
Test Coordination and Dynamic Test Oracles for Testing Concurrent Systems

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: {bstepien | lpeyton}@uottawa.ca

Abstract—Testing concurrent systems is complex. In
traditional software unit testing, a test sequence is always
composed of a stimulus and its corresponding fully
predictable response. With concurrent systems, this simple
model no longer holds as the state of the System Under Test
(SUT) changes while several users place their requests. Race
conditions are a particularly challenging problem for testing,
since they will occur and must be identified, but are very
disruptive to the test environment. In this paper, a case
study, using the formal test specification language TTCN-3,
illustrates the challenges for test coordination, especially
race conditions, and propose techniques to address them.
We also introduce shared variables and the use of
semaphores in the TTCN-3 parallel test component model as
a mechanism to implement dynamic test oracles.

Keywords- software testing-concurrent systems; TTCN; test
oracles; race conditions.

I. INTRODUCTION

Testing concurrent systems is complex. In traditional
software unit testing, a test sequence is always composed
of a stimulus and its corresponding fully predictable
response [4]. With concurrent systems, this simple model
no longer holds as the state of the system under test
(SUT) changes while several users place their requests.
Race conditions are a particularly challenging problem for
testing, since they will occur and must be identified, but
are very disruptive to the test environment.

Some definitions and implementations of parallel
testing can be found in [6][7][8][9]. Obviously there are
different kinds of parallel testing. In the previous
reference, the main concern is to run sequential tests in
parallel in order to save time. Instead, we focus on
concurrent testing of states in a system under test (SUT)
states as the test purpose. There are two main categories
of concurrent test systems:

 Response time testing when a large number of
requests are sent to a server as shown in Figure
1. This is addressed using TTCN-3 in [10].

 Testing the actual processing logic of the SUT
when confronted by several requests from
parallel users where the state of the SUT is
changing as a result of requests of the users and
thus affecting each user’s behavior.

Figure 1. Parallel system configuration

In this paper, a case study, using the formal test
specification language TTCN-3, illustrates the challenges
for test coordination, especially race conditions, and
proposes techniques to address them. We also propose
shared variables and semaphores in the TTCN-3 parallel
test component model as a mechanism to implement
dynamic test oracles. Overall, the motivation to use a
formal method such as TTCN-3 and its related available
execution tools is to take full advantage of its logging
information in order to rapidly detect faults due to race
conditions. We also propose enhancements to the TTCN-
3 language to make our testing concurrency problem
statement usable.

II. A CASE STUDY

In sub-section A we define the dynamic state problem to
be addressed, in sub-section B we propose thee methods
to specify concurrent systems tests.

A. Defining the problem

Although, we have studied extensively testing
concurrency problem in industrial applications [11], the
following simplified case study is about testing the
transition of the state of a system and the kind of
responses it should reply with. Here we have parallel
users that send a request to a book ordering system and
get two kinds of replies depending on the two possible
states of the SUT: has stock; or out of stock. The problem
is that it is impossible to predict the test oracle (predicted
response) since each user is independent from each other
and thus does not know the state of the SUT. This is
similar in e-commerce applications like on-line ordering
of merchandise and hotel booking and train or airline
reservations systems. A typical warning message for a
hotel reservation system is to warn the customer that there

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

is only one room left at a given rate. Thus from a tester
point of view, it is hard to predict if a response
corresponds to a success or a failure. However, if the
users are coordinated, the response to a given user can be
predictable.

The interesting aspect of this simple example is that
we have tried various approaches of coordination and
some resulted in race conditions problems, thus disturbing
the test process altogether. Table I shows the values of
test oracles depending of the state of the SUT, in our case:
has stock; or out of stock. In short a test passes if an
invoice and shipping confirmation is received when there
is inventory left or when out-of-stock is received and the
server is out of stock. All other cases are failures.

Unit testing would consists in putting the SUT in the
appropriate state and check the individual responses.

What is missing from a unit test is the dynamic aspect
of seeing the state change as the maximum available
inventory is reached.

TABLE I. EXPECTED TEST ORACLES DEPENDING ON THE
STATE OF THE SUT

Response to
the User/state

Has stock Out of stock

Invoice pass fail

Out of stock fail pass

B. TTCN-3 implementation

The TTCN-3 implementation of the user parallel test
component (PTC) is based on a simple request/response
behavior pattern with the response being analyzed with
the four possible configurations of two states and two
corresponding responses making use of the TTCN-3 alt
(alternative) construct. Each alternative is guarded with
the predicted state of the SUT. The receive statement
contains what the received message from the SUT should
match and the predicate between square brackets, the
predicted state of the SUT.

function ptcBehavior() runs on PTCType
{
 p.send("purchase");

 alt {
 [state == "has_stock"]
 p.receive("invoice") {

setverdict(pass);
 }
[state == "out_of_stock"]

 p.receive("invoice") {
setverdict(fail);

 }
[state == "out_of_stock"]

 p.receive("out_of_stock") {
setverdict(pass);

 }

[state == "has_stock"]
 p.receive("out_of_stock") {

setverdict(fail);
 }

 };
}

Figure 2. PTC Client test verdicts situations

Instead, unit testing would break down the problem into
two separate test cases and especially without the need for
PTCs. Here the unit is represented by a given state.

First unit test case:

function unitTestBehavior_1() runs on
 MTCType {
 p.send("purchase");

 alt {
 [] p.receive("invoice") {

setverdict(pass);
 }

 [] p.receive("invoice") {
setverdict(fail);

 }

Second unit test case:

 [] p.receive("out_of_stock") {
setverdict(pass);

 }
 [] p.receive("out_of_stock") {

setverdict(fail);
 }
 }

The predicates are empty because the state is predictable
due to the manipulation of the SUT by the tester by
emptying the data base in the first case and populating the
database in the second case. Another drawback of unit
testing is that the testing process would not be entirely
automated since it requires a manual intervention of the
tester between the two states.

Assuming that the SUT has three books on hand, the
ideal testing results would be to get an invoice response
for the first three users and an out of stock response for
the remaining users as shown on Figure 3 and an overall
pass verdict for the test.

However, the results shown in Figure 3 are only ideal
and rarely happen. Instead, we see more results of the
kind of Figure 4 that show the full effect of race
conditions because each PTC starts at different times.

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

Figure 3. Ideal testing responses

The failures shown in Figure 4 are the result of
mismatches between expected and received messages
when tests are executed without coordination.

Figure 4. Uncoordinated execution results

Figure 5 shows the TTCN-3 tools data inspection feature
[2][3] that provides detailed message and test oracle
contents that enable the tester to understand the reasons
for failure.

Figure 5. Expected vs received values

In this case, one may wonder where the state value
comes from. This is where the test coordination is taking
place. TTCN-3 has the concept of main test component
(MTC) that precisely looks after that.

In our case the coordination is achieved via abstract
coordination ports cp that link the master test component
and the PTCs as shown in Figure 6.

Figure 6. Test coordination with MTC

There are three ways to address test coordination.

1) Using coordination messages
The approach consists in using coordination messages
between the MTC and the PTCs that contain the predicted
state of the SUT. On the user PTC’s side we need an
additional line that receives the state from the MTC
before the user attempts to test the SUT:

cp.receive(charstring:?)->value state;

On the MTC side, we send a message containing the state
to the PTC that the tester thinks that the server is
supposed to be in. In our case this is achieved by
changing the state once three requests have been placed as
follows:

testcase coordinated_msgs_test()
 runs on MTCType system SystemType {
 …
 cp.send("has_stock") to user1;
 cp.receive("ack") from user1;

 cp.send("has_stock") to user2;
 cp.receive("ack") from user2;

 cp.send("has_stock") to user3;
 cp.receive("ack") from user3;

 // after three purchase requests,
 // the item is now out of stock

 cp.send("out_of_stock") to user4;
 cp.receive("ack") from user4;

 cp.send("out_of_stock") to user5;
 cp.receive("ack") from user5;

 …
}

Figure 7. Test coordination by MTC

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

In TTCN-3, the receive statement is blocking. Thus,
the rest of the behavior of the PTC will not execute while
the coordination message has not been received.

Note the returned ack message. The ack is used to
prevent racing. In other words, a new individual test
cannot occur before the previous test has fully completed,
otherwise more requests are being sent to the server
which may change its state before a response is sent back
to a user resulting in failure. We have observed that
removing the ack effectively produces race conditions.
We leave this verification as an exercise to the reader.

2) Coordination using PTC Threads operations
PTCs are in fact translated by the TTCN-3 compiler

that produces an executable in a general purpose language
(GPL) such as Java or C++ and many others using
threads. Thus, one typical Thread operation that is
available in TTCN-3 is to check if the thread has
terminated. This is represented in TTCN-3 with the
keyword done. Here, as shown in Figure 8, each PTC is
started using a parameter representing the function
behavior that carries the predicted state of the SUT.

There are in fact two ways to use this feature: the
first one consists in placing the done statement
immediately after the corresponding start statement. This
would result in transforming a concurrent system into a
sequential execution system with effects similar to the
coordination messages solution shown in the previous
section.

testcase thread_operations_test()
 runs on MTCType system SystemType {
 …
 user1.start(purchasingBehavior

 ("has_stock"));
 user2.start(purchasingBehavior
 ("has_stock"));
 user3.start(purchasingBehavior
 ("has_stock"));

 user1.done;
 user2.done;
 user3.done;

 user4.start(purchasingBehavior
 ("out_of_stock"));
 user5.start(purchasingBehavior
 ("out_of_stock"));
 user6.start(purchasingBehavior
 ("out_of_stock"));

 user4.done;
 user5.done;
 … }

Figure 8. MTC behavior using PTC threads operations

In this second approach, we have chosen to place all
the done statements after all the start statements for the
first three PTCs to simulate the database reaching its
maximum inventory. This has the advantage to at least
conserve some of the concurrent behavior of the system
and thus avoiding a full sequential test execution of PTCs.

3) Introducing semaphores to TTCN-3
In a way the second approach is less sequential than the
first one but still somewhat sequential. Thus, we have
explored a third solution that would eliminate some
aspects of the sequential aspect of this test behavior. The
method consists in using shared variables and semaphores
among PTCs. The shared variable keeps track of the
inventory on hand and enables a PTC to determine the
state of the SUT on its own. However, TTCN-3 does not
have the concept of shared variables, neither semaphores
and thus we recommend modifying the standard. In our
case, we need to declare the inventory variable as shared.
TTCN-3 test suites are always translated in a GPL that is
then compiled and executed. Since this feature is not
available in TTCN-3 we have used an implementation in
Java that would be typically comparable to the one
generated by the TTCN-3 compiler but somewhat
simplified to make it easier to understand.

public static void main(String args[])
 throws InterruptedException {

 PTCtype ptc1 = new PTCtype("ptc1");
 PTCtype ptc2 = new PTCtype("ptc2");
 PTCtype ptc3 = new PTCtype("ptc3");
 PTCtype ptc4 = new PTCtype("ptc4");
 PTCtype ptc5 = new PTCtype("ptc5");
 PTCtype ptc6 = new PTCtype("ptc6");

 ptc1.start();
 ptc2.start();
 ptc3.start();
 ptc4.start();
 ptc5.start();
 ptc6.start();

 ptc1.join();
 ptc2.join();
 ptc3.join();
 ptc4.join();
 ptc5.join();
 ptc6.join();

 }
Figure 9. MTC behavior using semaphores

 Note that the java main method of Figure 9
corresponds to the TTCN-3 MTC test case behavior. The
basic difference with the TTCN-3 version shown in

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

Figure 8 is the presence of the join method that needs to
be added to the TTCN-3 standard and the absence of state
indication sent to the PTCs. The join statement does not
exist in TTCN-3 and is part of our recommendation in
modifying the standard. Now, we need to show the
different modification required in the definition of the
PTCs behavior as shown in Figure 2 to implement the
semaphores. The PTC type needs first to declare a
semaphore as does the Java version. The new TTCN-3
Semaphore data type would merely be translated to the
corresponding Semaphore class in Java.

class PTCType extends Thread {
Semaphore sem;
String threadName;
String state = "";

Then the Semaphore instance needs to have an acquire
statement as in Java:

sem.acquire();

The shared variable inventory is then used to compute the
predicted state that can be used in the TTCN-3 alt receive
statement:

if(inventory > 0) {
inventory--;

 state = "has_stock";
}
else
 state = "out_of_stock";

// place the alt statements as shown on Figure 2
here.

And finally add a semaphore release statement at the end
of the PTC behavior as follows:

 sem.release();

4) Evaluation
We have observed that the semaphore version of this

problem produces a sequence of execution very similar to
the first approach using coordination messages. The only
difference being that the sequence of the executed PTCs
is not entirely in the order of the start of each PTC, i.e.
from 1 to 6. Instead the semaphore version produces
various sequences of PTC execution but in all remain
sequences thus preventing discovering concurrency
problems. Thus, we think that the second approach that
consists in running PTCs in batches of states is possibly a
better approach. However, the second method may run
into problems when complex templates are used for
depicting for example shopping baskets where the various
items may have different limits. In any case, this method
is much better than unit testing.

III. TTCN-3 AS A MODELLING LANGUAGE

Normally, testing activities can take place only once
the SUT has been fully developed and is runnable.
However, planning and developing automated test cases
can be done in parallel to the SUT development phase.
More importantly, the missing SUT can be emulated
using TTCN-3. This enables us to find any flaws in the
automated test suites before we apply them to the SUT
and thus reduce time to market.

In our case study, this means finding a way to portray
a behavior that replies with “invoice” when there is
inventory on hand and replies “out of stock” when
inventory has reached zero. At the abstract level, there is
no need to implement a full system, in our case probably a
web application and a related database. The
implementation of such an abstract system is as follows:

function SUTbehavior() runs on SUTType
{
 var integer inventory := 3;
 var PTCType ptc := null;
 var MTCType mtc_ := null;

 alt {
[] p.receive("purchase") ->

 sender ptc {
 if(inventory > 0) {

p.send("invoice") to ptc;
inventory := inventory -1;

 }
 else {

 p.send("out_of_stock") to
 ptc;

 };
 repeat

}
[] ap.receive("stop")

-> sender mtc_
 setverdict(pass)

}
 }
}

Figure 10. SUT behavior

We use a simple variable to portray the inventory that
we set at 3 units. Every time a request to purchase an item
comes in, we decrease the inventory. A simple if-then-
else statement provides the correct response of invoice or
out-of-stock state. At the abstract level, this is all we need.

Also, the test suite is developed in two different
levels of abstraction. First, we use simplified messages
like here simple strings with values. Once we simulate the
abstract system and we are happy with the results, in a
second step we merely redefine the abstract data types
and its corresponding templates (test oracles for received
messages and data content for sent messages) as follows:

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

1st step: Data types and templates declarations:

type charstring RequestType;
type charstring ResponseType;

template RequestType myRequest_t :=
"purchase";

template ResponseType
myInvoiceResponse_t

:= "invoice";
template ResponseType

myOutOfStockResponse_t:=
 "out_of_stock";

Figure 11. simplified data types and templates

2nd step: Real data types and templates:

type record RequestType {
 charstring bookName,
 charstring ISBN
}

type record ResponseType {
 charstring bookName,
 charstring ISBN,
 charstring status,
 charstring action
}

template RequestType myRequest_t := {
 bookName := “ttcn-3 in a
nutshell”,
 ISBN := “978-2-345-678”
}

Template ResponseType myResponse_t :=
{

bookName := “war and peace”,
 ISBN := “978-2-345-678”,
 Status := “on hand”,
 Action := “invoice”
}

Figure 12. Fully realistic data types and templates

Note that both datatypes and templates are defined using
the same identifiers. Only their content is different.

IV. CONCLUSION

Despite its long history, testing concurrent systems
remains complex and does not always provide accurate
results. In this paper we have shown that using formal
methods for testing such as TTCN-3 helps to locate
problems accurately because of the wide choice of results
visualization features that the various commercial and
open source editing, and execution tools provide. We
also recommended enhancing the TTCN-3 standard by
providing shared variables and semaphore features for the
MTC and the PTCs. We also have shown a way to partly
avoid sequencing PTC test by using batches of concurrent
tests by using the current features of TTCN-3.

ACKNOWLEDGMENT

The authors would like to thank NSERC for funding
this research.

REFERENCES

[1] ETSI ES 201 873-1, The Testing and Test Control Notation
version 3 Part 1: TTCN-3 Core Language, May 2017. Accessed
March 2018 at
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.0
9.01_60/es_20187301v040901p.pdf

[2] TTworkbench,Spirent,
https://www.spirent.com/Products/TTworkbench

[3] Titan, https://projects.eclipse.org/proposals/titan

[4] E. Boros and T. Unluyurt, Sequential Testing of Series-Parallel
Systems of Small Depth in ISBN 978-1-4613-7062-8

[5] A. Bertolino, Software Testing Research: Achievements,
Challenges, Dreams in proceedings of FOSE ’07 pp 85-103

[6] T. Hanawa, T. Banzai, H. Koyzumi, R. Kanbayashi, T. Imada and
M. Sato, Large-Scale Software Testing Environment Using Cloud
Computing Technology for Dependable Parallel and Distributed
Systems in 2010 Third International Conference on Software
Testing, Verification and Validation Wokshops procedings

[7] A. M. Alghamdi and F. Eassa, Software Testing Techniques for
Parallel Systems: A Survey in IJCSNS International Journal of
Computer Science and Network Security, vol 19. No 4, April 2019,
pp 176-184

[8] L. Parobek, 7 Reasons to Move to Parallel Testing in white paper
on https://devops.com/7-key-reasons-make-move-sequential-
parallel-testing/

[9] B. Rao G. , K. Timmaraju, and T. Weigert, Network Element
Testing Using TTCN-3: Benefits and Comparison in SDL 2005,
LNCS 3530, pp. 265–280, 2005

[10] G. Din, S. Tolea, and I. Schieferdecker, Distributed Load Test with
TTCN-3, in Testcom 2006 proceedings, pp 177-196

[11] B. Stepien, K, Mallur, L. Peyton, Testing Business Processes
Using TTCN-3, in SDL Forum 2015 proceedings, Lecture Notes in
Computer Science, vol 9369. Springer, Cham.

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.09.01_60/es_20187301v040901p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.09.01_60/es_20187301v040901p.pdf
https://projects.eclipse.org/proposals/titan
https://devops.com/7-key-reasons-make-move-sequential-parallel-testing/
https://devops.com/7-key-reasons-make-move-sequential-parallel-testing/

