
208

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Edge Computing and Blockchains for Flexible and Programmable Analytics in

Industrial Automation

Mauro Isaja

Research & Development

Engineering Ingegneria Informatica SpA

Rome, Italy

e-mail: mauro.isaja@eng.it

John Soldatos

IoT Group

Athens Information Technology

Maroussi, Greece

e-mail: jsol@ait.gr

Nikos Kefalakis

IoT Group

Athens Information Technology

Maroussi, Greece

e-mail: nkef@ait.gr

Volkan Gezer

Innovative Factory Systems (IFS)

DFKI

Kaiserslautern, Germany
e-mail: Volkan.Gezer@dfki.de

Abstract - The advent of Industry 4.0 has given rise to the

introduction of new industrial automation architectures that

emphasize the use of digital technologies. In this paper, we

present a novel, standards-based Reference Architecture for

industrial automation, which combines the benefits of edge

computing and blockchain technologies for flexible and

reliable orchestration of automation workflows and distributed

data analytics. Accordingly, we illustrate a practical

implementation of the Reference Architecture for scalable and

programmable data analytics, along with its deployment in an

Industry 4.0 pilot plant.

Keywords-component; Factory automation; edge computing;

blockchain; RAMI4.0; IIRA; Industry4.0; distributed data

analytics; programmability; distributed ledger

I. INTRODUCTION

The vision of future manufacturing foresees flexible and
hyper-efficient plants that will enable manufacturers to
support the transition from conventional “made-to-stock”
production models, to the emerging customized ones such as
“made-to-order”, “configure-to-order” and “engineering-to-
order” [1]. Flexibility in automation is a key prerequisite to
supporting the latter production models: It facilitates
manufacturers to change automation configurations and
rapidly adopt new automation technologies, as a means of
supporting variation in production without any essential
increase in production costs.

In order to support flexibility in automation, the industrial
automation community has been exploring options for the
virtualization of the automation pyramid, as part of the
transformation of mainstream centralized automation models
(like ISA-95) to more distributed ones. Several research and
development initiatives have introduced decentralized
factory automation solutions based on technologies like
intelligent agents [2][3] and Service Oriented Architectures
(SOA) [4][5]. These initiatives produced proof-of-concept
implementations that highlighted the benefits of

decentralized automation in terms of flexibility. However,
they are still not being widely deployed in manufacturing
plants, mainly due to the fact that the cost-benefit ratio of
such solutions is perceived as unfavourable. Nevertheless,
the vision of decentralizing the factory automation pyramid
is still alive, as this virtualization can potentially make
production systems more agile, increase product quality and
reduce cost.

With the advent of the fourth industrial revolution
(Industry 4.0) and the Industrial Internet of Things (IIoT),
decentralization is being revisited in the light of the
integration of Cyber-Physical Systems (CPS) with cloud
computing infrastructures. Therefore, several cloud-based
applications are deployed and used in factories, which
leverage the capacity and scalability of the cloud while
fostering supply chain collaboration and virtual
manufacturing chains. Early implementations have also
revealed the limitations of the cloud in terms of efficient
bandwidth usage and its ability to support real-time
operations, including operations close to the field.

More recently, the edge computing paradigm has been
explored in order to alleviate the limitations of cloud-centric
architectures. Edge computing architectures move some part
of the system’s overall computing power from the cloud to
its edge nodes, i.e., on the field or in close proximity to it –as
a means of [6][7]:

 Saving bandwidth and storage, as edge nodes can filter
data streams from the field in order to get rid of
information without value for industrial automation.

 Enabling low-latency and proximity processing, since
information can be processed close to the field.

 Providing enhanced scalability, through supporting
decentralized storage and processing that scales better
than cloud processing.

 Supporting shopfloor isolation and privacy-friendliness,
since edge nodes at the shopfloor are isolated from the
rest of the network.

209

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These benefits make edge computing suitable for specific
classes of use cases in factories, including:

 Large scale distributed applications, typically
applications that involve multiple plants or factories,
which process streams from numerous devices at scale.

 Near-real-time applications, which analyse data close to
the field or even control CPS systems such as smart
machines and industrial robots.

As a result, the application of edge computing to factory
automation is extremely promising, since it empowers
decentralization in a way that still supports real-time
interactions and scalable analytics. Therefore, it is no
accident that there are ongoing efforts to provide edge
computing implementations for industrial automation in
general and factory automation in particular. Furthermore,
reference architectures (RAs) for IIoT and industrial
automation exist, which highlight the importance of edge
computing for compliant implementations. In this article, we
present a reference architecture (RA) for factory automation
based on edge computing and distributed ledger technology,
which has been specified as part of the H2020 FAR-EDGE
project [8]. The FAR-EDGE RA specifies some unique
features and capabilities, which differentiate them from other
on-going implementations of edge computing for factory
automation. Most of these unique features concern the
exploitation of Distributed Ledger Technology (DLT), today
commonly referred to as “blockchain”, as a means of
representing and synchronizing automation and data
analytics processes based on Smart Contracts. These can be
dynamically configured, stored securely and executed in a
distributed way, enabling flexibility and scalability in factory
automation processes. The implementation of such smart
contracts can take advantage of existing distributed ledger
platforms. In the scope of FAR-EDGE the popular, open
source Hyperledger Fabric provides the foundation for
implementing smart contracts and synchronizing distributed
processes, as presented in later sections.

Overall, the FAR-EDGE RA combines the power of edge
computing for performing operations close to the field, with
the reliability and trustworthiness benefits of distributed
ledger technologies in terms of the synchronization of
distributed processes. This is based on the implementation of
a tier of edge nodes where edge functionalities are
performed, and its combination with a tier of ledger services
that is in charge of plant-wide synchronization of edge
nodes. As part of the paper we illustrate the implementation
of a Distributed Data Analytics (DDA) platform that adheres
to the FAR-EDGE RA, leveraging both edge and ledger tier
functionalities. This DDA implementation comes with an
additional benefit: it is flexibly extensible and programmable
in terms of the definition of edge processing capabilities over
field data. Combined with the functionalities of the ledger
services, this programmability provides integrators of
industrial automation solutions with additional flexibility in
implementing distributed analytics systems. The
implementations of both the ledger services and the
programmable Edge Analytics (EA) services are publicly
available as open source software.

Note that the present paper represents a significantly
extended version of a conference paper that introduced the
FAR-EDGE RA [1]. In particular, this paper includes
practical insights on the actual implementation of the edge
and ledger tiers of the RA, as part of the DDA platform. It is
therefore targeted to researchers and practitioners that might
be interested in using the RA and/or its open source
implementation in their solutions. It is also destined to the
IIoT and Industry4.0 open source community, which is
starving for novel, yet practical components for industrial
automation and distributed analytics. Note that this paper is a
significantly extended version of a conference article of the
authors [1].

The paper is structured as follows: Section II, following
this introduction, presents state-of-the-art specifications and
implementations of the edge computing paradigm for factory
automation, as well as the current status in the use of
blockchains for industrial applications. It also positions
FAR-EDGE against them. Section III introduces the FAR-
EDGE RA, from a functional and structural perspective.
Section IV presents the prototype implementation of the
DDA platform, including its programmability features.
Section V is devoted to the presentation of the
implementation of ledger services, based on extensions over
a permissioned blockchain infrastructure, namely IBM’s
Hyperledger Fabric. Section VI illustrates the deployment of
the EA systems in an Industry4.0 pilot plant. Finally, Section
VII concludes the paper.

II. RELATED WORK

Acknowledging the benefits of edge computing for
industrial automation, standards development organizations
(SDOs) have specified relevant RAs, while industrial
organizations are already working towards providing
tangible edge computing implementations.

SDOs such as the OpenFog Consortium and the
Industrial Internet Consortium (IIC) have produced RAs for
industrial automation applications. In particular, the RA of
the OpenFog Consortium prescribes a high-level architecture
for Internet-of-Things (IoT) systems, which covers industrial
IoT use cases. On the other hand, the RA of the IIC [9]
outlines the structuring principles of systems for industrial
applications. The IIC RA prescribes the use of edge
computing components and principles for compliant
implementations. It addresses a wide range of industrial use
cases in multiple sectors, including factory automation.
These RAs have been recently released and their reference
implementations are still in their early stages.

A reference implementation of the IIC RA’s edge
computing functionalities for factory automation is provided
as part of IIC’s edge intelligence testbed [10]. This testbed
provides a proof-of-concept implementation of edge
computing functionalities on the shopfloor. The focus of the
testbed is on configurable edge computing environments,
which enable the development and testing of systems and
algorithms for EA. Moreover, Dell-EMC has recently
announced the EdgeX Foundry framework [11], which is a
vendor-neutral open source project hosted by the Linux
Foundation that builds a common open framework for IIoT

210

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

edge computing. The framework is influenced by the above-
listed RAs and was recently released. Other vendors are also
incorporating support for edge devices and Edge Gateways
in their cloud platforms.

FAR-EDGE is uniquely positioned in the landscape of
edge computing solutions for factory automation. In
particular, the FAR-EDGE architecture is aligned to the IIC
RA, while exploiting concepts from other RAs and standards
such as the OpenFog RA and RAMI 4.0 (Reference
Architecture Model Industry 4.0) [12]. However, FAR-
EDGE explores pathways and offers functionalities that are
not addressed by other specifications and reference
implementations. In particular, it researches the applicability
of disruptive key enabling technologies like DLT and Smart
Contracts in factory automation. DLT, while being well
understood and thoroughly tested in mission-critical areas
like digital currencies (e.g., Bitcoin), have never been
applied before to industrial systems. This is mainly due to
performance concerns about their use, despite their
trustworthiness and reliability benefits. However, in
literature the merit of DLT for synchronizing distributed
processes have been recently acknowledged [13].

FAR-EDGE aims at demonstrating how a pool of
specific Ledger Services built on a generic DLT platform can
enable decentralized factory automation in an effective,
reliable, scalable and secure way. In particular, Ledger
Services are responsible for sharing process state and
enforcing business rules across the computing nodes of a
distributed system, thus permitting virtual automation and
analytics processes that span multiple nodes – or, from a
bottom-up perspective, autonomous nodes that cooperate to a
common goal. This is one of project’s unique contributions,
which sets it apart from similar edge computing efforts and
provides increased flexibility and reliability.

III. FAR-EDGE REFERENCE ARCHITECTURE

The FAR-EDGE RA is a conceptual framework that
drives the design and the implementation of automation
platforms based on edge computing and DLT technologies. It
is aligned to IIC’s RA concepts and described from two
architectural viewpoints: the functional viewpoint and the
structural viewpoint, as outlined in following paragraphs. An
overall architecture representation that includes all elements
is provided in Figure 1.

Figure 1. Overview of the FAR-EDGE RA

A. Functional Viewpoint

According to the FAR-EDGE RA, the functionality of a
factory automation platform can be decomposed into three
high-level Functional Domains - Automation, Analytics and
Simulation – and four Crosscutting (XC) Functions –
Management, Security, Digital Models and Field Abstraction
& Data Routing. To better clarify the scope of such topics,
we have tried to map them to similar Industrial Internet RA
(IIRA) concepts [9]. Functional Domains and XC Functions
are orthogonal to structural Tiers: the implementation of a
given functionality may – but is not required to – span
multiple Tiers, so that in the overall architecture
representation Functional Domains appear as vertical lanes
drawn across horizontal layers. Figure 2 highlights the
relationship between Functional Domains, their users and the
factory environment. It also uses arrows to show the flow of
data and of control.

Automation Domain: The FAR-EDGE Automation
domain includes functionalities supporting automated control
and automated configuration of physical production
processes. Automated configuration is the enabler of plug-
and-play factory equipment (better known as plug-and-
produce), which in turn is a key technology for mass-
customization, as it allows a faster and less expensive
adjustments of the production process. The Automation
domain requires a bidirectional monitoring/control
communication channel with the Field, typically with low
bandwidth but very strict timing requirements. In some
advanced scenarios, Automation is controlled – to some
extent – by the results of Analytics and/or Simulation. The
Automation domain partially maps to the Control domain of
the IIRA.

Figure 2. FAR-EDGE RA Functional Domains

Analytics Domain: The FAR-EDGE Analytics domain
includes functionalities for gathering and processing Field
data for a better understanding of production processes, i.e.,
a factory-focused business intelligence. This typically
requires a high-bandwidth Field communication channel, as
the volume of information that needs to be transferred in a
given time unit may be substantial. On the other hand,
channel latency tends to be less critical than in the
Automation scenario. The Analytics domain provides

211

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

intelligence to its users, but these are not necessarily limited
to humans or vertical applications (e.g., a predictive
maintenance solution). In particular, the Automation and
Simulation domains, if properly configured, can both make
direct use of the outcome of data analysis algorithms. In the
case of Automation, the behaviour of a workflow might
change in response to changes detected in the controlled
process – e.g., a process drift caused by the progressive wear
of machinery or by the quality of assembly components
being lower than usual. In the case of Simulation, data
analysis can be used to update the parameters of a digital
model. The Analytics domain matches perfectly the
Information domain of the IIRA, except that the latter is
receiving data from the Field through the mediation of
Control functionalities.

 Simulation Domain: The FAR-EDGE Simulation
domain includes functionalities for simulating the behaviour
of physical production processes for the purpose of
optimization or of testing what/if scenarios at minimal cost
and risk and without any impact of regular shop activities.
Simulation requires digital models of plants and processes to
be in-sync with the real-world objects they represent. As the
real world is subject to change, models should reflect those
changes. For instance, the model of a machine assumes a
given value of electric power / energy consumption, but the
actual values will diverge as the real machine wears down.
To detect this gap and correct the model accordingly, raw
data from the Field (direct) or complex analysis algorithms
(from Analytics) can be used.

Crosscutting Functions: Crosscutting Functions address
common specific concerns. Their implementation affects
several Functional Domains and Tiers. They include.

 Management: Low-level functions for monitoring and
commissioning/decommissioning of individual system
modules.

 Security: Functions securing the system against the
unruly behaviour of its user and of connected systems.
These include digital identity management and
authentication, access control policy management and
enforcement, communication and data encryption.

 Digital Models: Functions for the management of
digital models and their synchronization with the real-
world entities they represent. Digital modes are a shared
asset, as they may be used as the basis for automated
configuration, simulation and field abstraction – e.g.,
semantic interoperability of heterogeneous field
systems.

 Field Abstraction & Data Routing: Functions that
ensure the connectivity of business logic (FAR-EDGE
RA Functional Domains) to the Field, abstracting away
the technical details – like device discovery and
communication protocols. Data routing refers to the
capability of establishing direct producer-consumer
channels on demand, optimized for unidirectional
massive data streaming – e.g., for feeding Analytics.

B. Structural Viewpoint

The FAR-EDGE RA uses two classes of concepts for
describing the structure of a system: Scopes and Tiers.

Scopes are very simple and straightforward: they define a
coarse mapping of system elements to either the factory -
Plant Scope - or the broader world of corporate IT -
Enterprise Ecosystem Scope. Examples of elements in Plant
Scope are machinery, Field devices, workstations, SCADA
and MES systems, and any software running in the factory
data centre. The Enterprise Ecosystem Scope comprises ERP
(Enterprise Resource Planning) and PLM (Product Lifecycle
Management) systems and any application or service shared
across multiple factories or even companies – e.g., supply
chain members.

Tiers are a more detailed and technical-oriented
classification of deployment concerns. They can be easily
mapped to scopes, but they provide more insight into the
relationship between system components. This kind of
classification is quite similar to OpenFog RA deployment
viewpoint, except for the fact that FAR-EDGE Tiers are
industry-oriented while OpenFog ones are not. FAR-EDGE
Tiers are one of the most innovative traits of the project’s
RA, and are described in following paragraphs.

The Field Tier is the bottom layer of the FAR-EDGE
RA and is populated by Edge Nodes (EN), i.e., any kind of
device that is connected to the digital world on one side and
to the real world to the other. ENs can have embedded
intelligence (e.g., a smart machine) or not (e.g., a sensor or
actuator). The FAR-EDGE RA honours this difference:
Smart Objects are ENs with on board computing capabilities,
Connected Devices are those without. The Smart Object is
where local control logic runs: it is a semi-autonomous entity
that does not need to interact frequently with the upper layers
of the system. As shown in Figure 3. ENs is actually located
over field devices.

The Field is also populated by entities of the real world,
i.e., those physical elements of production processes that are
not directly connected to the network, and as such are not
considered as ENs: Things, People and Environments. These
are represented in the digital world by some kind of EN
wrapper. For instance, room temperature (Environment) is
measured by an IoT sensor (Connected Device), the
proximity of a worker (People) to a physical checkpoint
location is published by an RFID wearable and detected by
an RFID Gate (Connected Device), while a conveyor belt
(Thing) is operated by a PLC (Smart Object).

The Field Tier is in Plant Scope. Individual ENs are
connected to the digital world in the upper Tiers either
directly by means of the shopfloor’s LAN, or indirectly
through some special-purpose local network (e.g., WSN
(Wireless Sensor Network)) that is bridged to the former.
From the RAMI 4.0 perspective, the FAR-EDGE Field Tier
corresponds to the Field Device and Control Device levels
on the Hierarchy axis (IEC-62264/IEC-61512), while the
entities there contained are positioned across the Asset and
Integration Layers.

The Edge Tier is the core of the FAR-EDGE RA. It
hosts those parts of Functional Domains and XC Functions

212

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that can leverage the edge computing model, i.e., software
designed to run on multiple, distributed computing nodes
placed close to the field, which may include resource
constrained nodes. The Edge Tier is populated by Edge
Gateways (EG): computing devices that act as a digital world
gateway to the real world of the Field. These machines are
typically more powerful than the average intelligent EN
(e.g., blade servers) and are connected to a fast LAN (Local
Area Network). Strategically positioned close to physical
systems, the EG can execute Edge Processes: time- and
bandwidth-critical functionality having local scope. For
instance, the orchestration of a complex physical process that
is monitored and operated by a number of sensors, actuators
(Connected Devices) and embedded controllers (Smart
Objects); or the real-time analysis of a huge volume of live
data that is streamed from a nearby Field source.

Deploying computing power and data storage in close
proximity to where it is actually used is a standard best
practice in the industry. However, this technique basically
requires that the scope of individual subsystems is narrow
(e.g., a single work station). If instead the critical
functionality applies to a wider scenario (e.g., an entire plant
or enterprise), it must be either deployed at a higher level
(e.g., the Cloud) – thus losing all benefits of proximity – or
run as multiple parallel instances, each focused on its own
narrow scope. In the latter case, new problems may arise:
keeping global variables in-sync across all local instances of
a given process, reaching a consensus among local instances
on a global truth, collecting aggregated results from
independent copies of a data analytics algorithm, etc. The
need for peer nodes of a distributed system to mutually
exchange information is recognized by the OpenFog RA. A
key innovation of the FAR-EDGE approach is that it defines
a specific system layer – the Ledger Tier – that is responsible
for the implementation of such mechanisms and guarantees
an appropriate Quality of Service level.

Figure 3. Edge Tier in the FAR-EDGE RA

The Edge Tier is in Plant Scope, located above the Field
Tier and below the Cloud Tier. Individual EGs are connected
with each other and with the north side of the system, i.e., the
globally-scoped digital world in the Cloud Tier – by means

of the factory LAN, and to the south side through the
shopfloor LAN. From the RAMI 4.0 perspective, the FAR-
EDGE Edge Tier corresponds to the Station and Work
Centre levels on the Hierarchy axis (IEC-62264/IEC-61512),
while the EGs there contained are positioned across the
Asset, Integration and Communication Layers. Edge
Processes running on EGs, however, map to the Information
and Functional Layers.

The Ledger Tier is a complete abstraction: it does not
correspond to any physical deployment environment, and
even the entities that it “contains” are abstract. Such entities
are Ledger Services, which implement decentralized
business logic as smart contracts on top of a distributed
ledger. Ledger Services are transaction-oriented: each
service call that needs to modify the shared state of a system
must be evaluated and approved by Peer Nodes before taking
effect. Similarly to “regular” services, Ledger Services are
implemented as executable code; however, they are not
actually executed on any specific computing node: each
service call is executed in parallel by all Peer Nodes that
happen to be online at the moment, which then need to reach
a consensus on its validity. Most importantly, even the
executable code of Ledger Services can be deployed and
updated online by means of a distributed ledger transaction.

Ledger Services implement the part of Functional
Domains and/or XC Functions that enable the edge
computing model, through providing support for their Edge
Service counterpart. For example, the Analytics Functional
Domain may define a local analytics function (Edge Service)
that must be executed in parallel on several EGs, and also a
corresponding service call (Ledger Service) that will be
invoked from the former each time new or updated local
results become available, so that all results can converge into
an aggregated data set. In this case, aggregation logic is
included in the Ledger Service. Another use case may come
from the Automation Functional Domain, demonstrating
how the Ledger Tier can also be leveraged from the Field: a
smart machine with embedded plug-and-produce
functionality can ask permission to join the system by
making a service call and then, having received green light,
can dynamically deploy its own specific Ledger Service for
publishing its state and external high-level commands.

The Ledger Tier lays across the Plant and the Enterprise
Ecosystem Scopes, as it can provide support to any Tier. The
physical location of Peer Nodes, which implement smart
contracts and the distributed ledger, is not defined by the
FAR-EDGE RA as it depends on implementation choices.

From the RAMI 4.0 perspective, the FAR-EDGE Ledger
Tier corresponds to the Work Centre, Enterprise and
Connected World levels on the Hierarchy axis (IEC-
62264/IEC-61512), while the Ledger Services are positioned
across the Information and Functional Layers.

The Cloud Tier is the top layer of the FAR-EDGE RA,
and also the simplest and more “traditional” one. It is
populated by Cloud Servers (CS): powerful computing
machines, sometimes configured as clusters, which are
connected to a fast LAN internally to their hosting data
centre, and made accessible from the outside world by means
of a corporate LAN or the Internet. On CSs runs that part of

213

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the business logic of Functional Domains and XC Functions
that benefits from having the widest of scopes over
production processes, and can deal with the downside of
being physically deployed far away from them. This includes
the planning, monitoring and management of entire factories,
enterprises and supply chains (e.g., ERP and SCM (Supply
Chain Management) systems). The Cloud Tier is populated
by Cloud Services and Applications. Cloud Services
implement specialized functions that are provided as
individual API calls to Applications, which instead
“package” a wider set of related operations that are relevant
to some higher-level goal and often expose an interactive
human interface.

The Cloud Tier is in Enterprise Ecosystem scope. The
“Cloud” term in this context implies that Cloud Services and
Applications are visible from all Tiers, wherever located. It
does not imply that CSs should be actually hosted on some
commercial cloud. In large enterprises, the Cloud Tier
corresponds to one or more corporate data centres (private
cloud), ensuring that the entire system is fully under the
control of its owner.

In terms of RAMI 4.0, the FAR-EDGE Cloud Tier
corresponds to the Work Centre, Enterprise and Connected
World levels on the Hierarchy axis (IEC-62264/IEC-61512),
while the Cloud Services and Applications are positioned
across the Information, Functional and Business Layers.

IV. EDGE TIER SERVICES FOR HIGH-PERFORMANCE AND

PROGRAMMABLE EDGE ANALYTICS

The FAR-EDGE DDA services span the Edge, Ledger

and Cloud Tiers of the FAR-EDGE RA, as illustrated in the

following paragraphs.

A. Overview of DDA Tiers

Based on the principles of the FAR-EDGE RA, we have
implemented a Distributed Data Analytics (DDA) platform,
which enables integrators of factory automation solutions to
specify and implement highly distributed data analytics
logic, based on data stemming from different parts of a plant.
DDA is classified as a reusable, self-sustained component
(i.e., “enabler”), which supports the functionalities of the
Analytics Domain of the FAR-EDGE RA. The DDA
platform implementation spans both the Edge and the Ledger
Tiers of the FAR-EDGE RA:

 The Edge Tier that provides the means for accessing and
routing field data. Moreover, at the Edge Tier the Edge
Analytics Engine (EAE) engine is implemented, which
provides the means for executing locally scoped data
analytics functionalities, and

 The Ledger Tier leverages “Smart Contracts” that
manage analytics configurations. A Smart Contract
keeps track and synchronizes information across
multiple Edge Gateway nodes. In this way, it provides
the means for executing factory-wide data analytics,
which span multiple locally scoped analytics functions
running in Edge Gateways.

Moreover, the DDA implementation takes advantage of the
Cloud Tier as well, where plant-wide data are collected,
aggregated and consolidated.
In this section, we present the specification and
implementation of the Edge Tier of the DDA platform,
which is configurable with almost zero programming.
Likewise, the next section illustrates the implementation of
the Ledger Services that support the Ledger Tier of the DDA
platform.

B. DDA’s Edge Tier: The Edge Analytics Engine (EAE)

The EAE is a runtime environment hosted in an EG, i.e.,
at the edge of an industrial automation deployment. It is the
programmable and configurable environment that executes
data analytics logic locally in order to meeting stringent
performance requirements, mainly in terms of latency. While
the Ledger Services are in charge of managing Smart
Contracts and executing distributed analytics across EGs, the
EAE is in charge of data analytics within a single EG. The
EAE is also configurable, while comprising multiple
analytics instances that are driven by multiple smart
contracts. It consists of the following main components:

 the EA-Orchestrator;

 the EA-Processor;

 the Local EA-Repository,
which are described in following paragraphs.

The EA-Orchestrator provides the run-time

environment that controls and executes EA instances, which
are specified in a format that is conveniently called Analytics
Manifest (AM). In particular, the EA-Orchestrator is able to
parse and execute analytics functions and rules specified in
an AM. The following statements define the EA-
Orchestrator main operation:

 An AM defines a set of EA functionalities, as a graph of
processing functions, which can be executed by the EA-
Processor.

 The EA-Orchestrator parses an AM and executes the
analytics functions that they comprise.

 The EA-Orchestrator is able to execute multiple,
concurrent analytics instances. The latter are specified in
AMs.

From an implementation perspective, AMs are
represented in different forms such as: a configuration file or
an entry in a database, or even a part of a smart contract in
the blockchain. No matter the implementation technology,
the semantics of the AM specify an analytics instance.
Hence, the underlying mechanisms that support execution of
AMs are independent from specific implementation
technologies, as they are based on the implementation
agnostic file format that is available as part of the open
source implementation of the EAE.

The AM includes the information needed to drive the
operation of the EA-Orchestration, including for example the
attributes and sequences needed to setup the required jobs on
the EA-Processor. As part of its operation the EA-
Orchestrator MAY instantiate multiple EA-Processor
instances for the purposes of executing an EA instance,

214

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which is described through an AM. Each AM holds the
attributes and sequences to set up the required processor jobs
in order to serve one EA instance (i.e., one AM).

The EA-Processor implements the data processing
functionalities that are necessary to implement an EA task.
These functionalities are encapsulated in different processor
types, including:

 Pre-processors, which prepare data streams for
analysis, based on the specifications of the target
analytics tasks. A pre-processor interacts with a Data
Bus in order to acquire streaming data from the field. At
the same time, it also produces and registers new
streams in the same Data Bus.

 Analytics Processors, which apply analytics algorithms
to one or more data streams. Similar to the pre-
processor, the analytics processor consumes and
produces data through interaction with the Data Bus.

 Store Processors, which are used to store streams to
repositories.

Pre-processors, analytics processors and store processors
define three different types of functionalities that are
supported by the EAE. Given these processor types, a
specific instance of EA is implemented by setting up
multiple processors, which are connected in a graph-like
fashion thus forming a topology. The topology is specified in
the AM, which will be represented as a Smart Contract. The
topology and the overall process are controlled by the EA
orchestrator.

Figure 4. Anatomy of the Edge Analytics Engine

Figure 5 illustrates an example topology and runtime
operations for EA Processor. In this example, two streams

(CPS1 and CPS2) are pre-processed from Processor Job 1
(i.e., Pre-Processor) and Processor Job 2 (i.e., Pre-Processor)
equivalently in order for an analytics algorithm (i.e.,
Processor Job 3) (i.e., Analytics Processor) to be applied to
them. Finally, the result needs to be stored to a Data Storage
with the help of Processor Job 4 (i.e., Storage Processor).
The setup and runtime operation of the EA-Processor entails
the following steps:

 Step1 (Set-up): Based on the description of the
topology and required processors in the AM, the EA-
Orchestrator instantiates and configures the required
Processor jobs.

 Step2 (Runtime): Processor Job 1 consumes and pre-
processes streams coming from CPS1. Likewise,
Processor Job 2 consumes and pre-processes streams
coming from CPS2.

 Step3 (Runtime): Analytics Processor Job 3 consumes
the produced streams from Processor Job 1 and 2 for
applying the analytics algorithm.

 Step4 (Runtime): Store Processor Job 4 consumes the
data stream produced from Processor Job 3 and
forwards it to the Data Storage.

 Step5 (Runtime): Data Storage persists the Data
coming from Store Processor Job 4.

Beyond this simple example, much more complex EA
workflows can be implemented based on combination of the
three different types of processors. The supported scenarios
are only limited by the expressiveness of the domain specific
language / format that is used to define and represent an AM.

Figure 5. EA Topology Example

C. Using the EAE for Edge Analytics

There are two main ways in which solution developers
and integrators can use the EAE:

 Configuration and execution of analytics queries:
First, they can configure and formulate an analytics
query, while they can accordingly execute based on the
EAE runtime.

 Extension of the EAE with analytics capabilities:
Second, they can extend the EAE enabler with
additional processing capabilities, which respecting the
structure and specification of the engine.

These two ways for taking advantage of the EAE are
illustrated in the following paragraphs.

215

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In terms of the configuration and Runtime Execution of
Analytics Queries, integrators can take advantage of the EAE
API in order to configure and execute analytics queries
within an EG. The process includes the following steps:

 Discovery of Devices: The first step involves discovery
of field devices residing in a devices’ registry. Devices
define the available data sources to be analyzed by the
EAE.

 Discover available processors: Following the
discovery of devices, available data processors
registered in the registry are dynamically identified as
well. As already outlined there are three types of
processors (i.e., preprocessors, analytics, storage) and
multiple instances of each one might be available. Each
distinct instance is providing different functionalities
based on different implementations.

 Define and create the Analytics specification: Based
on the available devices and processors, a manufacturer
or solution integrator can specify an AM, which defines
their desired EA tasks. The definition of the AM
comprises a flow of processors, including processor of
all three types (i.e., pre-processing, analytics, storage)
supported by the EAE engine. It also defines the
analytics results to be produced, as well as where they
are to be stored / persisted. The specification of the AM
can take place based on the use of the EAE’s RESTful
API. However, in future releases of the EAE we plan to
provide a GUI tool in order to facilitate zero-
programming specification of the EA tasks.

 Execute the AM at runtime: This step involves the
runtime execution of the AM through the EA-
Orchestrator using its API. With the AM at hand, this
step is straightforward and involves the loading an
execution of the specification of the manifest. Upon the
AM’s execution, the analytics results are produced in
the forms of name/value pairs, which are stored as
specified by the StoreProcessor.

In terms of extending the EAE with Processing &
Analytics Capabilities, AMs can be configured and used.
AMs provide a convenient mechanism for defining and
executing analytics based on a set of available devices and
processors. Integrators are able to extend the analytics
capabilities of the EAE, based on the specification and
deployment of additional processing functions. Additional
processing functions have to be of one of the specified types,
which will allow their integration and use within AMs.

The process of extended EAE’s capabilities involves the
following steps:

 Implementation of a Processor Interface: In order to
extend the EAE with a new processor, an integrator has
to provide an implementation of a specific interface, i.e.,
the interface of the processor. In practice, each of the
three processor types comes with its own interface,
which specifies its behavior in the scope of the EAE
engine.

 Registration of the Processor to the Registry: Once a
new processor is implemented, it has to become
registered to the registry. This will render it discoverable

by solution developers and manufacturers that develop
AMs for their needs, based on available devices and
processors.

 Using the processor: Once a processor becomes
available, it can be used for constructing AMs.

D. EAE Open Source Implementation

Apart from a detailed specification of EAE in terms of
interfaces, APIs and data schemas for the various processors
and the AMs, we have also implemented a prototype of the
EAE as open source software [15]. The structure of the
implemented system is depicted in Figure 6. As evident in
the figure, we take advantage of a Docker container for each
distinctive component of our deployment in order to
facilitate the distribution, integration and scalability of the
system. The Data Bus of the implementation is based on the
Apache Kafka platform, which is a distributed system that
scales out easily, while offering very high throughput for
both publishing and subscribing tasks. Moreover, Kafka
supports multi-subscribers and automatically balances the
consumers during failures.

The EA-Orchestrator component is also deployed in a
Docker container. Hence, the EA-Orchestrator API can be
invoked from third party RESTful Client Application (i.e.,
Postman). To this end, a postman script mapping to the
Orchestrator API is offered from GitHub. At the same time,
predefined test scripts (i.e., scripts corresponding to AM
manifests) have been generated with known actors (CPSs,
EA-Processors, configuration attributes etc.).

The EA-Processor component is also deployed in a
Docker container. It subscribes to the Data Bus based on the
known device IDs. The EA-Processor operates based on a
known Number and types of Data Streams. It leverages a
static data format.

All available processor types can be used in order to
provide a complete test environment including the pre-
processing, analytics and analytics storage processors.

Figure 6. Edge Analytics Engine Implementation

216

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. LEDGER SERVICES FOR FACTORY WIDE DISTRIBUTED

DATA ANALYTICS

The FAR-EDGE Ledger Services enable the most

innovative part of the DDA platform, as illustrated in the

following paragraphs.

A. Overview

The DDA Platform uses Ledger Services in order to
configure plant- and factory-wide analytics processes. Each
configuration of analytics algorithms maps to a specific
Ledger Service. Every Ledger Service configures one or
(usually) more analytics instances. The underlying
Distributed Ledger keeps track of multiple analytics
configurations. Such configurations are executed by the
DDA on production processes that run simultaneously in
various locations of the factory.

Moreover, when one analytics task spans multiple EAE
instances, a Ledger Service is used to collect local results
and implement aggregating logic.

B. Implementation Considerations and Baseline DLT

As explained in the FAR-EDGE RA, the Ledger Tier and
Ledger Services are based on DLT – i.e., a Blockchain
platform. Concretely, this platform is the Hyperledger Fabric
(HLF), which is a commercial-grade Blockchain
implementation. HLF has been selected for a number of
reasons including its business-friendly open source license,
its larger and active community, as well as its support for
custom transaction logic (i.e., “smart contracts”) and custom
data models. Moreover, HLF is a “permissioned” Blockchain
as it supports private networks, which are the primary choice
for industrial automation deployments.

The HLF architecture is illustrated in Figure 6.
Membership and Orderer are the two elements of the system
that are not decentralized, being implemented as central
services. Peers, on the contrary, are an arbitrary number of
computing nodes that can be deployed anywhere – typically
on Edge Gateways – and that run in parallel, providing all
the basic services that support the lifecycle of ledger
transactions: validation (Endorser), confirmation
(Committer), state persistence (Ledger) and listener
notification (Events). Last but not least, Peer nodes are
where Ledger Services are deployed and run.

Figure 7. Hyperledger Fabric Logical Architecture [14]

C. Ledger Services

At the platform level, a Ledger Service is a Chain code
program – i.e., the HLF-specific term for a smart contract. It
is designed to support a well-defined, application-specific
process. In particular, it is responsible for defining a data
model, executing business logic and enforcing access and
usage policies. The state of the process is automatically
maintained and persisted in the background by the HLF
platform, which logs every state change in a distributed
ledger that is replicated across all peer nodes.

The data model is shaped by the Chain code itself: a
dedicated data store is allocated and initialized by a special
code section when the Chain code is first deployed. Once the
data store is initialized, no structural changes are expected to
happen. It is worth noting that Chaincode instances – and
their related data store – are deployed on all peer nodes
simultaneously.

Application logic is also coded in the Chain code and is
delivered as a number of service endpoints that can be called
by clients over the network. These endpoints represent the
API of the Ledger Service: only through them callers can
query and change its state. The API can be invoked by
authorized clients following some well-documented calling
conventions of the HLF platform. State-changing calls are
managed as a “transaction” by the platform: if the call
executes successfully, changes are applied to the persistent
storage in all peer nodes; on the other hand, if any error
condition is detected (e.g., the Chaincode raising an
exception), the platform guarantees that any partial change is
reverted.

Figure 8. Ledger Services Architecture

In the DDA context, each Ledger Service comes with its
own client software library: the Ledger Client. The library
provides an in-process API (e.g., Java classes and methods)
the matches the network API from a functional point of view
but has a much simpler call semantics and hides a lot of
HLF-specific technicalities (e.g., user authentication through
digital certificates). Ledger Clients can be embedded into

217

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

client applications at design time, and used at runtime as a
local proxy of the actual Ledger Service API. Figure 8
illustrates the concepts described above from an architectural
perspective, focusing on a single peer node.

As already outlined, peer nodes are autonomous sub-

systems that run in parallel to provide decentralization and
redundancy: each one holds a synchronized copy of the
distributed ledger (i.e., the global state of all Ledger Services
plus the full history of state-changing transactions) and
executes code Ledger Services inside a sandbox environment
that isolates each of them from all the others. In order to
dynamically adapt the system to the changing needs of the
shopfloor, peer nodes can be added to or removed from the
running system without any downtime. A number of peer-to-
peer protocols are used by peer nodes to collaborate
seamlessly with each other, so that the whole system appears
to its users as being monolithic. In Figure 9, this relationship
is depicted by the “DL Protocols” logical block, that
represents the use of common standards for inter-peer
communication. Applications can link to the Ledger Service
API they are interested in on any peer node of their choice,
as all nodes are identical: a service call results in the same
code being executed in parallel on each and every node. This
redundancy mechanism is what makes the DL a truly
decentralized system with exceptional scalability,
trustworthiness and reliability properties.

Figure 9. Distributed Ledger Protocol operating across Edge Gateways

In the context of the DDA platform, peer nodes are
usually – but not mandatorily – installed on Edge Gateway
servers, together with Edge Tier components. This setup
allows for clients that run on Edge Gateways, like the EAE,
to refer to a local address by default when resolving Ledger
Service endpoints. However, peer nodes can be as easily
deployed and used on the Cloud Tier, to make them
addressable from anywhere; or even embedded into Smart
Objects on the Field Tier, to turn the Smart Objects into
members of a collaborative P2P (Peer-to-Peer) network.

The definition of access control policies for Ledger
Services, and their enforcement at runtime, are built-in
features of HLF. There is a fair degree of flexibility in the
HLF security subsystem, as individual service endpoints can

be optionally protected my means of attribute-based access
control (ABAC). At the most basic level, though, all nodes
of the network – including the clients – must have a strong
digital identity and be authorized by a central authority in
order to join the system. On the other hand, when
application-specific control is required, the Ledger Service
can manage it as part of the implementation.

D. Self-Adjustment and Recofiguration (SAR) Service

Self-Adjustment and Reconfiguration (SAR) is an
infrastructural feature of the DDA platform. It supports the
capability of Smart Objects on the shopfloor to join & leave
the system autonomously and to adapt themselves to
changing needs and environments in a coordinated way.
SAR exploits features of the Ledger Tier, in particular those
related to the decentralized coordination of local processes.

The SAR architecture follows the FAR-EDGE RA,
spanning three of its layers. The bottom one is the Field Tier,
populated by Edge Nodes (EN); right above it, the Edge Tier
where a number of Edge Gateways (EG) run some Data
Routing components; on top, the Ledger Tier hosting a
dedicated Ledger Service: the SAR Service. This design,
represented in Figure 10, is driven by a central concept of the
FAR-EDGE RA, which breaks down globally-scoped
systems into “local clouds”. In the SAR context, Data
Routing components on EGs act as “caching proxies” of the
SAR Service. More specifically, each EG runs a local device
registry that is actually partial view over the master one
maintained by the SAR Service. The objective of this design
is to allow a local cloud, composed by one EG and a number
of EN satellites, to act as a modular unit which can be
plugged in and out, and even keep working when
temporarily disconnected from the main factory network.

Figure 10. SAR Service Overview

The SAR Service enables the registration, discovery and
de-registration of devices that are producers or consumers of
data streams – i.e., live data flowing from the shopfloor that
must be processed in real time. Devices can be either real or
virtual. Real devices can be Smart Objects having the built-
in capability of registering and de-registering themselves
according to needs (as depicted in Figure 10 above), or

218

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

passive IoT sensors that need an administrator to perform
these tasks manually. Virtual devices are, instead, computing
processes that run on some network node. An example of a
virtual data consumer is an analytics program that runs on an
EG machine. A virtual data producer may be a program that
extracts live data from a legacy database and streams it using
some IoT protocol.

The SAR Service also provides endpoints for the creation
and decommissioning of communication channels between
data producers and consumers. Channels are an abstract
notion used to govern how data consumers can connect to
data producers, and are the foundation for the enforcement of
a device-level access control mechanism. An example use
case can help illustrate this point: when a given data
consumer wants to establish a new connection to a known
data producer (presumably discovered using the registry), it
will first need to obtain the authorization to do so from the
infrastructure. This is done by means of a SAR Service API
call: if successful, this call creates a channel descriptor into
the registry. The data producer will then be able to check if
incoming connection requests come from “authorized”
consumers, and refuse to service them if not.

VI. PILOT PLANT DEPLOYEMENT

We have deployed, tested and demonstrated the DDA in

the scope of a pilot plant, which has been built in the scope

of the Technology-Initiative Smart Factory-KL. The latter is

a testbed for testing and demonstrating the future factory of

industrial automation. The plant is arbitrarily modifiable and

expandable (flexible), connects arbitrary components of

multiple manufacturers (networked), enables its components

to perform context-related tasks autonomously (self

organizing) and emphasizes user friendliness (user-

oriented).

The testbed comprises three Infrastructure Boxes (IB).

Each IB comprises energy sensors, which are accessible via

an MQTT interface. Energy data are provided every second

and comprises information such as the total real power, the

total reactive power, the total apparent power, the total real

energy, the total reactive energy, the total apparent energy

and more. As part of the DDA deployment, we provide the

means for computing the hourly daily consumption of the

real power and the real energy for each IB and for all three

IBs. To this end, on Edge Gateway (comprising an EAE)

has been deployed in each one of the IBs.

A data model comprising a Data Interface (DI), a Data

Source (DSD) and a Data Kind (DK) has been developed

and used to generate a Data Source Manifest (DSM), which

is registered in each Edge Gateway. In-line with

specification of the EAE, a number of processors have been

modelled and developed, including a processor for hourly

average calculation from a single data stream, as well as a

processor for persisting results in a MongoDB.

The specified at models are used to generate the

Analytics Processor Manifest (APM) for each required

processor, which is registered to the Edge Gateway.

Instances of the above listed processors are created in order

to calculate hourly averages from the total real power and

from the total real energy data streams. Moreover, the

processor for persisting results is instantiated in order to

store results at the edge tier (i.e., in the Edge Gateway’s

MongoDB) and at the cloud tier (i.e., a cloud-based

MongoDB destined to store global results). The former

(edge tier MongoDB) holds the results of EA, while the

latter (cloud tier MongoDB) holds the results of factory-

wide DDA. Further deployments will be made to get the

data from individual Smart Factory-KL modules. These

modules can provide additional data such as presence of

other nearby modules, current status of the production, state

of the module, the order that is being processed along with

its priority and other attributes.

Ledger Services are used for orchestrating the

instantiated processors. The orchestration is based on an

AM, which is registered and controlled through the

distributed data Analytics Engine API.

VII. CONCLUSIONS

This paper has introduced a novel RA for decentralized
industrial automation, which combines the benefits of edge
computing (i.e., near real-time control and data processing)
with the capabilities of blockchains in terms of
synchronizing distributed processes in scalable way. We
have also illustrated a tangible implementation of a DDA
platform, which adheres to the main principles of the
presented RA. In particular, the DDA platform is empowered
by a runtime time environment for programmable, high-
performance EA, as well as by a set of distributed ledger
services, which enable secure state sharing across multiple
analytics processes. The main innovation of the edge tier
implementation lies in the fact that it provides the means for
specifying, configuring and executing analytics functions
with minimal programming. At the same time, the
innovation of the ledger services lies in the pioneering use of
a permissioned blockchain for synchronizing distributed
processes.

The implemented DDA platform and its main enablers
are available as open source software [15] [16], which
represents one of our tangible contributions to the growing
community of Industry4.0 and Industrial IoT researchers and
engineers. We have also already deployed a concrete
analytics use case in a pilot plant. Our vision and
implementation roadmap includes benchmarking the
performance of our blockchain system against industry
requirements. Based on this benchmarking, we plan to
provide to the Industry4.0 community concrete insights on
the scope and the limitations of DLT technology for
industrial automation and analytics applications.

ACKNOWLEDGMENT

This work has been carried out in the scope of the FAR-
EDGE project (H2020-703094). The authors acknowledge
help and contributions from all partners of the project.

219

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Isaja, J. Soldatos, and V. Gezer, “Combining Edge

Computing and Blockchains for Flexibility and Performance
in Industrial Automation,” In the Proc. Of the The Eleventh
International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, UBICOMM 2017,
November 12 - 16, 2017 - Barcelona, Spain.

[2] P. Vrba et al., Review of Industrial Applications of Multi-
agent Technologies," Service Orientation in Holonic and
Multi Agent Manufacturing and Robotics, Studies in
Computational Intelligence Vol. 472, Springer, pp 327-338,
2013.

[3] P. Leitão, “Agent-based distributed manufacturing control: A
state-of-the-art survey,” Engineering Applications of
Artificial Intelligence, vol. 22, no. 7, pp. 979-991, Oct. 2009.

[4] F. Jammes and H. Smit, “Service-Oriented Paradigms in
Industrial Automation Industrial Informatics,” IEEE
Transactions on, pp. 62 – 70, vol. 1, issue 1, Feb, 2005.

[5] T. Cucinotta and Coll, “A Real-Time Service-Oriented
Architecture for Industrial Automation,” Industrial
Informatics, IEEE Transactions on, vol. 5, issue 3, pp. 267 –
277, Aug. 2009.

[6] W. Shi, J. Cao, Q. Zhang, and Y. Li and L. Xu, "Edge
Computing: Vision and Challenges," in IEEE Internet of
Things Journal, vol. 3, no. 5, pp. 637-646, Oct. 2016. doi:
10.1109/JIOT.2016.2579198.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog
computing and its role in the internet of things,” Proceedings
of the first edition of the MCC workshop on Mobile cloud
computing, MCC '12, pp 13-16.

[8] H2020-703094 FAR-EDGE Project 2018. [Onine], Available
from: http://www.far-edge.eu 2018.05.30

[9] Industrial Internet Consortium. 2017. The Industrial Internet
of Things Volume G1: Reference Architecture, version 1.8.
(2017). [Online], Available from:
http://www.iiconsortium.org/IIRA.htm 2018.05.30

[10] Industrial Internet Consortium. IIC Edge Intelligence Testbed.
2017. [Online], Available from:
http://www.iiconsortium.org/edge-intelligence.htm
2018.05.30

[11] EdgeX Foundry Framewok 2017. [Online], Available from:
https://www.edgexfoundry.org/ 2018.05.30

[12] K. Schweichhart. “Reference Architectural Model Industrie
4.0 - An Introduction,” April 2016, [Online], Available from:
https://ec.europa.eu/futurium/en/system/files/ged/a2-
schweichhart-
reference_architectural_model_industrie_4.0_rami_4.0.pdf
2018.05.30

[13] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B.
Amaba, "Blockchain technology innovations," IEEE
Technology & Engineering Management Conference
(TEMSCON), Santa Clara, CA, 2017, pp. 137-141.

[14] A. Le Hors and R. Strukhoff, “Hyperledger Fabric
Approaches v1.0 with Better Scalability and Security,”
November 2016. [Online], Available from:
https://www.altoros.com/blog/hyperledger-approaches-
version-1-0-with-better-scalability-and-security 2018.05.30

[15] FAR-EDGE, EdgeAnalyticsEngine 2018. [Online]. Available
from: https://github.com/far-edge/distributed-data-analytics
2018.05.30

[16] FAR-EDGE, DistributedLedger 2018. [Online]. Available
from: https://github.com/far-edge/DistributedLedger
2018.05.30

