
Method for Automatic Resumption of Runtime Verification Monitors

Christian Drabek, Gereon Weiss

Fraunhofer ESK
Munich, Germany

e-mails: {christian.drabek,gereon.weiss}@esk.fraunhofer.de

Bernhard Bauer

Department of Computer Science
University of Augsburg, Germany

e-mail: bauer@informatik.uni-augsburg.de

Abstract—In networked embedded systems created with parts
from different suppliers, deviations from the expected commu-
nication behavior often cause integration problems. Therefore,
runtime verification monitors are used to detect if observed
communication behavior fulfills defined correctness properties.
However, in order to resume verification if unspecified behavior
is observed, the runtime monitor needs a definition of the
resumption. Otherwise, further deviations may be overlooked.
We present a method for extending state-based runtime monitors
with resumption in an automated way. This enables continuous
monitoring without interruption. The method may exploit diverse
resumption algorithms. In an evaluation, we show how to find
the best suited resumption extension for a specific application
scenario and compare the algorithms.

Keywords–resumption; runtime verification; monitor; state ma-
chine; networked embedded systems; model-based.

I. INTRODUCTION

In-car infotainment systems are an example for the increas-
ing complexity of software services in networked embedded
systems. Common basic architectures are utilized to enable
faster development cycles, reuse, and shared development of
non-differentiating functionality. Interoperable standards en-
able the integration of software components from multiple
vendors into one platform. However, the integration of such
services remains a challenge, since not only static interfaces
have to be compatible but also the interaction behavior.

Even though single functions are tested thoroughly for
their compliance to the specification, deviations in the behavior
occur often when new functions are integrated into a complete
system, e.g., caused by side-effects on timing by other func-
tions, misconfiguration or incomplete specifications. Further,
isolated testing is not feasible for all functionality, because
of the exhaustive and sometimes unknown test-contexts that
would be required. In these situations, it is vital to be able
to monitor the interactions of the integrated system at runtime
to detect deviations from the expected behavior. Nevertheless,
a robust system continues its work after a non-critical failure
or deviation from its specification; therefore, its monitors must
also be able to resume verification after an observed deviation.

A finite state machine (FSM) can be used to specify the
communication behavior in the networked embedded system.
Such a reference model can also be generated from observed
behavior and is quite versatile. It can be used as reference for
development, but may also serve as basis for a restbus simula-
tion, or the generation of test cases. Further, a reference model
can be used as a monitor [1]. It is run in parallel to the system
under test (SUT) and cross-checks the observed interactions
with its own modeled communications (cf. Figure 1). As this

Figure 1. Monitor using a reference model to verify communication behavior.

model is directly derived from the specification, the monitor
effectively compares the observation with the specification.

However, specifications often leave room for interpretation,
in particular concerning handling of errors. Hence, it is un-
defined how a monitor based on such a specification should
continue after a deviation. The adaptation to make the monitor
resilient is usually done manually and needs to be maintained.

To reduce the effort and room for mistakes, we promote
using a specification-based monitor and automating the process
of making it resilient. We introduce a method that completes
the transition function of such a monitor. Thereby, the extended
monitor is granted the ability to resume its observation after
deviations. The same monitor instance can be used to find
multiple deviations. We call this resumption. When using
a resumption extension, the same model can be used to
define valid behavior in the specification and to verify its
implementation, i.e., no separate verification model needs to be
created. Moreover, resumption eliminates the need to split the
specification into multiple properties. If available, we suggest
to use the reference model of the specification as basis for
the monitor. Thereby, it is easier to understand deviations, as
they can be presented in the context of the whole specification.
Further, the reuse of the specification guarantees compliance
of the monitor. By exchanging the resumption algorithm (R)
generating the extension, the monitor’s resilience can be opti-
mized for the current application scenario.

This work introduces the general method of resumption and
how resumption algorithms can be evaluated. To demonstrate
the evaluation, we also present and compare different algo-
rithms. They recreate patterns that we found to be commonly
used when manually improving the resilience of a FSM. The
evaluation framework and metrics help to find the best suited
extension for individual systems.

The rest of this paper is structured as follows. After
discussing related work in Section II, Section III describes
the concept of specification-based monitors and the necessary
notation. Section IV introduces the method of resumption and

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

the algorithms considered in this paper. In Section V, we
present the evaluation and discuss the findings. Section VI
concludes the paper and gives an outlook on future work.

II. RELATED WORK

Various areas address the problem of detecting differences
between a SUT’s behavior and its specification model. This
section gives a brief overview of how existing approaches
match specified model and observed behavior.

Conformance checking compares an existing process model
with event logs of the same process to uncover where the
real process deviates from the modeled process [2]. It is used
offline, i.e., after the SUT finished its execution, because
the employed data mining techniques to match model and
execution are computationally intensive and can only be used
efficiently once the complete logs are available. In contrast,
the presented resumption uses assumptions on the expected
deviations to provide lean algorithms that work at runtime.

Model-based testing aims to find differences between the
behavior of a SUT and a valid behavior model [3]. An
environmental [4] or embedded [5] test context stimulates
the SUT with test sets, i.e., selected input sequences. The
SUT’s outputs are then compared with the expected output
from the behavior model. Before each test set, the SUT
is actively maneuvered into a known state using a homing
sequence. Generally, these sequences reduce the current state
uncertainty by utilizing separating or merging sequences [6].
Former assure different outputs for two states, latter move the
machine into the same state for a given set of initial states.
Minimized Mealy machines are guaranteed to have a homing
sequence [6]. However, a passive monitor should not influence
the SUT. Therefore, the presented resumption cannot actively
force the system to a known state. Nevertheless, occurrences
of separating and merging sequences can be tracked during
observation to reduce the number of possible candidates for
the current state.

In general, runtime verification can be seen as a form of
passive testing with a monitor, which checks if a certain run
of a SUT satisfies or violates a correctness property [7]. The
observation of communication is well suited for black box
systems, as no details about the inner states of the SUT are
needed. Further, the influence on the SUT by the test system
is reduced by limiting the intrusion to observation. In case
the deviations are solely gaps in the observation, a Hidden
Markov Model can be used to perform runtime verification
with state estimation [8]. Runtime verification frameworks,
such as TRACEMATCHES [9] or JAVAMOP [10], preprocess
and filter the input before it is passed to a monitor instance.
Thereby, each monitor only sees relevant events. A property-
based monitor checks if a certain subset of the specification
is fulfilled or violated. Unless extended with resumption,
it will only report a single deviation. Nevertheless, if the
properties are carefully chosen, the respective monitor can
match an arbitrary slice of the input trace. Then, the monitor
is instantiated and matched against different slices of the
trace. However, this requires that the complete specification
is split into multiple of such properties and implies additional
design work. Thereby, or if the properties are extracted by data
mining techniques from a running system or traces [11][12],
a secondary specification is created that needs to be kept in
sync. In contrast, resumption enables the reuse of an available

q0 q1 q2 q3
join ack

reject

info

leave

ack
info

Figure 2. FSM of the communication behavior related to a subscription
service.

specification by automatically augmenting its robustness for
verification.

III. SPECIFICATION-BASED RUNTIME MONITORS

A monitor is “a system that observes and analyses the
behavior of another system” [13]. The core of a monitor is an
analyzer which is created from the requirements and different
languages can be used to specify the analyzer [14], e.g., linear
temporal logic [7]. However, without loss of generality, such
a description can be mapped to a set of states and a set of
transitions between the states [15], i.e., a (finite) state machine.

In diverse embedded system domains like automotive, state
machines are often used for the specification of communi-
cation protocols or component interactions. We call such a
state machine a reference model and a monitor that uses the
reference model to check conformance of observed interactions
a specification-based monitor. Reference models usually focus
on capturing the valid behavior and include only critical or
exemplary deviations. Therefore, they only describe a partially
defined transition function and a subset of all possible error
states. The respective specification-based monitor reports an
accepting verdict (>) for valid behavior and a rejecting verdict
(⊥) or another associated verdict for deviations. The FSM
in Figure 2 shows a FSM that specifies the communication
behavior related to a subscription service. It has only accepting
transitions; a possible resolution of implicit transitions is
shown in Figure 3a. If an event without transition in the
original FSM occurs, q⊥ is entered. However, such a monitor
will only detect the first deviation. To overcome this, the next
section introduces resumption and how the resolution can be
performed to overcome this.

Beforehand, we introduce the necessary notation. A mon-
itor M : 〈D,A,Q, q0, δ, γ〉 consists of a verdict domain D,
an observation alphabet A, a set of states Q, an initial state
q0 ∈ Q, a transition function δ : A × Q → Q and a verdict
function γ : A × Q → D. For a specification-based monitor,
M is identical to the reference model and, thereby, identical to
the specification. The observation alphabet A and the verdict
domain D of the monitor are the input and output sets of the
state machine. The latter is a set of verdicts, at least containing
> and ⊥. The former is a set of semantic events used to
distinguish the different interactions of the SUT relevant for
the monitor. At runtime, there are various ways to extract
the semantic events by preprocessing and slicing the observed
interactions, e.g., [9][10][15][1]. In the following, we will refer
to them in general as events.

Let dom(δ) be the domain of a partial function, such as
δ , i.e., the set of elements with a defined mapping. Let Aq be
the set of events with a defined transition in state q (1), Qe be
the set of states with a defined transition for event e (2) and
Qe,δ be the set of defined target states for event e (3).

Aq = {e ∈ A | 〈e, q〉 ∈ dom(δ)} (1)

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

q0 q1 q2 q3

q⊥

join ack

reject

info

leave

ack
info

* * *
*

*

(a) FSM with implicit transitions resolved.

q0 q1 q2 q3
join ack

reject

info

leave

ack
info

* * * *

(b) Rwait

q0 q1 q2 q3
join ack

reject

info

leave

ack
info

reject

ack,info

leave

join info

leave

join
ack,reject join

reject leave

(c) Rnear

q0 q1 q2 q3
join ack

reject

info

leave

ack
info

*

join info

leave

*
joinreject

leave

(d) Rn-o-w

q0 q1 q2 q3

qR

join ack
reject

info

leave

ack
info

*
* *

reject

leave

join

leave

join

reject

join

reject

leave

join

*

leave
reject

(e) Ru-e

q0 q1 q2 q3

q0, q2q2, q3

join ack
reject

info

leave

ack
info

reject

leave

ackinfo

join

leave

info

join

reject

ack
join

reject

leave

join

ack

leave

reject

info
join

info

leave

reject,ack

(f) Ru-s

Figure 3. FSMs with states and transitions (dashed) added by the implicit error assumption (a) and different R (b)-(f). Bold labels indicate an accepting,
regular labels a rejecting, and italic labels an inconclusive verdict. The wild-card ’*’ matches all events that have no other transition in the state.

Qe = {q ∈ Q | 〈e, q〉 ∈ dom(δ)} (2)

Qe,δ = {qt ∈ Q | ∃qs ∈ Qe : δ(e, qs) 7→ qt} (3)

IV. RESUMPTION

A specification-based monitor, such as shown in Figure 3a,
will only be able to find the first deviation from the specifica-
tion, since it enters the final state q⊥ at this point. Different
techniques can be applied in order to create resilient monitors
and to find deviations beyond the first. Up to now this is
usually done manually and requires additional design work,
e.g., to repeatedly add additional transitions and triggers or
to artificially split the specification into multiple properties
that can be checked separately. However, we suggest using
a generic definition for how the monitor can resume its duty.

This section presents the method for resumption that en-
ables a monitor to analyze the trace for additional deviations
with respect to the same property. This can be used to resume
the operation of the monitor, e.g., after a deviation was detected
or for initialization, and is especially useful when the system
under test cannot be forced into a known state.

Example 1 (Resumption): Let’s assume M in state q ob-
serves event χ ∈ A \ Aq , i.e., the specification defines no
transition for χ in the active state. By the definition of a
specification-based monitor, a deviation is reported. However,
as the event is undefined for this state in the specification,
additional information is required for the monitor to continue
observation. If the application scenario allows to ignore the
deviating event, the monitor can stay in the same active state
and continue its work.

A. Resumption Extension
Any specification-based monitor may be extended with the

help of a resumption extension. Even a monitor that has a
complete transition function may have need for resumption, if

it has unrecoverable states like q⊥ in Figure 3a. To distinguish
between the original monitor, the extension, the extended
monitor and their components the sub-scripts L, R and E are
used respectively. ME is created by combining the sets and
functions of ML with MR , where ML is preferred. However,
δR may override δR for choosable verdicts, e.g., ⊥.

Example 2 (Resumption Extension): Figure 3b shows a
possible extensions of the FSM given in Figure 2. Instead
of entering a final rejecting state for unexpected events, the
extended monitor ignores the event and stays in the currently
active state. The resulting FSM has a complete transition
function and can continue to monitor after reporting deviations.
Thereby, the original monitor is extended with resumption.

While a resumption extension can be created in an arbitrary
way, we suggest to use a resumption algorithm (R) to create
the extension. The algorithm’s core function (4) takes an event
and a set of (possible) active states as input. It returns the
set of states that are candidates for resumption. The R-based
resumption extension can be easily exchanged to adjust the
monitor to the current application scenario. Let QC = QL ∪
{qR} and P (QC) be the set of all subsets of QC .

R : A × P (QC)→ P (QC) (4)

Using R, the additional states and transitions that are
needed for the extension of the original monitor can be derived.
For finite sets QL and A, a preparation step creates the states
P (QC) \QC . The transitions are derived by evaluating R to
find the target state. If R(e, q) returns an empty set or solely
states that cannot reach any state in QC , it reached a finally
non resumable state. The existence of such states depends on
R and the specification. All states not reachable from a state
in QC can be pruned.

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

An alternative is using R at runtime as transition function
during resumption. If R returns solely a single state in QL ,
ML can resume verification in that state. Otherwise, the set of
candidates is stored and given to R with the next event.

γR is defined as follows: it accepts the transitions from QR
to QL , rejects transitions from QL , and returns an inconclu-
sive verdict otherwise. Thereby, the resulting γE reports the
specified verdicts, rejects unexpected deviations and accepts
events as soon as it has resumed verification.

B. Resumption Algorithms
This section introduces algorithms that can be used for

resumption. Often, these algorithms are mimicked to extend
specifications manually to create resilient monitors. Based
on an observed event and a set of candidates for the active
state R will determine the possible states of the SUT with
respect to the observed property. The results of applying the
algorithms on the FSM from Figure 2 are shown in Figure 3.
The presented algorithms can generally be categorized into
local and global algorithms. The former are influenced by the
state that was active before the deviation, while the latter look
at all states equally.

The local algorithm Waiting (5) resumes verification with
the next event accepted by the previously active state q, i.e., it
stays in q and skips all events not in Aq . Rwait assumes that
a deviation was caused by a superfluous message that may be
ignored. It is expected to perform bad for other deviations.

Rwait(e,Qin) = Qin (5)

An obvious danger is, the SUT may never emit an event
that is accepted by the active state. Therefore, the next algo-
rithms also look at states around the active state. The used
distance measure ‖qs, qt‖ is the number of transitions ∈ δL in
the shortest path between a source state qs and a target state qt.
The extension ‖Qs,Qt‖ is the transition count of the shortest
path between any state in Qs and any state in Qt.

The algorithm Nearest (6) resumes verification with the
next event accepted by any state reachable from the active
state. If multiple transitions match, it chooses the transition
reachable with the fewest steps from the previously active state.

Rnear(e,Qin) = argmin
qt∈Q

e,δL
C

min
qs∈Qin

‖qs, qt‖ (6)

Rnear assumes that the deviations will be caused by skipped
messages. It will resume on the next matched event unless the
two closest valid states require the same number of steps. As
it only looks forward, superfluous or altered messages may
cause it to errantly skip ahead.

The algorithm Nearest-or-Waiting (7) resumes verification
like Nearest, except if the selected state is more steps away
from the active state than the active state is from any other
state that could match the event. The idea is to ignore su-
perfluous messages and identify them by looking as far back
as was required to look forward to find a match. Rn-o-w is a
combination of the previous two algorithms and shows how
algorithms can be combined to create new ones.

Rn-o-w(e,Qin) =
{
Rwait, if ‖QeC ,Qin‖ < ‖Qin,Rnear‖
Rnear, otherwise

(7)

Global algorithms assume that you need to consider the
whole specification to identify the current communication
state. Therefore, they look at all states equally to keep all
options open for resumption.

Unique-Event (8) resumes verification if the event is
unique, i.e., the event is used on transitions to a single state
only. Ru-e is the only examined R that ignores all input states.
As there is only one target state of a unique event in the state
machine, the algorithm considers this a synchronization point.

Ru-e(e,Qin) =

{
Qe,δLC , if |Qe,δLC | = 1

{qR}, otherwise
(8)

Unique-Sequence (9) extends the previous algorithm to
unique sequences of events as unique events may not be
available or regularly observable in every specification. Ru-s
follows all valid paths simultaneously and resumes verification
if there remains exactly one target state for an observed
sequence.

Ru-s(e,Qin) =

Qe,δLin , if Qe,δLin 6= ∅
Qe,δLC , if Qe,δLin = ∅ ∧Qe,δLC 6= ∅
{qR}, otherwise

(9)

Similar to homing sequences used in model-based testing,
Ru-s aims to reduce the current state uncertainty with each step.
In each iteration of the algorithm, it evaluates which of the
input states accept the event. If the observed event is part of a
separating sequence, the non matching states are removed from
the set. If a merging sequence was found, the following δL -
step returns the same state for two input states and the number
of candidates is further reduced. If there are homing sequences
for L and the SUT emits one, Ru-s will detect it. Any deviation
in the behavior causes Qe,δLin to be empty and therefore resets
the set of possible candidates to any state accepting the event,
i.e., the resumption is resumed.

V. EVALUATION

This section presents an evaluation of the introduced
method for automatic resumption of runtime verification mon-
itors. Therefore, a framework is employed to compare the
presented algorithms.

A. Evaluation Framework
An overview of the evaluation setup is depicted in Figure 4.

A specific Application Scenario usually provides the speci-
fication and, thereby, a Reference Model. However, to make
general statements about the algorithms, a generator creates the
models. The resulting FSMs use global events across the whole
machine and local groups. To classify the FSMs, different
metrics of their structure are collected, e.g., number of states
and uniqueness. Uniqueness is the likelihood of an occurring
event being unique. It is approximated by the fraction of all
transitions in the FSM that have a unique event.

For each reference model, multiple traces are generated
by randomly selecting paths from the respective FSM. The
Deviation Generator manipulates the FSM used by the trace-
generator by adding new states and transitions. These tran-
sitions use undefined events (χ 6∈ Aqs) of the source state
qs. This guarantees that deviations are detected at this event,

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Figure 4. Overview of the evaluation framework for resumption algorithms.

if the monitor knows the current state. The added deviations
are characterized by the different transition targets qt: super-
fluous (qt = qs), altered (∃e : δL(e, qs) 7→ qt), skipped
(∃e : δL(e, qs) 7→ qi ∧ δL(χ, qi) 7→ qt) and random events
(qt ∈ QL). Additionally, shuffled events are simulated by
choosing a chain of two transitions and creating copies in
inverse order with a new intermediate state. This is a special
case of two altered events in sequence. If a scenario expects
more complex deviations, they can be simulated by combining
deviations. However, to evaluate the influence of each deviation
kind, we apply only one kind of deviation per trace. For later
analyses, the injected deviations are marked in the meta-data
of the trace invisible to the monitor.

The traces are eventually checked using the original FSM
extended with eachR. For the evaluation an Eclipse-based tool
capable of using reference models as monitors [1] was used
and extended. Using hooks in the tool’s model execution run-
time, resumption is injected if needed. Thereby, all introduced
algorithms can easily be exchanged.

The goal of the evaluation framework is to measure how
well a monitor is at finding multiple deviations in a given appli-
cation scenario. Therefore, the Reported Deviations Evaluator
rates each algorithm’s performance by comparing the detected
and the injected deviations. It calculates the well established
metrics from information retrieval precision and recall [16]
for each extended monitor. Precision (10) is the fraction of
reported deviations (rd) that were true (td), i.e., injected by
the deviation generator. Recall (11) is the fraction of injected
deviations that were reported. Both values are combined to
their harmonic mean, also known as F1 score (12).

p = |td ∩ rd|/|rd| (10)

r = |td ∩ rd|/|td| (11)

F1 = 2 · p · r
p+ r

(12)

A monitor that reports only and all true deviations has a
perfect precision p = 1 and recall r = 1. Up to the first
deviation, all extended monitors exhibit this precision, as they
work like regular monitors in this case. Regular monitors only
maintain this precision by ignoring everything that follows.
Extended monitors may loose precision as they attempt to find
further deviations. Therefore, recall estimates how likely all
true deviations are reported. A regular monitor’s recall is |td|−1
as it reports only the first deviation.

B. Comparison of Resumption Algorithms
The subscription service example evaluates to the F1

scores: Rwait = 0.53, Rnear = 0.68, Rn-o-w = 0.79, Ru-e =
0.80, Ru-s = 0.78. For the general evaluation, traces with a
total of 55 million deviations in 220 different FSMs with up to
360 states have been generated and were analyzed by monitors
extended with the algorithms. Each trace included 20 injected
deviations on average, so the recall for a regular monitor is
0.05 and its F1 score 0.095. Figure 5 shows the precision and
recall for each R per kind of deviation. While Rwait has the
worst precision for most deviations, it shows very high recall
scores overall and a perfect result for superfluous deviations.
Besides that, each algorithm performs very similar for altered
and superfluous deviations. When comparing Rnear and Rn-o-w,
the former has slightly less precision, however, it provides a
better recall. Ru-e has a low recall independent of deviation
but also the best precision for shuffled and skipped deviations.
Ru-s enables better precision for the other deviations, plus a
very high recall.

Figure 6 compares the F1 scores of the algorithms for
different levels of uniqueness and numbers of states of the
generated FSMs. The low overall score of Rwait is clearly
visible for both metrics. For FSMs with low uniqueness,
Ru-s outperforms the other algorithms. However, its F1 score
slightly drops with increased uniqueness. The other algorithms
benefit from an increase of uniqueness, especially Ru-e. For
very high uniqueness, Ru-s and Ru-e are identical. Neverthe-
less, both Rn-o-w and Rnear perform better, then. An increase
of the state count leads to a declined performance for Ru-e,
Rn-o-w and Rnear. Ru-e even drops below Rwait. Rwait and Ru-s
are hardly affected by the state count.

C. Discussion
The perfect precision and recall of Rwait for superfluous

deviations were as expected, since this deviation matches
exactly the resumption behavior of the algorithm. This shows

altered random shuffled skipped superfluous
0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n

altered random shuffled skipped superfluous
0

0.2

0.4

0.6

0.8

1

kind of deviation

re
ca

ll

Rwait Rnear Rn-o-w Ru-e Ru-s

Figure 5. Precision and recall of R compared for different kinds of
deviations.

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3

0.4

0.5

0.6

0.7

0.8

uniqueness

F
1

sc
or

e

0 50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

state count

F
1

sc
or

e

Rwait Rnear Rn-o-w Ru-e Ru-s

Figure 6. F1 scores of R compared for metrics uniqueness and state count.

that knowing which deviations are expected can help formulate
specialized algorithms. However, Rwait performs worst for all
other kinds of deviations, as the SUT transitioned internally
to a different state already and would have to return to the
original state. It benefits from unique events as they prevent
taking wrong transitions in the meantime.

The metric uniqueness helps to decide the class of al-
gorithm that is needed for a scenario. For low values, the
algorithm needs to combine multiple events in order to reliably
synchronize model and SUT. Of the examined algorithms, only
Ru-s takes multiple events into account and, therefore, should
be preferred in this case. However, Ru-s slightly drops its
precision with increasing uniqueness, as the chance increases
to overeagerly synchronize with an erroneous unique event. For
example, if all events are unique, any observed deviation is an
unique event and the algorithm will resume with the associated
state. As the next valid event is unique again, the monitor will
jump back. However, it registered two deviations when there
actually was only one. The same holds for Ru-e. Therefore,
especially with a high uniqueness, it may be desirable to limit
the options for which an algorithm may resume and use a
local resumption algorithm. The choice between Rnear and
Rn-o-w depends on the desired precision and recall. According
to the F1 score, Rn-o-w is slightly favorable. However, as these
algorithms may maneuver themselves into dead-ends, they
are less suited for higher state counts. A bias towards lower
uniqueness for higher state counts in the sample set severs
the impact on Ru-e. Nevertheless, in all cases, the F1 scores
of the extended monitors are always better than what can be
calculated for a regular monitor.

The results for the subscription service example (unique-
ness 0.43, 4 states) and the respective results from Figure 6
match well. While the evaluation framework can be used to
identify the best suited algorithm, this example shows that
the metrics state count and uniqueness can be used as an
estimation.

VI. CONCLUSION

In this paper, we introduce a method for extending run-
time monitors with resumption. Such an extension allows
a specification-based monitor to find subsequent deviations.
Thereby, an existing reference model of the system can be
used directly without creating a secondary specification for test
purposes only. Each of the presented resumption algorithms
has its strength and weaknesses. The presented framework and
metrics help to find the best suited algorithm for an application
scenario. Future work includes improving the method for re-
sumption, e.g., by taking event parameters into account and by
handling partially-independent behavior. Moreover, enhanced
algorithms that target specific real world scenarios will be
examined.

ACKNOWLEDGMENT

The project was funded by the Bavarian Ministry of Eco-
nomic Affairs, Infrastructure, Transport and Technology.

REFERENCES
[1] C. Drabek, A. Paulic, and G. Weiss, “Reducing the Verification Effort

for Interfaces of Automotive Infotainment Software,” SAE Technical
Paper 2015-01-0166, 2015.

[2] W. van der Aalst, A. Adriansyah, and B. van Dongen, “Replaying
history on process models for conformance checking and performance
analysis,” Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, vol. 2, no. 2, 2012, pp. 182–192.

[3] A. Pretschner and M. Leucker, “Model-Based Testing A Glossary,” in
Model-Based Testing of Reactive Systems. Springer Heidelberg, 2005,
pp. 607–609.

[4] T. Herpel, T. Hoiss, and J. Schroeder, “Enhanced Simulation-Based
Verification and Validation of Automotive Electronic Control Units,” in
Electronics, Communications and Networks V, ser. LNEE. Springer
Singapore, 2016, no. 382, pp. 203–213.

[5] A. Kurtz, B. Bauer, and M. Koeberl, “Software Based Test Automation
Approach Using Integrated Signal Simulation,” in SOFTENG 2016,
Feb. 2016, pp. 117–122.

[6] S. Sandberg, “Homing and Synchronizing Sequences,” in Model-Based
Testing of Reactive Systems. Springer Heidelberg, 2005, pp. 5–33.

[7] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, May
2009, pp. 293–303.

[8] S. D. Stoller et al., “Runtime Verification with State Estimation,” in
Runtime Verification. Springer Berlin Heidelberg, 2012, pp. 193–207.

[9] C. Allan et al., “Adding Trace Matching with Free Variables to AspectJ,”
in OOPSLA ’05. ACM, 2005, pp. 345–364.

[10] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rou, “An overview
of the MOP runtime verification framework,” Int J Software Tools
Technology Transfer, vol. 14, no. 3, Apr. 2011, pp. 249–289.

[11] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic Extraction
of Assertions from Execution Traces of Behavioural Models,” in DATE
’15, 2015, pp. 67–72.

[12] F. Langer and E. Oswald, “Using Reference Traces for Validation of
Communication in Embedded Systems,” in ICONS 2014, pp. 203–208.

[13] D. K. Peters, “Automated Testing of Real-Time Systems,” Proc. New-
foundland Electrical and Computer Engineering Conference, 1999.

[14] N. Delgado, A. Gates, and S. Roach, “A taxonomy and catalog of run-
time software-fault monitoring tools,” IEEE Transactions on Software
Engineering, vol. 30, 2004, pp. 859–872.

[15] Y. Falcone, K. Havelund, and G. Reger, “A Tutorial on Runtime
Verification.” Engineering Dependable Software Systems, vol. 34, 2013,
pp. 141–175.

[16] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure to
ROC, Informedness, Markedness and Correlation,” Journal of Machine
Learning Technologies, vol. 2, no. 1, 2011, pp. 37–63.

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

