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Abstract—Many real-world systems are networks coupled with 

other networks, and research on these multilayer networks 

about their structure properties and functions recently 

produced significant and remarkable findings. There is one 

type of multilayer network in which an individual has more 

than one counterpart on other layer network. For instance, 

important station on an infrastructure network usually has 

more than one supporter on its counterpart network for 

optional access or risk diversification. In this paper, we 

investigate the influence of couple patterns on information 

entropy and energy of two layer coupled networks with 

community structures. Couple patterns refer to the allocation 

of counterpart numbers according to nodes’ degrees and the 

establishment of interconnections between nodes on different 

layer networks according to their degree of assortativity. 

Nodes’ degrees and counterpart numbers are assorted based 

on the tendency of large degree nodes with more counterparts 

or the reverse. Additional, a pair of nodes on different layer 

networks can be interconnected according to their degree of 

assortativity. Under the scenario of a heterogeneous 

distribution of counterpart numbers, we have found that the 

influences of couple patterns on entropy and energy are 

negative. That is, entropy and energy of the two layer coupled 

network decrease when counterpart number assortativity 

and/or degree assortativity positively increase, while increase 

when the two assortativity are negatively enhanced. Moreover, 

networks with weak community structures extend these 

influences compared to networks with obvious community 

structures. 

Keywords-multilayer network; couple pattern; influence; 

entropy; energy. 

I.  INTRODUCTION 

A large quantity of real-world complex systems are 
networks coupled with other networks, and recent studies on 
these complex systems are fruitful  [1]-[13]. For instance, an 
infrastructure network[14][15], such as a power grid, is 
often coupled with water, gas, or other resource supply 
networks to turn various resources into power. Diseases 
spread in face-to-face networks, while the information of 
contagion spreads in the coupled online social networks[16]-
[18]. The multilayer point of view can help find important 
layer network to improve the robustness of the whole bank 
networks. In[19], bank networks are composed of several 
layer networks which represent different types of exposure, 
such as unsecured overnight, unsecured short-term, 

unsecured long-term, secured short-term, and secured long-
term. The authors found there is a high heterogeneity 
between these layer networks, and the unsecured overnight 
layer is the especially important layer network related to the 
stability of the overall network in a financial crisis. 
Researchers define the multidegrees, multilinks, cluster 
coefficients, and degree correlations to describe the 
properties of these multi-layer networks, and give deep 
insights into the dynamic processes of these coupled 
networks, such as percolation, spreading, and growth. In 
[14], authors investigated cascade failures on two layer 
coupled networks and modelled a true coupled system 
composed of a grid and internet. The effects of assortativity 
and cluster coefficient on the robustness of two layer 
coupled networks were clarified in [7]. These researches 
demonstrate that the dynamics of multi-layer networks 
relates directly to the topologies of these coupled networks. 
Among these cases, there is one kind of multilayer network 
in which nodes on one layer network have more than one 
counterpart on the other layer network. A node with multiple 
counterparts naturally brings advantage of optional access 
and adequate supply, and could disperse risk avoiding 
cascade of failures. The deep exploration of structures and 
functions of this kind of multilayer network appears in[20]. 
The author mathematically analysed percolation based on 
generating functions and concluded that multi-
interconnections can significantly lower the percolation 
threshold. Besides several related studies, research work on 
this kind of multilayer network is still a little. More 
explorations should be carried out to look into the properties 
and dynamics of these complex systems. Spreading 
information across multilayer networks, however, always 
sparks interests of researchers in how to maximize 
information entropy [ 21 ]-[ 23 ]. Entropy in information 
theory characterizes uncertain sources of information. The 
larger the entropy is, the more random information sources 
are. In [24], we investigated how the overall entropy of a 
two layer coupled network varies based on the assumption 
that a group of nodes on one layer network have the same 
number of counterparts on the other layer network. In this 
paper, we explore the impacts of couple patterns on 
information entropy and energy in two layer coupled 
networks with community structures, especially in 
heterogeneous interconnection scenarios. Couple patterns 
refer to the allocation of counterpart numbers according to 
nodes’ degrees and the establishment of interconnections 
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between nodes on different layer networks according to their 
degree of assortativity. Counter number couple pattern 
couples nodes that have various numbers of counterparts. 
The counterpart number of a node is allocated according to 
node’s degree. Nodes’ degrees and counterpart numbers are 
assorted based on the tendency of large degree nodes with 
more counterparts or the reverse. Degree couple pattern 
interconnects a pair of nodes on different layer networks 
according to their degree of assortativity. In this work, the 
distribution of node’s counterpart on the other network 
follows power law, and nodes interconnect with their 
counterparts according to the assortativity or disassortativity 
between them. We will find out how couple patterns affect 
entropy and energy when information flows on two layer 
coupled networks. 

The outline of the paper is as follows. In Section II, we 
describe couple patterns in detail and establish the two layer 
interconnected network model. In Section III, we present the 
influence of couple patterns on entropy and energy. In 
Section IV, we give our conclusions. 

II. THE MODEL 

First, we use [ 25 ]-[ 27 ] to construct two standalone 
networks and set both of them to have the same number of 
nodes, number of communities, community size, and 
modularity strength. Then, we choose one random 
community in each network and establish interconnected 
links between nodes in the community. Figure 1 shows the 
illustration of this two layer couple network. As we can see, 
nodes in a community of the top network can interconnect 
several counterparts of the lower network. Their 
counterparts may be totally different or may partly overlap.  

 
 

 
Figure 1.  Illustration of a two layer coupled network model. Nodes in a 

community on one layer network interconnect with their counterparts on 

the other layer network.  

Due to the fact that distributions of the wide variety of 
phenomenon in nature and man-made world follow power 
laws[28], a series of counterpart numbers that are distributed 
heterogeneously are generated. The tendency of assorting 
counterpart number with node’s degree indicates couple 
strength between nodes of different layer networks. Positive 
assortativity means that large degree nodes have more 
counterparts than small degree nodes, while negative 
assortativity means that small degree nodes prefer to link 
more nodes on the other layer network. After the above two 
steps, we get a sequence of nodes’ degrees and a sequence of 
nodes’ counterpart numbers. Each node in the community 

will be allocated a certain number of counterparts from the 
counterpart number sequence according to the method 
proposed in [29]. In the simulation, we range assortativity 
from -0.05 to 0.1, which can significantly affect entropy. 

On the other hand, the tendencies of interconnecting 
nodes in different layer networks are various. Large degree 
nodes may tend to couple with nodes similar to themselves, 
while the opposite is also possible. Two layer coupled 
networks are established after nodes of different layer 
networks interconnect with each other according to their 
degree assortativity. Couple patterns are made of counterpart 
number assortativity and/or degree assortativity. Then we 
use the method introduced in [24] to compute the entropy 
and energy expended in these two layer coupled networks in 
order to find out how they are affected by couple patterns. 
To describe our model completely, we retell this method. 
Nodes collect information most from their first neighbour 
nodes, second neighbour nodes, and their couple nodes on 

the other layer network. iq is the frequency of 

node i spreading information, then we use  

       
1

( ) log
n

i ii
H x q q


                     (1) 

to compute entropy [30]. In order to determine about how 
much energy is expended, we first interpret asymmetry and 
similarity between two nodes. Asymmetry is defined 
according to the covariance of degree between two nodes, 
given by  

                         
,( ) ( )( )

i ji j x xA x x K K                       (2) 

where  is the mean value of nodes’ degrees of community 

ix  belongs to. Similarity describes common properties 

between a pair of nodes. In this paper, node similarity is 
quantified by the portion of common friends to total friends 
when two nodes are on the same network. If two nodes 
belong to different layer networks, then we regard their 
common friends as the portion of their mutual coupled 
neighbours to their total friends. For a pair of nodes that are 
asymmetrical and dissimilar to each other, it could be 
deduced that they need more energy in order to share 
information. Hence, we calculate energy by   

                     , ,( ), ( )
(1 )i j i jj N i Cou i

E A S


                   (3) 

( )N i  and ( )Cou i are the neighbour set and counterpart set 

of node i . ,i jS  is the similarity between node i  and j , 

defined by 
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                            (4) 

We expect to find out how the allocation of counterparts and 
the establishment of interconnections among nodes affect 
information entropy and energy. 
 

III. RESULTS 

We construct a two layer coupled network with the first 
couple pattern in which there is only counterpart number 
assortativity (the assortativity between node’s degree and its 
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counterpart number) and observe how entropy varies with 
this couple pattern. Because correlations of entropy and 
couple pattern have no significant difference under values of 
counterpart number assortativity larger than 0.5, in the 
simulation, the counterpart number assortativity ranged from 
0.05 to 0.5. Each node interconnects its counterparts on the 
other layer network regardless of degree assortative mixing 
between the mutually connecting nodes. Pearson correlation 
coefficients of entropy and the counterpart number 
assortativity are calculated as influences of couple pattern. 
As shown in the top of Figure 2, when counterpart number 
assortativity is positive, the influence is negative, and the 
absolute value increases with the absolute value of 
counterpart number assortativity. When counterpart number 
assortativity is negative, there is the same tendency. Hence, 
the overall influence of this couple pattern on entropy is 
negative. That is to say, if more counterparts are allocated to 
nodes with larger degrees, then the entropy of whole system 
tends to decrease. Conversely, if nodes with small degrees 
have more counterparts, then the entropy of whole system 
tends to increase. We also notice that weak community 
structure on each layer network stretches this effect when 
compared to networks with obvious community structures. 
The range of correlation is from 0.21 to -0.14 when 
modularity is 0.2, which is wider than the range from 0.16 to 
-0.06 if modularity is 0.8. 

 

 
 

Figure 2.  Pearson correlation coefficient of entropy and couple patterns. 

Degree assortativity between node pairs ranged from -0.08 to 0.1. Ca refers 

to counterpart number assortativity for short. 

Next, we coupled two layer networks with a more 
complex couple pattern in which not only nodes’ degrees 
and nodes’ counterpart numbers are assorted but also nodes 
interconnect their counterparts by degree assortativity. The 
influence of this couple pattern on entropy when counterpart 
number assortativity is 0.05 is shown in the middle of Figure 
2. Analogously, the influence is negative and entropy 
decreases when the degree assortativity between nodes is 
positive. Therefore, if nodes prefer to interconnect to nodes 
similar to themselves, then the entropy of two layer network 
system tends to reduce. The interconnection between similar 
nodes cannot produce large entropy, even if both of them 
have large degrees. However, the interconnection between 
dissimilar nodes can increase entropy. The influence also is 
stronger in networks with weak community structures than 
those with obvious community structures. This is similar to 

the couple pattern discussed previously. The correlations of 
entropy and the couple pattern cover broader ranges than 
those with the first couple pattern. 

 

Figure 3.  Pearson correlation coefficient of entropy and couple pattern as 

a function of degree assortativity. Network with weak community structure 

stretch the influence especially in disassortative degree mixing. 

The influence of degree assortativity couple pattern on 
entropy when counterpart number assortativity is 0.5 is 
presented at the bottom of Figure 2. It matches our first 
result that counterpart assortativity has a negative effect on 
entropy. There is a positive correlation between a node’s 
degree and its counterpart number, which lowers entropy; 
however, information entropy of a two layer coupled 
network is remarkably augmented as the result of adding 
degree assortative mixing between nodes into the couple 
pattern. Consequently, we can conclude that degree 
assortative mixing among interconnecting nodes is the 
dominant couple pattern affecting the entropy of the system. 
Therefore, we wonder what will happen if we extract the 
degree assortative mixing effect and allocate counterparts 
equally among nodes. It is straightforward that each node 
has only one counterpart on the other layer network. 
However, a node chooses its counterpart according to degree 
assortativity. In Figure 3, the influence holds the same 
tendency. Degree assortative mixing has a significant 
influence on entropy, and networks with weak community 
structures gain more entropy when nodes are disassortatively 
mixed.  

 

 

Figure 4.  Pearson correlation coefficient of energy and couple pattern. 

The couple patterns are the same as Figure 2. The tendency is not the same 

but similar to that of entropy.  
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Figure 5.  Pearson correlation coefficient of energy and couple pattern as 

a function of degree assortativity. The couple pattern is the same as Figure 

3. The tendency is similar to that of entropy. 

Consuming the least energy to gain information is often 
expected. Figure 4 shows energy expended under the above 
two couple patterns. It follows a similar tendency as entropy. 
In Figure 5, influences of couple pattern on energy are 
presented when each node has only one counterpart but there 
are degree assortative mixing between a pair of nodes. 
Compared to entropy, the Pearson correlation coefficients of 
energy and couple patterns are larger. Therefore, if we want 
to obtain much more diverse information, then the energy 
we consume is greatly affected by these couple patterns. 

IV. CONCLUSION AND FUTURE WORK 

In this work, we established two layer coupled network 
models and investigated the influences of couple patterns on 
entropy and energy from the aspect of counterpart number 
assortative mixing and degree assortative mixing. Under 
counterpart numbers of nodes are heterogeneously 
distributed scenario, a node’s degree is assorted with its 
counterpart number in order to allocate counterparts 
according to node’s degree. And nodes on one layer network 
interconnect their counterparts on the other layer networks 
according to degree assortative mixing among them. Couple 
patterns are made of one or both of the two assortative 
mixing couplings. We found that the influences of these 
couple patterns on entropy and energy are negative. Entropy 
and energy of the two layer coupled network decrease when 
counterpart number assortativity or/and degree assortativity 
positively increase, while increase when they are negatively 
enhanced. Furthermore, weak community structures stretch 
the influences that nodes have on networks that obtain more 
diverse information. Compared to the counterpart 
assortativity couple pattern, the degree assortativity couple 
pattern exerts more significant influences. We verified this 
phenomenon through extracting the effect of degree 
assortative mixing and allocating one counterpart to each 
node. Therefore, the degree assortativity couple pattern is 
the dominant pattern that affects the entropy and energy of 
the system greatly. Specifically, under degree assortativity 
couple pattern, networks with weak community structures 
gain much more entropy than those with obvious community 
structures if nodes are disassortatively mixed. Future deeper 
endeavours on this research should analysis available large 
data sets to explore more interesting new findings and 

propose a mathematical framework with which to 
theoretically support and predict the tendency of influence of 
corresponding couple patterns. Assortative or disassortative 
mixing in other nodes’ properties needs to pay more 
attention. And particular assortative or disassortative mixing 
hiding only in special local structures is waiting to be 
discovered. 
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