
An Overview of SAP Core Data Services
Add Belati

Corporate Application Department
Saudi Aramco

Dhahran, Saudi Arabia
email: add.belati@aramco.com

Firas Alomari
Corporate Application Department

Saudi Aramco
Dhahran, Saudi Arabia

email: firas.alomari@aramco.com

Abstract—Increasing amount of data and the diversity of
available data structures enable applications that can make timely
decisions based on live data that, in most cases, can be evaluated
without traditional application layer processing. SAP introduced
the Core Data Service (CDS) framework as a data modeling
approach in which Virtual Data Models (VDM) are defined at
the database layer. CDS improve applications performance by
pushing data processing from the application to the database
layer to reduce data movements. In this paper, we present some
technical insights into SAP’s CDS, including new application
patterns supported by CDS and the motivations behind it. We
also discuss some practical considerations and challenges that
may arise with CDS adoption and implementation.

Index Terms—ERP; Programming; Database; Code Pushdown

I. INTRODUCTION

Enterprise Resource Planning (ERP) and Business Intelli-
gence (BI) systems are a fundamental part of today’s enterprise
IT applications portfolio. They provide a set of standardized
software packages that capture interdisciplinary business pro-
cesses across the entire value chain of an enterprise in a
streamlined fashion [1]. ERP and BI systems integrate business
functions with a centralized data repository shared by all
business processes in the enterprise. The information provided
by these systems drive daily business operations and provides
for the development of new business ideas.

ERP systems were designed to capture daily operational and
transactional business data. This kind of data processing typ-
ically referred to as Online Transactional Processing (OLTP)
[2], uses row-based operations to efficiently process trans-
actions, instantly recording business events (e.g., payments)
and reflecting changes as they occur. However, they are not
efficient at performing set-wide operations on entire tables. BI
or Data Warehouse systems, on the other hand, were designed
as Online Analytical Processing (OLAP) systems, to provide
analytical and trend reporting from the growing data in the
ERP systems. They leverage column-oriented tables to speed
up operations over a huge volume of data at the expense of
efficiency in executing OLTP workload.

OLTP and OLAP systems evolved separately to prevent
the long-running and resource-intensive OLAP workload from
decreasing the transactional throughput of the OLTP system
[3]. Specifically, OLAP solutions were running analytical
queries on a copy of the transactional data (i.e., views) from
OLTP data stores [4]. This enabled companies to efficiently

address a growing number of conflicting business needs, albeit,
at the expense of increased complexity to link, orchestrate
and synchronize multiple systems in the IT infrastructure.
Therefore, unified Analytical Transaction Processing (ATP)
systems were proposed to perform fast analytical processing
coupled with transactional data management [4], preferably,
by merging operational and analytical systems into one single
system. ATP systems run the analytical queries directly on top
of the transactional data to enable real-time data operations,
reduce IT complexity and lower the total cost of ownership.

Systems, Applications and Products (SAP) introduced the
High-Performance Analytic Appliance (HANA) [5] to provide
a unified ATP system that fulfils the aforementioned require-
ments of business applications. It provides a data management
platform to support efficient processing of both transactional
and analytical workloads on the same physical database. It
supports a code pushdown approach to execute data-intensive
processing in the database close to the raw data (i.e., code-
to-data) to reduce expensive data movement and improve
applications performance. To take advantage of this code
pushdown concept, SAP introduced CDS framework as a data
modeling infrastructure to enable data reusability, extensions,
and integration in HANA. Later, CDS were also introduced to
the SAP ABAP application stack to enable developers to take
advantage of the code pushdown with other databases.

In this paper, we introduce CDS and the motivation behind
it. We also discuss some of CDS implications on application
development strategy. The paper is organized as follows: CDS
are described in Section II. In Section III we discuss CDS
advantages and present some practical considerations related to
code-push-down with CDS. We conclude the paper and present
future research directions in Section IV.

II. SAP CORE DATA SERVICES (CDS)

In this section we present a brief background of code
pushdown and introduce the data services layer provided by
CDS. Additionally, we describe CDS technical features and
enhancements.

A. Background

The availability of multi-model databases that support com-
plex data structures such as spatial, text, graph, and time series
data enables built-in advanced analytics capabilities, such as

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

Code to DataData to Code

Application Layer

Data Layer

Code

Application Layer

Data Layer

CodeData	StoreData	Store

Raw
Data

Results

UI Logic

Presentation Layer
UI

Fig. 1. Code Pushdown Model.

text mining, spatial analysis and predictive analytics.These
capabilities support diverse application patterns ranging from
transactional systems to decision and analytic support systems
in real-time and on live data [6]. However, as the size of data
grows, moving data becomes the bottleneck and the cost of
moving data around becomes prohibitive. Yet, in many cases,
the data can be evaluated and processed on the data storage
without the need for traditional application layer processing.

Let us consider the example of one million values, rep-
resenting different currencies, that need to be calculated.
Typically, the individual values are transferred to the appli-
cation server from the database to only be discarded after
the conversion and calculation has been done. Therefore, it’s
advantageous to move the data less by running workloads in
the data storage or as close to it as possible [7]. This concept
of code pushdown or code-to-data (see Figure 1) improves the
applications performance by executing application logic inside
the database, thus, decreasing the amount of data transfer and
round-trips between the database and application layers.

B. Data Services Layer

Technically, applications communicate with databases
through a number of various interfaces such as Standard Query
Languages (SQL), Stored Procedures, SQL Scripts, or specific
APIs. In the code pushdown concept, data services such as
search or predictive analytics use these interfaces to push the
computation to the database layer and only move results to
application layer. Therefore, a common abstraction layer for
integrating database interfaces and data services together is
necessary. To this end, SAP introduced a data service layer
(i.e., CDS) as a common abstraction layer for integrating these
interfaces and data services together. This layer provides data
models for defining and formatting data sources consistently
across multiple systems, enabling different applications to
share the same data, thus reducing development costs and
time as well as improving the quality and performance of the
applications.

Data Store

UI Rendering

Da
ta

La
ye

r
Ap

pli
ca

tio
n L

ay
er

Pr
es

en
tat

ion
 La

ye
r

Core Data Services
Search Business LogicAnalytics OData

ABAPHANA XS Others

Data Centric Logic

Service Logic

Presentation Logic

Fig. 2. Core Data Services Model.

The CDS data modeling infrastructure uses specific domain
language to define different data services in a unified data
definition and query language [8]. These data models are
defined and consumed on the database server rather than
on the application layer. They can be further enriched with
semantics to allow developers to define entity types (e.g.,
orders or products) and the semantic relationships between
them, which correspond to key relationships in traditional
entity relationship (ER) models.

In particular, CDS offer central definitions that can be used
in many different application context, such as transactional and
analytical applications, to interact with data in the database
in a unified way. They provide a cross platform unified data
abstraction layer that sits between the database and client
applications (see Figure 2). They function as proxy that drives
data intensive computation to the database and exposes only
relevant results to be consumed by different applications.
Similar to Open Data Protocol (OData) for User Interface
(UI) abstraction where UI rendering is pushed up to the client,
CDS push down data-intensive calculations to the data layer to
get the benefits of the underlying databases high-performance
capabilities such as fast in-memory column operations, query
optimization, and parallel execution.

C. CDS Description

CDS models are expressed in a Data Definition Language
(DDL). DLL is based on standard SQL with some enhance-
ments, such as associations, extensions, and annotations. The
CDS Query Language (QL) is an extension to SQL used to
consume CDS data. The QL includes enhancements such as
defining views within the CDS data model. It also introduces
the use of associations defined by the DDL. Instance-based
authorization to CDS entities are defined using the Data
Control Language (DCL). DCL can leverage literal conditions
that compare elements of a CDS entity with literal values
such as organization code, thus, pushing granular authorization
filters and restrictions to the database for better performance.

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

They can also integrate with traditional authorization concept
in SAP to check against existing authorization objects.

There are two variants of CDS: ABAP and HANA. HANA
CDS are HANA database dependent entities residing on the
database itself. They enable the creation of database tables,
views and data types using the native HANA DB SQL state-
ments, enriching them with semantical properties, and using
HANA native functions to perform data intensive computa-
tions. The HANA CDS does not require a specific application
stack and therefore can support a variety of technologies and
programming languages.

On the other hand, ABAP CDS provide a framework for
defining and consuming semantic data models on the central
database of the ABAP application stack. One can use SQL
like statements to create and deploy the corresponding CDS
entity on the target database automatically. Simillar to HANA
CDS the models are based on the DDL and DCL, which are
managed by ABAP Dictionary. However, unlike HANA CDS,
ABAP CDS are database independent.

Virtually, design principles for both ABAP and HANA
CDS are the same but due to differences in the respective
environments, some technical differences between these fla-
vors evolved. One clear distinction is that ABAP CDS access
control and authorization can support traditional ABAP-based
authorizations or defined in the DCL of the CDS entities.
Both methods can be used independently or together, however
the traditional authorization concept allows for the reuse of
existing authorizations in the ABAP system.

Technically, CDS are an enhancement of the standard SQL
that provides a data modeling framework for developers to
define CDS entities, such as tables, views, and user defined
data structures in the database. The CDS entities capture the
semantics of the data to join the data needed for the application
into one single model. There are two types of CDS entities:
views and table functions.

The CDS views are defined for existing tables or views
in the database. They can be used to rearrange table fields
based on the application needs. The views can have additional
input parameters to filter the data during selection process at
database level itself. So there is no need for a where condition
in the application layer code.

Alternatively, CDS table function views include computa-
tions for database tables that are used by other CDS views,
such as date and time calculation and conversion functions.
Similar to CDS views, table functions can have additional
parameters. Both type of views provide a number of major
capabilities and enhancements over standard SQL, such as:

• Joins: are used to group fields from one or more different
tables or views. Joins such as INNER JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, or UNION are
supported.

• Associations: are joins on demand that get executed when
specifically used in a query. They are reusable, and allow
a CDS view to be linked with other data sources, such as

classical tables and views or another CDS entity, with a
varying degree of cardinality. Cardinality and simple path
expression in queries are the most important benefits of
associations views.

• Annotations: define properties and behavior at run time.
For example, one can save views or link another column
during run time using the “@” character in the CDS view
definitions. It further allows parameters to be used or meta
data to be added to the CDS view data.

• Expressions: are used for calculations such as aggregation
and mathematical computation in the data model queries.

• Extensions: are views with additional information that is
not in the original table. They reduce data movement by
adding expressions, associations and additional columns
to an existing view.

D. Example

We show two examples of using CDS in Figure 3. The
CDS are used to build a data model and service definitions
on a conceptual level. Specifically, CDS models are translated
into native database artifacts (e.g., schema) and interpreted to
services to be exposed to applications. Specifically, at line 4
the OData annotation generates OData service automatically.
The OData is then consumed by the application to enable the
fuzzy search shown in the example. Further, at line 11 the
example shows additional annotations that are used to enable
other visual elements such as default values and enabled UI
controls. In lines 23, the example also shows the currency
conversion scenario mentioned in Section II-A using CDS
table function. Besides the performance enhancement with this
approach, the data abstraction layer makes it easier to define
semantically rich data models. These models can be used for
easy data access and allow for reuse in different types of
application.

III. DISCUSSION

Code pushdown or code-to-data concept is not a new one. In
fact, some would argue that database stored procedures offer
a similar performance advantage to CDS entities. However,
stored procedure languages offer abstractions close to the
database layer and they often lack concepts to express the
application semantics. Moreover, with stored procedures one
would lose the advantages of the CDS unified development
environment by introducing code into the system that is more
difficult to maintain, challenging to test, often frustrating to
debug and needs to be integrated and managed through diverse
database interfaces [9]. With CDS, one can make use of SAP’s
available tools to assist developers during CDS development,
testing, and in their deployment to the production systems.
Practically, CDS objects are integrated in the repository of
SAP applications artifacts for complete life cycle management.
They are like any other SAP development objects, subject
to the transport system within SAP so that they can be
easily deployed or transported from development via test to
a production system consistently.

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

Fig. 3. Core Data Services Examples.

Applications based on CDS framework implies a major
shift in development practices. Specifically, CDS shift the
development paradigm from a process-centric activity to a
data-centric activity [4]. For example, applications need to be
designed to take advantage of CDS features and define new
data hierarchies that can be readily used by applications. Since
development is driven by the need to eliminate or reduce data
movement from the database into application servers, which,
in fact, is the main bottleneck for data-intensive applications in
traditional three-tier architecture. Developers have to identify
data-intensive parts of their application [10]. These parts can
then be redesigned -leveraging CDS views- to push down the
computation into the data layer. However, identifying data-
intensive parts is not necessarily a trivial exercise. Therefore,
Intuitive techniques for describing and modeling data are
necessary [3]. One can guide this by best practices, design
patterns, code analysis, performance profiling, etc.

Furthermore, a data-centric approach reduces the applica-
tions code footprint. Specifically, with consistent data models
across systems, different applications can reuse the same
models [7], [3]. Models can also be extended or built on
top of other models (i.e., stacked) to meet the application
needs. Service definitions such as OData and REST APIs can
then be designed and exposed using the necessary models.
Subsequently, user interfaces can be developed independently
of the data and service definitions. In fact, with this approach
application development becomes more of a service orches-
tration activity rather than a programming activity.

Concisely, the development practices should be guided by

the following three principles: First, UI Rendering with pre-
sentation logic should be pushed up to the Client (i.e., browser,
mobile apps). Second, data-intensive computation is done in
the database and only the results are moved to the application
server. Specifically, application server should handle control-
flow and procedural logic only. Third, development artifacts
from all layers are managed in a central repository so they can
be easily created, tested, integrated and deployed.

This will also introduce a number of challenges that should
be considered in our development methodology [7], [11].
For example, requirements should not only capture how the
process works but they should also describe the data acqui-
sition process. Similarly, analysis activities need to carefully
consider data sources, transformation and context as well as
the traditional analysis of business processes. Finally, data-
centric development requires additional effort to ensure that
effective data quality controls are in place. Therefore, testing
should expand from verifying application functionality to
ensuring application data quality are validated, and validation
rules are carried over to operations and maintenance of the
application. These are only some of the challenges that must
be considered in the development life cycle.

IV. CONCLUDING REMARKS

CDS offer easy-to-understand, reusable tools to help realize
code push-down (i.e., Code-to-Data) model. With CDS, it is
possible to build applications that integrate application control
logic in the database layer to achieve real-time performance.
It may require additional effort to move logic down to the

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

database level. However, it reduces complexity and leads
to simplification in data models and applications, redefining
application development practices. Developers of business
applications must therefore make careful choices about what
data operations to include and what to omit. Certainly, it’s
not feasible or economically viable to model all existing
applications data operations in CDS. Alternatively, if too
little is included, the models may not support application
needs adequately, which pushes more development effort and
cost onto the application developers. This shift in application
development practice presents new challenges, however, it
provides opportunities to support new kinds of interactive
applications, which were not possible before.

In future research, we plan to investigate processes that
are appropriate for the CDS concept in our ERP system.
Furthermore, we plan to evaluate costs and benefits of trans-
forming existing business application to make use of the CDS
concept. Specifically, we plan to develop criteria to guide the
developers in identifying which applications or parts of an
application are more appropriate for CDS. One idea we have is
to utilize performance-profiling tools to prioritize applications
for further evaluation. Furthermore, we plan to evaluate our
development methodology and identify how it needs to be
adapted to meet the expectations of this transformation.

REFERENCES

[1] Z. P. Matolcsy, P. Booth, and B. Wieder, “Economic benefits of enter-
prise resource planning systems: some empirical evidence,” Accounting
& Finance, vol. 45, no. 3, pp. 439–456, 2005.

[2] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd,
“Efficient transaction processing in sap hana database: the end of a
column store myth,” in Proceedings of the 2012 ACM SIGMOD Int.
Conf. on Management of Data. ACM, 2012, pp. 731–742.

[3] J.-H. Boese, C. Tosun, C. Mathis, and F. Faerber, “Data management
with saps in-memory computing engine,” in Proceedings of the 15th Int.
Conf. on Extending Database Technology. ACM, 2012, pp. 542–544.

[4] H. Plattner, “A common database approach for oltp and olap using an in-
memory column database,” in Proceedings of the 2009 ACM SIGMOD
Int. Conf. on Management of data. ACM, 2009, pp. 1–2.

[5] N. May, A. Bohm, and W. Lehner, “Sap hana– the evolution of an in-
memory dbms from pure olap processing towards mixed workloads,”
Datenbanksysteme für Business, Technologie und Web, 2017.

[6] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,
“Sap hana database: data management for modern business applica-
tions,” ACM Sigmod Record, vol. 40, no. 4, pp. 45–51, 2012.

[7] H. Plattner, “The impact of columnar in-memory databases on enterprise
systems: implications of eliminating transaction-maintained aggregates,”
Proc. of the VLDB Endowment, vol. 7, no. 13, pp. 1722–1729, 2014.

[8] J. Hrastnik, R. Dentzer, and R. Colle, Core Data Services for ABAP.
SAP PRESS, 2019.

[9] N. May, A. Böhm, M. Block, and W. Lehner, “Managed query pro-
cessing within the sap hana database platform,” Datenbank-Spektrum,
vol. 15, no. 2, pp. 141–152, 2015.

[10] F. B. Alomari and D. A. Menascé, “Self-protecting and self-optimizing
database systems: Implementation and experimental evaluation,” in Proc.
of the 2013 ACM Cloud and Autonomic Comp. Conf., 2013, pp. 1–10.

[11] A. Boehm, “In-memory for the masses: enabling cost-efficient deploy-
ments of in-memory data management platforms for business applica-
tions,” Proc. of the VLDB Endowment, vol. 12, no. 12, pp. 2273–75,
2019.

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

