309229688 15.94277175393070

16 358.5776124662560371.22100800192600365.765349841413 350.6385672684750374.1993952560650388.8891923565620359.791065015107 416.33512722309600372.3580393726110382.5907540405640374.036611084208 17.7524847842273

32 465.87061753810300426.35556298388300485.25058073928200466.2466963435760477.82377216121000556.5821424751150460.17032911221400479.4474062562950468.9726392713810530.5977542387150481.731750111977 34.94125725597450

64 671.0770501585620659.4327507648750661.3309727461620654.288529652045 673.0887818160470648.0252443588650628.994371079922 674.3089095337600632.7356264346090664.8428568863380656.812509343118 15.1770170146252

128 746.0934044886970777.4744646682120770.2683040911050774.3953964141990785.5860409717330785.7080979578280775.0732004492810756.2560780824060773.8279456864920787.2936497784890773.197658258844 12.5002380068447

256 802.4226076841430802.2080575563450802.4579541555850802.4750276470340802.4849621389700802.4633106276200802.4986161705480802.5109211282640802.5004693873770802.4752080376910802.449713453358 0.0840430602313

512 802.5968414283160802.5945823521750802.5693959205720802.601210222376 802.5888860919060802.6043692351850802.6030176292940802.5949906956500802.6064320980310802.5983582269790802.595808390048 0.0101122774319

1024 802.4226076841430802.2080575563450802.4579541555850802.4750276470340802.4849621389700802.4633106276200802.4986161705480802.5109211282640802.5004693873770802.4752080376910802.449713453358 0.0840430602313

Single Write

Mean std

0.5 688.3617884015840679.183660250612 663.789445311988 685.218706246179 675.3144199830440671.825548648674 674.8449959587550673.4199356396930668.913417181503 678.5291360575810675.94010536796106.9245854588828

1 719.0131107472770732.7200097719490739.1197637827530728.700374787284 739.9941172173390723.5786156041460737.5745301125040 738.6479176505350730.8853387879290732.7832661396960732.3017044601410 6.6467872641011

2 763.1805656321630766.1097056047190764.814234378617 764.777872804452 763.8209149097020766.7515597130850765.6901346983110766.0689849035990761.912678997624 764.8338465505460764.79604981928201.4087603127583

4 784.1534608223810781.7523409747550780.3917752803430779.0620793860330781.1233505009000782.4752085553700783.0205033520190782.6661357738370782.1714713212690783.0613329482720781.9877658915180 1.3982248593214

8 792.1075053910290791.9719608443870791.4184336668830792.6591811325380792.0159201022270790.8749636035930790.6521735368640792.5137229316790793.0785954720410793.1026496847230792.03951063659600.8059270532933

16 796.3234045077900795.4000886660250796.9151256663080796.2905732777260795.7848458390200796.8842601218870796.1475610959860798.2477994700770796.959284185946 797.2549340211990796.62078768519600.7700823304090

32 799.3901408969590799.4628845424520799.3543226315620799.539967075736 799.5054469224690799.9750964645540799.0790606028520799.2541378028600799.5227856944880799.3932374865330799.44770801204700.2200507351250

64 801.1798551654690800.5890658040060800.8800089929530800.7391225150270801.0789927954330800.5477262503640800.8875833834980801.183666195989 800.7929674553260800.3112705350860800.81902590931500.2702825201301

128 801.9569618560420801.6485310843900801.8368918091750801.4583730305550801.8399161615840801.6807184117210 801.7176901504480 801.6891754078440801.7299711712760 801.6109532478750801.7169182330910 0.1312041000567

256 802.3407481346790802.3332176608980802.3010270939640802.2469920448380802.2486720057400802.3483782846300802.2485092775120802.3303031677810802.2182265865060802.3017635654040802.29178378219500.0448712141281

512 802.4924439190780802.5527987669010802.4464695489650802.5289118336600802.5016033447530802.4892260454040802.4675128083170802.5535421444230802.5377065678640802.421475706819 802.49916906861800.0426239141019

1024 802.3407481346790802.3332176608980802.3010270939640802.2469920448380802.2486720057400802.3483782846300802.2485092775120802.3303031677810802.2182265865060802.3017635654040802.29178378219500.0448712141281

Single Total

Mean std

0.5 721.579250014436 716.193650249308 696.340303827524 715.759338979524 704.725094708091 698.610601051237 703.899234242015 707.403861808604 698.417554414334 709.000567642021 707.192945693709 8.0626069103406

1 768.500576807489 791.376052298518 789.277585150507 784.423002430568 802.626514597275 772.749834365874 788.12274879619 793.845236472085 776.500594888796 790.47849384965 785.790063965695 9.88067702195953

2 878.150461251819 885.738483566697 848.631577608938 873.971746541661 880.654022536256 865.078878993479 871.40311426631 856.826589001251 844.261264267875 877.005592072157 868.172173010644 13.3337862858238

4 890.552046659215 962.454772900907 954.2257852425850955.819782834515 888.804847818131 954.331338151004 975.516572771963 980.957735417509 939.089592612337 979.865177337884 948.161765174605 31.7665962932475

8 1052.13517787378 1032.09585990531001062.89865916848001037.63764316943 1047.48911335469 1077.91473654171 1038.7325816591 1079.82567760655001063.90884681089 1045.18773324481001053.78260293348 15.8742445550638

16 1154.90101697405001166.62109666795 1162.68047550772 1146.92914054620001169.98424109509001185.77345247845001155.93862611109 1214.58292669317 1169.31732355856 1179.84568806176001170.6573987694 18.3097782607925

32 1265.26075843506 1225.81844752634 1284.60490337084 1265.78666341931 1277.32921908368 1356.55723893967001259.24938971507 1278.70154405916001268.49542496587001329.99099172525001281.17945812402 35.0629019730244

64 1472.25690532403001460.02181656888001462.21098173912001455.02765216707 1474.16777461148001448.57297060923001429.88195446342 1475.49257572975 1433.52859388993001465.15412742142001457.63153525243 15.2625961534979

128 1548.05036634474001579.12299575260001572.10519590028001575.85376944475001587.42595713332001587.38881636955001576.79089059973001557.94525349025001575.55791685777001588.90460302636001574.91457649194 12.4415666028133

256 1604.76335581882001604.54127521724001604.75898124955001604.72201969187001604.73363414471001604.81168891225001604.74712544806001604.84122429605001604.71869597388001604.77697160310001604.74149723555 0.0761550464931

512 1605.08928534739001605.14738111908001605.01586546954001605.13012205604 1605.09048943666001605.09359528059001605.07053043761001605.14853284007001605.14413866590001605.0198339338 1605.09497745867 0.0467157954049

1024 1604.76335581882001604.54127521724001604.75898124955001604.72201969187 1604.73363414471001604.81168891225001604.74712544806001604.84122429605001604.71869597388001604.7769716031 1604.74149723555 0.0761550464931

Dual Write

package size (MB) MB/s

0.5 580.1670375081180 575.420950894716 637.9764652477680 632.3631178875170 618.7857725732460 587.6793148441670 595.0227864291100 596.8631159410220 613.4682510979670 596.4493421092830 604.9672337673170 601.8526406888550 589.3495419642020 606.0773719043250 588.0719876792850

1 639.4241559760190 636.3152070269880 662.9979926212930 635.8336510305170 643.6936420568500 627.0453654351860 627.8015284269820 625.7725393474780 637.9207481033040 658.7506520070650 624.4438548732000 647.4920078224260 641.3282054559450 656.8736881161390 617.3289354839640

2 662.8311107359240 667.2778578586350 673.9988406190100 664.189475601792 666.8407601638870 672.0566115383060 655.7285070940590 671.3781718366050 652.5475217742860 670.3856777682030 663.6794881145610 659.9717256432850 691.6714865558650 662.307784095579 677.4517110478470

4 688.1224665444970 666.1021369556740 672.8201531770160 678.5238835116490 683.4336950494040 669.0530982184440 682.9692638433720 674.2518821700150 670.6928264366480 671.3140546724210 703.2215234251910 662.1694247762100 667.9708858901080 685.3017446447330 677.9483651967540

8 681.7475228427830 674.143828229042 681.278733595502 676.0539392837550 676.4675612434210 677.8281850286180 674.2978235243190 678.540150588875 676.2128009868530 671.5959572899250 681.7108940492180 675.8354601135040 676.8743824262210 678.8213431748160 677.627827949221

16 679.6910865154430 678.6883857558260 686.0856002135590 679.7054464919380 686.8941824657530 680.7715381280240 682.6259789876750 679.8450441688950 686.78641789165 676.6978306115540 685.8936682249970 676.6253116271230 683.2161809093870 683.1483023466420 687.1920735670720

32 685.8216495443650 681.397397418916 682.2149868187660 680.5229812984190 682.223987872999 680.5814957138140 685.6347836747920 680.6703986481740 685.3275444921030 680.8677560759220 684.9105495825090 679.4337921876400 684.8732934495920 677.9219275211300 680.0823101416080

64 689.3217212299840 679.8273794736740 688.0924458839760 687.4691913117880 688.8274986241260 682.4367704260160 684.6957613467580 680.5118012161570 687.9120773599860 684.3076937293870 682.1897323071870 679.5556646755690 684.9784032898270 684.7394594196890 682.8007499359480

128 691.8620061861510 685.451569768488 691.8656196149180 685.0824953198360 683.2206980224340 678.083292653083 681.4944817319460 681.0634223882900 680.6440179126430 675.6057140732170 688.7042486711100 686.391310295755 690.7248531401310 686.2960506714650 689.4782884247400

256 690.7955321634470 685.932316647948 594.876668446798 582.0235541843230 627.8143960956230 619.1390327422300 692.2465350949870 686.9674163522670 690.9770643904220 686.6707680385710 600.2035697440260 613.82591304983 688.5808746355590 684.6491621845330 689.4321159097110

512 581.2327277088570 579.323765147584 690.260459101332 685.3372276249020 690.7929142281990 685.6223986601450 590.0381085221900 581.8292163496330 691.6032344057310 687.4543140176220 588.3406580333870 585.1098187475980 688.6972577061740 684.404685576521 691.7298424553280

1025 690.7955321634470 685.932316647948 594.876668446798 582.0235541843230 627.8143960956230 619.1390327422300 692.2465350949870 686.9674163522670 690.9770643904220 686.6707680385710 600.2035697440260 613.82591304983 688.5808746355590 684.6491621845330 689.4321159097110

Triple Write

package size (MB) MB/s

0.5 421.6135677555340 380.3337271005470 412.66828212236300 403.3748215557630 416.5795961154890 416.2320792070000 477.5120992147620 392.6716665715840 431.5925429887530 524.7856238679450 488.4110152703810 503.22527041973600 446.7097053336820 382.9809373019320 450.79025823813700

1 445.63199460796700 435.133536457984 458.8711849565170 485.72053271112400 453.19081430620900 490.1098945439800 516.8033102617100 479.67130773131100 411.1643109341050 418.5573971788140 430.1115310224440 435.5761530838220 426.69454120897200 450.15497145712800 439.17778911207100

2 461.2317328559830 437.1755876442960 455.42005912129000 467.92961369855600 448.7765282759580 458.492628727456 439.05477646166000 454.99597820748700 455.94292379155900 434.4229555894980 470.30371295289800 459.34221437359600 445.42023577688200 441.6696758706050 452.0262132996910

4 461.78531281435500 440.9343687037080 456.1170914057120 454.06387844654400 455.5553860129430 456.5563690364200 457.5799436336060 457.38658560656800 448.21267921403900 447.9310404130220 456.9738594598380 453.7715566638210 453.88264111828700 437.065946935516 453.06635120209300

8 448.9799566555940 453.14218739465900 454.9587701465120 454.0609502442140 456.6050276370400 457.5212196788350 456.4106130674650 453.4731951748180 455.6484684021290 510.00443612242300 503.51238270350900 529.2488682675370 454.0096888202360 455.36843003116700 454.73964564765300

16 453.15284306315200 448.2126032056190 453.66105966286500 454.90143971576700 454.8256999338990 456.4659292152790 454.9965746945530 451.0987905996600 454.5484756489670 457.1793629154410 450.3318092316500 455.3840189236560 473.5449973573070 438.1136138747300 475.4605071829540

32 453.3149929521250 454.7264598752790 454.56968242807100 451.96723846592000 456.46457085925800 455.86154774386400 451.7633428911720 454.8593335211560 451.3862131228880 455.2840012003640 455.8004614550520 456.6398473503560 456.1501956316440 458.10289013261100 456.3908254756960

64 457.86022323081200 458.69613280438200 458.39984547164800 457.7654803690270 458.33673658177100 458.86609249296400 457.4576916463180 458.36037572977200 458.54228535064800 454.99599327027200 455.9977665494620 455.21704607654600 455.11701728102500 457.0080197038990 455.4848730959740

128 457.19629046720500 457.7095653039150 457.6769034335940 453.54027358820900 454.3422367519620 454.155790239711 455.72621118916600 456.47948668809700 456.4239368607460 455.2066579673970 456.42457499152000 455.7884119765600 455.9771857323680 459.07143101644300 457.20465319054800

256 454.9251794501560 455.73481829805400 455.25156996822600 456.50718555055500 457.54626599654700 457.41730500569900 453.71708404683900 454.53939617141400 454.6491585491150 455.3284208608260 456.1071015129660 456.34148559677000 456.18837409415000 456.99493112734400 457.23328397514500

512 455.8385628737450 456.58589039633000 456.77010159753300 456.06712550861900 456.72922118840900 456.80745717162800 455.9219373033600 456.5686413485650 456.6957972684540 456.0448265813670 456.8399155281810 456.8819286480710 454.64172767828300 455.37372937292800 455.37205519835500

1024 454.9251794501560 455.73481829805400 455.25156996822600 456.50718555055500 457.54626599654700 457.41730500569900 453.71708404683900 454.53939617141400 454.6491585491150 455.3284208608260 456.1071015129660 456.34148559677000 456.18837409415000 456.99493112734400 457.23328397514500

Dual Read

0.5 34.51671819327300 34.02895730234180 33.21555343008770 32.936605102941200 31.21429530549990 30.852226264752600 35.7520442417061 35.299436476984500 37.05293158988080 36.59217858932130 36.78656387888570 36.36017760359220 29.252954203078800 23.506556589540600 23.097409643697500

1 61.5816598527248 60.842109599416700 67.3402450821021 66.61557152935190 65.56436627260270 64.93168236987240 57.91851510845980 57.209481858502100 55.74563970380320 55.147568389732900 60.356195834820200 48.37811659663180 63.3226578333319 62.607045685853400 68.25350731144450

2 111.45417420988400 110.34516245051200 118.48046409165000 116.91942586816400 106.04128847146100 105.41164421966500 118.53697204589900 79.82978368751910 104.08962895387900 103.6823894784390 112.33549351293500 91.21077364802780 100.64587482810400 100.00835456829200 104.43685918258900

4 141.08288048367600 140.0872479808770 175.1457588172340 173.82250377500200 170.66664971245800 168.9904890090820 175.27422906655300 173.8976433511540 182.98162871760700 181.24015102082400 186.585333203758 185.45857652916800 144.56851275162900 201.68112220269200 172.43356809703400

8 259.79562372905400 258.47285019174200 273.2954954164430 272.18223154246600 243.10038475244700 274.5043307062900 235.4441240312100 265.38171687707400 234.33413481310000 263.09510631259600 269.31361616588800 267.4013481364190 270.73913297953300 269.11918693430500 292.8516462777240

16 365.28063970439900 399.5068397928860 385.58914427668300 351.44008188902700 408.0759846119500 408.752129821807 377.5840444691020 344.52547329045900 297.9752253047210 297.7211014998660 386.67598891505400 351.6004030582880 371.8455130729040 341.2448010720330 368.4245764009930

32 486.4472012544090 434.0939088972200 531.6366830371580 497.42803956615600 449.2651956545210 426.73541275822000 475.65644679077000 448.54333161960500 438.2781081237010 463.79999776737200 479.7422693206620 480.91289114106000 482.70835344896900 455.4332217643780 492.2182737926980

64 589.5865527221350 644.2698293280880 686.4045235601160 647.5305978770350 679.9209795203020 639.6203613523280 649.9354467982010 660.0932114616390 688.4624470329710 645.0530667055520 617.2229954698660 663.3166162116200 629.570638954476 684.8926070198570 683.0015001399360

128 691.7825150783900 686.7582929762120 691.2734187855180 685.8351951026360 682.3708371409680 677.3554496040050 682.8706867685370 681.6294199211110 680.683864533321 675.6584915078300 688.8588384896980 685.8790062243170 689.49942262763 686.7541613420520 689.9958850047030

256 690.9156955657590 686.4305136449090 542.7665964842080 537.1516120103100 563.5384374422090 560.2265637715630 692.2525854044770 687.4633309255300 691.6245491119540 686.3686703296470 536.2193463215770 541.9960782574280 688.2749546773080 684.6869482134640 690.1999990978220

512 557.7408046549080 557.3665400103840 690.2527115490580 685.5893963713770 690.6849629471290 685.9144467415530 554.0768137796780 550.4001739764760 691.813612517017 687.8577629340040 559.0578283851180 558.0018366901850 688.9218483621950 684.51884074604 691.4790735964100

1024 690.9156955657590 686.4305136449090 542.7665964842080 537.1516120103100 563.5384374422090 560.2265637715630 692.2525854044770 687.4633309255300 691.6245491119540 686.3686703296470 536.2193463215770 541.9960782574280 688.2749546773080 684.6869482134640 690.1999990978220
Dual Total

0.5 614.683755701391 609.449908197058 671.192018677856 665.299722990458 650.000067878746 618.53154110892 630.774830670816 632.162552418006 650.521182687847 633.041520698604 641.753797646202 638.212818292448 618.602496167281 629.583928493866 611.169397322982

1 701.005815828744 697.157316626405 730.338237703395 702.449222559869 709.258008329453 691.977047805058 685.720043535442 682.98202120598 693.666387807107 713.898220396798 684.80005070802 695.870124419058 704.650863289277 719.480733801993 685.582442795408

2 774.285284945808 777.623020309147 792.47930471066 781.108901469956 772.882048635349 777.468255757971 774.265479139958 751.207955524124 756.637150728165 774.0680672466410 776.014981627497 751.182499291313 792.317361383969 762.316138663871 781.888570230436

4 829.205347028173 806.1893849365520 847.9659119942500 852.346387286652 854.100344761862 838.0435872275250 858.243492909924 848.1495255211690 853.674455154255 852.554205693245 889.806856628949 847.628001305378 812.539398641737 886.982866847425 850.381933293788

8 941.543146571837 932.616678420784 954.574229011945 948.236170826221 919.567945995868 952.3325157349080 909.7419475555280 943.921867465949 910.546935799953 934.69106360252 951.024510215105 943.2368082499240 947.613515405755 947.940530109121 970.479474226945

16 1044.97172621984 1078.1952255487100 1071.67474449024 1031.14552838096 1094.9701670777000 1089.52366794983 1060.2100234567800 1024.37051745935 984.761643196371 974.4189321114200 1072.56965714005 1028.2257146854100 1055.0616939822900 1024.3931034186800 1055.6166499680600

32 1172.2688507987700 1115.49130631614 1213.8516698559200 1177.95102086457 1131.48918352752 1107.31690847203 1161.29123046556 1129.21373026778 1123.6056526158000 1144.66775384329 1164.6528189031700 1160.3466833287 1167.58164689856 1133.3551492855100 1172.3005839343100

64 1278.9082739521200 1324.0972088017600 1374.4969694440900 1334.9997891888200 1368.7484781444300 1322.0571317783400 1334.6312081449600 1340.6050126778000 1376.3745243929600 1329.3607604349400 1299.4127277770500 1342.8722808871900 1314.5490422443 1369.6320664395500 1365.8022500758800

128 1383.6445212645400 1372.2098627447 1383.1390384004400 1370.9176904224700 1365.5915351634000 1355.43874225709 1364.3651685004800 1362.6928423094000 1361.32788244596 1351.2642055810500 1377.5630871608100 1372.27031652007 1380.22427576776 1373.0502120135200 1379.4741734294400

256 1381.7112277292100 1372.36283029286 1137.64326493101 1119.1751661946300 1191.3528335378300 1179.3655965137900 1384.4991204994600 1374.4307472778000 1382.6016135023800 1373.0394383682200 1136.4229160656000 1155.82199130726 1376.8558293128700 1369.3361103980000 1379.6321150075300

512 1138.9735323637700 1136.69030515797 1380.51317065039 1370.9266239962800 1381.4778771753300 1371.5368454017000 1144.1149223018700 1132.2293903261100 1383.41684692275 1375.3120769516300 1147.3984864185000 1143.1116554377800 1377.6191060683700 1368.92352632256 1383.2089160517400

1024 1381.7112277292100 1372.3628302928600 1137.6432649310100 1119.1751661946300 1191.3528335378300 1179.3655965137900 1384.4991204994600 1374.4307472778000 1382.6016135023800 1373.0394383682200 1136.4229160656000 1155.8219913072600 1376.8558293128700 1369.3361103980000 1379.6321150075300

Triple Read

0.5 31.314615017597600 31.482442588195200 30.799234503758100 28.438476307940200 36.90037715823310 28.082605623243600 27.801912988140300 28.53539868740150 28.226880070427500 37.23715523377010 28.42104128606220 28.79191230030700 26.31728864789140 33.92037775536660 25.99972705829570

1 66.19910215146410 52.690806837957100 51.66116503345580 50.81203810825400 64.43513221589710 63.40618081366030 50.162337960691400 50.684073767401700 61.78504727750140 54.46979077328240 54.298803877371200 44.384863743011200 65.11990866465270 63.94450045565460 64.73219125486310

2 97.59351412425220 82.47259792985100 99.19411720593610 86.8023718266822 105.51615113261000 103.87518320988900 80.45808322059280 79.9863889133216 79.52916185290910 75.29302922010610 74.35942882659480 104.28967955070400 100.87535096140600 101.12521068108900 99.70566977880730

4 187.46153418247400 190.32727260802800 185.53478967948700 168.7192483651490 168.3149395185340 167.36022177288100 157.0658291123930 136.20933406067700 137.92041931209500 177.1185429206340 150.03582708167600 148.6782127918860 165.1740845618150 144.20206976703700 140.94465059784800

8 211.9595232695450 237.1642327881580 137.65768382276400 245.65674964646900 246.23912994309800 243.9385104427490 256.8037776691360 229.72572083178200 256.0343368803250 249.78870933351100 250.08892831143400 248.15679249096700 246.68872691421800 198.02229757270100 196.85899551967100

16 321.67510918593900 323.9096865043190 320.28151400909100 271.9834073026710 314.5944293270820 313.33487765926200 319.972680755443 322.6520120938330 318.2683473512340 270.3720571152570 315.444133555583 269.7460170237100 273.7041148046790 340.585173477031 274.30155329786000

32 380.19899450431800 380.5390490526990 379.3930936073740 376.69444715815400 372.94531581458200 373.680596122969 369.9660577568680 311.8724941532770 370.4632647996590 376.3171349842760 376.7926524566250 375.68145324664200 386.19741040076000 323.4969873336930 322.8805491446850

D
ur

ch
sa

tz
 in

 G
B

yt
e/

s

0

750

1,500

2,250

3,000

Datenmenge in MByte

0,5 1 2 4 8 16 32 64 128 256 512 1.024

 Ein vFPGA Zwei vFPGAs Drei vFPGAs Vier vFPGAs Fünf vFPGAs Sechs vFPGAs Maximal

Peak

1 2 3 4

0.5 707.192945693709 1263.86616440347 1374.56774351744 1501.50001112727

1 785.790063965695 1401.13371173734 1508.00968095595 1668.57309775588

2 868.172173010644 1542.96210737859 1644.33673405423 1890.49807924442

4 948.161765174605 1690.43784013079 1861.20620103423 2131.51062835061

8 1053.78260293348 1862.67365538673 2080.06204217072 2260.6876939453

16 1170.6573987694 2096.57927858817 2286.0288358141 2430.65054648165

32 1281.17945812402 2299.57975292207 2437.84388056843 2627.75270110588

64 1457.63153525243 2672.97293981627 2719.93475282027 2750.9200300165

128 1574.91457649194 2740.2645045281 2738.2966987005 2741.70594686174

256 1604.74149723555 2776.574146196 2734.70074290043 2737.51862400677

512 1605.09497745867 2765.81708990194 2734.62179989486 2739.7340060852

1024 1604.74149723555 2776.574146196 2734.70074290043 2737.51862400677

Th
ro

ug
hp

ut
 in

 M
B

yt
e/

s

0

750

1,500

2,250

3,000

Data size in MByte

0.5 1 2 4 8 16 32 64 128 256 512 1,024

One Two Three Four Five Six vFPGAs Aggregated

�1

Figure 22. Throughput between host and FPGA with different numbers of
concurrent vFPGAs. The diagram shows for each number of vFPGAs the

average throughput of one representative vFPGA. The aggregated throughput
is thereby the average throughput of all vFPGA compositions on the device.

group of three vFPGAs (triple) becomes available and makes
higher utilization of the physical device possible.

C. RC3E Large-Scale Datacenter Simulation

To evaluate the behavior of resource management, and in
particular the benefits of virtualized FPGAs as well as their
migration in a cloud, the RC3E simulator was developed.
The results of the simulation are shown in Figure 24. In
addition to the average number of allocated compute nodes,
the table shows their energy requirements and the utilization
of the FPGA resources available to the user. The Service Level
Agreement (SLA) also specifies what proportion of the work
packages will be processed within a certain time period (2.5 s)
in order to be able to assess the system behavior with regard
to the quality of the provision of the resources.

The energy requirement of the cloud is reduced to 69.35 %
in the RC3E simulation in the reference scenario in load
scenario (I) through the use of FPGAs and the utilization of
the physical FPGAs is 27.34 %. RC2F virtualization reduces
energy consumption to 24.43 % and increases the physical
FPGA utilization to 78.14 %. An additional migration of the
vFPGA instances to defragment the system increases utiliza-
tion to 85.07 % and reduces energy consumption to 22.99 %.
The SLA increases slightly by 0.04, or 0.02, as the virtualized
resources are available faster than a re-allocating compute
node. The additional migration contributes only marginally to
saving resources and energy. However, the process of migration

246

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

R
C

2F
-In

fr
as

tr
uc

tu
re

(F
P

G
A
-H

yp
er

vi
so

r,
P

C
Ie

, D
D

R
)

RC2F-Infrastructure
 (Ethernet + ICAP)

Fr
on

te
nd

 0
Fr

on
te

nd
 1

Fr
on

te
nd

 2
Fr

on
te

nd
 3

Fr
on

te
nd

 4
Fr

on
te

nd
 5

FPGA: 32x32 Matrix with
Infrastructure

P
C

Ie
-C

on
tr

ol
le

r
(a) Single userdesign in the classic RSaaS model, which allocates a full
physical FPGA without utilizing the entire FPGA.

vFPGA-Slot 0: I0 - BSMC8-vFPGA

vFPGA-Slot 4: I 4 - Crypto-vFPGA

vFPGA-Slot 2: I 2 - BSMC8-vFPGA

vFPGA-Slot 3: I 3 - Crypto-vFPGA

vFPGA-Slot 1: I 1 - Crypto-vFPGA

vFPGA-Slot 5: I 5 - BSMC8-vFPGA

R
C

2F
-In

fr
as

tr
uc

tu
re

(F
P

G
A
-H

yp
er

vi
so

r,
P

C
Ie

, D
D

R
)

RC2F-Infrastructure
 (Ethernet + ICAP)

Fr
on

te
nd

 0
Fr

on
te

nd
 1

Fr
on

te
nd

 2
Fr

on
te

nd
 3

Fr
on

te
nd

 4
Fr

on
te

nd
 5

(b) Approximate full utilization of the FPGA with six independent users
and designs.

vFPGA 0: —

vFPGA 4: —

vFPGA-Slot 2: I 2 - BSMC8-vFPGA

vFPGA 3: —

vFPGA-Slot 1: I 1 - Crypto-vFPGA

vFPGA-Slot 5: I 5 - BSMC8-vFPGA

R
C

2F
-In

fr
as

tr
uc

tu
re

(F
P

G
A
-H

yp
er

vi
so

r,
P

C
Ie

, D
D

R
)

RC2F-Infrastructure
 (Ethernet + ICAP)

Fr
on

te
nd

 0
Fr

on
te

nd
 1

Fr
on

te
nd

 2
Fr

on
te

nd
 3

Fr
on

te
nd

 4
Fr

on
te

nd
 5

(c) Fragmentation of the physical FPGA caused by dynamic de- and
allocation.

vFPGA-Slot 0: I 5 - BSMC8-vFPGA

vFPGA 4: —

vFPGA-Slot 2: I 2 - BSMC8-vFPGA

vFPGA 3: —

vFPGA-Slot 1: I 1 - Crypto-vFPGA

vFPGA 5: —

R
C

2F
-In

fr
as

tr
uc

tu
re

(F
P

G
A
-H

yp
er

vi
so

r,
P

C
Ie

, D
D

R
)

RC2F-Infrastructure
 (Ethernet + ICAP)

Fr
on

te
nd

 0
Fr

on
te

nd
 1

Fr
on

te
nd

 2
Fr

on
te

nd
 3

Fr
on

te
nd

 4
Fr

on
te

nd
 5

(d) Defragmentation providing aggregated vFPGA regions for larger
designs.

vFPGA-Slot 0: I 5 - BSMC8-vFPGA

vFPGA-Slot 2: I 2 - BSMC8-vFPGA

vFPGA-Slot 1: I 1 - Crypto-vFPGA

vFPGA-Slot 3: I 6 - 32x32 Matrix-vFPGA

R
C

2F
-In

fr
as

tr
uc

tu
re

(F
P

G
A
-H

yp
er

vi
so

r,
P

C
Ie

, D
D

R
)

RC2F-Infrastructure
 (Ethernet + ICAP)

Fr
on

te
nd

 0
Fr

on
te

nd
 1

Fr
on

te
nd

 2
Fr

on
te

nd
 3

Fr
on

te
nd

 4
Fr

on
te

nd
 5

(e) Utilization of the free region with a design using three aggregated
vFPGAs (Triple).

vFPGA-Slot 3: I 7 - k-Means-vFPGA

R
C

2F
-In

fr
as

tr
uc

tu
re

(F
P

G
A
-H

yp
er

vi
so

r,
P

C
Ie

, D
D

R
)

RC2F-Infrastructure
 (Ethernet + ICAP)

Fr
on

te
nd

 0
Fr

on
te

nd
 1

Fr
on

te
nd

 2
Fr

on
te

nd
 3

Fr
on

te
nd

 4
Fr

on
te

nd
 5

(f) Example of a k-Means design using the largest vFPGAs with six
Slots (Hexa).

Figure 23. Scenario with different users and designs on a Xilinx Virtex-7 XC7VX485T with six (vertically) scalable vFPGAs.

247

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table 1

Last I Last II

Basis +FPGA +RC2F +Migration Cloud RC2F Migration

Rechenknotena 357 132 26 24 376 128 25 24

Auslastung — 27,34 % 78,14 % 85,07 % —% 26,74 % 94,24 % 97,82 %

Rechenknoten (%) 100,00 % 36,97 % 7,28 % 6,72 % 100,00 % 34,04 % 6,65 % 6,38 %

Energiebedarf 35,37 24,53 8,64 8,13 287,37 225,12 89,48 83,06

Energie (%) 100,00 % 69,35 % 24,43 % 22,99 % 100,00 % 78,34 % 31,14 % 28,90 %

SLA 0,91 0,87 0,91 0,85 0,96 0,94 0,92 0,91

0 %

25 %

50 %

75 %

100 %

FPGA-Cloud + RC2F + Migration
0 %

25 %

50 %

75 %

100 %

FPGA-Cloud + RC2F + Migration

Erforderliche Rechenknoten Energiebedarf Auslastung der FPGAs Service Level Agreement (SLA)
Lastszenario (I) — 4.981 Arbeitspakete Lastszenario (II) — 47.748 Arbeitspakete

0 %

25 %

50 %

75 %

100 %

FPGA-Cloud + RC2F + Migration

Computing Nodes Energy consumption FPGA Utilization

�1

Figure 24. Comparison of the different system configurations within the
RC3E simulation.

TABLE V. RESULTS OF THE RC3E SIMULATION FOR THE SYSTEM
CONFIGURATIONS WITH (1) SIMPLE COMPUTE NODES WITHOUT FPGAS,
(2) ADDITIONAL FPGAS WITHOUT VIRTUALIZATION, (3) RC2F FPGA

VIRTUALIZATION, AND (4) ADDITIONAL MIGRATION. THE SCENARIOS ARE
THE LOAD DATA OF A REAL WEB SERVER [58] WITH 47,748 WORK

PACKAGES OVER 1,440 MINUTES.

Cloud (1) +FPGA (2) +RC2F (3) +Mig(4)
Compute Nodea 376 128 25 24
FPGA Utilization (%) — 26.74 94.24 97.82
Energy Demand (kWh) 287.37 225.12 89.48 83.06
Energy Demand (%) 100.00 78.34 31.14 28.90

SLAb 0.96 0.90 0.92 0.91
a Average number of allocated compute nodes.
b SLA: Share of work packages being processed within 2.5 s.

adversely affects the SLA because migration is a high priority
and new resources are delayed.

Based on the results of the RC3E simulation, it can be
expected that both virtualization and the associated migration
of vFPGAs can result in resource savings and thus energy
without significantly reducing the SLA. The high savings
can be explained by the chosen demonstrators and the work
packages based on them. If the vFPGA designs completely
expose the physical FPGA, virtualization can not save compute
nodes and reduce power consumption. However, the migration
allows the migration of the vFPGA images to other compute
nodes, providing the ability to move parts of the system locally
for maintenance, for example.

In addition to evaluating how virtualization and migration
affect the optimization of utilization and energy consumption,
the RC3E simulator also validated the mapping of vFPGAs to
physical FPGAs and compute nodes.

X. CONCLUSION AND OUTLOOK

This paper presented a comprehensive virtualization con-
cept for reconfigurable hardware and its integration into a
cloud environment. Our definition of the term virtualization
is inspired by traditional VMs whose functionalities are trans-
ferred to reconfigurable hardware. We develop a paravirtual-
ized infrastructure on a physical FPGA device with multiple
vFPGAs. The concept is integrated into a framework, which
allows for interaction with the vFPGAs similar to traditional
VMs. We create homogeneous regions for the vFPGAs on the

Table 1

---inhomogen--- homogen leer 15 x vFPGA infra komplett

CLB LUTs 68.160 63.360 4.800 950.400 188.640 1.182.240

LUT as Logic 68.160 63.360 4.800 950.400 188.640 1.182.240

LUT as Memory 35.040 30.240 4.800 453.600 95.040 591.840

CLB Registers 136.320 126.720 9.600 1.900.800 377.280 2.364.480

Register as Flip Flop 136.320 126.720 9.600 1.900.800 377.280 2.364.480

Register as Latch 136.320 126.720 9.600 1.900.800 377.280 2.364.480

CARRY8 8.520 7.920 600 118.800 23.580 147.780

F7 Muxes 34.080 31.680 2.400 475.200 94.320 591.120

F8 Muxes 17.040 15.840 1.200 237.600 47.160 295.560

F9 Muxes 8.520 7.920 600 118.800 23.580 147.780

CLB 8.520 7.920 600 118.800 23.580 147.780

CLBL 4.140 4.140 0 62.100 11.700 73.800

CLBM 4.380 3.780 600 56.700 11.880 73.980

LUT Flip Flop Pairs 68.160 63.360 4.800 950.400 188.640 1.182.240

Block RAM Tile 120 120 0 1.800 360 2.160

RAMB36/FIFO 120 120 0 1.800 360 2.160

RAMB18 240 240 0 3.600 720 4.320

URAM 64 64 0 960 720 960

DSPs 408 408 0 6.120 360 6.840

Bonded IOB 52 52 0 780 360 832

HPIOB_M 24 24 0 360 28 384

HPIOB_S 24 24 0 360 7 384

HPIOB_SNGL 4 4 0 60 6 64

HPIOBDIFFINBUF 48 48 0 720 14 720

HPIOBDIFFOUTBUF 48 48 0 720 14 720

BITSLICE_CONTROL 16 16 0 240 3 240

BITSLICE_RX_TX 104 104 0 1.560 3 1.560

BITSLICE_TX 16 16 0 240 11.520 240

RIU_OR 8 8 0 120 12 120

GLOBAL CLOCK
BUFFERs

80 80 0 1.200 3 1.560

BUFGCE 48 48 0 720 3 720

BUFGCE_DIV 8 8 0 120 6 120

BUFG_GT 24 24 0 360 3 720

0

Summe 735.136 680.632 54.000 10.209.480 2.031.120 12.726.240

0,004243201448346090,802238524497416 0,159600950477124

V7-485 2.794.220

Diff 4,55448747772187

16,52 %

83,04 %

0,44 %

62,34 %
6,59 %

31,07 %

Statischer Bereich der RC2F-Infrastruktur und Frontends
Aufgrund der Inhomogenität nicht nutzbare Bereiche
Rekonfigurierbarer Bereiche für homogene vFPGAs

30.191 6.709
92.424

RC2F-Prototyp
Virtex-7 XC7VX485T

Prognostische Abschätzung für die Cloud
Virtex-7 UltraScale+ XCVU9P

x 4,55

Table 2

infra inhomogen homogen

Slice LUTs 90560 32600 28400

LUT as Logic 90560 32600 28400

LUT as Memory 36744 14400 13200

Slice Registers 181120 65200 56800

Register as Flip
Flop

181120 65200 56800

Register as Latch 181120 65200 56800

F7 Muxes 45280 16300 14200

F8 Muxes 22640 8150 7100

Slice 22640 8150 7100

SLICEL 13454 4550 3800

SLICEM 9186 3600 3300

LUT Flip Flop Pairs 90560 32600 28400

Block RAM Tile 358 100 100

RAMB36/FIFO 358 100 100

RAMB18 716 210 200

DSPs 692 340 340

GTXE2_COMMON
2

GTXE2_CHANNEL
8

IBUFDS_GTE2 1

BUFGCTRL 7

MMCME2_ADV 2

ICAPE2 1

PCIE_2_1 1

ut
ili

za
tio

n
of

 t
he

 F
P

G
A

 r
es

ou
rc

es

0 %

20 %

40 %

60 %

80 %

partial reconfigurable areas  
containing the vFPGA-Slots

static area containing the RC2F- 
infrastructure and 6 vFPGA-Frontends

areas not useable due to
inhomogeneity

slice registers Block-RAM tiles slice LUTs DSPs

2,43 %

24,71 %

72,86 %

11,09 %

32,78 %

58,50 %

4,08 %

34,76 %

61,17 %

8,92 %

32,78 %

58,30 %

62,34 %
6,59 %

31,07 %

static area containing the RC2F-infrastructure and frontends
areas not useable due to inhomogeneity
partial reconfigurable areas containing the vFPGA-Slots

16,52 %

83,04 %

0,44 %

62,34 %
6,59 %

31,07 %

static area containing the RC2F-infrastructure and frontends
areas not useable due to inhomogeneity
partial reconfigurable areas containing the vFPGA-Slots

RC2F-Prototype
Virtex-7 XC7VX485T

estimation for a productive cloud
Virtex-7 UltraScale+ XCVU9P

x 4,55

Pr
oz

en
tu

al
er

 A
nt

ei
l d

er
 H

ar
dw

ar
e-

R
es

so
ur

ce
n

an
 d

en
 R

es
so

ur
ce

n
de

s
 g

es
am

te
n

FP
G

A
s

0 %

20 %

40 %

60 %

80 %

Dynamisch rekonfigurierbare 
Bereiche für vFPGA-Slots

Statischer Bereich für RC2F- 
Infrastruktur und 6 vFPGA-Frontends

Aufgrund der Inhomogenität 
nicht nutzbare Bereiche

Slice Registers Block-RAM Tiles Slice LUTs DSPs

2,43 %

24,71 %

72,86 %

11,09 %

32,78 %

58,50 %

4,08 %

34,76 %

61,17 %

8,92 %

32,78 %

58,30 %

62,34 %
6,59 %

31,07 %

Statischer Bereich der RC2F-Infrastruktur und Frontends
Aufgrund der Inhomogenität nicht nutzbare Bereiche
Rekonfigurierbarer Bereiche für homogene vFPGAs

�1

Figure 25. Size of the different regions of the RC2F virtualization
transferred to a Xilinx Ultrascale+ FPGA.

physical FPGA to optimize the process of vFPGA migration
between different physical FPGAs. Implementation details
are described, the necessary resources and the virtualization
overhead are presented.

The hardware accelerators used by Amazon in the EC2-F1
instances are Virtex-7 UltraScale+ FPGAs [59] on a VCU1525
Acceleration Development Kit with an XCVU9P [60]. A
prognostic transfer of RC2F virtualization to an UltraScale+
(XCVU9P) FPGA provides the partitioning of FPGA resources
into the different domains shown in Figure 25. The usable
range for the vFPGAs is therefore 83.04 % and does not
scale linearly with the size of the FPGA, which is 4.55 times
larger than the Virtex-7 XC7VX485T. Due to the homogeneous
structure of the UltraScale+ FPGAs, the unusable area has
dropped to 0.44 % but still exists, so homogenization is still
required.

One significant result of this paper is that the provision of
homogeneous FPGA resources is possible with state-of-the-
art FPGAs. We think that such approaches are necessary for
establishing FPGAs in modern data centers housing clouds.
Certainly, when cloud providers like Amazon expand their
cloud architectures with high-end FPGAs, such as Xilinx
Virtex-7 UltraScale devices [59] it is necessary to utilize the
hardware efficiently with multiple designs in a scalable frame
inside one physical FPGA. Such kind of flexible approach
allows for adaption the individual resources to the users’
requirements.

In the future, we plan to establish a productive cloud
environment based on RC3E and RC2F at the Helmholtz-
Zentrum Dresden-Rossendorf. The system should serve for
background acceleration (BAaaS) of scientific applications like
[61] and also for FPGA-prototyping (RSaaS) in combination
with continuous integration (CI) [62] to optimize the process
of hardware design and to satisfy the demands for automated
tested FPGA designs for advanced research applications such
as [63]. Other promising application areas are the mapping
of applications and their distribution on a scalable FPGA
cluster [64] and the evaluation of dynamic task offloading
from CPUs to (virtualized) FPGAs during run-time, which
will be developed on a similar system located at the chair of
adaptive dynamic systems at Technische Universität Dresden.
Furthermore, the systems are used to investigate economic
impacts on hybrid (FPGA) cloud systems.

248

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] O. Knodel, P. R. Genssler, and R. G. Spallek, “Virtualizing re-
configurable hardware to provide scalability in cloud architec-
tures”, Reconfigurable Architectures, Tools and Applications,
RECATA 2017, ISBN: 978-1-61208-585, vol. 2, 2017.

[2] O. Knodel, A. Georgi, P. Lehmann, W. E. Nagel, and R. G.
Spallek, “Integration of a highly scalable, multi-fpga-based
hardware accelerator in common cluster infrastructures”, in
42nd International Conference on Parallel Processing, ICPP
2013, Lyon, France, October 1-4, IEEE, 2013, pp. 893–900.

[3] O. Knodel and R. G. Spallek, “RC3E: provision and man-
agement of reconfigurable hardware accelerators in a cloud
environment”, CoRR, vol. abs/1508.06843, 2015. [Online].
Available: http://arxiv.org/abs/1508.06843.

[4] ——, “Computing framework for dynamic integration of
reconfigurable resources in a cloud”, in 2015 Euromicro
Conference on Digital System Design, DSD 2015, IEEE, 2015,
pp. 337–344.

[5] O. Knodel, P. Lehmann, and R. G. Spallek, “Rc3e: Re-
configurable accelerators in data centres and their provision
by adapted service models”, in 9th Int’l Conf. on Cloud
Computing, Cloud 2016, June 27 - July 2, San Francisco, CA,
USA, IEEE, 2016.

[6] O. Knodel, P. Genßler, and R. Spallek, “Migration of long-
running tasks between reconfigurable resources using virtu-
alization”, in ACM SIGARCH Computer Architecture News
Volume 44, HEART 2016, ACM, 2016.

[7] P. Genssler, O. Knodel, and R. G. Spallek, “A New Level
of Trusted Cloud Computing - Virtualized Reconfigurable
Resources in a Security-First Architecture”, in Informatik
2017, 47. Jahrestagung der Gesellschaft für Informatik, 25.-
29. September 2017, Chemnitz, Deutschland, 2017.

[8] M. Armbrust, A. Fox, R. Griffith, et al., “A view of cloud
computing”, Communications of the ACM, vol. 53, pp. 50–58,
2010.

[9] P. Mell and T. Grance, “The NIST definition of cloud com-
puting, Revised”, Computer Security Division, Information
Technology Laboratory, NIST Gaithersburg, 2011.

[10] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kin-
dratenko, and D. Buell, “The promise of high-performance
reconfigurable computing”, IEEE Computer, vol. 41, no. 2,
pp. 69–76, 2008.

[11] J.-A. Mondol, “Cloud security solutions using FPGA”, in
PacRim, Pacific Rim Conf. on, IEEE, 2011, pp. 747–752.

[12] A. Putnam, A. M. Caulfield, E. S. Chung, et al., “A reconfig-
urable fabric for accelerating large-scale datacenter services”,
in Computer Architecture (ISCA), 41st Int’l Symp. on, 2014.

[13] W. Fornaciari and V. Piuri, “Virtual FPGAs: Some steps
behind the physical barriers”, in Parallel and Distributed
Processing, Springer, 1998, pp. 7–12.

[14] Xilinx Inc., Vivado Design Suite User Guide – Partial Recon-
figuration, UG909 (v2017.1), April 5, 2017.

[15] C. Kachris and D. Soudris, “A survey on reconfigurable
accelerators for cloud computing”, in Field Programmable
Logic and Applications (FPL), 26th Int’l Conf. on, 2016.

[16] K. Eguro and R. Venkatesan, “FPGAs for trusted cloud
computing”, in Field Programmable Logic and Applications
(FPL), 22nd Int’l Conf. on, IEEE, 2012, pp. 63–70.

[17] V. Kulanov, A. Perepelitsyn, and I. Zarizenko, “Method of
development and deployment of reconfigurable FPGA-based
projects in cloud infrastructure”, in 2018 IEEE 9th Inter-
national Conference on Dependable Systems, Services and
Technologies (DESSERT), May 2018, pp. 103–106. DOI: 10.
1109/DESSERT.2018.8409108.

[18] J. Dondo Gazzano, F. Sanchez Molina, F. Rincon, and J. C.
López, “Integrating reconfigurable hardware-based grid for

high performance computing”, The Scientific World Journal,
2015.

[19] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA
accelerators for efficient cloud computing”, in Cloud Comput-
ing Technology (CloudCom), Int’l Conf. on, IEEE, 2015.

[20] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne,
“Designing a virtual runtime for FPGA accelerators in the
cloud”, in Field Programmable Logic and Applications, Int’l
Conf. on, 2016.

[21] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf,
“Enabling FPGAs in Hyperscale Data Centers”, in Cloud and
Big Data Computing (CBDCom), Int’l Conf. on, IEEE, 2015.

[22] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on fpga
virtualization”, 28th FPL, 2018.

[23] R. Kirchgessner, G. Stitt, A. George, and H. Lam, “VirtualRC:
a virtual FPGA platform for applications and tools portability”,
in FPGAs, Proc. of the ACM/SIGDA Int’l Symp. on, 2012.

[24] H. K.-H. So and R. Brodersen, “A unified hardware/soft-
ware runtime environment for FPGA-based reconfigurable
computers using BORPH”, ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 2, p. 14, 2008.

[25] W. Wang, M. Bolic, and J. Parri, “pvFPGA: Accessing an
FPGA-based hardware accelerator in a paravirtualized envi-
ronment”, Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2013 Int’l Conf. on, pp. 1–9, 2013.

[26] F. Chen, Y. Shan, Y. Zhang, et al., “Enabling FPGAs in the
cloud”, in Computing Frontiers, Proc. of the 11th ACM Conf.
on, ACM, 2014, p. 3.

[27] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and
P. Chow, “FPGAs in the Cloud: Booting Virtualized Hardware
Accelerators with OpenStack”, in Field-Programmable Cus-
tom Computing Machines (FCCM), 22nd Annual Int’l Symp.
on, IEEE, 2014, pp. 109–116. DOI: 10.1109/FCCM.2014.42.

[28] Q. Chen, V. Mishra, J. Nunez-Yanez, and G. Zervas, “Recon-
figurable Network Stream Processing on Virtualized FPGA
Resources”, International Journal of Reconfigurable Comput-
ing, vol. 2018, 2018.

[29] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne,
“Virtualized Execution Runtime for FPGA Accelerators in the
Cloud”, IEEE Access, vol. 5, pp. 1900–1910, 2017, ISSN:
2169-3536. DOI: 10.1109/ACCESS.2017.2661582.

[30] M. Happe, A. Traber, and A. Keller, “Preemptive Hardware
Multitasking in ReconOS”, in Applied Reconfigurable Com-
puting, Springer, 2015, pp. 79–90.

[31] J. Rettkowski, K. Friesen, and D. Göhringer, “RePaBit: Au-
tomated generation of relocatable partial bitstreams for Xilinx
Zynq FPGAs”, in ReConFigurable Computing and FPGAs
(ReConFig), 2016 International Conference on, IEEE, 2016,
pp. 1–8.

[32] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel,
“Preemption of the Partial Reconfiguration Process to Enable
Real-Time Computing With FPGAs”, ACM Trans. Reconfig-
urable Technol. Syst., vol. 11, no. 2, 10:1–10:24, Jul. 2018,
ISSN: 1936-7406. DOI: 10.1145/3182183.

[33] S. Rachana and H. Guruprasad, “Emerging security issues
and challenges in cloud computing”, International Journal
of Engineering Science and Innovative Technology, vol. 3, 2
2014, ISSN: 2319-5967.

[34] J. Ryoo, S. Rizvi, W. Aiken, and J. Kissell, “Cloud security au-
diting: Challenges and emerging approaches”, IEEE Security
Privacy, vol. 12, no. 6, pp. 68–74, Nov. 2014, ISSN: 1540-
7993. DOI: 10.1109/MSP.2013.132.

[35] M. A. Will and R. K. L. Ko, “Secure FPGA as a Service - To-
wards Secure Data Processing by Physicalizing the Cloud”, in
2017 IEEE Trustcom/BigDataSE/ICESS, Aug. 2017, pp. 449–
455.

249

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[36] B. Hong, H.-Y. Kim, M. Kim, L. Xu, W. Shi, and T. Suh,
“FASTEN: An FPGA-based Secure System for Big Data
Processing”, IEEE Design & Test, 2017.

[37] OpenStack. (2017). OpenStack - Open Source Cloud Comput-
ing Software, [Online]. Available: http://www.openstack.org/
(visited on 2018-11-25).

[38] J. E. Smith and R. Nair, Virtual machines - versatile platforms
for systems and processes. Elsevier, 2005, ISBN: 978-1-55860-
910-5.

[39] ——, “The architecture of virtual machines”, Computer,
vol. 38, no. 5, pp. 32–38, 2005.

[40] R. P. Goldberg, “Survey of virtual machine research”, Com-
puter Journal, vol. 7, no. 6, pp. 34–45, 1974.

[41] M. Rosenblum, “The Reincarnation of Virtual Machines”,
ACM Queue, vol. 2, no. 5, pp. 34–40, 2004.

[42] Xillybus Ltd. (2017). An FPGA IP core for easy DMA over
PCIe, [Online]. Available: http : / / xillybus . com (visited on
2018-11-25).

[43] T. B. Preußer, M. Zabel, P. Lehmann, and R. G. Spallek,
“The portable open-source ip core and utility library poc”, in
2016 Int’l Conf. on ReConFigurable Computing and FPGAs
(ReConFig), Nov. 2016, pp. 1–6. DOI: 10 .1109 /ReConFig .
2016.7857191.

[44] Xilinx Inc., 7 Series FPGAs Integrated Block for PCI Express
v3.3 – LogiCORE IP Product Guide, PG054, 5. April, 2017.

[45] ——, 7 Series FPGAs Memory Interface Solutions – User
Guide, UG586, 18. Januar, 2012.

[46] ——, LogiCORE IP Tri-Mode Ethernet MAC v5.2 – User
Guide, UG777, 18. Januar, 2012.

[47] H. Zimmermann, “Osi reference model - the iso model of
architecture for open systems interconnection”, IEEE Trans-
actions on Communications, vol. 28, no. 4, pp. 425–432, Apr.
1980, ISSN: 0090-6778. DOI: 10.1109/TCOM.1980.1094702.

[48] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin,
“Xensocket: A high-throughput interdomain transport for vir-
tual machines”, in Middleware 2007, Springer, 2007, pp. 184–
203.

[49] R. Backasch, G. Hempel, S. Werner, S. Groppe, and T.
Pionteck, “Identifying homogenous reconfigurable regions in
hetero"-gene"-ous fpgas for module relocation”, in ReConFig-
urable Computing and FPGAs (ReConFig), Int’l Conf. on,
IEEE, 2014, pp. 1–6.

[50] H. Gross, S. Mangard, and T. Korak, “An efficient side-
channel protected aes implementation with arbitrary protection
order”, in Cryptographers’ Track at the RSA Conference,
Springer, 2017, pp. 95–112.

[51] S. Skorobogatov and C. Woods, “Breakthrough silicon scan-
ning discovers backdoor in military chip”, in Cryptographic
Hardware and Embedded Systems – CHES 2012: 14th Inter-

national Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 23–40, ISBN: 978-3-642-33027-8. DOI: 10 . 1007 /
978-3-642-33027-8_2.

[52] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B.
Sunar, “Trojan detection using ic fingerprinting”, in 2007
IEEE Symposium on Security and Privacy (SP ’07), May 2007,
pp. 296–310. DOI: 10.1109/SP.2007.36.

[53] Xilinx Inc., 7 series fpgas configuration, User guide 470, 1.11,
Sep. 27, 2016.

[54] C. Rebeiro and D. Mukhopadhyay, “High Speed Compact
Elliptic Curve Cryptoprocessor for FPGA Platforms”, in In-
docrypt, Springer, vol. 5365, 2008, pp. 376–388. DOI: 10 .
1007/978-3-540-89754-5_29.

[55] H. Hsing. (Jan. 29, 2013). Opencores - sha3 core, [Online].
Available: https://opencores.org/project,sha3 (visited on 2018-
11-25).

[56] ——, (Dec. 14, 2015). Opencores - tiny aes, [Online]. Avail-
able: https://opencores.org/project,tiny_aes (visited on 2018-
11-25).

[57] D. Mukhopadhyay, C. Rebeiro, and S. Roy. (Dec. 9, 2008).
Elliptic Curve Crypto Processor for FPGA Platforms, [Online].
Available: http://cse.iitkgp.ac.in/~debdeep/osscrypto/eccpweb/
index.html (visited on 2018-11-25).

[58] ITA – The Internet Traffic Archive, EPA-HTTP – A day
of HTTP logs from a EPA WWW server. 2016. [Online].
Available: http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html
(visited on 2018-11-25).

[59] Amazon Inc. (2018). Amazon EC2 F1 Instances – Run Custom
FPGAs in the AWS Cloud, [Online]. Available: https://aws.
amazon.com/ec2/instance-types/f1/ (visited on 2018-11-25).

[60] Xilinx Inc., VCU1525 Reconfigurable Acceleration Platform
– User Guide, UG1268 (v1.0), 13. November, 2017.

[61] H. Burau, R. Widera, W. Honig, et al., “Picongpu: A fully
relativistic particle-in-cell code for a gpu cluster”, IEEE Trans-
actions on Plasma Science, vol. 38, no. 10, pp. 2831–2839,
2010.

[62] A. Schaefer, M. Reichenbach, and D. Fey, “Continuous inte-
gration and automation for devops”, in IAENG Transactions
on Engineering Technologies, Springer, 2013, pp. 345–358.

[63] R. Steinbrück, M. Kuntzsch, M. Justus, T. Bergmann, and
A. Kessler, “Trigger generator for the superconducting linear
accelerator elbe”, 2016. DOI: 10.18429/JACoW- IBIC2015-
MOPB011.

[64] L. Kalms and D. Gohringer, “Clustering and Mapping Al-
gorithm for Application Distribution on a Scalable FPGA
Cluster”, in 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), IEEE, 2016,
pp. 105–113.

