
Improving Software Quality and Reliability Through

Analysing Sets of System Test Defects

Vincent Sinclair
Bell Labs Software and Systems Reliability

Dublin, Ireland
e-mail: vincent.sinclair@nokia-bell-labs.com

Abstract — Telecommunications networks support many
critical services, leading users to demand very high levels of
quality and reliability from these networks. The quality and
reliability of these services is mainly dependent on the
network’s software. At the same time, competition is driving
the demand for new software features in short delivery cycles.
There are many challenges to delivering high quality, highly
reliable software in these short cycles. Overcoming these
challenges requires fast feedback to the development processes
to minimize the number of escaped defects. This fast feedback
can be achieved through the systematic analysis of system test
defects. This method contrasts with the typical practice of
analysing customer found defects. This improved method
analyses each system test defect as it is fixed and stores this
data. A set of defect data is then analysed to identify the most
common defect type and where they are injected. This enables
teams to focus improvement efforts on their largest source of
defects. By automating this method, teams can continually fine
tune their development processes to minimise the number of
escaped defects. This results in a steady improvement over
time in the quality and reliability of the software.

Keywords - software reliability; software quality; availability;
defect analysis; continuous improvement.

I. INTRODUCTION

Today’s communications networks enable critical
services, such as e-health, video doctors, mobile banking and
remote security. Given the importance of such services,
customers are demanding high reliability from their network
providers to ensure these services are available anywhere and
at any time. Future networks will support driverless cars and
robotic surgery, requiring even higher levels of reliability.
The quality and reliability of these services is highly
dependent on the quality and reliability of the underlying
communications software. This software is very complex
and hence intrinsically prone to failure [1]. The challenge for
communications network suppliers is to deliver these
complex software systems with high quality and high
reliability, while at the same time delivering new
functionality in short delivery cycles.

This paper describes a new method for the analysis of
software defects to enable teams to quickly learn from
escaped defects. Section II describes the challenges. Sections
III and IV describe the solution and its automation. Section
V outlines the proposed future evolution of the system.

II. KEY CHALLENGES

Network software suppliers face several challenges to
delivering high quality, high reliability software. Large
development organizations typically work in complex,
multi-site, multi-time zone and multi-language teams. This
environment raises many challenges to close communication
and collaboration, a key enabler of high quality and high
reliability software. Large teams usually have a very wide
range of knowledge and skill levels, from highly experienced
engineers to junior engineers. This results in teams with
dissimilar defect patterns and hence different improvement
priorities. Each team needs to drive its own improvement
priorities. A common top down approach across different
teams is not as effective. The development processes, tools,
organisational structures, as well as roles and responsibilities
regularly change, disrupting development activities.

The software solution is typically a combination of
application, platform, third party and open source software,
leading to very complex software interactions. This can lead
to unforeseen quality and reliability challenges. Time
pressures on an already stretched team leaves very limited
time to implement improvements. Driven by end users,
network operators are demanding faster deliveries of new
features and functionality. This leaves less time for testing
out defects at system or solution level testing.

The above challenges to large-scale development lead to
defects escaping to system test and customers. Our challenge
is how to quickly learn from these escaped defects. Review
of current defect analysis methods shows that they tend to
focus on technical aspects of the individual defects. The
resulting actions focus on preventing the same defect from
escaping in future through the addition of test cases. Previous
studies on root cause analysis tend to focus on identifying the
types of defect but not on where they should have been
detected [4]. By collecting and analysing characteristic data
on system test defects, we can identify the most common
defect type and where they could have been detected. From
this, we can identify the optimum improvement action(s) to
give the largest reduction in escaped defects.

III. SOLUTION

We will outline current analysis methods, compare these
with our method and describe the key advantages of our
improved method. Particular focus is put on the ability of the
improved method to provide fast feedback to development.

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

A. Current method

The typical approach to root cause analysis of software
defects is to focus on customer found defects. This results in
relatively slow feedback to development. The analysis tends
to focus on individual defects, with the resulting
improvement focusing on the technical cause of the defect.
Where the analysis looks at processes, it tends to focus on
the superficial cause of the defect rather than the
fundamental cause(s) of the defect and how the defect
escaped [2][5].

B. Learning cycle

Key to addressing the wide variety of challenges listed in
section two is a learning cycle which provides fast feedback
to the development teams through analysing system test
defects. The approach must ensure that developers identify
and record the fundamental cause of each defect at the
organisational and process level. The system can then
identify the most common defect type through analysing sets
of defect data, highlighting which improvement will give the
biggest reduction in escaped defects. The system must also
measure the percentage of actual defect reduction to ensure
the improvements implemented have been effective. Using
this approach, teams can continually learn from their escaped
defects. This learning cycle is outlined in Figure 1.

C. Improved method

The innovation is the real time classification and analysis
of sets of system test defects. This method is built on the idea
that sets of defects have small but definite patterns or
signatures [3]. The steps in the method are:

 Classify each system test defect at the time the
defect is fixed, when all of the information about the
defect is fresh in the mind of the developer. The
developer selects from drop down menus the type of
defect and the development phase where it should
have been detected. This data is recorded in the
defect management tool and is mandatory to move
the defect to the next phase of the defect life cycle.

 Select a specific set of defects for analysis. This
could be at a team level, a component/sub-system
level or at the level of a complete product.

 Extract the data from the defect management tool.

 Apply decision tree techniques to determine the most
common defect type and in what phase of
development they should have been detected.

 Based on the most common defect type and where
they should be detected, quality experts perform a
deep dive analysis to identify the fundamental
changes that will reduce this specific defect type.

 Measure the impact of the improvement action(s) to
quantify the reduction in the specific defect type.

D. Advantages of the method

Analysing system test defects provides much faster
feedback to the development teams, compared to analysing
customer found defects. Characterising each defect at the
time it is fixed by a developer is easy and quick, as the
developers have all the defect details fresh in their mind.
Classifying the defect in the management system facilitates
easy and accurate data labelling. Using drop down menus to
classify each defect guides the developer towards the real
root cause. Using drop down menus to classify the defects
also provides data standardisation, facilitating easy and
accurate clustering. By applying clustering techniques within
a set of defects, teams can identify the most common type of
defect within the set and the source of these defects.
Empirical experience shows that a set of fifty defects
provides sufficient data to identify the most common type of
defect. A deep dive analysis on the most common defect type
will identify fundamental changes to the organisation that
will systematically prevent a whole class of defects escaping
from development. These are typically fundamental
improvements in communications and collaboration, changes
in roles and responsibilities as well as improvements in
processes, tools, templates and checklists. Each team can
analyse their own defects to help them identify
improvements relevant to their team. This devolves
accountability for quality down to team level. Teams can
also focus on improvements in specific areas of the software
to strengthen weaker components. Automation enables the
method to be applied regularly, with sustained defect
reduction over time.

Figure 1. Learning Cycle.

E. Testing the method

Over a period of nine months, the improved method was
tested with one product unit of seventy people, distributed
across three continents and spanning systems engineering to
system validation. The data processing and visualization
were performed manually. The analysis identified the need
for improvements in the areas of requirements gathering and
communication, including detailed customer use cases,
interface interoperability, corner cases, error cases and
failure modes. For design, it identified improvements needed

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

during design reviews, including communications tools and
improved checklists to assure critical points were not missed.
For the coding phase, it identified improvements in unit test,
including additional rainy day/negative testing. At system
validation, it identified the need for increased robustness
testing as well as quality assurance of third-party software.

The parameter for evaluating the method is the number of
escaped defects. Over the nine-month pilot period, these
fundamental improvements resulted in a greater than 50%
reduction in defects escaping to customers.

IV. AUTOMATING THE METHOD

A critical aspect related to the deployment of this method
is the automation of the process, integrating the data
collection, analysis and presentation of results into an
organization’s existing tool set.

A. Advantages

Automation of the method makes it fast and easy for
teams to regularly analyse their own defects at any time.
They can, for example, analyse the defects from the past four
weeks to identify the most common defect type occurring
today. This fast feedback enables teams to regularly fine tune
their development and testing processes.

B. Web application

A cloud-based Web application was developed, which
connects to the company’s defect management systems. The
application allows users to select a specific set of defects,
extracts the defect classification data, performs data
pre-processing and data analytics and finally visualises the
results.

A typical defect pattern is shown in Figure 2. For this set
of defects, the most common defect type is coding error. The
next most common defect types are requirement gaps and
high-level design gaps. From this graph, it is evident where
the team should focus their improvement efforts.

Figure 2. Defect Types – Set of 200 defects.

C. Scaling the adoption of the method

The application has been made available to all teams
through the Nokia corporate cloud, enabling a wide variety
of teams to test the usability of the application. This will also
encourage an even stronger culture of learning from sets of
defects to identify the most common defect type and trigger
actions to prevent similar defects in future. Automation will
also encourage a mindset of regular improvements to
continually fine tune the development activity.

V. EXTENDING THE APPLICATION

A number of additional capabilities are planned for future
releases.

Based on multiple factors, a weighting engine will quantify
the impact of each defect. For example, a defect which
causes a network outage or affects live traffic has more
impact than a defect that does not affect live traffic. These
weighted values will be used to rank the improvement
priorities. A recommendations engine will use data analytics
and machine learning techniques to automatically select the
optimum improvement actions from a knowledge base of
known effective solutions for specific defect type/phase
combinations. This knowledge base will evolve over time
based on the evaluation of the effectiveness of specific
improvement actions. The system will include automated
tracking of defect trends over time to measure the impact of
specific improvement actions.

VI. CONCLUSION

This method has been shown to be effective in reducing
escaped defects, resulting in improved software quality and
reliability. A key enabler to widespread deployment of the
improved method is the Web application, which enables
teams to regularly analyse their own escaped software
defects. Future releases will build on the current system to
add further machine learning and artificial intelligence
techniques to automatically recommend the most effective
improvement actions. Machine learning techniques will also
be used to optimise over time the knowledge base of known
solutions for specific defect types. Results will be presented
in a future paper.

REFERENCES

[1] R. I. Cook, '"How complex systems fail," Cognitive
Technologies Laboratory, University of Chicago IL [Online].
Available:https://www.researchgate.net/publication/22879715
8_How_complex_systems_fail. [Accessed: Jan. 30, 2019].

[2] A. C. Edmondson, '"Strategies for learning from failure,"
Harv.Bus.Rev., vol. 89, no. 4, pp. 48-55, April 2011.

[3] M. Syed, '"Black Box Thinking: Why Most People Never
Learn from Their Mistakes--But Some Do", November 2015.

[4] Timo O.A. Lehtinen, “What Are Problem Causes of Software
Projects?, International Symposium on Empirical Software
Engineering and Measurement, September 2011.

[5] Harsh Lal, “Root cause analysis of software bugs using
machine learning techniques”, International Conference on
Cloud Computing, Data Science and Engineering, January
2017.

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

