
Quality Evaluation of Test Oracles Using Mutation

Ana Claudia Maciel, Rafael Oliveira and Márcio Delamaro
ICMC/USP

University of São Paulo
São Carlos, BRA

anamaciel@usp.br, rpaes@icmc.usp.br, delamaro@icmc.usp.br

Abstract—In software development, product quality is directly
related to the quality of the development process. Therefore,
Verification, Validation & Test (VV&T) activities performed
through methods, techniques, and tools are needed for increasing
productivity, quality, and cost reduction in software
development. An essential point for the software testing activity is
its automation, making it more reliable and less expensive. For
the automation of testing activities, automated test oracles are
crucial, representing a mechanism (program, process, or data)
that indicates whether the output obtained for a test case is
correct. In this paper, we use the concept of program mutation to
create alternative implementations of oracles and evaluate their
quality. The main contributions of this paper are: (1) propose
specific mutation operators for oracles; (2) present a useful
support tool for such mutation operators; and (3) establish an
alternative to evaluate assertion-based test oracles. Through an
empirical evaluation, our main finding is that mutations may help
in assessing and improving the quality of test oracles, generating
new oracles and/or test cases and decreasing the rate of test
oracles errors.

Keywords–Test Oracles; Mutation Testing; Mutation Operators;

I. INTRODUCTION

Automated test oracles are essential components in
software testing activities. Defining a test oracle involves
synthesizing an automated structure that is able to offer the
tester an indicative verdict of system accuracy [1]. Thus,
oracle is the mechanism that defines and gives a verdict about
the correctness of a test execution [2]. Despite the importance
of the oracle mechanisms, there is no systematic way to
evaluate their quality [3].

In some cases, the results of running a test suite may have
unwanted results, not due to problems in test data or program
under test, but because of errors in the oracle implementation.
Accordingly, test oracles correctness is as important as the
selection of test inputs and, therefore, should be systematically
implemented according to well-defined requirements [2].

This study aims to provide an alternative to improve the
quality of test oracles, proposing an automated strategy for
assessing quality of oracles, inserted in the cost amortization
of realization of software testing. We extended the idea of
mutation testing, applying it to evaluate the quality of test
oracles implemented using the JUnit framework [4], a test
framework which uses annotations to identify methods that
specify a test. The main idea is to use test oracles to verify
whether the oracles with mutations may contribute to reveal
defects in programs.

We designed and created mutation operators to assertion-
based test oracles written in JUnit format, based on the method
assert signatures and its parameters. Operators have been
developed to generate assertions that the tester did not create,

or to correct oracles that have been written in the wrong way.
Following the concepts of mutation test, oracles can be
evaluated automatically. Thus, this work provides specific
mutation operators to test oracles in order to systematize the
evaluation of oracles.

The main contributions of this paper are related to the
context of automation of processes associated with software
engineering. In view of this, four contributions are provided
through the following work:

- The definition and evaluation of mutation operators
specific to assertion-based test oracles;

- MuJava 4 JUnit: a tool to generate the mutantoracles;

- Using the approach and tools with real programs of
different functions, showing main operating characteristics
and limitations of the proposed strategy; and

- Discussion on automated quality assessment of auto-
mated oracles and its importance for the improvement of
automated tests.

The remainder of this paper is organized as follows: In
Section II, we present the background with the main concepts
related to this research. In Section III, we describe our mutation
operators for JUnit assertion-based test oracles and our tool:
MuJava 4 JUnit. In Section IV, we explain our empirical
evaluation by describing the experiment design, research
questions, research design and our experiment procedure. In
Section V and Section VI we discuss the results of the
experiment and threats to validity, respectively. Finally, we
present the final remarks of our study in Section VII.

II. BACKGROUND

This section presents and discusses the concepts related to
test oracles and mutation testing.

A. Test Oracles

Test oracles can be defined as a tester (“human oracle”) or
an external mechanism that can decide whether the output
produced by a program is correct [5]. Typically, a test oracle is
composed of two parts: (1) the expected behavior that is used
to check the actual behavior of the System Under Test (SUT);
and (2) a procedure to check if the actual result matches the
expected output [2]. In this context, one can define that test
oracle is a software testing technology, which can be associated
with different processes and test techniques [6].

The “oracle problem” happens in cases when, depending on
the SUT, it is extremely difficult to predict expected behaviors
to be compared against current behaviors [5]. Depending on
the oracle, problems like false positives and false negatives
may occur:

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

• False positive: a test execution is identified as failing
when in reality it passed, or the functionality works
properly; and

• False negative: a test execution is identified as passing
when in reality it failed, or there is some problem in
functionality.

In this work, we use oracles in JUnit classes format. In
JUnit framework, test oracles are written in the form of
assertions [7] and tests are units, contributing to expose flaws
in the current version of the program or regression faults
introduced during maintenance.
B. Mutation Testing

Mutation [8] is a fault-based testing technique. The pro-
gram being tested is changed several times, generating a set
of alternative versions with syntactic changes. This technique
measures the fault-finding effectiveness of test suites, on the
basis of induced faults. The general principle underlying
Mutation Testing is that the faults used by Mutation Testing
represent the mistakes that programmers often make [9].

A transformation rule that generates a mutant from the
original program is known as mutation operator [10]. Typical
mutation operators are designed to modify variables and
expressions by replacement, insertion or deletion operators [9].

III. MUTATION OPERATORS FOR ASSERTION-BASED TEST

ORACLES

This section presents the mutation tool and a novel
mutation operators set, which is specifically designed for test
oracles written as JUnit classes.
A. MuJava 4 JUnit - a mutation testing tool for JUnit test
oracles

We have adapted MuJava [11] to create a tool (MuJava 4
JUnit) to include our new mutation operators to test oracles, in
order to systematize the evaluation of the oracles written using
JUnit assertions. Operators were included in MuJava, using the
existing code structure. The tool MuJava 4 JUnit is publicly
available in [12].
B. Definition of “MuJava 4 JUnit’s” operators

We defined generic mutation operators to introduce changes
in the most common types of assertions of JUnit. Signature
variations of the statements were created adding, removing,
modifying, or replacing some setting values. In order to
automate and systematize the evaluation of test oracles, we
establish four classes of operators:

• Adding: parameters are added to the method assert;

• Modifying: parameters from the method assert are
changed;

• Replacing: the method assert is replaced with another
method assert; and

• Removing: parameters are removed from the method
assert.

The mutation operators for assertion-based test oracles
were classified in two levels:

• Signature level: changes are made on the type of
method assert, or on the parameters received by the
assert method; and

• Annotation level: changes are applied by replacing
annotations, removing, or replacing its parameters.

1) Signature-based mutation operators: These mutation
operators to test oracles were defined by combining the
signatures of assert methods adding or removing parameters,
or replacing the assert method by other assert method,
improving the quality of test oracles through the creation of
new oracles, or even adding new test cases.

The operators of this level are described in Table I. These
operators were created according to the JUnit’s specifications
and can simulate problems, made by the tester, at the coding
test oracles.

TABLE I. SIGNATURE LEVEL MUTATION OPERATORS.

Signature Level
Class Description Acronym
1 Adding Adding Threshold Value ATV
2 Modifying Decrement Constant from Threshold Value DCfTV
3 Modifying Increment Constant to Threshold Value ICtTV
4 Replacing Replace Boolean Assertion RBA
5 Removing Removing Threshold Value RTV

2) Annotation-based mutation operators: We created the
operators at the level of annotation changing or removing the
timeout value, and adding possible exceptions that may occur
in the execution of the oracles which were not previously
thought by the tester. The operators from annotation level are
presented in Table II.

TABLE II. ANNOTATION LEVEL MUTATION OPERATORS.

Annotation Level

Class Description Acronym

1 Adding Adding Expected Class AEC

2 Modifying Decrement Constant from Timeout DCfT

3 Modifying Increment Constant to Timeout ICfT

4 Removing Removing Timeout RTA

C. Discussion analysis of each individual mutation operator

Next, we present an individual analysis of the effect of
each mutation operator. The operators and their effects are:

ATV: adds the delta parameter, which is the thirdparameter
of assertEquals(expected, actual, delta) method and kills
mutants in two situations: (i) deprecated assert; and (ii)
depending on the test value and the constant value.

The purpose of the delta parameter is to determine the
maximum value of the difference between the numbers
expected and actual so that they are considered the same
value.

The ATV operator is a signature-level operator and belongs
to the addition class. It adds the delta parameter. With this, one
has a mutated version of the original oracle, in which the result
is accepted as correct, considering an error rate. However, it is
not always easy to know the acceptable value for a particular
application. Currently, only the value 0001 is used as delta,
but other values could be considered, taking into account the
actual expected value. For example: expected/2, expected/10,
expected/100, expected/1000, etc.

Figure 1 calculates a function of the second degree by
means of the Bhaskara formula in which the coefficients are
1, 2 and 1. Depending on the value of the coefficients, the
roots can generate values with several decimal places, so it
is important to add the delta value (Figure 1, Line 5).
Implementations with and without the delta value may have
the same or different results depending on the value of the

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

delta and the coefficients in question. If the difference between
oracles is never revealed, this may indicate that the fragility
is in the test case or the error may be directly in the program
being executed by the oracle.

Figure 1. ATV example.

DCfTV: decrements the delta parameter, which is the third
parameter of the method assertEquals(expected, actual, delta).
It kills the mutant depending on the decrement value and the
value obtained during testing. If the oracle is designed with
a case such that changing the precision value will change the
result by applying this operator, the mutant oracle will have
different results from the original oracle.

Figure 2 uses the assertEquals(expected, actual, delta)
method in line 7, and a calculation of a rate over the value of
a given product is being tested. The DCfTV operator allows
the tester to adjust the delta value, decrementing it, according
to his/her needs.

Figure 2. DCfTV example.

In the example, the tester should provide a test case that
has an error less than the initial error, but near it, ie: 0.0001 <
error ≤ 0.001. For one such case, the original oracle indicates
that the test passes but the mutant oracle indicates a failure.
Thus, the mutant helps the tester verify his oracle or plan new
test cases that exercise his oracle.

As in the case of the ATV operator, it is difficult to define
how much the delta value decreases. Thus, one can think of
extending the DCfTV operator using values such as error/2,
error/10, error/100, error/1000, etc.

ICfTV: increments the delta parameter, the third parameter
of the method assertEquals(expected, actual, delta). It kills
mutants depending on the incremented value. If the oracle
is designed in the sense of changing the precision value, it will
affect the result by applying this operator, then the mutant
oracle will have different results from the original oracle.

The ICfTV operator follows the same logic as the DCfTV
operator. However, one increment the value of the delta
(ICfTV) and another decrement the value of the delta
(DCfTV). In Figure 3, the oracle is on line 4, where the
assertEquals method checks the result of a multiplication with
the value of delta 0.1. By applying the ICfTV operator, a
mutant oracle is generated with this increased delta value. The
two implementations, original oracle and mutant oracle, may
have the same or different results depending on the incremental

value, which is set by the tester. If the difference between
oracles is never revealed, this indicates the fragility of the test
oracle.

Figure 3. ICfTV example.

As in the case of the ATV and DCfTV operators, it is
difficult to define how much the delta value decreases. Thus,
one can think of extending the ICfTV operator using values
as error/2, error/10, error/100, error/1000, etc.

RBA: replaces boolean assertions (assertTrue,
assertFalse). It produces high rate of dead mutants.
Useful to reveal defects in oracles designed to Boolean cases,
the replacement of the statements, the mutant oracle can
improve the quality of the original oracle.

In Figure 4, the oracle presented in line 4 with the
assertTrue method checks whether the String “Dog’s
god” is a palindrome, by applying the RBA operator, the
assertFalse will be executed. If the result of the mutant
oracle is different from the original oracle, the mutant will be
considered dead. If the mutant or original oracles present the
same result, the tester should check the test case and/or the
program being tested.

Figure 4. RBA example.

RTV: removes the delta value, kills mutants depending on
the test oracle. If the oracle is designed with a case that
changing the precision value it changes the result by applying
this operator, the mutant oracle will have different results from
the original oracle.

In Figure 5 the arithmetic mean between two numbers is
performed, and the oracle in line 5 has the value 0.001 of
delta. The RTV operator removes this delta value. The two
implementations, with the delta value and no delta value, may
have the same or different results depending on the incremental
value, which is set by the tester. In this case, we can have two
correct implementations, in which it will be up to the tester to
perform the analysis of the mutant oracle’s correctness.

Figure 5. RTV example.

It is not recommended that an oracle be designed depending
on the delta value. Therefore, if removing this value changes
the result of the oracle, this can suggest to the tester to design
new test cases that do not depend on this error value. In
practice, this operator corresponds to changing the delta value
to zero.

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

AEC: adds an expected class in annotation @Test. Kills
mutants depending on the executed exception and the oracle
running.

The AEC operator assists the tester in handling the
exceptions that may occur during oracle execution. For
example, in Figure 6 the
exceptionNullPointerException avoids a month that
does not exist be called in the getAllDays method.

Figure 6. AEC example.

AEC operator can add the exceptions: IOException,
NullPointerException, IllegalArgumentException, ClassNot-
FoundException, ArrayIndexOutOfBoundsException, Arith-
meticException and Exception.

The tester must add the exception according to the
operation being performed, as well as done in Figure 6, where
it is possible to avoid calling a null value.

DCfT: decrements a constant value of the timeout. Kills
mutants depending on the decrement value and the value of
the timeout. If the oracle depends on the previously established
timeout value, using this operator, the mutant oracle will have
different results from the original oracle;

Figure 7 is set to a value of timeout in 10 seconds. The
DCfT operator can reduce this value, depending on the amount
of records that are registered in the database, reducing this
timeout is a good solution because it decreases the waiting
time for the result. However, the tester must make a decision
on how much to decrease in order to improve the performance
of the test oracle.

Figure 7. DCfT example.

Deciding how much to decrease from this timeout value
is not an easy decision, it is necessary to analyze how long it
takes to process the method being tested. One solution is to
use some predefined values: timeout − 10, timeout − 100,
timeout − 1000, timeout/2, timeout/10, etc.

ICtT: increments a constant value of the timeout. Kills
mutants depending on the increment value and the value of the
timeout. If the oracle depends on the previously established
timeout value, using this operator, the mutant oracle will have
different results from the original oracle.

Figure 8 performs a test of a connection in the database,
with the timeout of 1000 milliseconds. The mutant oracle
generated by the ICtT operator may give a different result from
the mutant oracle, causing the timeout value to be sufficient,
or the mutant oracle may still live, giving the same result as
the original oracle, showing that the problem may not be in

the test program, but the program that performs the database
connection. In this case, it is up to the tester to check the
program and identify the error.

Figure 8. ICfT example.

In the example presented in Figure 8, the tester must define
a test case whose runtime is higher than the original timeout
value, but lower than the mutated value, ie 1000 < runtime ≤
10000.

RTA: removes the timeout value. Kills mutants depending
on the value of the timeout. If the oracle depends on the
previously established timeout value, using this operator, the
mutant oracle will have different results from the original
oracle.

In JUnit, it is possible for a test to have a maximum time
to run. For example, if the tester wants the test to take no
more than 500 milliseconds, the following operation can be
performed (Figure 9). However, some operations may take
longer than the time set in the timeout parameter, and for this,
the RTA operator removes this parameter, causing the test run
to use the default JUnit timeout time.

Figure 9. RTA example.

This mutation operator causes the mutating oracle to not
depend on the execution time of the test case and, in theory,
could run for an infinite amount of time. In the case of the
mutant being killed, that is, indicating that the test has passed,
while the original oracle indicates that it has failed, there is an
indication that the test case actually does not depend on the
execution time and that the timeout clause was improperly
used.

IV. EMPIRICAL EVALUATION

In this section, we present an empirical evaluation
involving the mutation of test oracles and some subject
programs. The idea of this study is to apply specific operators
to assertion- based test oracles (written with JUnit) and
generate mutants. The syntactic modifications provided by the
mutant test oracles are minimal. They reproduce faults in the
signatures or annotations of assertion methods, as described in
the previous section.

The generation of mutated test oracles suggest some repairs
in unit tests previously defined. Further, new test cases can be
found to improve the quality of the original test set.

A. Experiment Design

The experiment was conducted in order to verify whether
the mutated oracles are able to identify failures that were not
identified by original oracles, and analyze mutated test oracles
for the purpose of their evaluation with respect to effectiveness
and efficiency from the point of view of the tester revealing
defects in faulty programs.

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Figure 10 illustrates the steps performed in the experiment,
namely: (1) run the original oracle against the subject program;
(2) apply MuJava 4 JUnit mutation operators in the test oracles,
generating the mutant oracles; (3) run all mutant oracles
against the original subject programs; and (4) analyze the
results.

Figure 10. Step-by-step followed in this experiment.

B. Research Questions

The following Research Questions has been defined:

RQ1 Are the mutant test oracles able to improve the
quality of the original oracle?

RQ2 Does the operator efficiency change depending on the
program in test?

Aiming at answer these questions, we applied the mutation
operators for test oracles in the assertion-based oracles of 5
subjects programs, which provided mutant oracles that are
supposed to improve the original oracle.

C. Subject Programs

We selected five programs with different cyclomatic
complexities, ranging from 1 to 6, to verify the effectiveness
of the mutants in oracles, so revealing defects in the original
oracles. The subject programs and their complexities are
presented in Table III.

Each subject program has a test oracle written in JUnit
form. Information about test oracles, including the number of
failures in each test oracle used in the experiment are shown in
Table IV.

TABLE III. SUBJECT PROGRAMS.

Program #Cyclomatic Complexity #Lines of code
Calculator 1 19
CheckPalindrome 3 16
BinarySearch 4 31
BubbleSort 4 66
ShoppingCart 6 117

TABLE IV. TEST ORACLES FROM SUBJECT PROGRAMS.

V. RESULTS DISCUSSION

In total, MuJava 4 JUnit tool implements 10 mutation
operators to oracles from which 5 are signature level and 5 are
annotation level. In this section, we provided a detailed
analysis on the effects of using slightly modified version of
test oracles to improve the quality of the test class.

A. Answers to RQs

[RQ1] Are the mutant test oracles able to improve the
quality of the original oracle?

Some operators generate more mutants than others. The
generation of mutants will depend on the assertion used, the
parameters used in this assertion and which annotation is
being employed. In this experiment, we collect data about the
mutants generated by each operator implemented in MuJava 4
JUnit.

The percentages of live and dead mutants by each operator
of the MuJava 4 JUnit tool are summarized in Table V. It can
be observed that some operators kill more mutants than others.
It is also observed that the MuJava 4 JUnit tool operators
worked well in the generation of the mutant oracles.

TABLE V. MUTANTS ALIVE AND DEAD BY OPERATOR.

Alive(%) Dead(%)
ATV 94,74 5,26
DCfTV 80,00 20,00
ICtTV 80,00 20,00
RBA 50,00 50,00
RTV 62,50 37,50
AEC 78,57 21,43
DCfT 87,50 12,50
ICtT 70,00 30,00
RTA 100,00 0,0

[RQ2] Does the operator efficiency change depending
on the program in test?

Each operator generates mutants according to the Assert
method and their parameters, or the annotations used. There-
fore, when performing the experiment, we conclude that the
type of data that the subject program is using is what will
determine which operator is more efficient in that situation.

In the context of our experiment, CheckPalindrome
program, for example, works with boolean values, so that the
operators which use these values are more efficient, in this
case, RBA. The Calculator program works with integer
and double values, causing the ATV, DCfTV, ICtTV and RTV
operators more efficient. The BinarySearch,
ShoppingCart, and BubbleSort programs perform
operations with boolean, integer and double values, thus using
all operators of these genres. Table VI shows the number of
mutants generated by each operator in each program used in
the experiment.

TABLE VI. MUTANTS GENERATED IN EACH PROGRAM SEPARATED
BY OPERATOR.

D. Experimental Procedure

The experiment was divided in 3 steps (Figure 10). Five
small programs were selected. Each original program had a
correspondent testing class with some assertion-based oracle
written through JUnit unit tests. Then, our mutation operators
for test oracles were applied to each oracle, and the living and
dead mutants were analyzed.

The most interesting mutant oracles are those giving
results equal to the original oracles. They can suggest

Oracle #Cyclomatic Complexity #Lines of Code #Failures
TestingCalculator 1 58 7
TestingCheckPalindrome 1 61 2
TestingBinarySearch 1 114 2
TestingBubbleSort 1 146 3
TestingShoppingCart 1 212 13

Calculator CheckPalindrome BinarySearch BubbleSort ShoppingCart
ATV 4 0 0 0 34
DCfTV 5 0 5 5 5
ICtTV 4 0 5 5 6
RBA 0 14 14 0 28
RTV 5 0 0 0 3
AEC 78 90 72 78 102
DCfT 3 0 0 0 5
ICtT 4 0 0 0 6
RTA 3 0 0 0 4

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

new test cases, indicate weaknesses in the test case, and then
identify errors in the program being tested.

In Table V, it is possible to observe that the generated
mutants have a higher rate of live mutants compared to the
dead mutants. Therefore, the answer to the QP1 research
question in the context of this experiment is yes. However, in
the future, a detailed analysis of mutants should be carried out
for this result to be consolidated.

B. Pros and cons

In this first experiment, the operators performed well and
we observed their behavior in different situations. We focused
this experiment on operator’s behavior, but we also collected
some numbers about live mutants and dead mutants for further
analysis.

ATV, DCfTV, ICtTV, and RTV are useful when a mutant is
dead, because it indicates that the precision value that is
making a difference in the outcome of the oracle. In practice, to
obtain a mutant in this condition, the tester must pay attention
to the fact that the test case is not necessary for the test case,
and then change their oracle so that the precision value does
not need to interfere to change the final value of the oracle’s
execution.

The AEC operator, in practice, to obtain a mutant in this
condition, the tester must pay attention to the fact that the test
case requires the exception added by the operator and it is
interesting that the tester designed the oracle taking into
account all the situations that may occur for the required
exceptions.

DCfT, ICfT and RTA operators generate mutants that can
be dead or alive. They are useful when a mutant is dead,
because it shows that the timeout should be reconsidered by
the tester when designing the test oracle.

VI. THREATS TO VALIDITY

This section presents the threats of this study on four
different perspectives:

Internal validity: Our study is designed with a narrow scope
– assertion-based test oracles. The experiment was designed to
answer our RQs. We believe that the results were consistent
to answers our RQs, leading to a high and acceptable internal
validity.

External validity: The study evaluates the effectiveness of
the mutation operators for assertion-based test oracles in five
small Java applications. However, our experiment does notpro-
vide results to assume that the behavior of our technique will
be the same in industrial-real-world systems. Further work is
required in this context. In addition to that, our tool is designed
only for Java applications, reducing the generalizations of our
results.

Construct validity: The concept of mutation is useful in
several contexts, making our construction validity higher.
Hence, the size, and complexity, of the chosen applications
are suitable to show the mutation operators effectiveness for
JUnit-based test oracles.

Conclusion validity: We have presented our methodology
in detail and we are providing the code of the tool we have
developed. In this context, our results are associated with our
results, and we therefore, claim that we have high conclusion
validity.

VII. CONCLUSION

There were no systematic ways to assess the quality or
accuracy of an automated test oracle. Thus, it is possible that in
some cases, the results of running a test suite present unwanted
results, not by problems in test data or test program, but
because of errors in the implementation of the oracle.
Therefore, this study designs mutation operators to oracles,
until then, there was no work in this direction. Operators have
been developed to test oracles written in JUnit format and
defined replacing signatures of assert methods, adding
parameters assert method, or removing parameters assert
method.

Operators were implemented and included in MuJava tool.
The experiment conducted in this study highlights the behavior
of the operators when applied to simple programs and different
ciclomatic complexities, data were collected from living and
dead mutants, as well as detailed data for each operator in
different cases.

We can conclude that using mutation test oracles
collaborates in improving the quality of test oracles. The work
also contributes presenting a systematic way of assessing the
quality of oracles, which has not yet found in the literature.

Mutation operators to test oracles do not have a high rate
of generation of dead mutants, however, they may reveal
weaknesses in the original or even new test cases oracle, even
not generating mutants dead. Therefore, the generated mutants
should be scrutinized to make the actual operators.

As future work, we will carry out further experiments with
real-world programs, seeking to affirm the results obtained
with this work. In addition, we will design mutation operators
to other oracle types.

ACKNOWLEDGMENT

Ana is supported by Fapesp (Grant Number 2014/09629-1).

REFERENCES

[1] R. A. Oliveira, U. Kanewala, and P. A. Nardi, “Automated test oracles:
State of the art, taxonomies, and trends,” Advances In Computers, Vol
95, vol. 95, 2014, pp. 113–199.

[2] M. Pezz and C. Zhang, “Automated test oracles: A survey,” Advances
in Computers, vol. 95, 2014, pp. 1–48.

[3] K. Shrestha and M. Rutherford, “An Empirical Evaluation of Assertions
as Oracles,” in Proceedings of the 4th ICST, March 2011, pp. 110–119.

[4] E. Beck and K. Gamma, “JUnit: A cook’s tour,” Java Report, vol. 4,
no. 5, May 1999, pp. 27–38.

[5] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, 1982, pp. 465–470.

[6] L. Baresi and M. Young, “Test oracles,” Technical Report CISTR-
01, vol. 2, 2001, p. 9.

[7] D. S. Rosenblum, “Towards a method of programming with
assertions,” in Proceedings of the 14th ICSE. ACM, 1992, pp. 92–
104.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer Society
Press, vol. 11, no. 4, Apr. 1978, pp. 34–41.

[9] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engeneering, vol. 37,
no. 5, 2011, pp. 649–678.

[10] R. Abraham and M. Erwig, “Mutation operators for spreadsheets,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, January 2009, pp.
94–108.

[11] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: A Mutation System for
Java,” in Proceedings of the 28th ICSE. New York, NY, USA: ACM,
2006, pp. 827–830.

[12] A. Maciel. MuJava 4 JUnit. [Online]. Available: https://goo.gl/ZGXqI5
(2016)

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

