
Smart Navigation:

Using Artificial Intelligent Heuristics in Navigating Multiple Destinations

Hatem F. Halaoui

Computer Science

Haigazian University, Lebanon

Email: hhalaoui@haigazian.edu.lb

Abstract—Navigation applications are becoming an essential

need in any mobile device. Finding the best path (time and

distance) from an address to another is one of the most asked

queries among driving users. Moreover, finding the best path

with multiple destinations is a query that could be asked by

many, including commercial companies’ drivers (similar to

the famous “Traveling Salesman Problem”). Google maps,

Yahoo maps, and tens of other solutions are examples of such

mobile applications. Calculating the best driving path

between two addresses is subject to many factors including

distance, road situation, road traffic, speed limitations and

others. This paper presents the use of smart heuristic

functions, as well as an efficient data structure to be used in

finding efficient path between multiple points (addresses)

rather than one destination. It presents spatial databases,

current solutions, heuristics in Graph problems, and finally a

smart solution (our new Algorithm A*Multiple) using a smart

heuristic function to determine the best path between multiple

destinations.

Keywords: Smart Navigation, Artificial Intelligence,

Heuristics, GIS.

I. INTRODUCTION

This section introduces the paper’s main subject. First,
the idea of heuristics is briefly presented. Second spatial
databases are introduced as the underlying databases to
store related data. Finally in this section, a brief
introduction to Geographical Information Systems (GIS)
and driving path application are presented.

A. Heuristics
Most of what we do in our daily lives involves heuristic

solutions to real-time problems. As an adjective, heuristic
pertains to the process of gaining knowledge by intelligent
guess rather than by following some pre-established
formula [1][2]. In map problems, when moving from one
point to another to reach a certain destination, we have two
options:

1- The algorithm tries all possible paths from all
possible neighbors (next address on the way to
destination). It keeps doing this until destination is reached.
Finally it chooses the best path among all possibilities.

2- At each location, the algorithm chooses the next
move smartly using some evaluation function (called the
heuristic function)

The first option is very time consuming and does not
match with real-time problems. As a result, a solution using
the second is being adopted in this paper

B. Spatial Databases
Spatial databases are the main data warehouses used by

Geographical Information Systems. Spatial databases are
databases used to store information about geography like:
geometries, positions, coordinates, and others [8]. Also,
they might include operations to be applied on such data.

C. Geographical Information Systems and Driving
Path Applications

Geographic Information System (GIS) is a collection of
computer hardware, software for capturing, managing,
analyzing, and displaying all forms of geographical
information [8].

Finding the Directions (driving/walking) path is one of
most asked queries in GIS applications. These are the most
important factors that influence such criteria::

 Distance: Distance between the source and destination.

 Road situation: Is the road closed? Is it raining?

 Road traffic: How much traffic?

 Speed limitations: Is there many traffic lights? Is it a local
road or highway? What is the average speed?

D. Navigating Using Heuristic Functions

In this paper, we present the issue of navigating
multiple destinations in any order. Our main problem is to
find the fastest path between a given source passing over
all given destinations in any order. The importance of our
approach is that existing solutions, like Google Maps [7],
let the user choose his order of destinations rather than
suggesting a fast path.

Moreover, calculating the fastest path with traditional
Mathematical algorithms like Hamilton path has a high
time complexity and hence time-expensive for real time
problems like the one in this paper. As a result we use
heuristic algorithms like A* to incredibly minimize the
running time of such navigation real-time solutions.

Our approach offers the user a full path with an order
of destinations claiming an efficient time. The main
concern is that heuristic functions does not guarantee an
optimal (best) solution. For this reason, choosing the
heuristic function is an important factor for getting good
results. Choosing a good heuristic function in order to
choose our series of destination is an open research
question. Moreover, choosing the heuristic function is
highly dependent on the geography of surface in query.

The paper is organized as follows Section 2 presents
some related work including widely used applications.
Section 3 presents the main solution in this paper. Section

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-443-5

SOTICS 2015 : The Fifth International Conference on Social Media Technologies, Communication, and Informatics

4 discusses some results and finally section 5 presents
conclusions and future work.

II. STATE OF ART AND RELATED WORK

Most of current applications provide a one destination
solution (users provide the application with source and
destination). If users intend to visit multiple destinations,
they have to decide the order of visits and make different
queries each time.

This section presents an overview of related theoretical
and applied related work. First, the use of Artificial
Intelligence in path problems is presented, discussed and
compared with traditional optimal solution algorithms.
Moreover, one of the most used applied application
(solutions) is presented.

A. Driving Direction Applications: Google Maps as an

example

This sub-section presents a widely used application for
finding driving directions: Google Maps.

Google Maps [7] is a Web-based service that provides
detailed information about geographical regions and sites
around the world. In addition to conventional road
maps, Google Maps offers aerial and satellite views of

many places. In some cities, Google Maps offers street
views comprising photographs taken from vehicles.
Google Maps [7] offers several services as part of the
larger Web application, as follows:

 A route planner offers directions for users of
routes and public

 Google Maps for Mobile offers a location service
for motorists that utilizes the Global Positioning
System

 Google Street View enables users to view and
navigate through horizontal and vertical
panoramic street level images of various cities
around the world.

 Provides user interaction.

Figure 1 shows an example a driving directions query
using Google Maps [7]. The query is to get driving
directions, over multiple destinations in London:
Paddington station, Harrods, House of Commons, and
London Eye. It also offers Real-time Traffic information.
However Google Maps [7] does not suggest any order of
visits. The user has to provide Google Maps with the order
and he has to make multiple trials and look for the best
sequence of destinations to be visited.

Figure 1. Path over multiple destinations in London

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-443-5

SOTICS 2015 : The Fifth International Conference on Social Media Technologies, Communication, and Informatics

B. Artificial Intelligence and Driving Directions

Artificial intelligence is involved in graph searching
algorithms. Russel and Norving [2] present many
intelligent graph searching algorithms. Here are two
important ones:
1. Greedy Best-First Search
2. A* Search

The main idea behind these algorithms is that they do
not try all possible cases to give an answer. On the other
hand, the algorithms use heuristic function to un-consider
some of the paths. This issue saves huge amount of time
but does not guarantee a best path. However, finding a
good heuristic function could guarantee up to 95% finding
the best path. Section 3 include the A* search algorithm
which clears the idea in this section

C. A* Traffic: Design, Algorithms and Implementation

This section presents the application algorithms and the
application of the intelligent driving path application used
in our previous work, which is extended in this paper.

A* [2] is an Artificial Intelligent graph algorithm
proposed by Pearl. The main goal of A* is to find a cheap
cost graph path between two vertices in a graph using a
heuristic function. The main goal of the heuristic function
is to minimize the selection list at each step. In the graph
example, finding the shortest path from a node to another
has to be done by getting all possible paths and choosing
the best, which is very expensive when having a huge
number of nodes. On the other hand, using an evaluation
function (heuristic) to minimize our choices according to
intelligent and practical criterion would be much faster.

The heuristic function is not a constant static function.
It is defined according to the problem in hand and passed
to the A* as a parameter. In the case of A* search for a
direction path, F is built up from two main factors:

H = Straight Line distance to destination.

G = Distance Traveled so far.

F = H + G (1)

At each node n, we compute F (n) and we choose our
next step accordingly.

A* Algorithm

A*(Graph, Source, Destination)

Task: takes a Graph (Vertices and Edges), Source and

Destination (Vertices) and returns the Best path solution

(stack of vertices) from Source to Destination

If Source = Destination then return solution (stack)

Else expand all neighbors Ni of Source

 Mark Source as Unvisited

 For each Neighbor Ni

 Get VNi = H(Ni, Destination)

 Add all (Ni, Vi) to the Fringe (list of all expanded

Vertices)

 From the Fringe, Choose an Unvisited Vertex V with

Least Vi

 If no more Unvisited return Failure

 Else Apply A*(V, Destination)

H(V, Destination)

Task: takes a vertex V and evaluate it using a heuristic

function

Return: DistanceSoFar + StrightLineDistance (V,

Destination)

Where
Distance_So_Far= Distance taken so far to reach the Node V

Stright_Line_Distance (V, Destination) = straight line

distance to destination calculated by using the coordinated

of V and destination
Figure 2 is an example of the A* algorithm behavior to

find a path starting from “Arad” to “Bucharest”, cities in
Romania [2]. First of all we start at Arad and go to the next
neighbor with the best heuristic function (Sibiu). Second,
explore all neighbor of Sibiu for the best heuristic function.
The algorithm continues choosing the best next step (with
the least value of heuristic function) until it reaches
Bucharest. The interesting thing is that all vertices with
values (calculated using the heuristic function) kept in the
fringe in order to be considered at each step.

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-443-5

SOTICS 2015 : The Fifth International Conference on Social Media Technologies, Communication, and Informatics

Figure 2. A* algorithm behavior to find a path starting from “Arad” “Bucharest city” [2]

D. A*Traffic: A Variation of A* with Road Traffic as a

Factor

A*Traffic [5] (our previous approach) is a variation of
A* with the ability to take Online traffic into consideration.
The main job is done in the heuristic function where a new
factor is used to choose the next step. The new factor is the
average traffic value (got online from real time databases)
represented in the following form time/distance (example:
3 min/km). The new Heuristic function will be:

F = H + G + T (2)

Where:

H = Straight Line distance to destination (distance between

two coordinates).

G = Distance Traveled so far.

T= Average Traffic delay got from real online sensors.

E. Testing Tool: Query Example

This sub-section present the layout of the testing tool
developed to test the algorithm proposal “A*Traffic”. For
this purpose, an example query is presented.

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-443-5

SOTICS 2015 : The Fifth International Conference on Social Media Technologies, Communication, and Informatics

A Query example

This example (Figure 3) demonstrates the main feature
of the software. It provides the user with the driving
directions between “HU, Kantari St, Hamra” (Haigazian

University) and “AUB, Bliss St, Hamra” (American
University in Beirut) in Beirut, Lebanon. The blue path
generated is a short path (using A*Traffic) to follow in
order to drive from the start address to the destination
address.

Figure 3. Path from “HU, Kantari St, Hamra” to “AUB, Bliss St, Hamra”

III. USING HEURISTICS AND TIME-

WEIGHTED GRAPH IN MULTIPLE DESTINATIONS

DIRECTION SOLUTIONS

This section, presents our new extension of the
previous solutions to provide a good solution having
multiple destinations to be visited.

In this section, we propose our smart solution for
navigating multiple destinations. The section includes
proposals for:

1. Time Weighted Graphs (TWG) as the main data structure
used in our solution.

2. A*Multiple: the proposed smart algorithm
3. Execution examples of A*Multiple

A. Time Weighted Graphs

In our previous paper [6], we present TWG as our main
data structure: a graph representing the map with edges
weighted by numbers (minutes) representing the estimated
time needed to drive the edge.

Distance is usually the main edge weight in Graphs. In
TWG, time is used instead. A graph edge in the graph
represents a road, street, highway, or part of any. Each of
these has an average speed limit that is calculated using
road speed sensors. The job of the real-time street sensor is
to watch traffic and send the average speed during some
period. The graph edge weight in terms of time (minutes)
is computed as follows:

Average speed (AV) (minutes) =

Sum of speeds of n cars over a Period T (miles/minutes) ÷ n

The initial weight of the edge (minutes) (W) = (edge

distance (miles) ÷ AV (miles/minutes))

B. Example: Part of Manhattan in a Time-weighted Graph
This Section shows the data structuring (transferring

the map into TWG) of part of Manhattan (taken from
Google Maps). Figures 4 and 5 show the location of
vertices in the map (Figure 4) and digital graph after
construction (Figure 5).

Figure 4. Modeling graph vertices

Figure 5. Building the graph edges (directed)

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-443-5

SOTICS 2015 : The Fifth International Conference on Social Media Technologies, Communication, and Informatics

The A*Multiple Algorithm
The main idea behind A*Multiple is to find the best

path (shortest in time) to visit multiple destinations in one
tour. The algorithm uses a heuristic function to find the
next destination and then uses the A*Traffic (which also
use the same heuristic function) to travel to that destination.

A*Multiple (Source, Destinations)

Task: find an efficient path from source passing over all

members in Destinations array.

Returns: 2 Lists

 VSL: The Vertices Solution List VSL, which is the vertices

t visit in order

 PSL: Path Solution List PSL, which is the list of paths to

take each time to each destination (vertex)

Pseudo code

If Destination is Empty return Done

For all Vertices Vi in Destinations

 Di=H(source, Vi)

 Get the Vs with the Minimum Di

 Remove Vs from Destinations

 Add Vs to the Vertices Solution List VSL

 Add A*Traffic (Source, Vs) to the Path Solution List

PSL

 If A*Traffic fails return Failure.

A*Multiple (Vs, Destinations).

 How does A*Multiple Work?

This section presents the execution of A*Multiple. To
present our approach better, consider the following
problem:

Suppose I am at Paddington station and want to visit
the following destinations in London: “Eye of London”,
“House of Commons”, and “Harrods”. If my only priority
is time, means that I can visit them in any order with
efficient time. In this case, I have to choose my next
destination (at each step) smartly.

After creating the Time-Weighted graph (vertices
shown in black in figure 7, over 5000 vertices) over the
map of London (from Google Maps), the A*Multiple will
return the following:

VSL: Harrods, House of Commons, Eye of London.
PSL: Path1, Path2, Path3.
Where VSL is the ordered list of destinations to be

visited, PSL is the list of paths from each destination in
VSL to the next one, Path1: Paddington – Harrods, Path2:
Harrods – House of Commons, and Path3: House of
Commons – Eye of London.

Each of these paths is calculated using A*Traffic.
Figure 6 shows these solutions in different colors:

orange (Path1), Blue (Path2) and Pink (Path3). It also gives
estimated time of each path according to current (at time of
calculation) traffic situation.

Figure 6. Paths for Multiple destinations (Paddington, Harrods, House of Commons, and Eye of London

IV. RESULTS

We have developed a testing tool (to test our approach)
where 100 samples were tested in 3 groups. Our results
showed that our solution is optimal in 81%. Table I
presents the gathered results in each group/each case
where:

 Optimal solution: Absolute best solution.

 Good solution: takes maximum of 20% more time than

optimal solution.

 Bad solution: Takes more than 20% more time than

optimal solution.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-443-5

SOTICS 2015 : The Fifth International Conference on Social Media Technologies, Communication, and Informatics

TABLE I. PERCENTAGES OF QUALITY OF
SOLUTIONS

Distances
Optimal

solution

Good

Solution

Bad

Solution

More than 10 destinations

Over 5321 vertices
73 % 19% 8%

Less than 10 destinations

Over 5321 vertices
 88% 9% 3%

Average 81%

Our approach is being evaluated according to optimal

solutions (best solution). These optimal solutions were
computed manually. Finding such solutions is time
consuming and not applicable real time problems like
navigation problems.

The Comparison of our solution to Google Maps [8],

shows that ours suggests a smart order of visits over all
destinations while we have to give the order of destinations
to Google Maps In order to get the best solution we have
to do try all possible orders of destinations, then we have
to check for the best order (least time). This is not reliable
when having a long list of destinations (over 10).

V. CONCLUSIONS AND FUTURE WORK

In brief, our approach, using A*Multiple algorithm
with time-weighted graphs, has the following advantages:

 It uses time-weighted graphs, which takes distance and
speed into consideration.

 It considers multiple destinations

 It saves a lot of execution time.
The reason this approach saves a lot of time is because

if we do not use heuristics, we will have to find the path by
getting all combinations (Hamilton Path). This will result
into an exponential time algorithm. On the other hand,
using heuristics considers options with best values when
heuristic function is applied and we end up with
polynomial time algorithm (A*Multiple and A*Traffic are
in O(n3) since they rely on A* [2]).

Our future work is focused on how to use heuristics
combined with discrete structures algorithms like Hamilton
path and Hamilton circuit. Moreover, finding the best
heuristic function remains an open research question in the
future.

REFERENCES

[1] J. Pearl, Heuristics: Intelligent Search Strategies for
computer Problem Solving. Addison Wesley,
Reading, Massachusetts, 1984.

[2] S. Russell and Peter Norving, Artificial Intelligence a
Modern Approach. Prentice Hall, Upper Saddle River,
New Jersey, 2003.

[3] H. Halaoui, Smart Traffic Online System (STOS):
Presenting Road Networks with time-Weighted
Graphs". IEEE International Conference on
Information Society (i-Society 2010) London, UK.
June 2010, pp. 349-356.

[4] Google Earth Blog Google Earth Data Size, Live
Local, New languages coming Available:

http://whatis.techtarget.com/definition/Google-Maps.
Retrieved: September, 2015.

[5] H. Halaoui, “Smart Traffic Systems: Dynamic
A*Traffic in GIS Driving Paths Applications”.
Proceeding of IEEE CSIE09, IEEE, Los Angeles,
USA. March, 2009, pp. 626-630.

[6] H. Halaoui,” Intelligent Traffic System: Road
Networks with Time-Weighted Graphs”. International
Journal for Infonomics (IJI), Volume 3, Issue 4,
December 2010, pp. 350-359.

[7] Google Maps. Available: https:// Maps.google.com.
Retrieved: September, 2015.

[8] H. Halaoui. “Spatial and Spatio-Temporal Databases
Modeling: Approaches for Modeling and Indexing
Spatial and Spatio-Temporal Databases”. VDM
Verlag, 2009.

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-443-5

SOTICS 2015 : The Fifth International Conference on Social Media Technologies, Communication, and Informatics

