
Framework for Developing Scientific Applications: Solving 1D and 2D
Schrödinger Equation by using Discrete Variable Representation Method

Bojana Koteska and Anastas Mishev

Faculty of Computer Science and Engineering,
1000 Skopje, Republic of Macedonia

e-mails: {bojana.koteska,anastas.mishev}@finki.ukim.mk

Ljupco Pejov

Faculty of Natural Science and Mathematics,
1000 Skopje, Republic of Macedonia

e-mail: ljupcop@iunona.pmf.ukim.edu.mk

Abstract—The absence of software engineering practices while
developing scientific applications has negative impact on the
quality of the applications. As a result, the probability for finding
bugs in the application is higher, testing is more difficult and
further code optimization and paralelization become an issue.
In order to improve the developing process, in this paper, we
propose a framework for developing scientific applications. The
framework helps scientists to understand some of the basic
concepts of software engineering and to change their current
habits for developing scientific applications. Our goal is to adapt
and modify some of the software engineering practices in every
phase of the application development process. Aiming to use
this framework in practice, we apply the recommendations for
all phases while developing application for solving 1D and 2D
Schrödinger equation by using the Discrete Variable Representa-
tion method (DVR). Using the framework resulted in better code
organization, linked execution of the application modules for 1D
and 2D equations, defining requirements and designing tests. As
a final product we have an application organized in modules,
documentation for each developing phase, comments in the code
and executable tests.

Keywords–Scientific application; Software Engineering; Frame-
work; Schrödinger equation; Software quality.

I. INTRODUCTION

A scientific application is a software application that sim-
ulates activities from the real world and turns objects into
mathematical models [1]. Scientific applications are designed
to perform numerical simulations of natural phenomena in
different scientific fields: computational chemistry and physics,
informatics, mathematics, bioinformatics, etc. The execution
of such applications that perform simulation of scientific
experiments with large amount of data requires powerful super-
computers, high performance computing and Grid computing
[2].

According to the Institute of Electrical and Electronics
Engineers standard (IEEE Std) 610.12-1990, software engi-
neering is defined as an application of a systematic, disciplined,
quantifiable approach to the development, operation and main-
tenance of software, that is, the application of engineering to
software [3]. The main problem related to the development
of scientific applications is the current development practice.
In our previous paper [4], we conducted a survey among
scientists - participants in the High Performance - South East
Europe (HP-SEE) project and we found out that they do not
use software engineering practices in the scientific application
development process.

Scientific applications development differs from the devel-
opment of commercial applications, especially in the stage of
testing. Scientific applications are developed by the scientists
themselves and used in the scientific research group which
means that software can not be tested based on users’ re-
quirements, but the results can be compared to the results
obtained from the real experiments or they are based on
theory. High performance computing applications, such as
scientific applications, can basically be the same with any kind
of application, but only small number of additional changes
in terms of planning, requirements elicitation, testing and
development approaches are required [5]. It means that the
same development practices cannot be fully applied, but there
is a possibility to modify the practices and to make some
adaptations.

The goal of this paper is to propose a development
framework that will help scientists to change the current
development practices and to show that software engineering
can be included in the development process of scientific
applications. The development framework provides basis for
a complete scientific software development process and it also
gives some quality recommendations that can be applied in
the development process. The framework is generic which
means that steps for developing can be used for different
scientific applications. It provides a set of rules, recommen-
dations and software engineering development practices. The
main contribution of this paper is the description of the full
development process of the scientific applications which tries
to adapt and modify the existing software engineering practices
for developing commercial applications.

The possibility of inclusion of the development practices
proposed in the framework is validated with the development
of an application for solving 1D and 2D Schrödinger equations
by using the DVR numerical method. The application is
developed by following the suggested development stages and
recommendations which means that requirements are written,
architecture is designed, code is organized in modules and
optimized, testing is automated, etc.

The paper is organized as follows: related work is presented
in the Section 2. Section 3 describes the current development
practices used in scientific application development process.
The framework is specified in the Section 4. The development
process that includes the development stages proposed in the
framework which are used for programming the application for
solving 1D and 2D Schrödinger equations by using the DVR

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

numerical method is given in Section 5. The conclusion and
future work are provided in the Section 6.

II. RELATED WORK

There are several papers that emphasize the need of soft-
ware engineering when developing scientific applications, but
no paper describes the full development process. In [6], the
author presents the most modern software engineering prac-
tices relevant to scientific computing. He gives an overview of
some software development models, choice of programming
language, static analysis tools, dynamic testing procedures,
version control systems, software quality and reliability. Here,
there are some useful software engineering practices in the sci-
entific applications development [7]: identification of resources
required to develop the application; developing plan and sched-
ule for completion of tasks and responsibilities; managing
requirements, documenting them and constant control; making
test plans and documentation; managing changes; managing
the risks that may arise during development; constant quality
control.

The quality of scientific applications can be improved by
using generic programming, domain modeling and component
based programming. For example, the creation of a meta
model with established rules assists in the process of defining
the application model needed to solve problems specific to
that domain [8]. Software engineers can help scientists to
realize the benefits of reusing by providing to them software
frameworks. The framework will reduce the effort and time
required for development, especially if scientists already have
some knowledge about the used technologies, e.g., Message
Passing Interface (MPI) [9]. Open Community Engagement
Process is a model for software development which brings the
software engineers and scientists together. The model define
four steps: design, develop, refine, publish. This process is
iterative and it follows incremental development approach and
agile principles [10]. There is also a project for creating
software infrastructure for scientific computing (ACTS) that
provides a lot of free software tools which are divided into
four categories: numerical calculations, code development,
code execution and development libraries. These tools provide
support for solving linear systems, optimization, obtaining
analytical solutions, visualization, etc. [11]. Some practices
that can improve the scientists’ productivity and reliability of
scientific applications are recommended in [12]. The survey
we presented in [4], helped us to find some shortcomings in
the development process of the scientific applications. Based
on it, we proposed some practices for increasing the quality
of the applications.

III. SCIENTISTS’ DEVELOPMENT PRACTICES

Scientists usually learn programming independently or they
are taught by other scientists. They believe that the process
of software development is only the process of coding. The
applications they are developing are intended for their scientific
group or closer scientific community. The most important thing
for scientists is to get scientifically correct results [9][13]. If
the output results are correct, they are not very interested in
making additional optimizations or parallizations. They are
often guided by the thought that if a hypothesis is proven once,
there is no need for reprogramming that section [5].

The scientists write codes in small teams without previous

formal training [6]. The reason for the poor quality of high-
performance computing applications lies in the lack of used
software engineering formal methods and practices [9][14] . It
may result in a larger number of errors, difficult understanding
of the code written by the other scientists in the community,
using additional unnecessary resources, problems with refac-
toring and optimizations later, etc. [13].

Scientists do not practice writing requirements or any kind
of documents and they believe that requirements should only
be discussed, but not written [13]. Later, when the testing is
performed, there is no information what is done and what have
to be done more. When the process of verification starts, scien-
tists primarily give importance to the quality of the algorithm
rather than its realization [9]. Usually the scientific problems
have no precise solution and numerical methods are used to
perform an approximation. Often, the verification means com-
parison with experimental results [6]. The software verification
is based on professional judgment, such as comparison of the
model output with other model outputs (benchmark) which
will not always provide a consistent comparison and visual
comparison between two pictures [15]. A primarily goal for
scientists is to test the implemented theory, not the algorithm
implementation. The testing is not the most important thing
until an error that affect the correctness of scientific results
appears [14].

The scientists in the HP-SEE project that participated in
the survey [4] said that testing is a very important process, but
mostly only the original developer is responsible for testing.
Also, they are aware of their application errors, but they test
manually, which means that they do not use any testing tools.
Scientists think that writing testing documentation is very
important process, but they describe the test cases freely. They
answered that the biggest barrier for testing is time. Scientists
are interested in graphs and/or reports that outline the state of
system testing.

Taking into account all the problems mentioned above
(difficult testing, no documentation, poor code comments,
problems with optimization, etc.), we decided to propose a
framework that will guide the scientists through the develop-
ment process of the scientific applications.

IV. FRAMEWORK FOR DEVELOPING SCIENTIFIC
APPLICATIONS

This section describes the stages for developing scientific
applications. We propose the incremental software develop-
ment model which is elaborated in Software Engineering: 9th
edition by Ian Sommerville [16]. We made small modifications
of the model because there are two main differences between
standard software development and scientific applications:
The results from the scientific applications are verified by
comparison to the results obtained from physical experiments;
There are no customers that can evaluate the application since
applications are developed only for the scientific community.
We adapt this model by making changes in the process of
evaluation, in test-driven design and short reports after each
iteration.

This development process is characterized by fast delivery
of increments and their evaluation which helps the cost of
changing requirements to be reduced. Each increment of the
development process contains 9 phases: planning, require-
ments definition, system design, test cases design, coding,

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

testing, evaluation, writing short report. It is shown in
Figure 1.

Figure 1. Scientific application development process

A. Planning
Each increment begins with the planning phase. The plan

is a non-formal document which contains a list of activities
that should be performed in the next iteration. For example,
scientists should think about what parts (modules) have to be
coded in that iteration, how they will be tested and evaluated.
If there are more scientists who develop the application, the
tasks should be assigned appropriately.

B. Requirements Specification
This is the development phase where requirements should

be written formally. The document containing formal require-
ment specification is needed for better evidence of completed
and future activities. We divide the requirements in two
categories: functional requirements and nonfunctional require-
ments.

A functional requirement is a requirement that describes
an application functionality (also inputs and outputs of a
function). A nonfunctional requirement is a requirement that
specifies the system behavior (constraints).

Each requirement should be consisted of the following
fields: Id - unique requirement identifier; Name - short name
that describes the requirement; Requirement type - functional
or nonfunctional requirement; Version - current version of the
requirement (as a number); Description - description of the
functionality that needs to be realized (if functional) or descrip-
tion of tests and evaluation of the application functionalities
or any hardware and software requirement; History of changes
in each version of the requirement which is needed because
of frequent requirements’ changes, especially when solution
goes in the wrong direction. The requirement specification
will provide a better overview of the features that need to

be tested, and less problems, such as delayed tasks realization,
no working plan, late and incomplete testing, errors, etc.

C. System design
System design is the part where the hardware and software

systems requirements are specified in order to establish a
system architecture (for example, if the application needs
multicore processor, Grid, high-performance computing to be
run or some libraries that provide parallel execution). In
this section, compilers, integrated development environments
(IDEs), platforms and operating systems should be also spec-
ified.

D. Test cases design
Test cases designs are mostly related to functional re-

quirements which means that well specified requirements can
contribute to better design of test cases. Test cases need to be
defined by using standardized forms. Also, boundary values
and source code analysis could be considered as a relevant
information. Test cases where the correct value cannot be
specified should contain a range of values.

Each test case description should include the following
fields: Id - a unique test case identifier; Name - name of
the test case; Requirement id - specific id of the requirement
tested with this test case; Goal - a description of the goals of
the test case; Preconditions - conditions that must be met in
order to perform the test case (results from other tests or some
additional conditions); Execution environment of the test case;
Expected results; Actual results; Test case status (pass or fail);
History of the changes in each test case version. Code and
branches coverage techniques could be useful for generating
test cases.

E. Coding
The best approach is to define more independent modules

because they can be used as generic functions in many other
applications from the same or similar scientific domain. If any
part of the code is repeated it definitely should be written as
a separate function. The declaration and definition of unused
variables should be avoided. Also, release of the memory
should be performed always when possible. Comments must be
written through the code and, if possible, some optimizations
can be done. Parallelization can be performed by using some
libraries (for example, OpenMPI [17], if the code is written in
C).

F. Testing
When test cases are created and code is written it is time

to make and run tests. There are various methods that can
be used to provide assurance that the software is error free.
White-box testing includes tests designed to check the source
code. If possible, tests should be created before the software is
developed. Only non redundant test cases should be selected,
the other should be eliminated. The following criteria are
good indicators that testing process is completed: all tests are
performed successfully without errors, the criteria for source
code coverage and test models are satisfied and validation by
analytic solutions is achieved.

Tests automation and tools that provide source code test-
ing or functional testing are very important and can greatly
improve and speed up the process of testing. To improve the

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

quality of applications, the current practice of manual testing
should be changed. There are many frameworks for creating
and running tests (for example, frameworks for C code: Check,
CUnit, AceUnit, CuTest, etc.).

We recommend white box testing for each module, and
then integration testing to check the interconnection between
the modules and functionality of a system as a complete
product. The possible conflicts with the already created tests
must be resolved by changing the tests.

G. Evaluation
The results can be evaluated only by a limited number of

users (usually scientists themselves) because the accuracy of
the results is often based on theory and experiments. Scientists
who have developed applications that solve similar problems
can help to find errors. Developing experience and learning
techniques for guessing or past errors can help a lot in the test
design. Found errors should be sorted by priority, for example,
if the error affects the further development or it is a critical
error, it should be marked as error with higher priority and
corrected as soon as possible.

H. Writing Short Report
A short report is document that describes the finished tasks

in the current iteration. The tasks done in each phase should
be listed. This is very important when a new member joins
the team because he/she will know what is done and what
have to be done. Scientists do not have practice for generating
documents, but creation of documents can help to further
improving and upgrading the application.

V. SOLVING 1D AND 2D SCHORÖDINGER EQUATIONS BY
USING DISCRETE VARIABLE REPRESENTATION METHOD

Discrete Variable Representation methods are widely used
in different scientific domains, such as chemical physics,
molecular quantum dynamics, etc. DVR’s are described as
a representation whose basis functions are localized about
discrete values of the variables. DVR’s are also approximations
of coordinate operators by their values at the DVR points
which are assumed diagonal. DVR methods are acceptable
for many problems because they simplify the calculation of
the kinetic energy matrix elements of the Hamiltonian matrix
and also potential matrix elements which are the value of
the potential of the DVR. DVR’s provide efficient numerical
solutions to quantum dynamical problems. When the DVR’s
product in multi-dimensional systems is calculated, operation
of the Hamiltonian on a vector is fast and the Hamiltonian
matrix is sparse (with many 0’s) [18].

Schrödinger equation is a partial differential equation that
describes the dynamics of system at atomic and molecular
level. A time independent equation is represented with the
following formula:

H ∗Ψ = E ∗Ψ (1)

where H is the Hamiltionian operator, Ψ is the wave function
of the quantum system and E is the energy of the state Ψ. A
time dependent Schrödinger equation has the form:

i ∗ h̄∂Ψ

∂t
= H ∗Ψ (2)

where H is the Hamiltionian operator, Ψ is the wave
function of the quantum system, h̄ is the Planck Constant
divided by 2Π and ∂

∂t is a partial derivative with respect to
time t.

We have to develop scientific application for solving 1D
and 2D Schrödinger equation. We will organize the develop-
ment process in increments. There are already some codes for
solving 1D and 2D Schrödinger equation in Mathematica, but
we want to use C language because our goal is to use this
module as an independent part in more complex application
written in C. Detailed descriptions of the requirements and
modules are given in the following subsection.

A. Increment 1
1) Planning:

• define the inputs and outputs of the module for solving
1D and 2D Schrödinger equation

• define developing environment, software and hardware
needed for developing and execution of the application

• split the algorithm in modules
• define inputs and outputs for each module
• create tests for modules by choosing any tool for test

automation
• develop all submodules needed for the module for

solving 1D and 2D Schrödinger equation
• perform tests and evaluate the results
• correct errors if any

2) Requirement Specification: In this subsection, we will
provide only the list the requirements with their IDs, but they
also have to be specified as described above.

Functional requirements:
1) Module for multiplication of two 2D arrays (input

- two 2D arrays of type double and number of
rows/columns of the array (matrices are quadratic) of
type integer, output - one 2D array of type double).

2) Module for making a diagonal 2D array(input - 1D
array of type double and number of rows/columns of
the array of type integer, output - diagonal 2D array
of type double).

3) Module for multiplication of a scalar and a 2D array
(input - 2D array, scalar and number of rows/columns
of the array, output - 2D array).

4) Module for making an identity 2D array (input -
the number of rows/columns of the array, output 2D
array).

5) Module for addition of two 2D arrays (input-two
2D arrays and number of rows/columns of the array
(matrices are quadratic), output - one 2D array).

6) Module for making a transposed 2D array (input -
the number of rows/columns of the array, output 2D
array).

7) Structure for a file row which contains three double
numbers.

8) Structure for a file which contains array of elements
of type ”structure for a file row” and number of rows
of the file (integer).

9) Module for reading data from file (input - char
array(file path), output- element of type ”structure for
a file”.

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

10) Module for sorting rows in file (input - element of
the type ”structure for a file”, output - element of the
type ”structure for a file”).

11) Module for calculating eigenvalues (input - 2D array
of type double and number of rows/columns of the
array(integer), output- 1D array of type double).

12) Module thcheby for calculating array of x-values,
y-values(2D), transformation matrices for x and y
values in finite basis representation (FBR) (input -
number of points for x values- integer, number of
points for y values - integer, minumim and maximum
values for x and y-double, output - 1D array for x
points of type double, 1D array for y points of type
double, 1D array of x points in FBR of type double,
1D array of y points in FBR of type double, 2D array
for transforming x points from FBR to DVR of type
double, 2D array for transforming y points from FBR
to DVR of type double. y-values are only needed for
solving 2D Schrödinger equation.

Nonfunctional requirements:
1) Algorithm for array sorting should have complexity

smaller then O(n2).
2) Application should be scalable (for example, when

input data size increases, dynamic memory allocation
must be used).

3) Memory used by the objects should be released when
they are not used anymore.

3) System Design: The application for solving 1D and
2D Schrödinger equation can be run on a single processor
machine. A C compiler is needed for a code compailing. A
code editor should be installed also. The application can be
run on any operating system. The results are provided to the
standard output. In order to perform the testing, the CuTest
framework for testing C codes should be installed also [19].

If the user wants to solve 1D or 2D Schrödinger equation,
he/she has to provide only the input parameters to the module
for solving these equations and file path.

4) Test Cases Design: In order to test the system for
each specified functional requirement, we defined test case, as
specified in the Section 4. Writing test cases before writing the
code will help us to identify the needed input, predicted results
and conditions. This is the part where only text document is
written and later in the testing phase we will use the CuTest
framework to write and run the unit tests. For example, the test
case for the 12-th functional requirement (thcheby module)
specified above, has the following conditions:

1) deltax is the difference between the maximum(xmax)
and minumum value of x(xmin);

2) deltay is the difference between the maximum(ymax)
and minumum value of y(ymin);

3) nx1 is the number of x points increased by 1;
4) nxy is the number of y points increased by 1;
5) The i-th member of the array of x values (ptsx) has

the value ((i+ 1) ∗ deltax ∗ 1.0)/nx1 + xmin
6) The i-th member of the array of y values (ptsy) has

the value ((i+ 1) ∗ deltay ∗ 1.0)/ny1 + ymin
7) The i-th member of the array of x values in FBR

(fbrtx) has the value (((i+ 1) ∗Π)/deltax)2;
8) The i-th member of the array of y values in FBR

(fbrty) has the value (((i+ 1) ∗Π)/deltay)2;

9) The element at the position (i, j) of the transforma-
tion matrix for x values (Tx) has the following value√

2.0/nx1 ∗ sin((i+ 1) ∗ (j + 1) ∗Π/nx1)
10) The element at the position (i, j) of the transforma-

tion matrix for y values (Ty) has the following value√
2.0/ny1 ∗ sin((i+ 1) ∗ (j + 1) ∗Π/ny1)

For each condition a status should be written also
(PASSED/FAILED).

5) Coding: The code is organized in modules. The coding
of a module is performed after the specification of the test
case for that module. Arrays are defined by using pointers
and memory is released always when possible. The calculation
of eigenvalues is performed by using the GNU Scientific
Library(GSL) library. The complexity of the algorithm is
O(n2). Sorting was implemented by using the quick sort
method.

One of the most important things that scientists do not prac-
tice is writing comments through the code. We add comments
for describing the modules, variables, cycles and statements.
Another useful thing in programming is the concise naming of
the variables and methods.

6) Testing: Testing was performed by using the CuTest
system which is designed for writing, administering, and
running unit tests in C [19]. A test case is passed if all
conditions for that test case are satisfied. In order to check
the correctness of the code, assertions must be added. For
example, in order to check the correctness of the test case
for the 14-th functional requirement, we have to write several
test functions and to call them in the main function. In Figure
2, function for testing the members of the array of x values
in FBR (fbrtx) is shown, where i-th member has the value
(((i + 1) ∗ Π)/deltax)2;, as described in the subsection test
cases above.

void TestFbrtxMembers(CuTest *tc)
{
struct return_objects result=
thcheby(10, 1, 5, 10, 2, 6);
double *ac=result.fbrtx; //actual result
int i;
double *ex=
malloc(10*sizeof(double));//expected result
for(i=0;i<10;i++)
{
ex[i]=square(((i+1)*M_PI)/(5-1));
CuAssertTrue(tc,abs(ex[i]-ac[i])<0.00001);
}

Figure 2. Descriptive Caption Text

7) Evaluation: Evaluation was performed by comparing
the results from our application to results from the provided
code in Mathematica by the Upssala University. When compar-
ing experimental results, another way to test this application to
test the convergence of the results with increasing the density
of grid points which is equivalent to increasing the number of
basis functions. Several errors in the modules were found and
they were corrected.

8) Writing Short Report: In the first increment, all modules
specified in the requirements section needed for calculating

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

were written and tested. The errors were corrected and all tests
passed successfully. Also, all nonfunctional requirements were
taken into consideration.

B. Increment 2
1) Planning:

• adapt the input for 1D and 2D equation
• integrate all modules into one module for solving 1D

and 2D Schrödinger equation
• create tests for the module for solving 1D and 2D

Schrödinger equation
• perform tests and evaluate the results
• correct errors, if any

2) Requirement Specification: Functional Requirements

• Module for making the interpolation function (PES)
and energy list (pel)

• Module for calculating 1D and 2D Schrödinger equa-
tion: Input - Potential energy values computed on 2D
grid of points (E, x, y) or 1D grid (E,x) read from
a separate file, the number of DVR points, minimum
and maximum values of x(1D) and x, y(2D), inter-
polation function and mass; Output - Frequencies of
various vibrational transitions (n,m)− > (l, k) to be
compared with experiment, but also the convergence
with respect to computation-related parameters to be
tested, - Vibrational wavefunctions on 2D grid of
points (ψ, x, y) or the square-modulus of ψ on 2D
grid of points (|ψ|2, x, y), i.e. ((ψ ∗ ψ), x, y).

3) System Design: Same as specified in Increment 1.
4) Test Cases Design: Two test cases were created. The

conditions included in the test case for the first module in
this increment are for interpolation function which should
be implemented by using the Hermite interpolation method
and some details about making the pel array. The second
test case only checks the output results because all modules
that are called in this module are checked in the previous
increment. The only important thing here is the proper modules
integration.

5) Coding: In this increment, only the developed modules
were called in proper order in the module for calculating
1D and 2D Schrödinger equation. The module for calculat-
ing the 2D Schrödinger equation was developed. Also, this
module is appropriate for solving 1D Schrödinger equation
by eliminating the calculations which include the second
coordinate y. The most convincing part here was programming
of the interpolation method which is an integrated function in
Mathematica.

6) Testing: Testing was also made by using the CuTest
framework. Two tests were created and run.

7) Evaluation: The results were compared to the results
from the program written in Mathematica.

8) Writing Short Report: Time needed for this increment
was shorter because all modules were tested and programmed
in the previous increment. An algorithm for Hermite interpo-
lation was programmed and some errors that were found in
the integration function were corrected.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for developing
scientific applications. The framework describes the phases
of the development process. In order to prove the developing
model, an application for calculating 1D and 2D Schrödinger
equation was developed. The results show that the framework
is suitable for developing this application because at the end
we have understandable code organized in modules, docu-
mentation and generated tests which are shortly described in
the Section 5. The existing solutions for this problem do not
have comments through the code or any documentation and
it is very hard to understand the code. There are no proposed
developing stages for scientific applications which will guide
scientists to write documents and to plan the development
process. This framework will help scientists to change the
current development practices and will provide better overview
of the application for the scientists who will join the project
later. The framework is a guide for developing scientific
applications because it explains the developing steps in details.
The independent modules or complete program as a module
can be used also in other scientific applications. Although
there are many scientific libraries, usually a scientific research
group needs modules with specific input, output and parallel
programming methodologies which are originally developed
by the group. Our goal is to test the framework of the large
scientific applications and to check if this development process
can be applied for different scientific applications. Also, we
want to provide a set of documented modules written in C that
are used in many different scientific applications which will
be available for the scientists to use in their applications. Our
future work is oriented to developing more complex high per-
formance computing (HPC) scientific application which will
require powerful distributed computing resources. If needed,
some modifications of the existing model will be made in the
future.

REFERENCES

[1] PCMag. Definition of scientific application. [Online]. Available: http:
//www.pcmag.com/encyclopedia/term/50872/scientific-application [re-
trieved: Mar., 2015]

[2] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” in Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009 10th International
Symposium on, Dec 2009, pp. 4–16. [Online]. Available:
http://dx.doi.org/10.1109/I-SPAN.2009.150

[3] IEEE standard glossary of software engineering terminology. The
Institute of Electrical and Electronics Ehgineers, New York, NY, USA.
[Online]. Available: http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-
glossary-610.12-1990.pdf. [retrieved: Mar., 2015]

[4] B. Koteska and A. Mishev, “Software engineering practices and
principles to increase quality of scientific applications,” in ICT
Innovations 2012, ser. Advances in Intelligent Systems and Computing,
S. Markovski and M. Gusev, Eds., vol. 207. Springer Berlin
Heidelberg, 2013, pp. 245–254. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-37169-1 24

[5] R. Baxter, “Software engineering is software engineering,” in
Proceedings of the First International Workshop on Software
Engineering for High Performance Computing System Application.
Edinburgh, Scotland, United Kingdom: IEE, 2004, pp. 14–18. [Online].
Available: http://dx.doi.org/10.1049/ic:20040411

[6] C. Roy, “Practical software engineering strategies for scientific
computing,” in Proceedings of the 19th AIAA Computational Fluid
Dynamics Conference. Red Hook, NY, USA: Curran Associates, Inc,
2009, pp. 1473–1485. [Online]. Available: http://dx.doi.org/10.2514/6.
2009-3997

98Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

http://www.pcmag.com/encyclopedia/term/50872/scientific-application
http://www.pcmag.com/encyclopedia/term/50872/scientific-application
http://dx.doi.org/10.1109/I-SPAN.2009.150
http://dx.doi.org/10.1007/978-3-642-37169-1_24
http://dx.doi.org/10.1007/978-3-642-37169-1_24
http://dx.doi.org/10.1049/ic:20040411
http://dx.doi.org/10.2514/6.2009-3997
http://dx.doi.org/10.2514/6.2009-3997

[7] D. E. Post and R. P. Kendall, “Software project management and quality
engineering practices for complex, coupled multiphysics, massively
parallel computational simulations: Lessons learned from asci,”
International Journal of High Performance Computing Applications,
vol. 18, no. 4, 2004, pp. 399–416. [Online]. Available: http:
//dx.doi.org/10.1177/1094342004048534

[8] F. Hernández, P. Bangalore, and K. Reilly, “Automating the
development of scientific applications using domain-specific modeling,”
in Proceedings of the second international workshop on Software
engineering for high performance computing system applications.
New York, NY, USA: ACM, 2005, pp. 50–54. [Online]. Available:
http://dx.doi.org/10.1145/1145319.1145334

[9] V. R. Basili et al., “Understanding the high performance computing
community: A software engineer’s perspective,” IEEE Software,
vol. 25, no. 4, 2008, pp. 29–36. [Online]. Available: http:
//dx.doi.org/10.1109/MS.2008.103

[10] L. Christopherson, R. Idaszak, and S. Ahalt. Developing Scientific
Software through the Open Community Engagement Process
. [Online]. Available: http://dx.doi.org/10.6084/m9.figshare.790723
[retrieved: Mar., 2015]

[11] O. Marques and T. Drummond, “Building a software infrastructure
for computational science applications: lessons and solutions,” in
Proceedings of the second international workshop on Software
engineering for high performance computing system applications.
New York, NY, USA: ACM, 2005, pp. 40–44. [Online]. Available:
http://dx.doi.org/10.1145/1145319.1145332

[12] G. Wilson et al. Best Practices for Scientific Computing. [Online].
Available: http://arxiv.org/abs/1210.0530 [retrieved: Mar., 2015]

[13] J. Segal. Models of scientific software development. [Online].
Available: http://oro.open.ac.uk/17673/1/SegalICSE08R.pdf [retrieved:
Mar., 2015]

[14] ——, “Scientists and software engineers: A tale of two cultures,”
in Proceedings of the Psychology of Programming Interest Group.
UK: University of Lancaster, 2008, pp. 44–51. [Online]. Available:
http://www.ppig.org/papers/20th-segal.pdf

[15] R. Sanders and D. Kelly, “The Challenge of Testing
Scientific Software,” in Proceedings of the Conference for
the Association for Software Testing, July 2008, pp. 30–36.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.464.7432&rep=rep1&type=pdf

[16] I. Sommerville, Software Engineering, 9th ed. Harlow, England:
Addison-Wesley, 2010.

[17] OpenMPI. Open MPI: Open source high performance computing.
[Online]. Available: http://www.open-mpi.org/ [retrieved: Mar., 2015]

[18] J. C. Light and T. Carrington Jr, “Discrete-variable representations
and their utilization,” Advances in Chemical Physics, vol. 114,
2000, pp. 263–310. [Online]. Available: http://dx.doi.org/10.1002/
9780470141731.ch4

[19] Cutest: C unit testing framework. [Online]. Available: http://cutest.
sourceforge.net/ [retrieved: Mar., 2015]

99Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

http://dx.doi.org/10.1177/1094342004048534
http://dx.doi.org/10.1177/1094342004048534
http://dx.doi.org/10.1145/1145319.1145334
http://dx.doi.org/10.1109/MS.2008.103
http://dx.doi.org/10.1109/MS.2008.103
http://dx.doi.org/10.6084/m9.figshare.790723
http://dx.doi.org/10.1145/1145319.1145332
http://arxiv.org/abs/1210.0530
http://oro.open.ac.uk/17673/1/SegalICSE08R.pdf
http://www.ppig.org/papers/20th-segal.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.7432&rep =rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.7432&rep =rep1&type=pdf
http://www.open-mpi.org/
http://dx.doi.org/10.1002/9780470141731.ch4
http://dx.doi.org/10.1002/9780470141731.ch4
http://cutest.sourceforge.net/
http://cutest.sourceforge.net/

	Introduction
	Related Work
	Scientists' development practices
	Framework for Developing Scientific Applications
	Planning
	Requirements Specification
	System design
	Test cases design
	Coding
	Testing
	Evaluation
	Writing Short Report

	Solving 1D and 2D Schorödinger Equations by using Discrete Variable Representation Method
	Increment 1
	Planning
	Requirement Specification
	System Design
	Test Cases Design
	Coding
	Testing
	Evaluation
	Writing Short Report

	Increment 2
	Planning
	Requirement Specification
	System Design
	Test Cases Design
	Coding
	Testing
	Evaluation
	Writing Short Report

	Conclusion and Future Work
	References

