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Abstract—Adaptive Noise Cancellation (ANC) belongs to 
the interference cancellation class. It employs an adaptive filter 
to estimate a perturbation signal, which corrupts a primary 
acoustic source. In most of the corresponding applications, the 
goal is to imitate an original speech signal. This paper proposes 
the use of a low-complexity recursive least-squares (RLS) 
adaptive algorithm for the ANC procedure. The combination 
between the RLS method and the dichotomous coordinate 
descent (DCD) iterations offers good performance with 
acceptable arithmetic costs. Simulation results are provided in 
order to demonstrate the validity of the ANC system based on 
the RLS-DCD adaptive algorithm. 

Keywords: adaptive noise cancellation; recursive least-
squares; dichotomous coordinate descent. 

I.  INTRODUCTION  
 

Modern technology allows the deployment of 
telecommunication networks in challenging environments, 
which frequently introduce strong acoustic interference. The 
high-quality communication performed in extremely noisy 
surroundings, such as airplane cockpits or social gatherings, 
requires the real-time estimation of corrupted acoustic 
signals (usually speech sequences). 

With the development of adaptive algorithms, the field of 
Adaptive Noise Cancellation (ANC) has also been the 
subject of intensive study [1]-[3]. The workhorse of signal 
processing systems employing adaptive methods is the Least 
Mean Squares (LMS) family [2]-[6]. Although the classical 
LMS adaptive algorithms were improved to a certain degree, 
their performances are limited when working with highly 
correlated signals. A new generation of efficiently 
implementable adaptive systems is required in order to 
increase the noise cancellation capabilities. 

The standard recursive least-squares (RLS) adaptive 
methods have attractive convergence properties [2]-[6]. 
However, the classical solutions for directly solving the 
corresponding matrix inversion problem have high 
arithmetic complexities and require large amounts of 
computational resources. Moreover, the implementations 
employing the traditional RLS algorithms suffer from 
occasional numeric instability caused by higher order 
arithmetical operations, such as divisions. Although the Fast 
RLS (FRLS) [5] considerably reduces the arithmetic effort, it 

is not stable when working with nonstationary signals, such 
as speech. 

In [7]-[9], the prohibitive nature of the RLS methods was 
approached using the combination with the dichotomous 
coordinate descent (DCD) iterations. The DCD part of the 
algorithm replaces the classical matrix inversion problem 
with an auxiliary system of equations, which is solved using 
only additions and bit-shifts. The solution is based on the 
statistical properties of the input signals and reduces the 
overall arithmetic complexity to a value proportional to L, 
which is used to denote the adaptive filter’s length. The 
resulting RLS-DCD algorithm is a numerically stable 
alternative, offering comparable results in terms of 
adaptation speed and precision, with a considerably reduced 
computational effort [7]-[11]. By comparison, the classical 
RLS method has a complexity of O(L3), which can be 
reduced using Woodburry’s identity to O(L2) – both methods 
are considered unaffordable for practical applications [2][5]. 

The original RLS-DCD solution was rarely tested with 
colored signals, such as speech sequences [8], [9]. It was 
later effectively applied for stereophonic acoustic echo 
cancelation (SAEC) setups requiring the estimation of 
multiple unknown systems [10]. This paper proposes the use 
of the RLS-DCD method for ANC systems employed in 
real-time recovery of speech signals. A theoretical model is 
presented and tested using different types of acoustic 
interference, with low Signal-to-Noise Ratio (SNR). 
Although the number of adaptive filter coefficients 
associated with ANC applications is lower than the case of 
acoustic echo cancellation (AEC) scenarios, the reduction in 
terms of arithmetic workload (in comparison to the classical 
RLS) is valuable for mobile devices (i.e., headphones, 
mobile phones, etc.). As a consequence, the compromise 
between arithmetic complexity and performance is analyzed, 
and a comparison is performed with the standard RLS. 

The paper is organized as follows. In Section II, the 
theoretical model of the ANC setup is defined. Section III 
describes a new approach on the theory associated with RLS 
adaptive algorithms and Section IV introduces a low-
complexity RLS-type method, which is suitable for acoustic 
applications, such as the ANC. The performances of the 
proposed adaptive method are demonstrated using 
simulations in Section V. The standard RLS adaptive 
algorithm is employed as a reference. Finally, in Section VI, 
a few conclusions are stated regarding the compromise 
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between arithmetic complexity and the performance of the 
ANC system using a low-complexity RLS method. 

 

II. SYSTEM MODEL 
 

Figure 1 illustrates the ANC scheme. By using the 
notation n for the discrete time index, we denote the desired 
signal d(n) as the accumulation between the relevant signal 
s(n) and the corrupting sequence q(n) (also called the 
interference signal). The input of the adaptive algorithm x(n) 
is a reference signal, which is linearly correlated with the 
interference q(n). In literature, the relation between x(n) and 
q(n) is usually modelled through a finite impulse response 
(FIR) filter, which generates q(n) using x(n) as the input. In 
practical ANC applications, the samples corresponding to 
x(n) and d(n) are available through microphones [3]. The 
influence of the physical distance between the two acoustic 
sensors is represented in Figure 1 through the delay factor D, 
which is associated with the length of the mentioned FIR 
filter. 

The purpose of the ANC system is to generate an 
estimate y(n) of q(n) (using the adaptive filter) and subtract it 
from the desired signal. Consequently, the error signal e(n) is 
an estimate of s(n), i.e., e(n) → s(n). The error of the 
adaptive algorithm is used to adjust the coefficients of the 
adaptive filter in order to minimize the noise interference. In 
an optimal situation, e(n) is composed of the signal s(n), free 
of the noise interference q(n). 

For the theoretical model of the adaptive algorithm we 
denote by )(ˆ nh  the L x 1 vector comprising the adaptive 
filter’s variable coefficients at time index n, i.e., 

 
 0 1 1

ˆ ( ) ( ), ( ), ..., ( ) ,T
Ln h n h n h nh             (1) 

  
where T is the transpose of a matrix/vector. The output of the 
filter y(n) is generated by performing the convolution 
between )1(ˆ nh and the L dimensional vector )(nx  formed 
with the most recent input samples:  
 

 ( ) ( ), ( 1), ..., ( 1) .Tn x n x n x n L   x           (2) 
 

Consequently, the error signal can be expressed as: 
 

).()1(ˆ)()()()( nnndnyndne T xh         (3) 
 

The core of the ANC system presented in Figure 1 is the 
adaptive algorithm. The usual methods employed for the 
update of ˆ ( )nh are the LMS-type adaptive algorithms, which 
have reduced performance when working with highly 
correlated input signals. In the ANC case, the samples of 
signal x(n) can be associated with speech, music, engine 
noise or other (highly correlated) acoustic signals. In such 
circumstances, the RLS-based systems can generate superior 
performance (in comparison to the LMS class) through their 

de-correlation properties. Despite the attractive features of 
the RLS algorithms, the classical versions employ 
arithmetically costly methods for computing the 
corresponding matrix inverse and solving the associated 
system of equations. Consequently, excessive workloads are 
imposed on signal processing chips, which usually handle 
multiple tasks. 

 
III. A DIFFERENT APPROACH ON THE RLS ALGORITHM 

 
The RLS-DCD adaptive algorithm was proposed as a 

stable alternative for other low-complexity RLS versions 
(such as the FRLS). Initially, the method was mostly 
employed for processing weakly correlated signals and later 
for the identification of long unknown acoustic systems (e.g., 
the AEC/SAEC scenarios) [7]-[11]. The corresponding least-
squares cost function is defined as: 

 

  ,)()(ˆ)()(
0

2


 
n

i

Tin inidnJ xh                 (4) 

 
where we denote by   10    the forgetting factor 
associated with the memory of the algorithm [1]. The 
minimization of J(n) requires the solution to the normal 
equations [2], [3]: 
 

),()(ˆ)( nnn xdx phR                           (5) 
  
where )(nxR  is the L x L correlation matrix of the input 
signal and )(nxdp is an L x 1 vector. The matrix )(nxR  and 
vector )(nxdp  are known for every iteration of the adaptive 
filter and can be expressed recursively using the forgetting 
factor: 
 

),()()1()()()(
0

nnniin T
x

n

i

Tin
x xxRxxR 



    (6) 

).()()1()()()(
0

nndnidin xd

n

i

in
xd xpxp 



       (7)                   

 
The direct computation of the solution associated with 

(5) has an arithmetic complexity of O(L3) and is considered 
an impossible task even for the most advanced signal 
processing chips. In [7], [8] a new approach was proposed 
by transforming the normal equations (5) into an auxiliary 
system, which is solved using iterative methods. The goal is 
to express (5) as: 

 
  ),()(ˆ)1(ˆ)( nnnn xdx phhR                 (8) 

 
where )1(ˆ)(ˆ)(ˆ  nnn hhh  is regarded as the new 
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Figure 1. The ANC scheme 

 
unknown (or solution) vector, which is used to update the 
adaptive filter through accumulation. 

Considering that the solution for (5) is approximately 
known at time index n-1, a residual vector can be defined as 
[7], [8]: 

 
).1(ˆ)1()1()1(  nnnn xxd hRpr          (9) 

 
Additionally, the changes between consecutive 

iterations, corresponding to the elements in (5), can be 
denoted as: 

 
),1()()(  nnn xxx RRR                   (10) 
).1()()(  nnn xdxdxd ppp                (11) 

 
The auxiliary system of linear equations can be obtained 

by using (9), (10) and (11) to extract )(ˆ)( nnx hR   from (8) 

and to setup )(ˆ nh  as the new unknown vector: 
 

 

(12)).(

)1(ˆ)()()1(
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Although the solution of (12) would require the inverse 
of the same matrix )(nxR  as in the case of (5), the 
reduction in arithmetic complexity is determined by the few 
values of ),(ˆ nh which can be computed for any time index 
n in order to achieve good convergence properties. It can 
also be noticed that (12) requires the residual vector 
corresponding to the n-1 time index. After several 
computations are performed, the values comprising r(n) can 

be expressed using the elements of the auxiliary system of 
equations [7], [8]: 

 

 

)13(.)(ˆ)()(
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)(ˆ)()(ˆ)1()()1(

)(ˆ)()(ˆ)1(ˆ)1(

)()1(
)(ˆ)()()(

0

0

nnn

nnnnn

nnnnnn

nnnnn

nn
nnnn

x

xx

xxxd

xx

xdxd

xxd

hRp

hRhRp

hRhRpr

hRhhR

pp
hRpr













 
 
In accordance with (6) and (7), after some algebra the 

values of )(nr  can also be determined in a recursive 
manner, i.e., 

 
   ).()()1()( nnenn xrr                      (14) 

 
The approach described in the current section re-states 

the least-squares problem by targeting the computation of 
the variation associated with the adaptive filter’s 
coefficients between two consecutive time indexes. 
Therefore, the number of significant values in )(ˆ nh  is 
considerably smaller than the entire set of coefficients 
corresponding to ),(ˆ nh  which is directly computed in the 
classical RLS versions. A major reduction in arithmetic 
complexity can be achieved when using the DCD iterations.  
       

IV. THE RLS-DCD ADAPTIVE ALGORITHM 
 
 The symmetric positive-definite property of the matrix 

)(nxR  makes possible the combination between the RLS 
algorithm and the DCD method [7]-[10]. We propose to use 
the resulting algorithm (i.e., the RLS-DCD - presented in 
Table I) for real time retrieval of speech signals in ANC 
scenarios.  

In step 1 of the adaptive method the correlation matrix is 
updated by exploiting its transpose property, i.e., 

( ) ( ).T
x xn nR R  The modification is performed by copying 

the upper-left L-1 x L-1 block of )1( nxR  to the lower-
right L-1 x L-1 submatrix of ),(nxR  and by computing only 
the first  column [8]-[10]. Consequently, the complexity 
associated with step 1 is reduced to a value proportional to 
the length of the adaptive filter [8], [10]. The main diagonal 
of )(nxR  is initialized using the identity matrix IL and the 
constant value ,  in order to avoid processing a singular 
matrix in the initial stages of the adaption course.  

 

152

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I.  THE RLS-DCD ALGORITHM 

Initialization 
LIRr0h x  )0(,0)0(,)0(ˆ    x + 

for n = 1, 2, …   
Step 1 )()()1()( )1()1( nnxnλn xRRx   

L 2L 

Step 2 )()1(ˆ)()( nnndne T xh   L L 
Step 3 )()()1()( nnenλn xrr   L 2L 
Step 4 
(DCD) )(),(ˆ)()(ˆ)( nnnnnx rhrhR 

 

0 2NuL+ 
+L+Mb 

Step 5 )(ˆ)1(ˆ)(ˆ nnn hhh   0 L 

 
 
After determining the error of the filter in step 2, the 

DCD portion of the algorithm is processed in stages 3 and 4. 
The residual vector r(n) is updated using the forgetting 
factor in the sense of correlating e(n) with the input vector 
x(n). The classical system of equations is replaced by an 
auxiliary problem. Although, the same matrix requires an 
inversion, the statistical properties of the new model allow 
for much simpler operations. For each of the maximum 
number of allowed (or successful) updates (denoted by Nu), 
the DCD performs a search and an update for a value of the 
solution vector, which is initialized with zero. Considering 
that only the main diagonal of )(nxR  comprises 
contributions of squared numbers (positive numbers), then it 
is safe to assume that (statistically) the rest of the matrix has 
negligible quantities regarding the decision process. 
Accordingly, the choice of performing an update to )(ˆ nh  
is based on finding the maximum absolute value in the 
residual vector and comparing it to the corresponding 
number (situated on the same position) on the main diagonal 
of ),(nxR  which is scaled using half of the step size, 
denoted by α. If the first term of the comparison is larger, 
then an update is performed on the corresponding position 
of )(ˆ nh  and the residual vector is also modified to reflect 
the newest change in the solution vector. The values 
comprising )(ˆ nh  and )(ˆ nh  are considered to be 
represented using a fixed-point format with Mb bits. 

Table II describes the behavior of the DCD iterations 
with a leading element [7]-[11]. The name of the method is 
associated to its greedy manner of searching the most 
probable locations where updates could be performed. The 
DCD is employed at step 4 in Table I, i.e., for each time 
index n. The key factor associated with the reduction in 
arithmetic workload is the choice of the step size α. The 
selection starts with the parameter H, which is the maximum 
expected amplitude of the values comprising the solution 
vector, i.e., the numbers in )(ˆ nh  are expected to be in the 
interval (-H, H). Correspondingly, the value of α can be 
initialized with H/2 and is halved for each time a 
comparison fails to lead to a successful update. By choosing 
H as a power of 2, any multiplication with α can be 

performed on signal processing chips as a bit-shift. 
Moreover, the smaller the step size becomes, the closer to 
the Least Significant Bit (LSB) is the contribution added in 

)(ˆ nh  (the update operation can have positive or negative 
contributions). The complete update procedure is presented 
in Table II (the end of each for iteration). It comprises an 
adjustment performed for one the solution vector values and 
an entire residual vector modification. The values of r(n) 
tend to become smaller as the DCD produces updates to 

)(ˆ nh .  
The DCD portion of the algorithms ends when one of 

two conditions is met [7]. Firstly, if Nu updates are 
performed, then the planned arithmetic effort is finished and 
the current values of r(n) and )(ˆ nh  are considered to be 
the produced results. Otherwise, if enough comparisons are 
unsuccessful, then the value of the step size becomes too 
small (i.e., the value of m corresponds to a value greater 
than the position of the LSB) and the DCD is stopped. 
Although in the last mentioned case the algorithm stops 
when m>Mb and the number of performed updates is smaller 
than the planned value Nu, r(n) and )(ˆ nh  are still 
considered valid results and used by the RLS-DCD. 

In any DCD ending situation, step 5 in Table I uses the 
determined solution vector to modify the adaptive filter 
coefficients )1(ˆ nh  and generate the new vector 

corresponding to the adaptive algorithm, i.e., ).(ˆ nh  It is 

important to mention that because )(ˆ nh  is altered for a 
maximum number of times equal to Nu, only several 
coefficients are really modified (for any given time index n), 
as the other remain with their initial values. However, the 
invested arithmetic effort is enough to generate sufficient 
performance, as already shown in [7]-[10] for AEC and 
SAEC scenarios. 

Relevant information about arithmetic complexity is also 
displayed in Table I. It can be noticed that the DCD method 
uses no multiplications or divisions. The corresponding 
computational effort is influenced by the length of the 
adaptive filter L, by the number of successful iterations Nu 
(which is usually smaller than 10) and by the number of bits 
Mb used to represent the values comprising ).(ˆ nh  The 
leading DCD employs only bit-shifts of the operands and no 
more than (2Nu+1)L+Mb additions [7]-[9]. Considering that 
we propose to use the RLS-DCD algorithm for ANC 
scenarios, the value of L is expected to be comparable to Nu 
and Mb. 

The overall complexity of the RLS-DCD can be further 
reduced by choosing the forgetting factor as ),/(11 KL  
where K and the filter length L are positive integers, powers 
of 2. Therefore, any multiplication with   can be replaced 
by a bit-shift and one subtraction. The   total   amount   of   
arithmetic operations corresponding to the algorithm 
described in Table I is represented by 3L multiplications and 
less than 6L+2NuL+Mb additions for every time index n [8].  
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TABLE II.  THE DCD WITH A LEADING ELEMENT 

Initialization 2,2/,ˆ  mH0h    
for k = 1, 2, …Nu 
          )(...)(,)(max, 110 nrnrnrpozval L  

       ;; pozpvalv   
        while     b,; )()2/( MmandnRv ppx    

             ;2/;1   mm  
   end 

        if  (m>Mb) exit DCD 

       
)()}({)()(

)}({)(ˆ)(ˆ

)( nnrsignnn

nrsignnhnh
p

xp

ppp

Rrr 






 

end for iteration 
 
 
We notice that the value of Mb has a limited influence on 

the number of arithmetic operations. However, the parameter 
is relevant for their complexity.  

 
 

V. SIMULATIONS 
 

Simulations results are presented for the context 
illustrated in Figure 1, using the RLS-DCD and RLS 
adaptive algorithms. The performance of the ANC system is 
analyzed using time domain plots and spectrograms with 256 
points Fourier Transforms for the generated error signals. 
The reference RLS method employs Woodburry’s identity to 
estimate the inverse of the correlation matrix and to solve the 
classical least-squares system of equations. 

The acoustic test signals are sampled with a frequency of 
8 kHz, using 16 bits/sample. The goal is to recover 
interference-free speech sequences available in the s(n) 
waveforms [12]. The desired signal is generated by filtering 
the interference x(n) with a Matlab generated low-pass filter 
and adding the output q(n) to s(n). The Matlab filter is a fir1 
impulse response with 13 coefficients and a cut-off 
frequency of 0.475 of the sampling frequency. 

The length of the adaptive filter is L=25 and the 
corresponding forgetting factor is set to ).16/(11 L  
Correspondingly, the L values comprising the RLS-DCD 
solution vector are represented in the numerical interval (-H, 
H)=(-1,1) using Mb bits. The parameter Mb directly 
influences the precision of the ANC system and is varied in 
order to study the compromise between the performance and   
complexity. Furthermore, )(ˆ nh  is updated for a maximum 
number of Nu=4 times per every time index n.  

The first simulation compares the performance of the 
RLS-DCD and RLS algorithms using Gaussian noise as 
acoustic interference. The s(n) and q(n) signals have the 
same power (i.e., the corresponding SNR has the value 0 
dB). It can be noticed in Figure 2 that increasing the number 
of bits used for the representation of the adaptive filter 
coefficients leads to better estimates of interference samples 
and a better reduction in noise level. Additionally, the 
comparison  performed  with  the RLS spectrogram indicates  

 

 
Figure 2. Spectrograms with 256 Fourier Transforms – the interference is 

Gaussian noise (SNR=0 dB): a) The speech sequence to be recovered; 
RLS-DCD error signal with b) Mb=3, c) Mb=6, d) Mb=8, e) Mb=16; f) RLS 

error signal 

that higher values of the parameter Mb provide similar 
performance from the RLS-DCD method, with lower 
arithmetic effort. Figures 3 and 4 provide results in the time 
domain for the scenario. The original speech is compared to 
the corrupted signal (Figure 3) and the recovered sequences 
(i.e., the error signals) are displayed for the RLS method, 
respectively the RLS-DCD algorithm with Mb=16 (Figure 4). 
Both plots in Figure 4 indicate an obvious reduction in noise 
level. 

For the second simulation (Figure 5), the interference 
signal x(n) is acoustic engine noise.  The same value is used 
for the SNR (0 dB). In comparison to the previous scenario, 
it can be noticed that the settings Mb=8 and Mb=16 do not 
provide the same performance rating anymore. The 
properties of the second interference type require more 
precision in order to generate similar results between the 
RLS-DCD and the RLS methods. The time domain signals 
illustrated in Figures 6 and 7 also demonstrate that the RLS- 
DCD algorithm can provide similar performance with the 
RLS using considerably less arithmetic resources. 
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Figure 3. Acoustic signals in the time domain: a) The speech sequence to 
be recovered; b) Corrupted speech signal: Gaussian noise with SNR=0 dB  

 

 
Figure 4. Acoustic signals in the time domain; Gaussian noise interference 
(SNR=0 dB) a) The recovered speech signal using RLS-DCD with Mb=16; 

b) The recovered signal using RLS 

The spectrograms corresponding to a third experiment 
are illustrated in Figure 8. The speech s(n) is corrupted for 
the first half of the simulation by engine sound, which is 
afterwards replaced by music. The SNR is set to -10 dB for 
the entire scenario. The change in interference produces a 
spike in each error spectrogram and the adaptive algorithms 
require an adaptation period. It can also be noticed that the 
music is harder to eliminate from the desired signal (the 
corresponding interference leaves easier noticeable traces in 
the error signal). As a consequence, the correlation properties 
of the interference signals have an important influence on the 
performance of the adaptive algorithms. 

The performance of the adaptive filter is also illustrated 
in the time domain (Figures 9 and 10), for scenario 3.  The 
change in interference type [see Figure 9.b)] generates short 
spikes in the error signals plotted in Figure 10. It can be 
noticed that the reaction time of the RLS-DCD adaptive 
method is similar to the RLS.   

 

 
Figure 5. Spectrograms with 256 Fourier Transforms – the interference is 
engine noise (SNR=0 dB): a) The speech sequence to be recovered; RLS-
DCD error signal with b) Mb=3, c) Mb=6, d) Mb=8, e) Mb=16; f) RLS error 

signal 

Figure 6. Acoustic signals in the time domain: a) The speech sequence to 
be recovered; b) Corrupted speech signal: engine noise with SNR=0 dB  
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Figure 7. Acoustic signals in the time domain; engine noise interference 
(SNR=0 dB) a) The recovered speech signal using RLS-DCD with Mb=16; 

b) The recovered signal using RLS 

VI. CONCLUSIONS 
 
This paper has presented a low-complexity RLS algorithm 

for ANC scenarios. The RLS-DCD adaptive method is based 
on a reinterpretation of the classical least-squares problem 
and replaces the standard system of linear equations with an 
auxiliary system. The new unknown vector (i.e., the solution 
vector) represents the changes of the adaptive filter between 
consecutive iterations. The model favors low-complexity 
solutions, such as the leading DCD iterations, which 
computes a low number of values for the update stage of the 
filter’s coefficients.  

The DCD method exploits the statistical properties of the 
correlation matrix associated with the input signal and solves 
the proposed auxiliary system using only bit-shifts and 
additions. Moreover, the overall combination between the 
RLS and the DCD requires no divisions and the 
multiplication volume can be drastically reduced by 
choosing an appropriate value for the forgetting factor. The 
RLS-DCD is also a stable alternative, which has comparable 
performance with the RLS method implemented using 
Woodburry’s identity.  

Simulations have been performed in order to analyze the 
behavior of the proposed system. The results indicate that the 
RLS-DCD    has    attractive    performance when working 
with correlated signals, such as speech. The computational 
efficiency of the proposed adaptive algorithm recommends it 
as a suitable candidate for ANC implementations on signal 
processing chips for mobile devices.  

  
 
 
 
 
 

 

 
Figure 8. Spectrograms with 256 Fourier Transforms - the interference is 

engine noise, which changes to music at time index 15000 (SNR=-10 dB):  
a) The speech sequence to be recovered; RLS-DCD error signal with b) 

Mb=3, c) Mb=6, d) Mb=8, e) Mb=16; f) RLS error signal 

 
Figure 9. Acoustic signals in the time domain: a) The speech sequence to 

be recovered; b) Corrupted speech signal: engine noise (first half) and 
music (second half); SNR=0 dB  
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Figure 10. Acoustic signals in the time domain; interference: engine noise 
(first half) and music (second half); SNR=0 dB a) The recovered speech 
signal using RLS-DCD with Mb=16; b) The recovered signal using RLS 
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