
A Model-Driven Approach for Evaluating Traceability Information

Hendrik Bünder

itemis AG,
Bonn, Germany

Email: buender@itemis.de

Christoph Rieger, Herbert Kuchen

ERCIS, University of Münster,
Münster, Germany

Email: {c.rieger,kuchen}@uni-muenster.de

Abstract—A traceability information model (TIM), in terms of
requirement traceability, describes the relation of all artifacts
that specify, implement, test, or document a software system.
Creating and maintaining these models takes a lot of effort, but
the inherent information on project progress and quality is seldom
utilized. This paper introduces a domain-specific language (DSL)
based approach to leverage this information by specifying and
evaluating company- or project-specific analyses. The capabilities
of the Traceability Analysis Language (TAL) are shown by
defining coverage, impact and consistency analysis for a model
according to the Automotive Software Process Improvement and
Capability Determination (A-SPICE) standard. Every analysis
is defined as a rule expression that compares a customizable
metric’s value (aggregated from the TIM) against an individual
threshold. The focus of the Traceability Analysis Language is
to make the definition and execution of information aggregation
and evaluation from a TIM configurable and thereby allow users
to define their own analyses based on their regulatory, project-
specific, or individual needs. The paper elaborates analysis
use cases within the automotive industry and reports on first
experiences from using it.

Keywords–Traceability; Domain-Specific Language; Software
Metrics; Model-driven Software Development; Xtext.

I. INTRODUCTION

Traceability is the ability to describe and follow an artifact
and all its linked artifacts through its whole life in forward
and backward direction [1]. Although many companies create
traceability information models for their software development
activities either because they are obligated by regulations [2]
or because it is prescribed by process maturity models, there
is a lack of support for the analysis of such models [3].

On the one hand, recent research describes how to define
and query traceability information models [4][5]. This is an
essential prerequisite for retrieving specific trace information
from a Traceability Information Model (TIM). However, far
too little attention has been paid to taking advantage of
further processing the gathered trace information. In particular,
information retrieved from a TIM can be aggregated in order
to support software development and project management
activities with a real-time overview of the state of development.

On the other hand, research has been done on defining
relevant metrics for TIMs [6], but the data collection process
is non-configurable. As a result, potential analyses are limited
to predefined questions and cannot provide comprehensive
answers to ad hoc or recurring information needs. For example,
projects using an iterative software development approach might
be interested in the achievement of objectives within each
development phase, whereas other projects might focus on a

comprehensive documentation along the process of creating
and modifying software artifacts.

The approach presented in this paper fills the gap between
both areas by introducing the Traceability Analysis Language.
By defining coverage, impact and consistency analyses for a
model based on the Automotive Software Process Improvement
and Capability Determination (A-SPICE) standard use cases
for the Traceability Analysis Language (TAL) features are
exemplified. Analyses are specified as rule expressions that com-
pare individual metrics to specified thresholds. The underlying
metrics values are computed by evaluating metrics expressions
that offer functionalities to aggregate results of a query
statement. The TAL comes with an interpreter implementation
for each part of the language, so that rule, metric, and query
expressions cannot only be defined, but can also be executed
against a traceability information model. More specifically,
the analysis language is based on a traceability meta model
defining the abstract artifact types that are relevant within the
development process. All TAL expressions therefore target the
structural characteristics of the TIM.

The contributions of this paper are threefold: first, we
provide a domain-specific Traceability Analysis Language to
define rules, metrics, and queries in a fully configurable and
integrated way. Second, we demonstrate the feasibility of our
work with a prototypical interpreter implementation for real-
time evaluation of those trace analyses. In addition, we illustrate
the TAL’s capabilities in the context of the A-SPICE standard
and report on first experiences from real-world projects in the
automotive sector.

Having discussed related work in Section II, Section III
presents the capabilities of the TAL by exemplifying impact,
coverage, and consistency analyses, as well as the respective
rule, metrics, and query features for retrieving information from
the TIM in an automotive context. In Section IV, the language,
our prototypical implementation, and first usage experiences
are discussed before the paper concludes in Section V.

II. RELATED WORK

Requirements traceability is essential for the verification of
the progress and completeness of a software implementation
[7]. While, e.g., in the aviation or medical industry traceability
is prescribed by law [2], there are also process maturity models
requesting a certain level of traceability [8].

Traceable artifacts such as Software Requirement, Software
Unit, or Test Specification, and the links between those such as
details, implements, and tests constitute the TIM [9]. Retrieving
traceability information and establishing a TIM is beyond the

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

scope of this paper and approaches for standardization such as
[10] have already been researched.

In contrast to the high effort that is made to create and
maintain a TIM, only a fraction of practitioners takes advantage
of the inherent information [2]. However, Rempel and Mäder
(2015) have shown that the number of related requirements
or the average distance between related requirements have a
positive correlation with the number of defects associated with
this requirement. Traceability models not only ease maintenance
tasks and the evolution of software systems [11] but can also
support analyses in diverse fields of software engineering such
as development practices, product quality, or productivity [12].
In addition, other model-driven domains, such as variability
management in software product lines, benefit from traceability
information [13].

Due to the lack of sophisticated tool support, these opportu-
nities are often missed [3]. On the one hand, query languages for
TIMs have been researched extensively, including Traceability
Query Language (TQL) [4], Visual Trace Modeling Language
(VTML) [5], and Traceability Representation Language (TRL)
[14]. On the other hand, traceability tools mostly offer a
predefined set of evaluations, often with simple tree or matrix
views, e.g., [15]. Hence, especially company- or project-specific
information regarding software quality and project progress
cannot be retrieved and remains unused.

Our approach integrates both fields of research using a
textual DSL [16] that is focused on describing customized rule,
metric and query expressions. In contrast to the Traceability
Metamodelling Language [17] defining a domain-specific
configuration of traceable artifacts, our work builds on a model
regarding the specification of type-safe expressions and for
deriving the scope of available elements from concrete TIM
instances.

III. AN INTEGRATED TRACEABILITY ANALYSIS
LANGUAGE

A. Scenarios for Traceability Analyses

The capabilities of the TAL will be demonstrated by
defining analyses from the categories of coverage, impact and
consistency analysis as introduced by the A-SPICE standard
[18]. In addition to these rather static analyses, there are also
traceability analyses focusing on data mining techniques as
introduced by [12]. Even though some of these could be defined
using the introduced domain-specific language, they remain
out of scope of this paper.

The first scenario focuses on measuring the impact of the
alteration of one or more artifacts on the whole system [19].
Recent research has shown that artifacts with a high number
of trace links are more likely to cause bugs when they are
changed [6]. Moreover, the impact analysis can be a good basis
for the estimation of the costs of changing a certain part of the
software. This estimation then not only includes the costs of
implementing the change itself, but also the effort needed to
adjust and test the dependent components [20].

The second scenario appears to be the most common, since
many TIM analyses are concerned with verifying that a certain
path and subsequently a particular coverage is given, e.g., “are
all requirements covered by a test case” or “have all test cases
a link to a positive test result” [3]. In addition to verifying that

Figure 1. Traceability Information Configuration Model.

certain paths are available within a TIM, coverage metrics are
mostly concerned with the identification of missing paths [9].

The third use case describes the consistency between
traceable artifacts. Besides ensuring that all requirements
are implemented, consistency analyses should also ensure
that there are no unrequested changes to the implementation
[21]. Consistency is generally required between all artifacts
within a TIM in accordance to the Traceability Information
Configuration Model (TICM), so that all required trace links
for the traced artifacts are available [18].

Figure 1 shows a simplified TICM based on the A-
SPICE standard [18] that defines the traceable artifact types
Change Request, Software Requirement, Software Architecture,
Software Unit, Software Integration Test Specification, and
Software Integration Test Result. Also, the link types changes,
details, implements, tests, and documents are specified by the
configuration model. The arrowheads in Figure 1 represent
the primary trace link direction, however, trace links can be
traversed in both directions [22]. The traceable artifact Software
Integration Test Result also defines a customizable attribute
called “status” that holds the actual result.

Considering the triad of economic, technical, and social
problem space, the flexibility to adapt to existing work practices
increases the productivity of a traceability solution [23].
Therefore, configuration models provide the abstract description
of traced artifact types in a company context. A TIM captures
the concrete artifact representations and their relationships
according to such a TICM and constitutes the basis for the
analyses (cf. Section III-B).

Figure 2 shows a traceability information model based on
the sample TICM described above. The TIM contains multiple
instances of the classes defined in the TICM that can be
understood as proxies of the original artifacts. Those artifacts
may be of different format, e.g., Word, Excel or Class files.
Within the traceability software, adapters can be configured to
parse an artifact’s content and create a traceable proxy object in
accordance to the TICM. In addition, the underlying traceability
software product offers the possibility to enhance the proxy
objects with customizable attributes. The Software Integration
Test Result from Figure 1, for example, holds the actual result
of the test case in the customizable attribute “status”.

1) Impact Analysis: The impact analysis shown in Figure 3
checks the number of related requirements (NRR) [6] starting
from every Change Request by using the aggregated results of
a metric expression which is based on a query. The analysis
begins after the rule keyword that is followed by an arbitrary
name. The right hand side of the equation specifies the severity

60Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Figure 2. Sample Traceability Information Model.

of breaking the rule stated in the parentheses. In this case, a
rule breach will lead to a warning message with the text in
quotation marks. The most important part of the analysis is
the comparison part that specifies the threshold which in this
case, is a number of related requirements greater than 2. If the
metrics’ value is greater, the warning message will be returned
as a result of the analysis.

Figure 3. Metric: Number of related requirements (NRR).

The second component of the TAL expression is the metric
expression that in this case, counts the related requirements.
Each metric is introduced by the keyword metric, again followed
by an arbitrary name which is used to reference a metric either
from another metric or from a rule as shown in Figure 3. The
expression uses the count function to compute the number
of related requirements. The count function takes a column
reference to count all rows that have the same value in the given
column. In the metric expression shown above, all traces from
one Software Requirement to a Software Requirement have the
name of the source Software Requirement in their first column,
so that the count function will count all traces per Software
Requirement. As shown in Table I, the result of the metric
evaluation is a tabular data structure with always two columns.
The first holds the source artifact and the second column holds
the evaluated metric value. For the given example, the first
column holds the name of each Software Requirement and the
second column contains the evaluated number of directly and
indirectly referenced Software Requirements.

Finally, the metric is based on a query expression that is
used to retrieve information from the underlying TIM. The
tracesFrom... to... function returns all paths between source
and target artifact passed into the function as parameters.
In comparison to expressing this statement in other query
languages such as Structured Query Language (SQL), no
knowledge about the potential paths between the source and

TABLE I. NRR METRIC: TABULAR RESULT STRUCTURE.

Software Requirement NRR
SR1 1
SR2 2
SR3 2
SR4 2
SR5 1

target artifacts in the TIM is needed.
Figure 3 shows that the columns of the tabular result

structure are defined in the brackets after the keyword collect.
In the first column the name of the Software Requirement of
each path is given and in the second column the name of each
target Software Requirement is given. Both columns can contain
the same artifacts multiple times, but the combination of each
target with each source artifact is only contained once.

2) Coverage Analysis: Figure 4 shows a coverage analysis
that is concerned with the number of related test case results
per software requirement. In contrast to the analysis shown in
Figure 3, it introduces two new concepts. First, the analysis is

Figure 4. Software Requirement Test Result Coverage Analysis.

not dependent on a metric expression, but directly bound to
a query result. Since metric and query expression results are
returned in the same tabular structure, rules can be applied to
both. Second, the analysis shown in Figure 4 demonstrates the
concept of a staggered analysis, i.e., one column or metric is
referenced once from a warning and error rule, respectively.
The rule interpreter will recognize this construct and will return
the analysis result with the highest severity, e.g., when the error
rule applies, the warning rule message is omitted. The rules
shown above ensure that the test of each Software Requirement

61Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

is documented by at least one test result. However, to fulfill
the rule completely, each Software Requirement should be
covered by two Software Integration Tests and subsequently
two Software Integration Test Results.

TABLE II. COVERAGE ANALYSIS: TABULAR RESULT STRUCTURE.

Software Requirement Analysis Result
SR1 No test results found!
SR2 Ok
SR3 Ok
SR4 No test results found!
SR5 No test results found!
SR6 Low number of test results!

Table II shows the result of the staggered analysis. The test
coverage analysis returns an “Ok” message for two of the six
Software Requirements, while one is marked with a warning
message and the remaining three caused an error message.

The query expressions result is limited to Software Inte-
gration Test Results with status “passed” by evaluating the
customizable attribute “status” using a where clause. Since the
query language offers some functions to do basic aggregation,
it is possible to bypass metric expressions in this case. In
Figure 4 the aggregation is done by the groupBy and the count
function. The second column specifies an aggregation function
that counts all entries in a given column per row based on the
column name passed as parameter. In general, the result of this
function will be 1 per row since there is only one value per row
and column but in combination with the “groupBy” function the
number of aggregated values per cell is computed. The resulting
tabular structure contains one row per Software Requirement
with the respective name and the cumulated number of traces
to different Software Integration Test Results as columns.

3) Consistency Analysis: The following will show two
consistency analysis samples to verify that all Software Require-
ments are linked to at least one Software Unit and vice versa.
Figure 5 shows a consistency analysis composed of a rule and

Figure 5. Consistency Analysis.

a query expression. The rule notCoveredError returns an error
message if the number of traces between Software Requirements
and Software Units is smaller than one which means that the
particular Software Requirements is not implemented.

TABLE III. CONSISTENCY ANALYSIS: SOFTWARE REQUIREMENT
IMPLEMENTATION.

Name Analysis Result
SR1 Ok
SR2 Ok
SR3 Ok
SR4 The Software Requirement is not implemented!
SR5 The Software Requirement is not implemented!
SR6 Ok

Table III shows the result of the analysis as defined in
Figure 5. For “SR4” and “SR5” there is no trace to a Software
Unit so that the analysis marks these two with an error message.

To verify that all implemented Software Units are requested
by a Software Requirement, the query can easily be altered by
switching the parameters of the “tracesFrom... to...” function
and by changing the error message. Table IV shows the result
of the altered analysis revealing that “SU3” despite all others
has not been requested.

TABLE IV. CONSISTENCY ANALYSIS: SOFTWARE UNIT REQUESTED.

Name Analysis Result
SU1 Ok
SU2 Ok
SU3 The Software Requirement has not been requested!
SU4 Ok
SU5 Ok
SU6 Ok

These examples show that the language offers extensive
support for retrieving and aggregating information in TIMs. The
following sections will demonstrate how the TAL integrates
with the traceability solution it is build upon, and how the
different parts of the language are defined.

B. Composition of the Traceability Analysis Language
1) Modeling Layers: Figure 6 shows the integration between

the different model layers referred to in this paper, starting from
the Eclipse Ecore Model as shared meta meta model [24]. The
Xtext framework which is used to define the analysis language
generates an instance of this model [25] to represent the
Analysis Language Meta Model (ALMM). Individual queries,
metrics, and rules are specified within a concrete instance, the
Analysis Language Model (ALM), using the created domain-
specific language. An interpreter was implemented using Xtend,
a Java extension developed as part of the Xtext framework and
specially designed to navigate and interact with the analysis
language’s Eclipse Ecore models [26].

Figure 6. Conceptual Integration of Model Layers.

Likewise, the Traceability Information Model used in this
paper contains the actual traceability information, for example
the concrete software requirement SR1. It is again an instance
of a formal abstract description, the so called TICM. The TICM
describes traceable artifact types, e.g., Software Requirement
or Software Architecture, and the available link types, e.g.,
details. This model itself is based on a proprietary Traceability
Information Meta Model (TIMM) defining the basic traceability
constructs such as an artifact type and link type. To structure
the DSL, the TAL itself is hierarchically subdivided into three
components, namely rule, metric, and query expressions.

62Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

2) Rule Grammar: Since a query result or a metric value
alone delivers few insights into the quality or the progress of
a project, rule expressions are the main part of the TAL. Only
by comparing the metric value to a pre-defined threshold or
another metrics’ value information is exposed. The grammar
contains rules for standard comparison operations which are
equal, not equal, greater than, smaller than, greater or equals,
and smaller or equals. A rule expression can either return
a warning or an error result after executing the comparison
including an individual message. Since query and metrics result
descriptions implement the same tabular result interface, rules
can be applied to both. Accordingly, the result of an evaluated
rule expression is also stored using the same tabular interface.

Figure 7. Rule Grammar.

The RuleBody rule shown in Figure 7 is the central part of
the rule grammar. On the left side of the Operator a metric
expression or a column from a query expression result can be
referenced. The next part of the rule is the comparison Operator
followed by a RuleAtomic value to compare the expression
to. The RuleAtomic value is either a constant number or a
reference to another metrics expression.

3) Metrics Grammar: Complimentary to recent research that
focuses on specific traceability metrics and their meaningfulness
[6], the approach described in this paper allows for the definition
of individual metrics. An extended Backus-Naur form (EBNF)-
like Xtext grammar defines the available features including
arithmetic operations, operator precedence using parentheses,
and the integration of query expressions. The metrics grammar
of the TAL itself has two main components. One is the
ResultDeclaration that encapsulates the result of a previously
specified query. The other is an arbitrary number of metrics
definitions that may aggregate query results or other metrics
recursively.

Figure 8. Grammar rules for metrics expressions.

Figure 8 shows a part of the metric grammar defining the
support for the basic four arithmetic operations as well as
the correct use of parentheses. Since the corresponding parser
generated by Another Tool for Language Recognition (ANTLR)
works top-down, the grammar must not be left recursive [27].
First, the rule Factor allows for the usage of constant double
values. Second, metric expressions can contain pre-defined
functions such as sum, length, or count to be applied to the
results of a query. Due to a lack of space, their grammar
rules are not elaborated further. Third, columns from the result
of a query can be referenced so that metric expressions per
query expression result row can be computed. Finally, metric
expressions can refer to other metric expressions to further
aggregate already accumulated values. Thereby, interpreting
metric expressions can be modularized to reuse intermediate
metrics and to ensure maintainability.

The metrics grammar as part of the TAL defines arithmetic
operations that aggregate the results of an interpreted query ex-
pression. The combination of a configurable query expressions
with configurable metric definitions allows users to define their
individual metrics.

4) Query Grammar: The analyses defined using metric and
rule expressions depend on the result of a query that retrieves
the raw data from the underlying TIM. Although there are many
existing query languages available, a proprietary implementation
is currently used because of three reasons.

First, the query language should reuse the types from
TICM to enable live validation of analyses even before they
are executed. The Xtext-based implementation offers easy
mechanisms to satisfy this requirement, while others such
as SQL are evaluated only at runtime. Second, some of the
existing query languages such as SQL or Language Integrated
Query (LINQ) are too verbose (cf. Figure 9) or do not offer
predefined functions to query graphs. Finally, other languages
such as SEMMLE QL [28] or RASCAL [29] are focused on
source code analyses and do not interact well with Eclipse
Modeling Framework (EMF) models.

The formal description of the syntax of a query is quite
lengthy and out of scope of this paper, where we focus on the
metrics and rules language. From the example in Section III,
the reader gets an idea, how a query looks like. The query
expressions offer a powerful and well-integrated mechanism
to retrieve information from a given TIM. Especially, the
integration with the traceability information configuration model
enables the reuse of already known terms such as the trace
artifact type names. Furthermore, complex graph traversals
are completely hidden from the user who only specifies the
traceable source and target artifact based on the TICM. For
example, the concise query of Figure 4 already requires a
complex statement when expressed in SQL syntax (cf. Figure 9).

Figure 9. SQL equivalent to query of Figure 4.

IV. DISCUSSION

A. Eclipse Integration and Performance
To demonstrate the feasibility of the designed TAL and

perform flexible evaluations of traceability information models,
a prototype was developed. The analysis language is based
on the aforementioned Xtext framework and integrated in
the integrated development environment Eclipse using its
plug-in mechanism [30]. The introduced interpreter evaluates
rule, metric, and query expressions whenever the respective
expression is modified and saved in the editor.

Currently, both components are tentatively integrated in
a software solution that envisages a commercial application.
Therefore, the analysis language is configured to utilize a
proprietary TIMM from which traceability information config-
uration models and concrete TIMs are defined. At runtime, the

63Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

expression editor triggers the interpreter to request the current
TIM from the underlying software solution and subsequently
perform the given analysis. Within our implementation, trace-
able artifacts from custom traceability information configuration
models as shown in Figure 1 can be used for query, metrics,
and rule definitions. Due to an efficient implementation used
by the tracesFrom... to... function, analysis are re-executed
immediately when an analysis is saved or can be triggered
from a menu entry. The efficiency of the depth-first algorithm
implementation was verified by interpreting expressions using
TIMs ranging from 1,000 to 50,000 artificially created traceable
artifacts. The underlying TICM was build according to the
traceable artifact definitions of the A-SPICE standard [18].

TABLE V. DURATION OF TAL EVALUATION.

Artifacts Start Artifacts Duration (in s)
1,000 300 0.012
8,000 1,500 0.1

50,000 8,500 2.2

Table V shows the duration for interpreting the analysis
expression from Figure 4 against TIMs of different sizes. The
first column shows the overall number of traceable artifacts
and links in the TIM. The second column gives the number
of start artifacts for the depth-first algorithm implementation,
i.e., the number of Software Requirements for the exemplary
analysis expression. The third column contains the execution
time on an Intel Core i7-4700MQ processor at 2.4 GHz and
16 GB RAM. As shown, executing expressions can be done
efficiently even for large size models, sufficient for real-world
applications to regular reporting and ad hoc analysis purposes.

B. Applying the Analysis Language
Defining and evaluating analysis statements with the proto-

typical implementation has shown that the approach is feasible
to collect metrics for different kinds of traceability projects.
The most basic metric expression reads like the proportion
of artifacts of type A that have no trace to artifacts of type
B. Some generic scenarios focused on impact, coverage, and
consistency analyses have been exemplified in Section III-A.
However, there are more specific metrics that are applicable
and reasonable for a particular industry sector, a specific project
organization, or a certain development process.

Industry-specific metrics, e.g., in the banking sector, could
focus on the impact of a certain change request regarding coor-
dination and test effort estimation. Project-specific management
rules may for instance highlight components causing a high
number of reported defects to indicate where to perform quality
measures, e.g., code reviews. Moreover, the current progress of
a software development project can be exposed by defining a
staggered analysis relating design phase artifacts (e.g., Software
Requirements that are not linked to a Software Architecture) and
implementation artifacts (e.g., Software Architectures without
trace to a Software Unit) in relation to the overall number
of Software Requirements. Analysis expressions could also be
specific to the software development process. In agile projects
for example the velocity of an iteration could be combined
with the number of bugs related to the delivered functionality.
Thereby, it could be determined whether the number of bugs
correlates with the scope of delivered functionality. These use
cases emphasize the flexibility of the analysis language — in

combination with an adaptable configuration model — for
applying traceability analyses to a variety of domains, not
necessarily bound to programming or software development in
general. For example, a TIM for an academic paper may define
traceable artifacts such as authors, chapters, and references.
An analysis on such a paper could find all papers that cite a
certain author or the average number of citations per chapter.
It is therefore possible to execute analyses on other domains
with graph-based structures that can benefit from traceability
information.

Besides theoretical usage scenarios for the TAL, first expe-
riences in real-world projects were gained with an automotive
company. The Traceability Analysis Language was used in five
projects with TIMs ranging from 30,000 to 80,000 traceable
artifacts defined in accordance to the Automotive SPICE
standard. For all five projects, a predefined analysis was created
to compute the test coverage of each system requirement. A
system requirement is considered fully tested when all linked
system and software requirements have a test case with a
positive test result linked (cf. Section III-A2). The execution
time of the analysis in the real world projects confirmed the
results from the artificial sample explained in Table V. The
predefined analysis has replaced a complex SQL statement that
included seven joins to follow the links trough the traceability
information model. Because the tracesFrom... to... function
encapsulates the graph traversal, the TAL analysis is also more
resilient to changes of the traceability configuration model.

C. Limitations
The approach presented in this paper is bound to limitations

regarding both technical and organizational aspects. Regarding
the impact of the developed DSL on software quality manage-
ment practices, first investigations have taken place, however,
more are needed to draw sustainable conclusions.

Using the TAL in industry projects has shown the need
for additional analysis capabilities. One main requirement is
to evaluate how much of an expected trace path is available
in a certain TIM. If there is no complete path from a System
Requirement to a Software Integration Test Result, it would
be beneficial to show partial matches, for instance if there is
no Software Integration Test Result or if there is no Software
Integration Test Specification at all. Extending the result of an
analysis in accordance to this requirement would enhance the
information about the progress of a project.

From a language user perspective, the big advantage of
being free to configure any query, metric or rule expression
is also a challenge. A language user has to be aware of the
traceable artifacts and links in the TIM and how this trace
information could be connected to extract reasonable measures.
Moreover, the context-dependent choice of suitable metrics
in terms of type, number, and thresholds is subject to further
research. These limitations do not impede the value of our work,
though. In fact, in combination with the discussed application
scenarios they provide the foundation for our future work.

V. CONCLUSION

This work describes a textual domain-specific language to
analyze existing traceability information models. The TAL
is divided into query, metric, and rule parts that are all
implemented with the state-of-the-art framework Xtext. The
introduced approach goes beyond existing tool support for

64Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

querying traceability information models. By closing the gap
between information retrieval, metric definition, and result
evaluation, the analysis capabilities are solid ground for project-
or company-specific metrics. Since the proposed analysis
language reuses the artifact type names from the traceability
information configuration model, the expressions are defined
using well known terms. In addition to reusing such terms,
the editor proposes possible language statements at the current
cursor position while writing analysis expressions. Utilizing
this feature could lower the initial effort for defining analysis
expressions and could result in faster evolving traceability
information models.

On the one hand, the introduced approach is based on an
Eclipse Ecore model and is thereby completely independent
of the specific type of traced artifacts. On the other hand,
it is well integrated into an existing TICM and IDE using
Xtext and the Eclipse platform. All parts of the TAL are fully
configurable regarding analysis expression, limit thresholds,
and query statements in an integrated approach to close the
gap between querying and analyzing traceability information
models. Subsequently, measures for traceability information
models can be specific to a certain industry sector, a company, a
project or even a role within a project. The scenarios described
in section III-A propose areas in which configurable analyses
provide benefits for project managers, quality managers, and
developers. Using the implemented interpreter for real-time
execution of expressions, first project experiences within
the automotive industry have shown that the TAL analyses
are evaluated efficiently and are more resilient than other
approaches, e.g., SQL-based analyses.

Future work could focus on further assessing the applicabil-
ity in real world projects and defining a structured process to
identify reasonable metrics for a specific setting. Such a process
might not only support sophisticated traceability analyses but
could also propose industry-proven metrics and thresholds.
Some advanced features such as metrics comparisons over
time using TIM snapshots to further enhance the analysis are
yet to be implemented. In addition to evaluating the metrics
against static values, future work might also focus on utilizing
statistical methods from the data mining field. Classification
algorithms or association rules for example could be used to
find patterns in traceability information models and thus gain
additional insights from large-scale TIMs.

REFERENCES
[1] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements

traceability problem,” in Proceedings of IEEE International Conference
on Requirements Engineering, 1994, pp. 94–101.

[2] J. Cleland-Huang, O. Gotel, J. Huffman Hayes, P. Mäder, and A. Zisman,
“Software traceability: Trends and future directions,” in Proceedings of
the on Future of Software Engineering. ACM, 2014, pp. 55–69.

[3] E. Bouillon, P. Mäder, and I. Philippow, “A survey on usage scenarios
for requirements traceability in practice,” in Requirements Engineering:
Foundation for Software Quality. Springer, 2013, pp. 158–173.

[4] J. I. Maletic and M. L. Collard, “Tql: A query language to support
traceability,” in ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, 2009, pp. 16–20.

[5] P. Mäder and J. Cleland-Huang, “A visual language for modeling and
executing traceability queries,” Software and Systems Modeling, vol. 12,
no. 3, 2013, pp. 537–553.

[6] P. Rempel and P. Mäder, “Estimating the implementation risk of
requirements in agile software development projects with traceability
metrics,” in Requirements Engineering: Foundation for Software Quality.
Springer, 2015, pp. 81–97.

[7] M. Völter, DSL engineering: Designing, implementing and using domain-
specific languages. CreateSpace Independent Publishing Platform, 2013.

[8] J. Cleland-Huang, M. Heimdahl, J. Huffman Hayes, R. Lutz, and
P. Maeder, “Trace queries for safety requirements in high assurance
systems,” LNCS, vol. 7195, 2012, pp. 179–193.

[9] P. Mader, O. Gotel, and I. Philippow, “Getting back to basics: Promoting
the use of a traceability information model in practice,” 7th Intl.
Workshop on Traceability in Emerging Forms of Software Engineering,
2013, pp. 21–25.

[10] A. Graf, N. Sasidharan, and Ö. Gürsoy, “Requirements, traceability
and dsls in eclipse with the requirements interchange format (reqif),”
in Second International Conference on Complex Systems Design &
Management. Springer, 2012, pp. 187–199.

[11] P. Mäder and A. Egyed, “Do developers benefit from requirements trace-
ability when evolving and maintaining a software system?” Empirical
Softw. Eng., vol. 20, no. 2, 2015, pp. 413–441.

[12] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering,” in 36th International Conference on
Software Engineering. ACM, 2014, pp. 12–23.

[13] N. Anquetil et al., “A model-driven traceability framework for software
product lines,” Software & Systems Modeling, vol. 9, no. 4, 2010, pp.
427–451.

[14] A. Marques, F. Ramalho, and W. L. Andrade, “Trl: A traceability
representation language,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 2015, pp. 1358–1363.

[15] H. Schwarz, Universal traceability. Logos Verlag Berlin, 2012.
[16] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop

domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, 2005,
pp. 316–344.

[17] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes, “Engineer-
ing a dsl for software traceability,” in Software Language Engineering.
Springer, 2009, vol. 5452, pp. 151–167.

[18] Automotive Special Interest Group, “Automotive spice process
reference model,” 2015, URL: http://automotivespice.com/fileadmin/
software-download/Automotive SPICE PAM 30.pdf [retrieved:
1.3.2017].

[19] R. S. Arnold and S. A. Bohner, “Impact analysis-towards a framework
for comparison,” in ICSM, vol. 93, 1993, pp. 292–301.

[20] C. Ingram and S. Riddle, “Cost-benefits of traceability,” in Software
and Systems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman,
Eds. Springer London, 2012, pp. 23–42.

[21] N. Kececi, J. Garbajosa, and P. Bourque, “Modeling functional re-
quirements to support traceability analysis,” in 2006 IEEE International
Symposium on Industrial Electronics, vol. 4, 2006, pp. 3305–3310.

[22] J. Cleland-Huang, O. Gotel, and A. Zisman, Eds., Software and Systems
Traceability. Springer London, 2012.

[23] H. U. Asuncion, F. François, and R. N. Taylor, “An end-to-end industrial
software traceability tool,” in 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering. ACM, 2007, pp. 115–124.

[24] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit, 1st ed. Addison-Wesley Professional, 2009.

[25] The Eclipse Foundation, “Xtext documentation,” 2017, URL: https:
//eclipse.org/Xtext/documentation/ [retrieved: 1.3.2017].

[26] ——, “Xtend modernized java,” 2017, URL: http://eclipse.org/xtend/
[retrieved: 1.3.2017].

[27] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend. Packt Pub, 2013.

[28] M. Verbaere, E. Hajiyev, and O. d. Moor, “Improve software quality
with SemmleCode: An eclipse plugin for semantic code search,” in 22nd
ACM SIGPLAN Conference on Object-oriented Programming Systems
and Applications Companion. ACM, 2007, pp. 880–881.

[29] P. Klint, T. van der Storm, and J. Vinju, “Rascal: A domain specific
language for source code analysis and manipulation,” in 9th IEEE
International Working Conference on Source Code Analysis and
Manipulation. IEEE Computer Society, 2009, pp. 168–177.

[30] The Eclipse Foundation, “PDE/user guide,” 2017, URL: http://wiki.
eclipse.org/PDE/User Guide [retrieved: 1.3.2017].

65Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

