
Improving FPGA-Placement with a Self-Organizing Map
Accelerated by GPU-Computing

Timm Bostelmann, Philipp Kewisch, Lennart Bublies and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: bos@fh-wedel.de, publications@kewis.ch, edu@bublies-it.de, saw@fh-wedel.de

Abstract—Programmable circuits and, nowadays, especially field-
programmable gate arrays (FPGAs) are widely applied in compu-
tationally demanding signal processing applications. Considering
modern, agile hardware / software codesign approaches, an elec-
tronic design automation (EDA) process not only needs to deliver
high quality results. It also has to be swift because software
compilation is already distinctly faster. Slow EDA tools can in
fact act as a kind of show-stopper for an agile development
process. One of the mayor problems in EDA is the placement of
the technology-mapped netlist to the target architecture. In this
work a method to improve the results of the netlist placement for
FPGAs with a self-organizing map is presented. The admittedly
high computational effort of this approach is covered by the
exploitation of its inherent parallelism. Different approaches
of parallelization are introduced and evaluated. A concept to
accelerate the self-organizing map by using the single instruction
multiple data (SIMD) capabilities of the central processing unit
(CPU) and the graphics processing unit (GPU) for low-level
vector operations is presented. This work is based on our
previous publications, which are joined, updated and extended.
Specifically, a new metric to generate training vectors for the
self-organizing map – that has been introduced by Amagasaki et
al. – was integrated into our work. It is shown that – in case of
our application – the original vectorization metric creates higher
quality results, even though the new metric is unmistakably
faster. Addressing this issue, in addition to the previous low-
level parallelization, a new high-level parallelization approach is
introduced and detailed benchmark results are presented.

Keywords–FPGA; netlist placement; OpenCL; GPU-computing;
parallelization; SIMD.

I. INTRODUCTION

The ever-growing complexity of FPGAs has a high impact
on the performance of EDA tools. A complete compilation
from a hardware description language to a bitstream can take
several hours. One step highly affected by the vast size of
netlists is the NP-complete placement process. It consists of
selecting a resource cell (position) on the FPGA for every
cell of the applications netlist. In this work, our previous
publications regarding the optimization of the placement pro-
cess [1], [2] are joined, updated and extended. Explicitly, a
new GPU-accelerated implementation is presented and bench-
marked. Furthermore, an additional method for the generation
of training vectors is evaluated.

Due to the complexity of the netlist placement problem,
many current algorithms work in an iterative manner. A well
known example is simulated annealing [3], which starts with
a random initial placement and swaps blocks stepwise. The
result of every step is evaluated by a cost function. A step

is always accepted, if it reduces the cost. If it increases the
cost, it is accepted with a probability that declines by time
(cooling down). An annealing schedule determines the gradual
decrease of the temperature, where a low temperature means
a low acceptance rate and a high temperature means a high
acceptance rate. Generally, the temperature is described by an
exponentially falling function like

Tn = αn · T0 (1)

where typically 0.7 ≤ α ≤ 0.95. However, there has been a lot
of research on the optimization of the annealing schedule like
in [4], [5], [6]. As a result, there are many variations available
for any related problem.

It has been shown by Banerjee et al. [7] that the speed and
result of an iterative placement algorithm can be improved
by the use of an initial placement created in a constructive
manner out of the structural information of the netlist. For this
purpose, the netlist was recursively bisectioned, resulting in an
one-dimensional mapping. This mapping was spread to a two-
dimensional plane with space-filling curves to create an initial
placement for the simulated annealing algorithm. In compari-
son to the classical random initialization the computation time
was reduced by about 44.5 percent without having a significant
impact on the quality.

Self-organizing maps [8] – also known as Kohonen maps
after their inventor Teuvo Kohonen – are used to classify
multidimensional datasets. They belong to the group of unsu-
pervised learning algorithms. Therefore, neither the input data
nor the resulting classes have to be known beforehand. The
input data is grouped by similarity and mapped to an usually
two-dimensional plane.

In this work, it is shown how a self-organizing map can be
adapted to map a netlist to a two-dimensional plane and how
a valid placement for the netlist can be derived. Additionally,
different approaches to utilize the inherent parallelism of this
modified self-organizing map are introduced and evaluated.
These approaches are based on using the SIMD capabilities
of the CPU and the GPU.

In Section II, the problem of netlist placement for FPGAs
is introduced and the functional principle of a self-organizing
map is described. Furthermore, the basics and challenges of
GPU-computing are introduced. In Section III, the proposed
algorithm is described including details on how the training
algorithm of the self-organizing map has been modified to
assure that only valid placements are produced. Furthermore,
different metrics for the mapping of the structural netlist-
information to so called training vectors are introduced and

45

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

evaluated. In Section IV, the results of a prototypic software
implementation of the proposed algorithm are presented. A
reasonable usage of the structural information is proven by
placing synthetic, homogeneous netlists. As representation for
real world applications a selection of Microelectronics Center
of North Carolina (MCNC) benchmarks [9] is introduced.
A modified version of the Versatile Place and Route (VPR)
[10] tool for FPGAs is used to show the gain of using an
initial placement for simulated annealing, which has been
created using a self-organizing map. In Section V, the levels
of parallelism inherent to the self-organizing map (i.e., vector-
level and map-level) are analyzed and different approaches
to exploit them are introduced. Specifically, a low-level and
a high-level parallelization approach on CPU and GPU are
described and benchmarked in detail. Finally, in Section VI,
this work is summarized and a prospect to further work is
given.

II. BACKGROUND

In the following subsections the problem of netlist place-
ment for FPGAs is introduced and the functional principle of a
self-organizing map is described. Furthermore, the basics and
challenges of GPU-computing are introduced.

A. Netlist placement for FPGAs
The problem of netlist placement for FPGAs can be

roughly described as selecting a resource cell (a position) on
the target FPGA for every cell of the given netlist. In Figure 1,
an exemplary graph of a netlist is defined. An exemplary
placement for this netlist is presented in Figure 2. The positions
must be chosen in a way that:

1) Every cell of the netlist is assigned to a resource cell
of the fitting type (e.g., IO, CLB or DSP).

2) No resource cell is occupied by more than one cell
of the netlist.

3) The cells are arranged in a way that allows the best
possible routing.

The first two rules are necessary constraints. A placement
that is failing at least one of them is illegal and therefore
unusable. The third rule is a quality constraint, which is
typically described by a cost function. The goal of a placement
algorithm is to optimize the placement regarding this function
without violating one of the necessary constraints. Usually, the
length of the critical path and the routability are covered by
the cost function.

B. Principle of self-organizing maps
A self-organizing map is a special kind of artificial neu-

ronal network. Figure 3 shows the general structure of a two
dimensional self-organizing map. It consists of two layers,
the competition layer Ki,j with i ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . ,m} and the input layer Ek with k ∈ {1, 2, . . . , l}.
The neurons of the competition layer are placed in a two
dimensional grid. They are horizontally and vertically adjacent.
Furthermore, every neuron of the competition layer is con-
nected to every neuron of the input layer by a weight Wi,j,k.
The input layer corresponds to a vector with l elements and is
able to classify l-dimensional input data.

In Figure 4, the training-cycle of a self-organizing map
is shown as a flowchart. The self-organizing map is trained

In0 C0

C1

C3 C4

In1

In2

In3

C2In4

In5

O0

O1

O2

I/O-Cell

Logic-Cell

Figure 1. An exemplary graph of a netlist consisting of input-, output-, and
logic-cells

In2

C0 C1In1 C2 In5

C3 C4 O2

O0

In3 In4

O1

In0

Figure 2. A valid placement for the graph in Figure 1 on a simple
island-style FPGA architecture

by repeated stimulation of the input layer with the input data
(training vectors) in a random order. In every step – thus for
every stimulation – a winning neuron is determined by the
distance of its weight vector to the current stimulation of the
input layer, so that the neuron with the smallest Euclidean
distance to the training vector wins. After this step the weights
of the winning neuron and its neighbors are pulled towards the
current stimulation by the function

W ′ijk =Wijk + (Ek −Wijk) · βij (2)

where 0 ≤ βij ≤ 1 is the influence. The influence is depending
on the distance to the winning neuron on the competition layer
by the function

βij = e
−

(|I − i|+ |J − j|
r

)
(3)

where (I, J) is the position of the winning neuron, so that
|I−i|+|J−j| is the rectilinear distance between the influenced
and the winning neuron, and r is the radius of the function.
Hence, the influence on the winning neuron itself is the highest
and decreases by distance. Consequentially, similar training
vectors stimulate mainly adjacent neurons, so that a clustering
by similarity is developed.

46

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

...
...

E1

Ek

El

K1,1 K1,m...

Kn,1 Kn,m...

...

K1,2

Kn,2

...

K1,j

Kn,j
...

...

...

K2,1 K2,m...K2,2 K2,j...

Ki,1 Ki,m...Ki,2 Ki,j...

...

...

...

...

...

W1,1,1

W
2,1,1

W
i,1,1

W
i,1,k

W
n,1,k

W
n,1,l

Figure 3. General structure of a self-organizing map

Select a
Random Vector

Test
Vector

Learn
Vector

Done?

N

Y

Figure 4. Flowchart of the training-cycle of a self-organizing map

C. GPU-computing with OpenCL

OpenCL is an universal interface for parallel SIMD-
computing. It supports various kinds of target hardware. These
are multicore CPUs and their streaming extensions as well as
GPUs and even special hardware like FPGAs. Especially GPUs
are – due to their structure – able to execute large amounts of
uniform tasks in parallel. For example, the AMD® RADEON™

RX 480 GPU is specified with a peak performance of up to
5.8 teraflops, utilizing 2304 stream processors and a memory
bandwidth of 224 gigabytes per second. This computation
power is usually used for the calculation of pixel-colors in
a three-dimensional scene, namely computer games. Even so,
thanks to interfaces like OpenCL it is also available for general
purpose computing. However, due to the special hardware
architecture of GPUs, several specifics must be taken into
account when using OpenCL. Besides the obvious need for
parallelization, the differences regarding the memory model
convey the highest impact to the programmer. Instead of a
global memory model with transparent caches, which is used
in CPUs, an explicit multi level model is used. In Figure 5,
the memory model of OpenCL is shown. It can be mapped
to any recent GPUs memory structure. The work-items of the
GPU are grouped to workgroups. Each workgroup shares a
fast local memory. Work-items can be efficiently synchronized
within a workgroup. An exchange of data over the boundaries
of workgroups is only possible by using the global memory.

Assuming the GPU implements dedicated memory – as
every GPU with considerable computing power does – the
transfer between host memory and global memory is com-
parably slow and has to be reduced to the minimum. Even
though the global memory of the GPU is noticeably faster
than the host memory of the host-device, it has to feed all

the work-items. Thus, the global memory should be used as
sparsely as possible. Instead, the workgroup’s local memory
should be used, if applicable. Copying data from the global
memory to the local memory should be done sequentially to
exploit the burst capabilities of the dynamic random access
memory (RAM).

Finally, it has to be noted that all parameters like the size of
the workgroups and the speed and the size of the memories are
varying significantly between different devices, let alone differ-
ent device-classes. Therefore, an implementation performing
well on one GPU might lack performance on another model.

III. PROPOSED METHOD

In the following subsections the proposed algorithm is
described including details on how the training algorithm of the
self-organizing map has been modified to assure that only valid
placements are produced. Furthermore, different metrics for
the mapping of the structural netlist-information to so called
training vectors are introduced and evaluated.

A. Principle of netlist placement with a self-organizing map
To generate a netlist placement with a self-organizing map,

in addition to the training process described above two general
steps are necessary (Figure 6). Those are the generation of
training vectors (preparation) and the extraction of placement
information from the self-organizing map after the training
(interpretation).

For every cell of the netlist, which has to be placed, a
training vector is generated in a way that highly connected cells
are represented by similar vectors. Since the self-organizing
map will cluster these vectors by similarity, the vectors of
highly connected cells will cluster together on the competition

47

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Host Memory

Host-Device

Global Memory

Compute-Device

Private
Memory

Work-Item

Local Memory

Workgroup

Private
Memory

Work-Item

Local Memory

Workgroup

Private
Memory

Work-Item

Private
Memory

Work-Item

Figure 5. The OpenCL memory- and computation-model

Vector
Generation

SOM
Training

Placement
Export

Figure 6. Flowchart of the placement algorithm based on a self-organizing
map (SOM)

layer. A favorable placement of the cells can therefore be de-
termined by the positions of the corresponding training vectors
on the competition layer. To allow a distinct interpretation the
neurons of the competition layer are arranged in a one-to-one
mapping with the FPGA resources. This means every neuron
is corresponding to a resource cell and the neighborhood
relationships between the neurons are corresponding to the
interconnections of the FPGA architecture.

To support different cell types (e.g., logic bocks and
input / output blocks) every neuron is tagged with the type
of the corresponding FPGA resource cell and every training
vector is tagged with the type of the corresponding cell of the
netlist. During the determination of the winning neuron only
neurons of the same type as the training vector are analyzed,
so that only a fitting neuron (position) can win. The training
– namely the manipulation of the weights around the winning
neuron – happens independently of the type to assure a global
clustering. On the level of the neuronal model this means that
there is one input layer for every cell type. The neurons of the
competition layer are connected only to those input neurons
that are of the same type as their corresponding resource cell.
Consequentially, the training vectors are stimulating only the
input neurons that are of the same type as their corresponding
cell of the netlist.

B. Mapping of the structural information into training vectors
As shown before the training data has to be available in

form of homogeneous sized vectors – one for every cell of
the netlist – to be processed by the self-organizing map. Five
metrics for the generation of these vectors, depending on the
structural information of the netlist, have been evaluated.

Z0

Z1

Z2 Z3 Z4

N
0

N1

N2 N3

I/O-Cell

Logic-Cell

Figure 7. Graph of an exemplary netlist

TABLE I. Training vectors for the graph shown in Figure 7 generated by the
vectorization method “net membership”

Cell Vector

Z0 (1, 0, 0, 0)

Z1 (0, 1, 0, 0)

Z2 (1, 1, 1, 0)

Z3 (0, 0, 1, 1)

Z4 (0, 0, 0, 1)

Metric 1 Net membership: In the first metric the vectors are
generated depending on the membership of cells in nets. The
dimension of the vectors is equal to the number of nets in the
netlist. Thereby, every element of a vector is mapped to a net
of the netlist. An element is 1, if the cell corresponding to the
vector is connected to the respective net, otherwise it is 0. The
vector generation using this approach is very fast because the
vectors are generated directly from the netlist. Figure 7 shows
a graph of a simple netlist, where Zi for i ∈ {0, 1, . . . , 4} are
cells and Nj for j ∈ {0, 1, . . . , 3} are nets of the netlist. The
vectors generated for this graph are shown in Table I.

Metric 2 Hyperbolic distance: In the second metric the
vectors are generated depending on the pairwise distance
between cells. The dimension of the vectors is equal to the
number of cells in the netlist. Thereby, every element of a
vector is mapped to a cell of the netlist. Let Vi be the vector

48

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Training vectors for the graph shown in Figure 7 generated by
the vectorization method “hyperbolic distance”

Cell Vector

Z0

(
1

1
,
1

3
,
1

2
,
1

3
,
1

4

)
Z1

(
1

3
,
1

1
,
1

2
,
1

3
,
1

4

)
Z2

(
1

2
,
1

2
,
1

1
,
1

2
,
1

3

)
Z3

(
1

3
,
1

3
,
1

2
,
1

1
,
1

2

)
Z4

(
1

4
,
1

4
,
1

3
,
1

2
,
1

1

)
TABLE III. Training vectors for the graph shown in Figure 7 generated by

the vectorization method “linear distance”

Cell Vector

Z0

(
4

4
,
2

4
,
3

4
,
2

4
,
1

4

)
Z1

(
2

4
,
4

4
,
3

4
,
2

4
,
1

4

)
Z2

(
3

4
,
3

4
,
4

4
,
3

4
,
2

4

)
Z3

(
2

4
,
2

4
,
3

4
,
4

4
,
3

4

)
Z4

(
1

4
,
1

4
,
2

4
,
3

4
,
4

4

)

corresponding to the cell Zi and let dij be the minimal distance
between the cells Zi and Zj . The hyperbolic equation

vij =
1

1 + dij
(4)

describes the generation of the training vectors. Table II shows
the vectors generated for the graph (Figure 7) used in the
previous example.

Metric 3 Linear distance: The third metric – like the
second one – depends on the pairwise distance between cells.
Therefore, the structure of the vectors is the same. In addition
to the former definition let dmax be the greatest distance
occurring in the netlist. The linear equation

vij = 1− dij
dmax + 1

(5)

describes the generation of the training vectors. Table III shows
the vectors generated for the graph (Figure 7) used in the
previous examples.

Metric 4 Distance to I/O-cells: This metric has to the best
of our knowledge been introduced by Amagasaki et al. in [11].
Instead of the pairwise distances between all cells, only the
distances to the input- and output-cells (I/O-cells) are used.
The dimension of the vectors is equal to the number of the
I/O-cells in the netlist. Table IV shows the vectors generated
for the graph (Figure 7) used in the previous examples.

Metric 5 Hyperbolic distance to I/O-cells: The fifth metric
is equal to the fourth metric, with the difference that the

TABLE IV. Training vectors for the graph shown in Figure 7 generated by
the vectorization method “I/O-distance”

Cell Vector

Z0 (0, 2, 3)

Z1 (2, 0, 3)

Z2 (1, 1, 2)

Z3 (2, 2, 1)

Z4 (3, 3, 0)

TABLE V. Training vectors for the graph shown in Figure 7 generated by
the vectorization method “hyperbolic I/O-distance”

Cell Vector

Z0

(
1

1
,
1

3
,
1

4

)
Z1

(
1

3
,
1

1
,
1

4

)
Z2

(
1

2
,
1

2
,
1

3

)
Z3

(
1

3
,
1

3
,
1

2

)
Z4

(
1

4
,
1

4
,
1

1

)

distances are normalized by the hyperbolic equation (4) like
the third metric. Table V shows the vectors generated for the
graph (Figure 7) used in the previous examples.

A disadvantage of the the second and third metric is that the
pairwise distance between all cells has to be determined before
the training vectors can be generated. Thanks to heuristics like
the one introduced by Edmond Chow [12] this is not as time
consuming as it might seem. An advantage of the fourth and
fifth metric is the comparatively small vector size.

C. Assuring a valid placement
A problem of all proposed metrics is that very similar

vectors will not activate two adjacent neurons as desired, but
exactly the same neuron. This leads to the generation of an
invalid placement because the cells must be placed distinctly
and are not allowed to overlap. The placement could be
legalized in an additional step, but this would clearly increase
the computational effort. An approach of making the vectors
distinguishable by the addition of orthogonal data, which
causes repulsion between them, also drastically increases the
computational effort for the self-organizing map. Therefore,
both approaches were rejected.

Instead, the self-organizing map was modified in a way
that the activation of the same neuron by different vectors is
already prevented during the training and thereby only valid
placements are generated. Therefore, first of all the training of
the self-organizing map was divided into training-cycles, where
each training-cycle means the stimulation with all training
vectors in a random succession. Furthermore, neurons that have
already won during a training-cycle are blocked until the end
of this cycle, so that they cannot win again. On the level of
the neuronal model this means the connection between the
winning neuron on the competition layer and the input layer is
temporarily muted until the end of the training-cycle. Thereby,
it cannot be activated again by a similar vector corresponding

49

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Input-Cell

Logic-Cell

Output-Cell

Figure 8. Synthetic, homogeneous graph of the size three

TABLE VI. Results for a synthetic, homogeneous 8 × 8 graph similar to
Figure 8

Nr. Metric Channels Path length

1 VPR 8 10.9 ns
2 membership 10 12.8 ns
3 linear distance 8 10.9 ns
4 hyperbolic distance 6 10.4 ns
5 I/0-distance 8 10.6 ns
6 hyperbolic I/0-distance 8 10.7 ns
7 hyperbolic distance 8 9.0 ns

to another cell. Instead, because the neighborhood influence
between the neurons on the competition layer remains active,
a similar vector will probably activate a neuron adjacent to
the blocked one. All the blocked neurons are released at the
beginning of every cycle. The mandatory competition between
the vectors about the neurons on the competition layer is not
suppressed by the blocking because of two reasons. First,
because in every cycle the vectors are used in a random
succession, a different vector has the chance to be the first
one in each cycle. Second, because neurons that have been
blocked are still influenced by their neighbors for the rest of
a cycle, neurons may “attract” totally or marginally different
vectors in the next cycle, depending on how much they have
been influenced.

With this approach not only the generation of a valid
placement is assured, but also the computational effort of
the determination of the winning neuron is reduced. This is
because there is no need to evaluate the distances between the
input vector and the weight vectors of the blocked neurons,
which cannot win anyway.

IV. RESULTS

For a first analysis the proposed method was implemented
prototypically in Python. The focus of this implementation lies
in adaptivity and interchangeability of the different modules
instead of a high computational performance. The software has
been used to evaluate the five metrics for vector generation
proposed in Section III. Therefore, synthetic, homogeneous
netlists were placed by the self-organizing map and routed
by VPR. Figure 8 shows a graph of the used netlist of the size
three meaning 3×3 logic blocks plus input and output blocks.

Table VI shows the results for a similar graph of the size
eight. The first line contains the results of VPR and should
be considered as the reference. The lines two to six show

TABLE VII. Results for a synthetic, homogeneous 16 × 16 graph similar to
Figure 8

Nr. Metric Channels Path length

1 VPR 8 21.1 ns
2 membership 12 33.9 ns
3 linear distance 8 25.5 ns
4 hyperbolic distance 8 18.6 ns
5 I/O-distance 10 26.1 ns
6 hyperbolic I/O-distance 8 25.9 ns

TABLE VIII. Characteristics of the selected MCNC benchmarks

Nr. Name CLBs Nets Inputs Outputs

1 e64 273 338 65 64
2 ex5p 1 064 1 072 8 63
3 apex4 1 261 1 270 9 18
4 misex3 1 397 1 411 14 14
5 alu4 1 522 1 536 14 8
6 seq 1 750 1 791 41 35
7 apex2 1 878 1 916 38 3
8 ex1010 4 598 4 608 10 10

the results of the different vectorization metrics for the self-
organizing map. The result achieved with vectorization by net
membership is worse than the reference solution of VPR both
in terms of the channel width and the length of the critical
path. The result achieved by linear distance is similar to the
reference. The vectorization by hyperbolic distance produces
a smaller minimal channel width than the reference (see line
four). This placement is one of the ideal solutions for the
given problem. To allow a fair comparison of the critical path’s
length the placement was routed again with the channel width
achieved by VPR. The result is shown in line seven. The
results for the I/O-distance based vector generation – with and
without normalization – are shown in line six and seven. Both
generate slightly better results than VPR, but the difference is
in the margin of error. As can be seen the critical path of the
reference placement generated by simulated annealing is about
21 percent longer than the one generated by the self-organizing
map with vectorization by hyperbolic distance.

Table VII shows the results for a graph of the size 16. These
results and further tests with synthetic benchmarks have shown
that the vectorization by hyperbolic distance creates the best
results, often even ideal ones. It has to be mentioned that the
large vector-size of this method has a high impact on the the
computation time of the self-organizing map. If this poses a
problem, then a vectorization method based on the I/O-distance
should be considered. However, this work concentrates on the
quality of the placement by selecting the hyperbolic distance
method. The computational effort is handled by parallelization
and utilizing the GPU.

To test the suitability of the self-organizing map for real
world netlists a selection of MCNC benchmarks was used.
Netlists with a global routing flag – often used for the clock
signal – were not supported by the first prototypic imple-
mentation and therefore were not examined. Table VIII shows
the selected benchmarks and their characteristics, namely the
number of logic blocks (CLBs), nets, input and output pins.

In a first approach the MCNC benchmark netlists were
placed by the self-organizing map and routed by VPR like

50

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IX. Placement results for MCNC benchmarks generated by the
self-organizing map (SOM) in comparison to the classical annealing with

random initialization (VPR)

Critical Path Min. Channels
Nr. Name VPR SOM VPR SOM

1 e64 7.4 ns 10.5 ns 14 10
2 ex5p 10.4 ns 16.4 ns 20 36
3 apex4 10.1 ns 14.7 ns 22 42
4 misex3 8.8 ns 11.6 ns 18 48
5 alu4 11.0 ns 16.0 ns 16 48
6 seq 8.7 ns 15.5 ns 18 46
7 apex2 10.4 ns 22.6 ns 20 46
8 ex1010 17.1 ns 31.8 ns 18 72

TABLE X. Detailed placement results for the MCNC benchmark e64
generated by the self-organizing map in comparison to the classical

annealing with random initialization (VPR)

Nr. Metric Channels Path length

1 VPR 14 7.4 ns
2 Membership 10 11.9 ns
3 Membership 14 11.7 ns
4 linear distance 10 9.5 ns
5 linear distance 14 9.5 ns
6 hyperbolic distance 10 10.5 ns
7 hyperbolic distance 14 10.2 ns

the synthetic benchmarks before. The results are shown in
Table IX. It is obvious that the self-organizing map is not able
to compete with the reference by any measure. The MCNC
benchmarks (like real world applications) are not as structured
as the previous synthetic examples. Because the self-organizing
map only uses the structural information of the netlist and
neither the critical path’s length, nor the channel width is
optimized directly, the sobering results concerning these two
indicators are not surprising.

The only exception is how well the self-organizing map
handles the e64 netlist regarding the minimal channel width
(see line one of Table IX). Because of this property, the
detailed results of this particular netlist were analyzed and
are shown in Table X. Even though the vectorization by liner
distance surpasses the vectorization by hyperbolic distance in
this special case, the latter method is kept up. The different
results of the e64 netlist are ascribed to its special structure
and characteristics. The e64 netlist has an unusually high I/O
to CLB ratio, which leads to a full occupation of the sur-
rounding I/O-cells, whereas the CLB-cells are used sparsely.
In this special case the self-organizing map tends to scatter
the logic over the whole plane (Figure 9), thereby optimizing
the routability and channel width. The simulated annealing in
contrast groups the logic in one part of the plane (Figure 10)
because it primarily optimizes the length of the critical path.

Because of the formerly stated drawbacks in using the
self-organizing map directly for the generation of the final
placement, its suitability as an initial placement for the itera-
tive algorithm simulated annealing was examined. The initial
temperature of the simulated annealing process was reduced,
so that only approximately the final 20 percent of the usual
swapping steps are executed. By this it is assured that the
generated initial placement is not “melted down” completely,

Figure 9. A placement generated with a self-organizing map for the e64
netlist on a 33× 33 CLB island-style architecture. Visualization by VPR

Figure 10. A placement generated with simulated annealing for the e64
netlist on a 33× 33 CLB island-style architecture. Visualization and

placement by VPR

which would result in the loss of the structural information
gained through the self-organizing map. Instead, it is optimized
locally to improve the length of the critical path and the
minimal channel width. For this series of measurements VPR
was modified to allow the loading of an initial placement and
used with a custom annealing schedule.

51

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI. Placement results for MCNC benchmarks generated by the self-organizing map (SOM) with additional low temperature annealing in comparison
to the classical annealing with random initialization

Critical Path Min. Channels
Nr. Name Size Channels Random SOM Relative Random SOM Relative

1 e64 33 × 33 14 7.4 ns 5.9 ns 0.80 14 12 0.86
2 ex5p 33 × 33 22 10.4 ns 8.9 ns 0.86 20 22 1.10
3 apex4 36 × 36 22 10.1 ns 8.8 ns 0.87 22 20 0.91
4 misex3 38 × 38 18 8.8 ns 9.6 ns 1.09 18 16 0.89
5 alu4 40 × 40 16 11.0 ns 10.7 ns 0.97 16 16 1.00
6 seq 42 × 42 20 8.7 ns 8.2 ns 0.94 18 20 1.11
7 apex2 44 × 44 20 10.4 ns 10.4 ns 1.00 20 20 1.00
8 ex1010 68 × 68 18 17.1 ns 16.9 ns 0.99 18 16 0.89

Average 0,94 0,97

Table XI shows the results of placements for the formerly
introduced MCNC benchmarks. Column two shows the name
of the tested netlist, column three the size of the target archi-
tecture. The length of the critical path obtained by simulated
annealing with random initialization – the reference – is shown
in column five, the length of the critical path for simulated
annealing with initialization by the self-organizing map in
column six. Because the two approaches sometimes reach
different minimal channel widths – as shown in column eight
and nine – the larger channel width is used to determine the
critical path’s length, which is shown in column four. Column
seven shows the length of the critical path produced by the
initialization with the self-organizing map in relation to the
reference (random initialization).

The benchmarks are arranged by ascending size. Statisti-
cally the results for the relative critical path’s length for smaller
netlists are better than those for bigger ones. This can be
partially ascribed to the fact that in this series of measurements
the same amount of training cycles was used for all netlists.
The results for the misex3 netlist are of special interest. Even
though the proposed method needs a smaller channel width
than the reference for the routing of this netlist, it is the only
netlist for which the length of the critical path gets worse. On
average, the critical path’s length is reduced by six percent
through the use of the self-organizing map.

The minimal channel width is also affected by the use of
the self-organizing map. In four cases it is reduced by two
and in three other cases it is increased by two. Note that the
architecture demands an even channel width, so a change by
two is in fact only one step. The relative results are shown
only for the sake of completeness. On average, the minimal
channel width is reduced by three percent through the use of
the self-organizing map. Due to the small sample size and the
formerly described distribution of the results the significance
of this value is precarious.

V. PARALLELIZATION

The previous tests have shown that the sequential imple-
mentation of the self-organizing map is very slow, compared
to simulated annealing. For this reason, the algorithm has been
profiled to analyze the options to speedup its execution. In Ta-
ble XII the profiling results of the unoptimized implementation
of the self-organizing map for different sized netlists from the
MCNC benchmark-set introduced above are summarized. It
shows the relative computation times of the steps introduced
above. Especially for larger netlists, the test and learning

TABLE XII. Profiling results of the unoptimzed self-organizing map
implementation

Netlist FPGA Relative Computation Time
Name Size Size Test Learning Others

net16 256 16 × 16 69.0 % 29.0 % 2.0 %
ex5p 1 064 33 × 33 73.9 % 25.8 % 0.3 %
ex1010 4 598 68 × 68 75.4 % 24.6 % 0.0 %

Average 72.8 % 26.5 % 0.7 %

functions together consume almost all of the computation time.
In this part of the work, the focus is on the test process because
(with 73 percent on average) it consumes the highest amount
of time. In the test process, the Euclidean distance between
the stimulating vector and every neuron is determined. The
neuron with the lowest distance is selected as winning neuron.
The subfunction for the calculation of the distance consumes
more than 99 percent of the test process (e.g., 368 seconds out
of 369 seconds for the ex5p netlist). Based on these numbers,
two levels of parallelism that could be exploited have been
identified:

1) Vector-level: The vector operation to determine the
distance d between the stimulating vector ~v and a
neuron’s weight ~w as described in (6), assuming ~v
and ~w have N elements.

2) Map-level: The calculation of all the distances and
the selection of the lowest distance.

d =

N∑
i=0

(~vi − ~wi)
2 (6)

Implementations to exploit both these levels of parallelism
have been developed and benchmarked. The corresponding
results are presented in the following subsections.

A. Vector-level parallelization
In a first attempt, the parallelism of the vector operations

was exploited to speedup the implementation of the self-
organizing map. Therefore, two alternative, parallel implemen-
tations of the distance function used heavily in the test loop
were created. One implementation is using the processor’s
Streaming SIMD Extensions (SSE) for vector operations, the
other is delegating the vector operations to the GPU using
OpenCL.

52

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XIII. Time consumption of the parallel implementations of the
distance function (6) for different vector sizes

CPU CPU SSE GPU OpenCL
Vector Size Time Time Speedup Time Speedup

100 cells 27 µs 64 µs 0.4 170 µs 0.2
1 000 cells 200 µs 74 µs 2.7 300 µs 0.7

10 000 cells 2 000 µs 112 µs 17.9 400 µs 5.0
100 000 cells 23 ms 458 µs 50.2 454 µs 50.7

1 000 000 cells 238 ms 7 000 µs 34.0 669 µs 355.8

TABLE XIV. Configuration of the “desktop class” test-system

CPU GPU

Intel® Core™2 Duo E8400 NVIDIA® GeForce® GTX 950
2 Cores 768 CUDA Cores
3 GHz Core Clock 1024 MHz Core Clock
6 MB Level 2 Cache 105.6 GB/s Memory Bandwidth
4 GB DDR2 RAM 2048 MB GDDR5 RAM

Table XIII shows the results of the parallel implementations
for different vector sizes. The speedups are given as the ratios
between the reference and the corresponding new approach as
follows:

Speedup =
Reference T ime

Benchmarked T ime
(7)

In this case these are the ratios between the calculation time
of a sequential implementation on a CPU (reference time) and
the parallel implementations on a CPU and GPU mentioned
above (benchmarked times). For this benchmark a desktop
computer with an “Intel® Core™2 Duo E8400” processor and a
“NVIDIA® GeForce® GTX 950” GPU was used. The detailed
configuration of the test-system is shown in Table XIV. In
comparison to the unoptimized implementation, the SSE im-
plementation breaks even between vector sizes of 100 and 1000
cells, whereas the GPU implementation breaks even between
1000 and 10000 cells. The SSE implementation and the GPU
implementation break even at a vector size of 100000 cells.
Even tough there are commercial FPGAs available with more
than a million CLBs today, the netlists are typically partitioned
to a smaller size before the placement and need much faster
placement algorithms anyway. Further analysis has shown that
the main problem of the tested OpenCL implementation lies in
the low complexity of a single distance calculation. This causes
a relatively large overhead for the memory transfer between
host and GPU memory.

Based on these findings, an improved version of the pro-
totypic, sequential implementation of the self-organizing map
was created. It uses the CPUs SSE extensions for all vector
operations. Table XV shows the computation times of both
implementations of the self-organizing map for a subset of the
netlists used in our previous work. The time is given for one
training cycle, meaning the training of every vector. The overall
speed of the training process was increased by a factor of up to
20. Especially the larger netlists benefit from the parallelization
because the wider vectors give a better utilization of the SIMD-
hardware. However, the simulated annealing algorithm of VPR
is still about one hundred times faster than the proposed SSE
implementation.

TABLE XV. Comparison of the computation times for one training cycle of
the original implementation of the self-organizing map (SOM) and an

improved version using SSE-accelerated vector operations

Netlist FPGA Computation Time
Name Size Size SOM CPU SOM SSE Speedup

net16 256 16 × 16 5 s 2 s 2.5
e64 273 33 × 33 23 s 7 s 3.3
ex5p 1 064 33 × 33 350 s 31 s 11.3
seq 1 750 42 × 42 1 476 s 95 s 15.5
ex1010 4 598 68 × 68 27 211 s 1 259 s 21.6

B. Map-level parallelization

To bridge this gap, the exploitation of map-level paral-
lelism with OpenCL on a GPU is evaluated. The goal is to
create bigger chunks of computational work and minimize the
overhead for memory transfer between host and GPU. Ideally,
the complete training loop takes place on the GPU, so that a
memory transfer is only necessary after the vector generation
and for the placement export. In Figure 11, a flowchart of the
proposed implementation is presented. The management of the
training data and the random selection of training vectors is
still executed on the host CPU, but the rest of the training-
cycle is executed on the GPU. Especially the comparatively
large datastructure of the self-organizing map is kept in the
GPU’s memory over the complete training. The set of training
vectors is kept in the GPU’s memory as well, eliminating
the need to copy the data from host- to device-memory for
every training loop. This is achieved by transferring only the
individual starting address of the vector to the kernel. Another
approach could be to address the vectors by transferring an
index. The computation on the GPU is done by three OpenCL
kernels, which are described in the following:

1) Calculate Distances: The Calculate Distances kernel
receives the map of weight vectors, the training vector and a
map marking the already occupied positions by reference. The
kernel is calculating the distance between every weight and the
given training vector, storing the results in a two-dimensional
map. It is rolled out in three dimensions, calculating each
distance (6) in a workgroup (if large enough). Thereby, a
fast workgrop-local buffer can be used to build the sum. If
the vector size is larger than the workgroup-size, the partial
sums of each workgroup are stored temporarily and summed
up after synchronization. If the corresponding position of the
kernel is marked as already occupied the distance is set to
“MAXFLOAT”, so that it will be ignored in the following
reduction.

2) Find Lowest Distance: The Find Lowest Distance kernel
receives the two-dimensional map of distances created by
the Calculate Distances kernel by reference. It searches the
map for the lowest distance and returns the corresponding
position, as well as the distance. Again the reduction is done
in workgroups, utilizing the fast local memory.

3) Learn Vector: The Learn Vector kernel – like the Cal-
culate Distances kernel – receives the map of weight vectors,
the training vector and a map marking the already occupied
positions by reference. Additionally, it receives the position
of the previously determined minimal distance weight (the
winning position). The kernel modifies the weights in the map
according to their distance to the winning position and marks

53

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Training
Cycles Left?

Initialize
Cycle

Training
Vectors Left?

Select
Random
Vector

Calculate
Distances

Find
Lowest

Distance

Learn
Vector

Start

End

Sequential code executed on the Host-Device (CPU)

OpenCL kernel executed on the Compute-Device (GPU or CPU)

YY

N

N

Figure 11. Flowchart of a training-cycle of the self-organizing map using OpenCL

the winning position itself as occupied in the corresponding
map. There is no explicit grouping into workgroups and no
local memory is used because all operations happen indepen-
dently of each other and the results have to be stored in the
global memory.

To benchmark this implementation two test-systems have
been used. The first system is the “desktop class” computer
that has already been used to benchmark the vector-level
parallelization approach (see Table XIV). The second system
is a “workstation class” system. Its detailed configuration is
shown in Table XVI.

The benchmark results of the “desktop class” computer are
presented in Table XVII. They compare the computation times
of the high-level parallelization approach (GPU OpenCL) with
the low-level approach (CPU SSE) introduced above. The
durations are given for a complete placement-generation from
reading the netlist over ten full training-cycles to writing the
generated placement into a file. The speedup is given as
the ratio between the two approaches (7). It is shown that
even the placement of small netlists can be accelerated even
further compared to the already improved SSE implementation.
Netlists are placed up to 34 times faster on the GPU than on
the CPU’s SIMD-hardware. Generally, the speedup is higher
for larger netlists. The only exception is the largest netlist in
the benchmark (ex1010), which is experiencing the worst gain
of all. This is because its vector size supersedes the maximal
workgroup-size of the GPU and therefore a partially sequential
reduction scheme is used. Compared to the original, sequential
implementation the speedup is about 200 on average. For the
seq netlist the speedup is even 310.

The benchmark results of the “workstation class” computer
are presented in Table XVIII, it contains two additional (even
larger) netlists. Furthermore, the ability of OpenCL to target
not only GPUs, but also multicore CPUs has been evaluated.
Obviously the modern workstation CPU is considerably faster
than the comparatively older desktop CPU. However, the work-

TABLE XVI. Configuration of the “workstation class” test-system

CPU GPU

Intel® Xeon® E3-1245 v5 AMD® RADEON™ RX 480
4 Cores 36 Compute Units
8 Threads 2304 Stream Processors
3.5 GHz Core Clock 1120 MHz Core Clock
8 MB SmartCache 224 GB/s Memory Bandwidth
64 GB DDR4 RAM 8 GB GDDR5 RAM

TABLE XVII. Benchmark results of the high-level parallelization using
OpenCL on a “desktop class” system described in Table XIV

Netlist FPGA CPU SSE GPU OpenCL
Name Size Time Time Speedup

e64 33 × 33 84 s 5 s 16
ex5p 34 × 34 341 s 23 s 15
apex4 36 × 36 449 s 28 s 16
misex3 38 × 38 570 s 33 s 17
alu4 40 × 40 820 s 38 s 22
seq 43 × 43 958 s 47 s 20
apex2 44 × 44 1 777 s 52 s 34
ex1010 68 × 68 9 100 s 993 s 9

station GPUs performance is comparably weak on average,
especially considering that its rated peak performance is more
than three times higher than the peek performance of the desk-
top GPU (5.8 TFLOPS versus 1.7 TFLOPS). Additional tests
with other algorithms have underpinned the assumption that
the GPU is not unfolding its full potential in the workstation.
It has to be evaluated if this is due to driver- or compatibility-
problems. Also, the performance of the OpenCL code executed
on the CPU is underwhelming. Even though it uses all eight
cores of the CPU to full capacity, it is more than thirty times
slower than the single threaded SSE implementation on the
same hardware.

54

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XVIII. Benchmark results of the high-level parallelization using
OpenCL on a “workstation class” system described in Table XVI

Netlist FPGA CPU SSE GPU OpenCL CPU OpenCL
Name Size Time Time Speedup Time Speedup

e64 33 × 33 25 s 6 s 4.0 387 s 0.063
ex5p 34 × 34 121 s 27 s 4.5 4 208 s 0.029
apex4 36 × 36 150 s 32 s 4.7 5 160 s 0.029
misex3 38 × 38 193 s 54 s 3.6 6 895 s 0.028
alu4 40 × 40 297 s 58 s 5.1 7 662 s 0.039
seq 43 × 43 322 s 48 s 6,7 10 159 s 0.032
apex2 44 × 44 364 s 50 s 7.3 11 206 s 0.032
ex1010 68 × 68 3 269 s 313 s 10.4 251 654 s 0.013
s38417 81 × 81 8 086 s 554 s 14.6 513 873 s 0.016
clma 93 × 93 17 004 s 1 486 s 11.4 2 068 893 s 0.008

VI. CONCLUSION AND FUTURE WORK

In this work, an approach to improve the results of netlist
placement for FPGAs with a self-organizing map has been
presented. Different methods to generate the training vectors
have been compared based on synthetic benchmarks. For a set
of 8 MCNC benchmarks it has been shown that the length
of the critical path can be reduced by 6 percent on average.
The cost is a high computational effort for the training of the
self-organizing map.

To accelerate the self-organizing map, two parallelization
approaches have been introduced and benchmarked. A low-
level approach – exploiting the SSE units of the CPU – was
shown to accelerate the self-organizing map up to twentyfold.
It has been shown that the low-level approach is not suited to
be executed on a GPU because the chunks of work are too
small, resulting in a high overhead for memory transfer. For
this reason a high-level parallelization approach – conveying
the complete training loop to the GPU – has been introduced.
It has been shown that it again accelerates the execution up to
more than thirtyfold. On average, the OpenCL implementation
on the GPU is about 200 times faster than the original
sequential implementation. The results of OpenCL on a CPU
are not satisfying.

In future work the speed of the accelerated self-organizing
map should be compared directly to established placement
tools. At this point it is expected that the self-organizing map
is still perceptibly slower than for example VPR. If this poses
a problem, the vector size can be reduced by using the I/O-
distance metric for the vector generation. As has been covered
by Amagasaki et al. [11], this should improve the speed while
slightly reducing the quality.

REFERENCES
[1] T. Bostelmann and S. Sawitzki, “Improving the performance of a

SOM-based FPGA-placement-algorithm using SIMD-hardware,” in The
Ninth International Conference on Advances in Circuits, Electronics and
Micro-electronics (CENICS), July 2016, pp. 13–15.

[2] T. Bostelmann and S. Sawitzki, “Improving FPGA placement with a
self-organizing map,” in International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Dec 2013, pp. 1–6.

[3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, May 1983, pp. 671–
680.

[4] L. Ingber, “Adaptive simulated annealing (ASA): Lessons learned,”
Control and Cybernetics, vol. 25, no. 1, 1996, pp. 33–54.

[5] M. M. Atiqullah, “An efficient simple cooling schedule for simulated
annealing,” in International Conference on Computational Science and
Its Applications (ICCSA). Springer, 2004, pp. 396–404.

[6] J. Lam and J.-M. Delosme, “Performance of a new annealing schedule,”
in Design Automation Conference (DAC), 1988, pp. 306–311.

[7] P. Banerjee, S. Bhattacharjee, S. Sur-Kolay, S. Das, and S. C. Nandy,
“Fast FPGA placement using space-filling curve,” in International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2005, pp. 415–420.

[8] T. Kohonen, Self-Organizing Maps. Springer, 1995.
[9] S. Yang, “Logic synthesis and optimization benchmarks user guide

version 3.0,” Microelectronics Center of North Carolina, Tech. Rep.,
1991.

[10] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in International Conference on Field Programmable
Logic and Applications (FPL). Springer, 1997, pp. 213–222.

[11] M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi, “FPGA placement
based on self-organizing maps,” International Journal of Innovative
Computing, Information and Control, vol. 11, no. 6, 2015, pp. 2001–
2012.

[12] E. Chow, “A graph search heuristic for shortest distance paths,”
Lawrence Livermore National Laboratory, Tech. Rep., 2005.

55

International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

