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Abstract - The advent of Industry 4.0 has given rise to the 

introduction of new industrial automation architectures that 

emphasize the use of digital technologies. In this paper, we 

present a novel, standards-based Reference Architecture for 

industrial automation, which combines the benefits of edge 

computing and blockchain technologies for flexible and 

reliable orchestration of automation workflows and distributed 

data analytics. Accordingly, we illustrate a practical 

implementation of the Reference Architecture for scalable and 

programmable data analytics, along with its deployment in an 

Industry 4.0 pilot plant. 
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I.  INTRODUCTION 

The vision of future manufacturing foresees flexible and 
hyper-efficient plants that will enable manufacturers to 
support the transition from conventional “made-to-stock” 
production models, to the emerging customized ones such as 
“made-to-order”, “configure-to-order” and “engineering-to-
order” [1]. Flexibility in automation is a key prerequisite to 
supporting the latter production models: It facilitates 
manufacturers to change automation configurations and 
rapidly adopt new automation technologies, as a means of 
supporting variation in production without any essential 
increase in production costs.  

In order to support flexibility in automation, the industrial 
automation community has been exploring options for the 
virtualization of the automation pyramid, as part of the 
transformation of mainstream centralized automation models 
(like ISA-95) to more distributed ones. Several research and 
development initiatives have introduced decentralized 
factory automation solutions based on technologies like 
intelligent agents [2][3] and Service Oriented Architectures 
(SOA) [4][5]. These initiatives produced proof-of-concept 
implementations that highlighted the benefits of 

decentralized automation in terms of flexibility. However, 
they are still not being widely deployed in manufacturing 
plants, mainly due to the fact that the cost-benefit ratio of 
such solutions is perceived as unfavourable. Nevertheless, 
the vision of decentralizing the factory automation pyramid 
is still alive, as this virtualization can potentially make 
production systems more agile, increase product quality and 
reduce cost.  

With the advent of the fourth industrial revolution 
(Industry 4.0) and the Industrial Internet of Things (IIoT), 
decentralization is being revisited in the light of the 
integration of Cyber-Physical Systems (CPS) with cloud 
computing infrastructures. Therefore, several cloud-based 
applications are deployed and used in factories, which 
leverage the capacity and scalability of the cloud while 
fostering supply chain collaboration and virtual 
manufacturing chains. Early implementations have also 
revealed the limitations of the cloud in terms of efficient 
bandwidth usage and its ability to support real-time 
operations, including operations close to the field.  

More recently, the edge computing paradigm has been 
explored in order to alleviate the limitations of cloud-centric 
architectures. Edge computing architectures move some part 
of the system’s overall computing power from the cloud to 
its edge nodes, i.e., on the field or in close proximity to it –as 
a means of [6][7]: 

 Saving bandwidth and storage, as edge nodes can filter 
data streams from the field in order to get rid of 
information without value for industrial automation. 

 Enabling low-latency and proximity processing, since 
information can be processed close to the field.  

 Providing enhanced scalability, through supporting 
decentralized storage and processing that scales better 
than cloud processing.  

 Supporting shopfloor isolation and privacy-friendliness, 
since edge nodes at the shopfloor are isolated from the 
rest of the network.  
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These benefits make edge computing suitable for specific 
classes of use cases in factories, including: 

 Large scale distributed applications, typically 
applications that involve multiple plants or factories, 
which process streams from numerous devices at scale. 

 Near-real-time applications, which analyse data close to 
the field or even control CPS systems such as smart 
machines and industrial robots.   

As a result, the application of edge computing to factory 
automation is extremely promising, since it empowers 
decentralization in a way that still supports real-time 
interactions and scalable analytics. Therefore, it is no 
accident that there are ongoing efforts to provide edge 
computing implementations for industrial automation in 
general and factory automation in particular. Furthermore, 
reference architectures (RAs) for IIoT and industrial 
automation exist, which highlight the importance of edge 
computing for compliant implementations. In this article, we 
present a reference architecture (RA) for factory automation 
based on edge computing and distributed ledger technology, 
which has been specified as part of the H2020 FAR-EDGE 
project [8]. The FAR-EDGE RA specifies some unique 
features and capabilities, which differentiate them from other 
on-going implementations of edge computing for factory 
automation. Most of these unique features concern the 
exploitation of Distributed Ledger Technology (DLT), today 
commonly referred to as “blockchain”, as a means of 
representing and synchronizing automation and data 
analytics processes based on Smart Contracts. These can be 
dynamically configured, stored securely and executed in a 
distributed way, enabling flexibility and scalability in factory 
automation processes. The implementation of such smart 
contracts can take advantage of existing distributed ledger 
platforms. In the scope of FAR-EDGE the popular, open 
source Hyperledger Fabric provides the foundation for 
implementing smart contracts and synchronizing distributed 
processes, as presented in later sections. 

Overall, the FAR-EDGE RA combines the power of edge 
computing for performing operations close to the field, with 
the reliability and trustworthiness benefits of distributed 
ledger technologies in terms of the synchronization of 
distributed processes. This is based on the implementation of 
a tier of edge nodes where edge functionalities are 
performed, and its combination with a tier of ledger services 
that is in charge of plant-wide synchronization of edge 
nodes. As part of the paper we illustrate the implementation 
of a Distributed Data Analytics (DDA) platform that adheres 
to the FAR-EDGE RA, leveraging both edge and ledger tier 
functionalities. This DDA implementation comes with an 
additional benefit: it is flexibly extensible and programmable 
in terms of the definition of edge processing capabilities over 
field data. Combined with the functionalities of the ledger 
services, this programmability provides integrators of 
industrial automation solutions with additional flexibility in 
implementing distributed analytics systems. The 
implementations of both the ledger services and the 
programmable Edge Analytics (EA) services are publicly 
available as open source software. 

Note that the present paper represents a significantly 
extended version of a conference paper that introduced the 
FAR-EDGE RA [1]. In particular, this paper includes 
practical insights on the actual implementation of the edge 
and ledger tiers of the RA, as part of the DDA platform. It is 
therefore targeted to researchers and practitioners that might 
be interested in using the RA and/or its open source 
implementation in their solutions. It is also destined to the 
IIoT and Industry4.0 open source community, which is 
starving for novel, yet practical components for industrial 
automation and distributed analytics. Note that this paper is a 
significantly extended version of a conference article of the 
authors [1].  

The paper is structured as follows: Section II, following 
this introduction, presents state-of-the-art specifications and 
implementations of the edge computing paradigm for factory 
automation, as well as the current status in the use of 
blockchains for industrial applications. It also positions 
FAR-EDGE against them. Section III introduces the FAR-
EDGE RA, from a functional and structural perspective. 
Section IV presents the prototype implementation of the 
DDA platform, including its programmability features. 
Section V is devoted to the presentation of the 
implementation of ledger services, based on extensions over 
a permissioned blockchain infrastructure, namely IBM’s 
Hyperledger Fabric. Section VI illustrates the deployment of 
the EA systems in an Industry4.0 pilot plant. Finally, Section 
VII concludes the paper. 

II. RELATED WORK 

Acknowledging the benefits of edge computing for 
industrial automation, standards development organizations 
(SDOs) have specified relevant RAs, while industrial 
organizations are already working towards providing 
tangible edge computing implementations.  

SDOs such as the OpenFog Consortium and the 
Industrial Internet Consortium (IIC) have produced RAs for 
industrial automation applications. In particular, the RA of 
the OpenFog Consortium prescribes a high-level architecture 
for Internet-of-Things (IoT) systems, which covers industrial 
IoT use cases. On the other hand, the RA of the IIC [9] 
outlines the structuring principles of systems for industrial 
applications. The IIC RA prescribes the use of edge 
computing components and principles for compliant 
implementations. It addresses a wide range of industrial use 
cases in multiple sectors, including factory automation. 
These RAs have been recently released and their reference 
implementations are still in their early stages. 

A reference implementation of the IIC RA’s edge 
computing functionalities for factory automation is provided 
as part of IIC’s edge intelligence testbed [10]. This testbed 
provides a proof-of-concept implementation of edge 
computing functionalities on the shopfloor. The focus of the 
testbed is on configurable edge computing environments, 
which enable the development and testing of systems and 
algorithms for EA. Moreover, Dell-EMC has recently 
announced the EdgeX Foundry framework [11], which is a 
vendor-neutral open source project hosted by the Linux 
Foundation that builds a common open framework for IIoT 
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edge computing. The framework is influenced by the above-
listed RAs and was recently released. Other vendors are also 
incorporating support for edge devices and Edge Gateways 
in their cloud platforms.  

FAR-EDGE is uniquely positioned in the landscape of 
edge computing solutions for factory automation. In 
particular, the FAR-EDGE architecture is aligned to the IIC 
RA, while exploiting concepts from other RAs and standards 
such as the OpenFog RA and RAMI 4.0 (Reference 
Architecture Model Industry 4.0) [12]. However, FAR-
EDGE explores pathways and offers functionalities that are 
not addressed by other specifications and reference 
implementations. In particular, it researches the applicability 
of disruptive key enabling technologies like DLT and Smart 
Contracts in factory automation. DLT, while being well 
understood and thoroughly tested in mission-critical areas 
like digital currencies (e.g., Bitcoin), have never been 
applied before to industrial systems. This is mainly due to 
performance concerns about their use, despite their 
trustworthiness and reliability benefits. However, in 
literature the merit of DLT for synchronizing distributed 
processes have been recently acknowledged [13]. 

FAR-EDGE aims at demonstrating how a pool of 
specific Ledger Services built on a generic DLT platform can 
enable decentralized factory automation in an effective, 
reliable, scalable and secure way. In particular, Ledger 
Services are responsible for sharing process state and 
enforcing business rules across the computing nodes of a 
distributed system, thus permitting virtual automation and 
analytics processes that span multiple nodes – or, from a 
bottom-up perspective, autonomous nodes that cooperate to a 
common goal. This is one of project’s unique contributions, 
which sets it apart from similar edge computing efforts and 
provides increased flexibility and reliability.  

 

III. FAR-EDGE REFERENCE ARCHITECTURE 

The FAR-EDGE RA is a conceptual framework that 
drives the design and the implementation of automation 
platforms based on edge computing and DLT technologies. It 
is aligned to IIC’s RA concepts and described from two 
architectural viewpoints: the functional viewpoint and the 
structural viewpoint, as outlined in following paragraphs. An 
overall architecture representation that includes all elements 
is provided in Figure 1. 

 

 
Figure 1.  Overview of the FAR-EDGE RA 

A. Functional Viewpoint 

According to the FAR-EDGE RA, the functionality of a 
factory automation platform can be decomposed into three 
high-level Functional Domains - Automation, Analytics and 
Simulation – and four Crosscutting (XC) Functions – 
Management, Security, Digital Models and Field Abstraction 
& Data Routing. To better clarify the scope of such topics, 
we have tried to map them to similar Industrial Internet RA 
(IIRA) concepts [9]. Functional Domains and XC Functions 
are orthogonal to structural Tiers: the implementation of a 
given functionality may – but is not required to – span 
multiple Tiers, so that in the overall architecture 
representation Functional Domains appear as vertical lanes 
drawn across horizontal layers. Figure 2 highlights the 
relationship between Functional Domains, their users and the 
factory environment. It also uses arrows to show the flow of 
data and of control. 

Automation Domain: The FAR-EDGE Automation 
domain includes functionalities supporting automated control 
and automated configuration of physical production 
processes. Automated configuration is the enabler of plug-
and-play factory equipment (better known as plug-and-
produce), which in turn is a key technology for mass-
customization, as it allows a faster and less expensive 
adjustments of the production process. The Automation 
domain requires a bidirectional monitoring/control 
communication channel with the Field, typically with low 
bandwidth but very strict timing requirements. In some 
advanced scenarios, Automation is controlled – to some 
extent – by the results of Analytics and/or Simulation. The 
Automation domain partially maps to the Control domain of 
the IIRA.  

 

 
Figure 2.  FAR-EDGE RA Functional Domains 

Analytics Domain:  The FAR-EDGE Analytics domain 
includes functionalities for gathering and processing Field 
data for a better understanding of production processes, i.e., 
a factory-focused business intelligence. This typically 
requires a high-bandwidth Field communication channel, as 
the volume of information that needs to be transferred in a 
given time unit may be substantial. On the other hand, 
channel latency tends to be less critical than in the 
Automation scenario. The Analytics domain provides 
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intelligence to its users, but these are not necessarily limited 
to humans or vertical applications (e.g., a predictive 
maintenance solution). In particular, the Automation and 
Simulation domains, if properly configured, can both make 
direct use of the outcome of data analysis algorithms. In the 
case of Automation, the behaviour of a workflow might 
change in response to changes detected in the controlled 
process – e.g., a process drift caused by the progressive wear 
of machinery or by the quality of assembly components 
being lower than usual. In the case of Simulation, data 
analysis can be used to update the parameters of a digital 
model. The Analytics domain matches perfectly the 
Information domain of the IIRA, except that the latter is 
receiving data from the Field through the mediation of 
Control functionalities. 

 Simulation Domain: The FAR-EDGE Simulation 
domain includes functionalities for simulating the behaviour 
of physical production processes for the purpose of 
optimization or of testing what/if scenarios at minimal cost 
and risk and without any impact of regular shop activities. 
Simulation requires digital models of plants and processes to 
be in-sync with the real-world objects they represent. As the 
real world is subject to change, models should reflect those 
changes. For instance, the model of a machine assumes a 
given value of electric power / energy consumption, but the 
actual values will diverge as the real machine wears down. 
To detect this gap and correct the model accordingly, raw 
data from the Field (direct) or complex analysis algorithms 
(from Analytics) can be used.  

Crosscutting Functions: Crosscutting Functions address 
common specific concerns. Their implementation affects 
several Functional Domains and Tiers. They include. 

 Management: Low-level functions for monitoring and 
commissioning/decommissioning of individual system 
modules. 

 Security: Functions securing the system against the 
unruly behaviour of its user and of connected systems. 
These include digital identity management and 
authentication, access control policy management and 
enforcement, communication and data encryption.  

 Digital Models: Functions for the management of 
digital models and their synchronization with the real-
world entities they represent. Digital modes are a shared 
asset, as they may be used as the basis for automated 
configuration, simulation and field abstraction – e.g., 
semantic interoperability of heterogeneous field 
systems.  

 Field Abstraction & Data Routing: Functions that 
ensure the connectivity of business logic (FAR-EDGE 
RA Functional Domains) to the Field, abstracting away 
the technical details – like device discovery and 
communication protocols. Data routing refers to the 
capability of establishing direct producer-consumer 
channels on demand, optimized for unidirectional 
massive data streaming – e.g., for feeding Analytics.  

 

B. Structural Viewpoint 

The FAR-EDGE RA uses two classes of concepts for 
describing the structure of a system: Scopes and Tiers. 

Scopes are very simple and straightforward: they define a 
coarse mapping of system elements to either the factory - 
Plant Scope - or the broader world of corporate IT - 
Enterprise Ecosystem Scope. Examples of elements in Plant 
Scope are machinery, Field devices, workstations, SCADA 
and MES systems, and any software running in the factory 
data centre. The Enterprise Ecosystem Scope comprises ERP 
(Enterprise Resource Planning) and PLM (Product Lifecycle 
Management) systems and any application or service shared 
across multiple factories or even companies – e.g., supply 
chain members.  

Tiers are a more detailed and technical-oriented 
classification of deployment concerns. They can be easily 
mapped to scopes, but they provide more insight into the 
relationship between system components. This kind of 
classification is quite similar to OpenFog RA deployment 
viewpoint, except for the fact that FAR-EDGE Tiers are 
industry-oriented while OpenFog ones are not. FAR-EDGE 
Tiers are one of the most innovative traits of the project’s 
RA, and are described in following paragraphs. 

The Field Tier is the bottom layer of the FAR-EDGE 
RA and is populated by Edge Nodes (EN), i.e., any kind of 
device that is connected to the digital world on one side and 
to the real world to the other. ENs can have embedded 
intelligence (e.g., a smart machine) or not (e.g., a sensor or 
actuator). The FAR-EDGE RA honours this difference: 
Smart Objects are ENs with on board computing capabilities, 
Connected Devices are those without. The Smart Object is 
where local control logic runs: it is a semi-autonomous entity 
that does not need to interact frequently with the upper layers 
of the system.  As shown in Figure 3. ENs is actually located 
over field devices.  

The Field is also populated by entities of the real world, 
i.e., those physical elements of production processes that are 
not directly connected to the network, and as such are not 
considered as ENs: Things, People and Environments. These 
are represented in the digital world by some kind of EN 
wrapper. For instance, room temperature (Environment) is 
measured by an IoT sensor (Connected Device), the 
proximity of a worker (People) to a physical checkpoint 
location is published by an RFID wearable and detected by 
an RFID Gate (Connected Device), while a conveyor belt 
(Thing) is operated by a PLC (Smart Object). 

The Field Tier is in Plant Scope. Individual ENs are 
connected to the digital world in the upper Tiers either 
directly by means of the shopfloor’s LAN, or indirectly 
through some special-purpose local network (e.g., WSN 
(Wireless Sensor Network)) that is bridged to the former. 
From the RAMI 4.0 perspective, the FAR-EDGE Field Tier 
corresponds to the Field Device and Control Device levels 
on the Hierarchy axis (IEC-62264/IEC-61512), while the 
entities there contained are positioned across the Asset and 
Integration Layers. 

The Edge Tier is the core of the FAR-EDGE RA. It 
hosts those parts of Functional Domains and XC Functions 
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that can leverage the edge computing model, i.e., software 
designed to run on multiple, distributed computing nodes 
placed close to the field, which may include resource 
constrained nodes. The Edge Tier is populated by Edge 
Gateways (EG): computing devices that act as a digital world 
gateway to the real world of the Field. These machines are 
typically more powerful than the average intelligent EN 
(e.g., blade servers) and are connected to a fast LAN (Local 
Area Network). Strategically positioned close to physical 
systems, the EG can execute Edge Processes: time- and 
bandwidth-critical functionality having local scope. For 
instance, the orchestration of a complex physical process that 
is monitored and operated by a number of sensors, actuators 
(Connected Devices) and embedded controllers (Smart 
Objects); or the real-time analysis of a huge volume of live 
data that is streamed from a nearby Field source. 

Deploying computing power and data storage in close 
proximity to where it is actually used is a standard best 
practice in the industry. However, this technique basically 
requires that the scope of individual subsystems is narrow 
(e.g., a single work station). If instead the critical 
functionality applies to a wider scenario (e.g., an entire plant 
or enterprise), it must be either deployed at a higher level 
(e.g., the Cloud) – thus losing all benefits of proximity – or 
run as multiple parallel instances, each focused on its own 
narrow scope. In the latter case, new problems may arise: 
keeping global variables in-sync across all local instances of 
a given process, reaching a consensus among local instances 
on a global truth, collecting aggregated results from 
independent copies of a data analytics algorithm, etc. The 
need for peer nodes of a distributed system to mutually 
exchange information is recognized by the OpenFog RA. A 
key innovation of the FAR-EDGE approach is that it defines 
a specific system layer – the Ledger Tier – that is responsible 
for the implementation of such mechanisms and guarantees 
an appropriate Quality of Service level. 

 

 
Figure 3.  Edge Tier in the FAR-EDGE RA 

The Edge Tier is in Plant Scope, located above the Field 
Tier and below the Cloud Tier. Individual EGs are connected 
with each other and with the north side of the system, i.e., the 
globally-scoped digital world in the Cloud Tier – by means 

of the factory LAN, and to the south side through the 
shopfloor LAN. From the RAMI 4.0 perspective, the FAR-
EDGE Edge Tier corresponds to the Station and Work 
Centre levels on the Hierarchy axis (IEC-62264/IEC-61512), 
while the EGs there contained are positioned across the 
Asset, Integration and Communication Layers. Edge 
Processes running on EGs, however, map to the Information 
and Functional Layers. 

The Ledger Tier is a complete abstraction: it does not 
correspond to any physical deployment environment, and 
even the entities that it “contains” are abstract. Such entities 
are Ledger Services, which implement decentralized 
business logic as smart contracts on top of a distributed 
ledger. Ledger Services are transaction-oriented: each 
service call that needs to modify the shared state of a system 
must be evaluated and approved by Peer Nodes before taking 
effect. Similarly to “regular” services, Ledger Services are 
implemented as executable code; however, they are not 
actually executed on any specific computing node: each 
service call is executed in parallel by all Peer Nodes that 
happen to be online at the moment, which then need to reach 
a consensus on its validity. Most importantly, even the 
executable code of Ledger Services can be deployed and 
updated online by means of a distributed ledger transaction.  

Ledger Services implement the part of Functional 
Domains and/or XC Functions that enable the edge 
computing model, through providing support for their Edge 
Service counterpart. For example, the Analytics Functional 
Domain may define a local analytics function (Edge Service) 
that must be executed in parallel on several EGs, and also a 
corresponding service call (Ledger Service) that will be 
invoked from the former each time new or updated local 
results become available, so that all results can converge into 
an aggregated data set. In this case, aggregation logic is 
included in the Ledger Service. Another use case may come 
from the Automation Functional Domain, demonstrating 
how the Ledger Tier can also be leveraged from the Field: a 
smart machine with embedded plug-and-produce 
functionality can ask permission to join the system by 
making a service call and then, having received green light, 
can dynamically deploy its own specific Ledger Service for 
publishing its state and external high-level commands. 

The Ledger Tier lays across the Plant and the Enterprise 
Ecosystem Scopes, as it can provide support to any Tier. The 
physical location of Peer Nodes, which implement smart 
contracts and the distributed ledger, is not defined by the 
FAR-EDGE RA as it depends on implementation choices.   

From the RAMI 4.0 perspective, the FAR-EDGE Ledger 
Tier corresponds to the Work Centre, Enterprise and 
Connected World levels on the Hierarchy axis (IEC-
62264/IEC-61512), while the Ledger Services are positioned 
across the Information and Functional Layers. 

The Cloud Tier is the top layer of the FAR-EDGE RA, 
and also the simplest and more “traditional” one. It is 
populated by Cloud Servers (CS): powerful computing 
machines, sometimes configured as clusters, which are 
connected to a fast LAN internally to their hosting data 
centre, and made accessible from the outside world by means 
of a corporate LAN or the Internet. On CSs runs that part of 
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the business logic of Functional Domains and XC Functions 
that benefits from having the widest of scopes over 
production processes, and can deal with the downside of 
being physically deployed far away from them. This includes 
the planning, monitoring and management of entire factories, 
enterprises and supply chains (e.g., ERP and SCM (Supply 
Chain Management) systems). The Cloud Tier is populated 
by Cloud Services and Applications. Cloud Services 
implement specialized functions that are provided as 
individual API calls to Applications, which instead 
“package” a wider set of related operations that are relevant 
to some higher-level goal and often expose an interactive 
human interface. 

The Cloud Tier is in Enterprise Ecosystem scope. The 
“Cloud” term in this context implies that Cloud Services and 
Applications are visible from all Tiers, wherever located. It 
does not imply that CSs should be actually hosted on some 
commercial cloud. In large enterprises, the Cloud Tier 
corresponds to one or more corporate data centres (private 
cloud), ensuring that the entire system is fully under the 
control of its owner.   

In terms of RAMI 4.0, the FAR-EDGE Cloud Tier 
corresponds to the Work Centre, Enterprise and Connected 
World levels on the Hierarchy axis (IEC-62264/IEC-61512), 
while the Cloud Services and Applications are positioned 
across the Information, Functional and Business Layers. 

 

IV. EDGE TIER SERVICES FOR HIGH-PERFORMANCE AND 

PROGRAMMABLE EDGE ANALYTICS  

The FAR-EDGE DDA services span the Edge, Ledger 

and Cloud Tiers of the FAR-EDGE RA, as illustrated in the 

following paragraphs. 

A. Overview of DDA Tiers 

Based on the principles of the FAR-EDGE RA, we have 
implemented a Distributed Data Analytics (DDA) platform, 
which enables integrators of factory automation solutions to 
specify and implement highly distributed data analytics 
logic, based on data stemming from different parts of a plant. 
DDA is classified as a reusable, self-sustained component 
(i.e., “enabler”), which supports the functionalities of the 
Analytics Domain of the FAR-EDGE RA. The DDA 
platform implementation spans both the Edge and the Ledger 
Tiers of the FAR-EDGE RA: 

 The Edge Tier that provides the means for accessing and 
routing field data. Moreover, at the Edge Tier the Edge 
Analytics Engine (EAE) engine is implemented, which 
provides the means for executing locally scoped data 
analytics functionalities, and 

 The Ledger Tier leverages “Smart Contracts” that 
manage analytics configurations. A Smart Contract 
keeps track and synchronizes information across 
multiple Edge Gateway nodes. In this way, it provides 
the means for executing factory-wide data analytics, 
which span multiple locally scoped analytics functions 
running in Edge Gateways. 

Moreover, the DDA implementation takes advantage of the 
Cloud Tier as well, where plant-wide data are collected, 
aggregated and consolidated.  
In this section, we present the specification and 
implementation of the Edge Tier of the DDA platform, 
which is configurable with almost zero programming. 
Likewise, the next section illustrates the implementation of 
the Ledger Services that support the Ledger Tier of the DDA 
platform. 
 

B. DDA’s Edge Tier: The Edge Analytics Engine (EAE)  

The EAE is a runtime environment hosted in an EG, i.e., 
at the edge of an industrial automation deployment. It is the 
programmable and configurable environment that executes 
data analytics logic locally in order to meeting stringent 
performance requirements, mainly in terms of latency. While 
the Ledger Services are in charge of managing Smart 
Contracts and executing distributed analytics across EGs, the 
EAE is in charge of data analytics within a single EG. The 
EAE is also configurable, while comprising multiple 
analytics instances that are driven by multiple smart 
contracts. It consists of the following main components: 

 the EA-Orchestrator; 

 the EA-Processor; 

 the Local EA-Repository, 
which are described in following paragraphs. 

 
The EA-Orchestrator provides the run-time 

environment that controls and executes EA instances, which 
are specified in a format that is conveniently called Analytics 
Manifest (AM).  In particular, the EA-Orchestrator is able to 
parse and execute analytics functions and rules specified in 
an AM. The following statements define the EA-
Orchestrator main operation: 

 An AM defines a set of EA functionalities, as a graph of 
processing functions, which can be executed by the EA-
Processor. 

 The EA-Orchestrator parses an AM and executes the 
analytics functions that they comprise. 

 The EA-Orchestrator is able to execute multiple, 
concurrent analytics instances. The latter are specified in 
AMs. 

From an implementation perspective, AMs are 
represented in different forms such as: a configuration file or 
an entry in a database, or even a part of a smart contract in 
the blockchain.  No matter the implementation technology, 
the semantics of the AM specify an analytics instance. 
Hence, the underlying mechanisms that support execution of 
AMs are independent from specific implementation 
technologies, as they are based on the implementation 
agnostic file format that is available as part of the open 
source implementation of the EAE. 

The AM includes the information needed to drive the 
operation of the EA-Orchestration, including for example the 
attributes and sequences needed to setup the required jobs on 
the EA-Processor. As part of its operation the EA-
Orchestrator MAY instantiate multiple EA-Processor 
instances for the purposes of executing an EA instance, 
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which is described through an AM. Each AM holds the 
attributes and sequences to set up the required processor jobs 
in order to serve one EA instance (i.e., one AM). 

The EA-Processor implements the data processing 
functionalities that are necessary to implement an EA task. 
These functionalities are encapsulated in different processor 
types, including: 

 Pre-processors, which prepare data streams for 
analysis, based on the specifications of the target 
analytics tasks. A pre-processor interacts with a Data 
Bus in order to acquire streaming data from the field. At 
the same time, it also produces and registers new 
streams in the same Data Bus. 

 Analytics Processors, which apply analytics algorithms 
to one or more data streams. Similar to the pre-
processor, the analytics processor consumes and 
produces data through interaction with the Data Bus. 

 Store Processors, which are used to store streams to 
repositories. 

Pre-processors, analytics processors and store processors 
define three different types of functionalities that are 
supported by the EAE. Given these processor types, a 
specific instance of EA is implemented by setting up 
multiple processors, which are connected in a graph-like 
fashion thus forming a topology. The topology is specified in 
the AM, which will be represented as a Smart Contract. The 
topology and the overall process are controlled by the EA 
orchestrator. 

 

 
Figure 4.  Anatomy of the Edge Analytics Engine 

Figure 5 illustrates an example topology and runtime 
operations for EA Processor. In this example, two streams 

(CPS1 and CPS2) are pre-processed from Processor Job 1 
(i.e., Pre-Processor) and Processor Job 2 (i.e., Pre-Processor) 
equivalently in order for an analytics algorithm (i.e., 
Processor Job 3) (i.e., Analytics Processor) to be applied to 
them. Finally, the result needs to be stored to a Data Storage 
with the help of Processor Job 4 (i.e., Storage Processor). 
The setup and runtime operation of the EA-Processor entails 
the following steps: 

 Step1 (Set-up): Based on the description of the 
topology and required processors in the AM, the EA-
Orchestrator instantiates and configures the required 
Processor jobs.  

 Step2 (Runtime): Processor Job 1 consumes and pre-
processes streams coming from CPS1. Likewise, 
Processor Job 2 consumes and pre-processes streams 
coming from CPS2. 

 Step3 (Runtime): Analytics Processor Job 3 consumes 
the produced streams from Processor Job 1 and 2 for 
applying the analytics algorithm. 

 Step4 (Runtime): Store Processor Job 4 consumes the 
data stream produced from Processor Job 3 and 
forwards it to the Data Storage. 

 Step5 (Runtime): Data Storage persists the Data 
coming from Store Processor Job 4. 

Beyond this simple example, much more complex EA 
workflows can be implemented based on combination of the 
three different types of processors. The supported scenarios 
are only limited by the expressiveness of the domain specific 
language / format that is used to define and represent an AM. 

 

 
Figure 5.  EA Topology Example 

C. Using the EAE for Edge Analytics  

There are two main ways in which solution developers 
and integrators can use the EAE: 

 Configuration and execution of analytics queries: 
First, they can configure and formulate an analytics 
query, while they can accordingly execute based on the 
EAE runtime.  

 Extension of the EAE with analytics capabilities: 
Second, they can extend the EAE enabler with 
additional processing capabilities, which respecting the 
structure and specification of the engine. 

These two ways for taking advantage of the EAE are 
illustrated in the following paragraphs. 
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In terms of the configuration and Runtime Execution of 
Analytics Queries, integrators can take advantage of the EAE 
API in order to configure and execute analytics queries 
within an EG. The process includes the following steps: 

 Discovery of Devices: The first step involves discovery 
of field devices residing in a devices’ registry. Devices 
define the available data sources to be analyzed by the 
EAE.  

 Discover available processors: Following the 
discovery of devices, available data processors 
registered in the registry are dynamically identified as 
well. As already outlined there are three types of 
processors (i.e., preprocessors, analytics, storage) and 
multiple instances of each one might be available. Each 
distinct instance is providing different functionalities 
based on different implementations. 

 Define and create the Analytics specification: Based 
on the available devices and processors, a manufacturer 
or solution integrator can specify an AM, which defines 
their desired EA tasks. The definition of the AM 
comprises a flow of processors, including processor of 
all three types (i.e., pre-processing, analytics, storage) 
supported by the EAE engine. It also defines the 
analytics results to be produced, as well as where they 
are to be stored / persisted. The specification of the AM 
can take place based on the use of the EAE’s RESTful 
API. However, in future releases of the EAE we plan to 
provide a GUI tool in order to facilitate zero-
programming specification of the EA tasks. 

 Execute the AM at runtime: This step involves the 
runtime execution of the AM through the EA-
Orchestrator using its API. With the AM at hand, this 
step is straightforward and involves the loading an 
execution of the specification of the manifest. Upon the 
AM’s execution, the analytics results are produced in 
the forms of name/value pairs, which are stored as 
specified by the StoreProcessor. 

In terms of extending the EAE with Processing & 
Analytics Capabilities, AMs can be configured and used. 
AMs provide a convenient mechanism for defining and 
executing analytics based on a set of available devices and 
processors. Integrators are able to extend the analytics 
capabilities of the EAE, based on the specification and 
deployment of additional processing functions. Additional 
processing functions have to be of one of the specified types, 
which will allow their integration and use within AMs.  

The process of extended EAE’s capabilities involves the 
following steps: 

 Implementation of a Processor Interface: In order to 
extend the EAE with a new processor, an integrator has 
to provide an implementation of a specific interface, i.e., 
the interface of the processor. In practice, each of the 
three processor types comes with its own interface, 
which specifies its behavior in the scope of the EAE 
engine. 

 Registration of the Processor to the Registry: Once a 
new processor is implemented, it has to become 
registered to the registry. This will render it discoverable 

by solution developers and manufacturers that develop 
AMs for their needs, based on available devices and 
processors.  

 Using the processor: Once a processor becomes 
available, it can be used for constructing AMs. 

 

D. EAE Open Source Implementation  

Apart from a detailed specification of EAE in terms of 
interfaces, APIs and data schemas for the various processors 
and the AMs, we have also implemented a prototype of the 
EAE as open source software [15]. The structure of the 
implemented system is depicted in Figure 6. As evident in 
the figure, we take advantage of a Docker container for each 
distinctive component of our deployment in order to 
facilitate the distribution, integration and scalability of the 
system. The Data Bus of the implementation is based on the 
Apache Kafka platform, which is a distributed system that 
scales out easily, while offering very high throughput for 
both publishing and subscribing tasks. Moreover, Kafka 
supports multi-subscribers and automatically balances the 
consumers during failures. 

The EA-Orchestrator component is also deployed in a 
Docker container. Hence, the EA-Orchestrator API can be 
invoked from third party RESTful Client Application (i.e., 
Postman). To this end, a postman script mapping to the 
Orchestrator API is offered from GitHub. At the same time, 
predefined test scripts (i.e., scripts corresponding to AM 
manifests) have been generated with known actors (CPSs, 
EA-Processors, configuration attributes etc.). 

The EA-Processor component is also deployed in a 
Docker container. It subscribes to the Data Bus based on the 
known device IDs. The EA-Processor operates based on a 
known Number and types of Data Streams. It leverages a 
static data format. 

All available processor types can be used in order to 
provide a complete test environment including the pre-
processing, analytics and analytics storage processors. 

 

 
Figure 6.  Edge Analytics Engine Implementation 
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V. LEDGER SERVICES FOR FACTORY WIDE DISTRIBUTED 

DATA ANALYTICS 

The FAR-EDGE Ledger Services enable the most 

innovative part of the DDA platform, as illustrated in the 

following paragraphs. 

A. Overview 

The DDA Platform uses Ledger Services in order to 
configure plant- and factory-wide analytics processes. Each 
configuration of analytics algorithms maps to a specific 
Ledger Service. Every Ledger Service configures one or 
(usually) more analytics instances. The underlying 
Distributed Ledger keeps track of multiple analytics 
configurations. Such configurations are executed by the 
DDA on production processes that run simultaneously in 
various locations of the factory. 

Moreover, when one analytics task spans multiple EAE 
instances, a Ledger Service is used to collect local results 
and implement aggregating logic. 

 

B. Implementation Considerations and Baseline DLT 

As explained in the FAR-EDGE RA, the Ledger Tier and 
Ledger Services are based on DLT – i.e., a Blockchain 
platform. Concretely, this platform is the Hyperledger Fabric 
(HLF), which is a commercial-grade Blockchain 
implementation. HLF has been selected for a number of 
reasons including its business-friendly open source license, 
its larger and active community, as well as its support for 
custom transaction logic (i.e., “smart contracts”) and custom 
data models. Moreover, HLF is a “permissioned” Blockchain 
as it supports private networks, which are the primary choice 
for industrial automation deployments. 

The HLF architecture is illustrated in Figure 6. 
Membership and Orderer are the two elements of the system 
that are not decentralized, being implemented as central 
services. Peers, on the contrary, are an arbitrary number of 
computing nodes that can be deployed anywhere – typically 
on Edge Gateways – and that run in parallel, providing all 
the basic services that support the lifecycle of ledger 
transactions: validation (Endorser), confirmation 
(Committer), state persistence (Ledger) and listener 
notification (Events). Last but not least, Peer nodes are 
where Ledger Services are deployed and run.  

 

 
 

Figure 7.  Hyperledger Fabric Logical Architecture [14] 

C. Ledger Services  

At the platform level, a Ledger Service is a Chain code 
program – i.e., the HLF-specific term for a smart contract. It 
is designed to support a well-defined, application-specific 
process. In particular, it is responsible for defining a data 
model, executing business logic and enforcing access and 
usage policies. The state of the process is automatically 
maintained and persisted in the background by the HLF 
platform, which logs every state change in a distributed 
ledger that is replicated across all peer nodes. 

The data model is shaped by the Chain code itself: a 
dedicated data store is allocated and initialized by a special 
code section when the Chain code is first deployed. Once the 
data store is initialized, no structural changes are expected to 
happen. It is worth noting that Chaincode instances – and 
their related data store – are deployed on all peer nodes 
simultaneously. 

Application logic is also coded in the Chain code and is 
delivered as a number of service endpoints that can be called 
by clients over the network. These endpoints represent the 
API of the Ledger Service: only through them callers can 
query and change its state.  The API can be invoked by 
authorized clients following some well-documented calling 
conventions of the HLF platform. State-changing calls are 
managed as a “transaction” by the platform: if the call 
executes successfully, changes are applied to the persistent 
storage in all peer nodes; on the other hand, if any error 
condition is detected (e.g., the Chaincode raising an 
exception), the platform guarantees that any partial change is 
reverted. 

 

 
Figure 8.  Ledger Services Architecture 

In the DDA context, each Ledger Service comes with its 
own client software library: the Ledger Client. The library 
provides an in-process API (e.g., Java classes and methods) 
the matches the network API from a functional point of view 
but has a much simpler call semantics and hides a lot of 
HLF-specific technicalities (e.g., user authentication through 
digital certificates). Ledger Clients can be embedded into 
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client applications at design time, and used at runtime as a 
local proxy of the actual Ledger Service API. Figure 8 
illustrates the concepts described above from an architectural 
perspective, focusing on a single peer node. 

 
As already outlined, peer nodes are autonomous sub-

systems that run in parallel to provide decentralization and 
redundancy: each one holds a synchronized copy of the 
distributed ledger (i.e., the global state of all Ledger Services 
plus the full history of state-changing transactions) and 
executes code Ledger Services inside a sandbox environment 
that isolates each of them from all the others. In order to 
dynamically adapt the system to the changing needs of the 
shopfloor, peer nodes can be added to or removed from the 
running system without any downtime. A number of peer-to-
peer protocols are used by peer nodes to collaborate 
seamlessly with each other, so that the whole system appears 
to its users as being monolithic. In Figure 9, this relationship 
is depicted by the “DL Protocols” logical block, that 
represents the use of common standards for inter-peer 
communication. Applications can link to the Ledger Service 
API they are interested in on any peer node of their choice, 
as all nodes are identical: a service call results in the same 
code being executed in parallel on each and every node. This 
redundancy mechanism is what makes the DL a truly 
decentralized system with exceptional scalability, 
trustworthiness and reliability properties. 

 

 
Figure 9.  Distributed Ledger Protocol operating across Edge Gateways 

In the context of the DDA platform, peer nodes are 
usually – but not mandatorily – installed on Edge Gateway 
servers, together with Edge Tier components. This setup 
allows for clients that run on Edge Gateways, like the EAE, 
to refer to a local address by default when resolving Ledger 
Service endpoints. However, peer nodes can be as easily 
deployed and used on the Cloud Tier, to make them 
addressable from anywhere; or even embedded into Smart 
Objects on the Field Tier, to turn the Smart Objects into 
members of a collaborative P2P (Peer-to-Peer) network.  

The definition of access control policies for Ledger 
Services, and their enforcement at runtime, are built-in 
features of HLF. There is a fair degree of flexibility in the 
HLF security subsystem, as individual service endpoints can 

be optionally protected my means of attribute-based access 
control (ABAC). At the most basic level, though, all nodes 
of the network – including the clients – must have a strong 
digital identity and be authorized by a central authority in 
order to join the system. On the other hand, when 
application-specific control is required, the Ledger Service 
can manage it as part of the implementation.  

 

D. Self-Adjustment and Recofiguration (SAR) Service 

Self-Adjustment and Reconfiguration (SAR) is an 
infrastructural feature of the DDA platform. It supports the 
capability of Smart Objects on the shopfloor to join & leave 
the system autonomously and to adapt themselves to 
changing needs and environments in a coordinated way. 
SAR exploits features of the Ledger Tier, in particular those 
related to the decentralized coordination of local processes. 

The SAR architecture follows the FAR-EDGE RA, 
spanning three of its layers. The bottom one is the Field Tier, 
populated by Edge Nodes (EN); right above it, the Edge Tier 
where a number of Edge Gateways (EG) run some Data 
Routing components; on top, the Ledger Tier hosting a 
dedicated Ledger Service: the SAR Service. This design, 
represented in Figure 10, is driven by a central concept of the 
FAR-EDGE RA, which breaks down globally-scoped 
systems into “local clouds”. In the SAR context, Data 
Routing components on EGs act as “caching proxies” of the 
SAR Service. More specifically, each EG runs a local device 
registry that is actually partial view over the master one 
maintained by the SAR Service. The objective of this design 
is to allow a local cloud, composed by one EG and a number 
of EN satellites, to act as a modular unit which can be 
plugged in and out, and even keep working when 
temporarily disconnected from the main factory network. 

 

 
Figure 10.  SAR Service Overview 

The SAR Service enables the registration, discovery and 
de-registration of devices that are producers or consumers of 
data streams – i.e., live data flowing from the shopfloor that 
must be processed in real time. Devices can be either real or 
virtual. Real devices can be Smart Objects having the built-
in capability of registering and de-registering themselves 
according to needs (as depicted in Figure 10 above), or 
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passive IoT sensors that need an administrator to perform 
these tasks manually. Virtual devices are, instead, computing 
processes that run on some network node. An example of a 
virtual data consumer is an analytics program that runs on an 
EG machine. A virtual data producer may be a program that 
extracts live data from a legacy database and streams it using 
some IoT protocol. 

The SAR Service also provides endpoints for the creation 
and decommissioning of communication channels between 
data producers and consumers. Channels are an abstract 
notion used to govern how data consumers can connect to 
data producers, and are the foundation for the enforcement of 
a device-level access control mechanism. An example use 
case can help illustrate this point: when a given data 
consumer wants to establish a new connection to a known 
data producer (presumably discovered using the registry), it 
will first need to obtain the authorization to do so from the 
infrastructure. This is done by means of a SAR Service API 
call: if successful, this call creates a channel descriptor into 
the registry. The data producer will then be able to check if 
incoming connection requests come from “authorized” 
consumers, and refuse to service them if not.   

VI. PILOT PLANT DEPLOYEMENT 

We have deployed, tested and demonstrated the DDA in 

the scope of a pilot plant, which has been built in the scope 

of the Technology-Initiative Smart Factory-KL. The latter is 

a testbed for testing and demonstrating the future factory of 

industrial automation. The plant is arbitrarily modifiable and 

expandable (flexible), connects arbitrary components of 

multiple manufacturers (networked), enables its components 

to perform context-related tasks autonomously (self 

organizing) and emphasizes user friendliness (user-

oriented).  

The testbed comprises three Infrastructure Boxes (IB). 

Each IB comprises energy sensors, which are accessible via 

an MQTT interface. Energy data are provided every second 

and comprises information such as the total real power, the 

total reactive power, the total apparent power, the total real 

energy, the total reactive energy, the total apparent energy 

and more. As part of the DDA deployment, we provide the 

means for computing the hourly daily consumption of the 

real power and the real energy for each IB and for all three 

IBs. To this end, on Edge Gateway (comprising an EAE) 

has been deployed in each one of the IBs.  

A data model comprising a Data Interface (DI), a Data 

Source (DSD) and a Data Kind (DK) has been developed 

and used to generate a Data Source Manifest (DSM), which 

is registered in each Edge Gateway. In-line with 

specification of the EAE, a number of processors have been 

modelled and developed, including a processor for hourly 

average calculation from a single data stream, as well as a 

processor for persisting results in a MongoDB.  

The specified at models are used to generate the 

Analytics Processor Manifest (APM) for each required 

processor, which is registered to the Edge Gateway. 

Instances of the above listed processors are created in order 

to calculate hourly averages from the total real power and 

from the total real energy data streams. Moreover, the 

processor for persisting results is instantiated in order to 

store results at the edge tier (i.e., in the Edge Gateway’s 

MongoDB) and at the cloud tier (i.e., a cloud-based 

MongoDB destined to store global results). The former 

(edge tier MongoDB) holds the results of EA, while the 

latter (cloud tier MongoDB) holds the results of factory-

wide DDA. Further deployments will be made to get the 

data from individual Smart Factory-KL modules. These 

modules can provide additional data such as presence of 

other nearby modules, current status of the production, state 

of the module, the order that is being processed along with 

its priority and other attributes. 

Ledger Services are used for orchestrating the 

instantiated processors. The orchestration is based on an 

AM, which is registered and controlled through the 

distributed data Analytics Engine API. 
  

VII. CONCLUSIONS 

This paper has introduced a novel RA for decentralized 
industrial automation, which combines the benefits of edge 
computing (i.e., near real-time control and data processing) 
with the capabilities of blockchains in terms of 
synchronizing distributed processes in scalable way. We 
have also illustrated a tangible implementation of a DDA 
platform, which adheres to the main principles of the 
presented RA. In particular, the DDA platform is empowered 
by a runtime time environment for programmable, high-
performance EA, as well as by a set of distributed ledger 
services, which enable secure state sharing across multiple 
analytics processes. The main innovation of the edge tier 
implementation lies in the fact that it provides the means for 
specifying, configuring and executing analytics functions 
with minimal programming. At the same time, the 
innovation of the ledger services lies in the pioneering use of 
a permissioned blockchain for synchronizing distributed 
processes. 

The implemented DDA platform and its main enablers 
are available as open source software [15] [16], which 
represents one of our tangible contributions to the growing 
community of Industry4.0 and Industrial IoT researchers and 
engineers. We have also already deployed a concrete 
analytics use case in a pilot plant. Our vision and 
implementation roadmap includes benchmarking the 
performance of our blockchain system against industry 
requirements. Based on this benchmarking, we plan to 
provide to the Industry4.0 community concrete insights on 
the scope and the limitations of DLT technology for 
industrial automation and analytics applications. 
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