
Security and Software Engineering: Analyzing Effort and Cost

Callum Brill, Aspen Olmsted

Department of Computer Science

College of Charleston, Charleston, SC 29401

Email: brillch@g.cofc.edu, olmsteda@cofc.edu

Abstract— There are many systems developed to model and

estimate the software development lifecycle of a product, such as

Constructive Cost Model (CoCoMo) II and SEER for Software

(SEER-SEM). As the demand for security in software engineering

rises, engineers are proposing changes to the development lifecycle

to better integrate security. These changes in the Software

Development Lifecycle (SDLC) come with the need for changes in

how we model the associated costs. Specifically, this paper analyzes

the costs of a Web Content Management System with regards to

security and proposes adjustments, based on lifecycle changes, to

the CoCoMo II cost model that would allow for security to be

better factored into project management.

Keywords- Software Engineering; Cyber Security.

I. INTRODUCTION

The cost of software development projects can be quite
difficult. The Software Development Lifecycle (SDLC), the
lifecycle software engineering project undergoes, consists of the
following stages [1]:

• Analysis–Developing the goals to be achieved by
the software and defining the scope of the software
with regards to those problems to ensure that the
project does not fall victim to scope creep.

• Requirements–Translating project goals into
concrete operations of the software.

• Design–Formulating detailed descriptions of the
previously defined operations, including but not
limited to the design of user interfaces, internal
logic decisions and modeling system interactions.

• Implementation–Encoding the agreed upon design
choices into a working software application.

• Testing–Evaluating the correctness of the
implementation to remove potential defects.

• Deployment–Deploying the tested implementation
into a production environment so that the software
may be consumed by end users.

• Maintenance–Resolving issues that arise during use
by consumers, ensuring that the software can
continue to be used and keeping the software from
becoming obsolete. This is typically the longest
stage and is an ongoing effort.

However, this lifecycle is becoming less appropriate for

representing software development, as security is becoming

more important. Many of the existing models to estimate cost

are based on this lifecycle, which means the need to update those

cost models rises along with the need to replace the SDLC with

a more secure process.

Another cost that models do not account for is Information

Technology (IT) and technical debt. IT debt is the idea that

systems can accrue liability over time, usually by having

maintenance operations postponed or added to an ever-growing

backlog; and if that liability is not recognized and dealt with, it

can grow exponentially [2]. Similarly, technical debt is the

liability that one assumes when producing software products and

deciding to produce code that may not necessarily be the most

optimal solution in the hopes that it will ease schedule pressure

[3]. In both cases, this liability may be reduced by devoting man-

hours to either, in the case of IT debt, performing maintenance

tasks from a back log or, in the case of technical debt,

refactoring, i.e. changing code without changing the external

functionality. With the potential to become wildly expensive, it

is important to incorporate the potential of these debts into cost

models.

Our paper examines the position of IT and technical debt in

the current software development lifecycle and cost models, as

well as changes to the SDLC, and proposes factors to better

estimate the amount of effort necessary to resolve these issues.

The organization of this paper is as follows. Section 2

describes related work and the limitations of current methods. In

Section 3, we give a motivating example from which we draw

our information. Section 4 describes our proposed changes to

current models and methodologies. Section 5 contains the

conclusion and possible future work using our models and the

field of secure software engineering.

II. RELATED WORK

A. Constructive Cost Model

There are multiple models used to estimate the cost of

developing software: The Constructive Cost Model (CoCoMo)

[4] and its offshoots, such as SEER for Software [5] (SEER-

SEM) and the numerous in-house models used by software

development firms. CoCoMo II, the model proposed by Boehm

et al. [4], is designed to consider a shift in development

paradigms away from waterfall development and towards

iterative patterns, such as agile and extreme programming.

CoCoMo II has various factors that determine cost, including a

reliability factor, however it has no factor indicative of security

development costs. Prior versions of CoCoMo had a factor

related to security; however, it was an effort modifier that dealt

with the development of classified software. The shift to cover

software built on off the shelf platforms [4] has resulted in the

removal of such security factors. The driving motivation in the

shift is the belief that the platform will be secure; therefore, any

110Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

software built upon it will be secure. Our paper suggests factors

to estimate the cost of developing software using a secure

process. Madachy has developed a Web application to using

CoCoMo II to be used to estimate costs [6].

B. Effort Cost And Reduction

Using the platform as a service (PaaS) model is a common

method of saving on costs as it removes the need for end-users

to develop from scratch. Olmsted et al. estimate the total cost of

an platform to be approximately 13 million dollars by using a

metric consisting of a measure of source lines of code (SLOC)

and a trace of code execution [7]. We use methodologies from

this analysis to estimate cost factors related to the security of

these platforms and the hypothetical cost to have been

developed using an alternate lifecycle.

C. Secure Sofware Development Lifecycle

There are many proposed enhancements for the Software

Development Lifecycle from many different sources. Microsoft

advocates a secure development lifecycle to complement the

security of their operating system. Microsoft’s proposed

Development lifecycle add several stages to the development

lifecycle, including [8]:

• Security Education and Awareness – Ensuring that
developers are educated on the ideals surrounding
security.

• Determining Project Security Needs – Analyzing if
the project has a crucial need to follow the Secure
Development Lifecycle

• Designing Best Practices – Fitting common best
practices to your project and determining new best
practices as necessary.

• Product Risk Assessment – Estimating the
appropriate amount of effort to create an
appropriate level of security.

• Risk Analysis – Analyzing possible threat vectors.

• Security and Best Practice Documentation and
Tooling – Creating tools and best practices which
can be easily followed by an end user to help
ensure the security of their environment.

• Secure Coding Policies – Following prescribed
methodologies in order to prevent poor
implementations of design e.g. avoiding certain
functions, leveraging compiler features, and using
the latest version of tools.

• Secure Testing Policies – Applying secure testing
policies in order to verify the security of you
application. This does not make the product secure,
only verifies that it is.

• Security Push – Pushing to ensure that any legacy
code that is used is secure.

• Security Audit – Determining if the product is
appropriately secure to ship to consumers.

• Security Response and Execution – The creation,
and execution if necessary, of plans with which to
respond to security breaches.

Some of these steps are relegated to technical debt and often
not handled at the appropriate points in development and cut

due to cost, especially in agile development and commercial off
the shelf products. With these steps in mind, our paper our
paper provides a factor to add to CoCoMo to estimate the cost
of integrating these procedures into a development lifecycle.

III. MOTIVATING EXAMPLE

 WordPress [9], Drupal [10], and Joomla! [11] are three of
the most widely used COTS Web platforms. These platforms
allow end-users to create Websites with significantly less effort
than creating their own Website; however, Websites running
these platforms are among some of the most exploited on the
internet due to the low barrier of entry. Our paper examines one
of these platforms, Drupal, in order to determine factors that
should be added to CoCoMo II in order to adequately cover the
costs of secure development.

According to work by Meike, Sametinger and Wiesaur,
Joomla and Drupal both have serious design flaws that place the
platforms at definite risk. Currently identified flaws include the
allowance of file uploads with unchecked contents, the
existence of HTTP headers that contained data capable of being
manipulated and escalations of privilege. These flaws in the
code exist because of flaws in the design process [12].

IV. CONTRIBUTION

We determined the factors to add to CoCoMo II through an

analysis of an unsecure, obsolete version of Drupal. This

analysis is an examination of the number of lines of source code

involved in flaws in the platform. We determine that that is the

cost of the flaw, valued in source lines of code (SLoC). We then

run a similar analysis on the latest version of Drupal. We then

compare those costs with the cost of the newest version and

compare vulnerabilities to determine if the design flaws still

exist. Here all costs are equivalent to the number of lines of

source code, so our calculation can give us a comparable

measure.

In Table 1, we have an explanation of several pain points and

security vulnerabilities in two common Web content

management systems Drupal and Joomla! in versions 5.2 and

1.0.13, respectively. In this table ✓indicates and issue that is not

present in the software,  indicates an issue that is present in

the software and an ! indicates that the issue has been partially

resolved in the software. Using these unresolved and partial

resolved issues, we measured the number of lines of code per

function call, using a PHP module called xDebug.

Table 2 contains a list of flaws, the status of that flaw in

Drupal 5.2, the number of lines of source code necessary to

achieve the functionality present in Drupal 5.2, the status of the

flaw in Drupal 8.2.3, the number of lines necessary to achieve

the functionality in Drupal 8.2.3, and the technical debt balance.

In this table the technical debt balance is a value based on

whether or not the flaw had been resolved. Should the flaw have

been resolved, the SLoC from the obsolete version of Drupal is

subtracted from the SLoC of the later version of Drupal. Should

the flaw not have been resolved, the amount of technical debt is

represented by the SLoC of the current version of Drupal.

Examining the measurements, based on a measurement of

flaws present in Drupal version 5.2 and 8.2.3, in Table 2 we can

see that some of the more serious flaws that were present in 5.2

111Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

were resolved. These flaws allow authors or users who had

escalated their privileges to that of an administrator to post code

directly into Webpages. In our Drupal 5.2 test environment, we

executed code that showed the server information, but it would

be fully possible for a malicious user to deploy a Web shell

through these vulnerabilities. There is also a clear difference in

the overhead code between the two versions. For example,

during the installation the obsolete code required 638 lines of

code, while the modern version required 4616 to execute that

same function. It is clear, however, that even though some

issues are resolved there are several issues that remain and

would need to be resolved through the effort of the end user.
TABLE II ANALYSIS OF COST PER FLAW

Using the data gathered from our Drupal test environment,

we have developed two factors which increase the accuracy of

the CoCoMo cost Models to reflect the true costs of developing

secure software. The first factor, a multiplier of 3.47, is applied

to greenfield engineering projects to estimate the effort of

designing a project using a Secure Software Development

Lifecycle (SSDLC) rather than using the standard SDLC. This

value was calculated by comparing the SLoC of flaws which

had been resolved between versions of Drupal (8135 lines /

2343 lines).

The second factor, a multiplier of 1.607, should be used to

calculate the effort that will be needed to handle technical debt

when a software product has already been developed and the

development team did not use a SSDLC. This multiplier was

determined by comparing the technical debt balances of the

unresolved flaws with the technical debt balances of the

resolved flaws (9310 lines / 5792 lines).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an additional factor to
CoCoMo II. This was done by calculating and comparing the
cost of code in flawed portions of a Web platform and a less
secure, obsolete version of the same platform. We believe that
the use of these factors would accurately describe the amount
of additional effort necessary to integrate a SDLC as well as the
possible pitfalls that arise as technical debt.

Future works may include the analysis of several other off
the shelf Web content management systems, using the same
analytical method, to increase the size of the data set and
consequently the accuracy of the secure development factor or
the development of such a factor for other costing models.

REFERENCES

[1] I. Sommerville, Software Engineering, Harlow:

Addison-Wesley, 2001.

Security
Feature

Drupal
5.2 Status

Drupal
5.2

SLoC

Drupal
8.2.3

Status

Drupal
8.2.3

SLoC

Technical
Debt

Balance

Security

Hints
during

Installation

None 638 Hints

present

4616 3978

Installation
Security

Settings

None 638 None 4616 4616

Secure

Passwords

Not

Enforced

860 Not

Enforced

4694 4694

File

Content
Scan

Does not

scan file
contents.

798 Incorrect

file types
are

detected

1566 768

Administrat

ors

Can

Execute
PHP at

will

907 PHP not

Executed

1953 1046

TABLE I WCMS VULNERABILITIES [8]

112Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

[2] D. Britton, "Why IT Debt is Mounting," Micro Focus, 22

09 2014. [Online]. Available:

http://www.networkworld.com/article/2686761/it-

skills-training/why-it-debt-is-mounting.html. [Accessed

27 9 2016].

[3] P. Kruchten, R. L. Nord and O. Ipek, "Technical Debt:

From Metaphor to Theory and Practice.," IEEE

Software, vol. 29, no. 6, pp. 18-21, 2012.

[4] B. Boehm, B. Clark, E. Horowitz, C. Westland, R.

Madachy and R. Selby, "Cost Models for Future

Software Life Cycle Processes: COCOMO 2.0," Annals

of Software Engineering, vol. 1, no. 1, pp. 57-94, 1995.

[5] D. Galorath, Galorath, [Online]. Available:

http://galorath.com/products/software/SEER-Software-

Cost-Estimation. [Accessed 15 April 2017].

[6] R. Madachy, "CoCoMo II - Constructive Cost Model,"

[Online]. Available:

http://csse.usc.edu/tools/COCOMOII.php. [Accessed 27

9 2016].

[7] A. Olmsted and K. Fulford, "Platform As A Service

Effort Reduction," in Proceedings of The Eighth

International Conference on Cloud Computing, GRIDs,

and Virtualization (Cloud Computing 2017), Athens,

2017.

[8] M. Howard and S. Lipner, The security development

lifecycle, Redmond: Microsoft Press, 2006.

[9] Wordpress.org, [Online]. Available:

https://wordpress.org/. [Accessed 16 April 2017].

[10] Drupal, [Online]. Available: https://www.drupal.org/.

[Accessed 2017 16 April].

[11] "Joomla!," Open Source Matters, Inc., [Online].

Available: https://www.joomla.org/. [Accessed 2017 16

April].

[12] M. Meike, J. Sametinger and A. Wiesaur, "Security in

Open Source Web Content Management Systems,"

IEEE Security and Privacy, vol. 7, no. 4, pp. 44-51,

2009.

[13] A. Olmsted and K. Fulford, "Platform As A Service

Effort Reduction".

113Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

