
Automatic Generation of Sequence Diagrams and Updating Domain Model from
Use Cases

Fabio Cardoso de Souza, Fernando Antonio de Castro Giorno
Master’s Program in Software Engineering
Institute for Technological Research (IPT)

São Paulo, Brazil
e-mail: souzafc@yahoo.com, giorno@pucsp.br

Abstract—Software modeling allows for problem
decomposition in a way that facilitates analysis and
communication of the solution to developers and other
interested parties. Models are widely used in engineering in
general, but in Software Engineering modeling has often been
left out due to the pressures to improve deadlines. A method
and a tool that reduce the duration of this phase could help
furthering the modeling phase. Use Cases are commonly
utilized for functional specifications in Object-Oriented
paradigm and the use of markups in Use Cases allow an
automatic partial generation of Analysis Models, reducing the
time of the modeling phase in this paradigm. This paper
proposes a combination of rules for marking up Use Cases and
one procedure for generating partial Sequence Diagrams with
analysis classes (one Sequence Diagram for each Use Case) and
the updating of the Domain Model with operations. A tool was
built to prove the concept and two experiments were carried
out.

Keywords-Analysis Model; Use Case; Sequence Diagram;
Model Driven Architecture.

I. INTRODUCTION

Software modeling permits the analyst to break the
problem to be solved into parts which can be better analyzed.
It also allows the formal communication of a functional and
technical solution based on the demanded requirements.
Model is a formal specification of the structure or function of
a system [1]. A graphic representation can be used to provide
a visual body for the model.

Despite being widely used in many areas of engineering,
modeling has been left out in Software Engineering.
According Rosenberg and Stephens [2], in practice, there
never seems to be enough time to do modeling, analysis and
design and there is always pressure from management to
jump to code prematurely because progress on software
projects tends to get measured by how much code exists,
leading to problems in the quality of software.

Use Cases are commonly used for functional
specification in Object-Oriented developments. According to
Sommerville [3], Use Cases are an effective technique for
eliciting requirements and they are increasingly used since
the Unified Modeling Language (UML) became a standard
for Object-Oriented modeling. Yet according to Rosenberg
and Stephens [2], the Use Cases are created over a Domain
Model since this offers the use of a common vocabulary. The

utilization of markups in Use Cases can allow for the
automatic partial generation of the Analysis Model, as
demonstrated in the Mason and Supsrisupachai [20] work,
where marked up Use Cases are automatic transformed into
Sequence Diagrams.

The automatic partial generation could reduce the
duration of the modeling phase, thus stimulating the adoption
of this phase in Object-Oriented development projects, as
suggested by a qualitative research [23] carried out with
requirements analysts, system analysts and project managers.
In this qualitative research, the majority of the interviewees
agreed that software modeling improves the quality of the
final product and most of them believe that the automatic
generation of the partial Analysis Model can help the
adoption of the modeling phase in software development
projects. Due to space limitation, details of this research are
omitted.

This paper presents a set of rules for marking up Use
Cases and a transformation procedure that permits deriving
Sequence Diagrams with analysis classes from the marked-
up Use Cases. It also permits the updating of the Domain
Model with operations identified in the Sequence Diagrams,
leading to the Class Diagram. Class Diagram and Sequence
Diagrams are the main diagrams in an Object-Oriented
analysis model. The diagrams generated do not take into
consideration details of a possible implementation, which
must be done during the design phase. According to Booch
et al. [4], the analysis must yield a statement of what the
system does, not how. This research also presents a tool
which implements the proposed procedure and with which
the experiments were realized.

The rest of this paper is organized as follows. Section 2
presents concepts on which this research is based. This
section also presents the State of the Art in the topics Model
Driven Architecture and transformation of Use Cases into
Sequence Diagrams. Section 3 presents a proposal for
marking up Use Cases and a transformation procedure.
Section 4 presents the tool and two experiments. The fifth
and final section presents the conclusion and suggestions for
future researches.

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

II. CONCEPTS AND STATE OF THE ART

This section starts presenting concepts related with Use
Cases, Software Modeling and transforming requirements
into software models approaches, and ends with state of the
art on transformation subject.

A. Requirements Specification with Use Cases

Requirements Engineering provides appropriate
mechanisms for [5]: understanding what the client wants;
analysis of her/his needs; evaluation of feasibility;
negotiation of a reasonable solution; specification of
requirements in a unambiguous manner; validation of the
specification and management of the requirements to be
implemented.

Use Cases serves as functional specifications of
requirements in Object-Oriented paradigm and the Analysis
Model is created based on them. Use Cases provide the
external behavior expected by the system with respect to the
vocabulary in a Domain Model. Rosenberg [2] states that
Use Cases describes a way by which the users interacts with
the system and how the system responds. Pressman [5] notes
that Use Cases does not tell how a system should realize the
functionality. This emphasizes the importance of modeling.

According to Larman [6], Use Cases can be essential or
concrete. Essential Use Cases do not consider mechanism
details (like User Interfaces), while Concrete Use Cases
consider them. In this paper, only Concrete Use Cases are
contemplated.

Yet, according to Rosenberg [2], Use Cases should be
written in the objects model context, referencing domain
classes and boundary classes by their names. This
recommendation is the base for this work as the objects
constituents of the Analysis Model are the objects referenced
in the Use Cases and existing in the Domain Model.

Use Cases makes explicit not only the objects involved in
the system boundary but also the actors participating in the
functionality and their actions. An actor is any entity that
communicates with the system and is external to it, and may
be a device, a system or a person. A main actor is that which
interacts with the system in order to produce the result while
secondary actors only support the system [5].

B. Analysis Model

Modeling is generally done in two levels of abstraction:
Analysis Model and Design.

The Analysis Model - or Software Architectural Design -
is used to identify, in a high level of abstraction, the
components of the software, describing how the software is
decomposed and organized into components [7]. In the case
of Object-Oriented software, these components are Analysis
Classes with their attributes and operations. In this paper, a
partial Analysis Model is the expected result of the
application of the proposed method.

The Class Diagram is the most important diagram of the
Analysis Model and it describes the static vision of the
system in terms of classes and relationships between them.

Jacobson [8] distinguishes the following types of classes
used to give structure to Object-Oriented software: boundary,

control and entity. According to him, boundary classes
respond to information and behaviors related to system
boundary; entity classes respond to information that are
stored in the system and to behaviors surrounding these
information; and control classes respond to behaviors which
are not naturally incorporated into entities. These definitions
are complemented by Bruegge and Dutoit [9], for whom,
boundary classes represents interfaces between systems and
actors, and control classes are in charge of realizing Use
Cases.

The boundary and control classes, as well as their
behaviors (their operations) are evident during analysis, in
Analysis Model.

In this paper, these three types of objects are adopted in a
way through which the Sequence Diagram can represent the
software model with these three layers (boundary, control
and entities).

Sequence Diagram is the second most important diagram
of an Analysis Model and it is used to illustrate how objects
interact with one another through messages, demonstrating
the internal behavior of one system functionality (one Use
Case).

The sequence of messages in a Sequence Diagram can
use a pattern of communication between the objects, how,
for example, the pattern presented by Heinemann and
Denham [10], where messages should follow the flow
“boundary �� control �� entity”. This pattern is adopted
in this work.

C. MDD and MDA

Model Driven Development (MDD) refers to the
approaches based on models as the main products of a
development [11]. According to Milicev [12], MDD raises
the level of abstraction in a development.

Model Driven Architecture (MDA) is a MDD approach
proposed by the Object Management Group (OMG) whose
objective is to alleviate the problem of ruptures between
design and code due to system migration from one platform
to another [11].

MDA advocates four layers of model: Computation
Independent Model (CIM), Platform Independent Model
(PIM), Platform Specific Model (PSM) and Implementation
Specific Model (ISM) as shown in Figure 1.

In the CIM layer there lies the process models and
requirements that are independent of computing. In the PIM
layer there lies the Analysis Model which is in the
computing field, therefore totally independent of platform. In
the PSM layer there lies the lower level models, which takes
into consideration the platform where the system would be
introduced. Finally, the ISM layer is the layer where the code
is generated. The development focuses, on the MDA
approach, is at a high level of abstraction, that is, in the CIM
and PIM layers.

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Figure 1. Layers of MDA.

D. Related Work

In [13] a process for generating a model on the CIM layer
from the requirements written in natural language was
proposed. The requirements should be represented in
Language Extended Lexicon (LEL) and in a scenario Model.
LEL is a structure that permits representation of significant
symbols in the universe of discourse, their synonyms and
their behavior. The symbols can be: People, Objects, States,
Events, among others. The process consists of a series of
transformation rules over texts written in natural language
contained in the LEL and in the scenarios.

In [14] a use case modeling approach was proposed in a
way that elements of the Use Case are inserted into specific
fields of a template, but there are no fields for components of
the steps (sender object for example). Under this proposal,
the steps should be restricted by a combination of grammar
rules and rules for key words utilization. Based on this, the
same authors [15] proposed a tool named aToucan
(Automated Transformation of Use Case Model into
Analysis Model). The tool aToucan reads the restricted steps
of Use Cases and realizes the processing of natural language
written in steps in order to obtain classes and relationships
for the Analysis Model. The result is a generation of an
intermediate Unified Modeling Language (UML) meta-
model that is then transformed into a final Analysis Model.
Only Class Models are mentioned in the obtained results.

In [16][17], it was proposed a set of marking-up rules and
a set of syntactic structures in a manner an analyzer can
extract the elements in order to generate a Sequence
Diagram. The marking-up rules aim to permit the analyst to
mark up occurrences of links, conditions and parallelism.
The author names the marked-up Use Case with syntactic
restrictions by Normalized Use Case.

The analyzer utilizes a dictionary to localize and store the
elements in a catalogue applying syntactic rules. The
catalogue is then used to obtain, in each message, the object
sender, object receiver, operations and arguments that are
registered in a file. There is no diagram generation.
According to the author, the results needs to be refined by
the analyst due to the confusion the analyzer can do while
extracting concepts. The Use Case should be written in
English natural language.

In [18] a set of transformation rules and a syntactic
structure of the steps were also proposed. The steps should
be written in this syntactic structure: “Who does What for
Who”, being that the first ‘Who’ denotes the actor that starts
the communication, the ‘What’ denotes the message to be
transmitted, and the second ‘Who’ denotes the receiver of the
message. The proposal contemplated a tool for editing Use

Case and for generating the Sequence Diagram. The authors
consider the method and the tool only as an instrument for
learning.

In [19], it was proposed a tool for generation of Sequence
Diagrams from Use Cases written in English. The tool uses a
pre-existing component (Stanford Parser) to generate parts
of speech tagged sentences and type dependencies. It then
applies a proposed sentence structure rules and
transformation rules to identify elements to generate the
Sequence Diagram. The approach works only for the Simple
Sentences in English.

In [20], Mason and Supsrisupachai proposed markups to
indicate the primitives in a Use Case that derive elements to
the respective Sequence Diagram. Only main scenarios of
Use Cases are analyzed and each step of a Use Case needs to
be marked up with an event type. A data dictionary is
utilized as a reference of the Use Case elements. The
marking up is made at each step of the Use Case on the
elements: object sender, message, object receiver, actions
and event timer. A tool was built for editing and marking up
Use Cases and for generating the corresponding Sequence
Diagram.

E. Consideration on State of the Art

In the MDA field, a lack of an official meta-model
defined by the OMG for specification of Use Cases resulted
in the presented proposals not fitting exactly into the MDA
philosophy, which advocates, among other things, the use of
UML and its meta-models as the origin and targets for
transformations.

In direct Use Cases transformation into Sequence
Diagrams, The Mason and Supsrisupachai [20] work offers a
greater precision in the generation of a partial Analysis
Model because the analyst previously identifies the elements
in the Use Cases, as long as, he understands the problem and
can deal with the imprecision of the natural language in an
appropriate manner.

III. RULES FOR MARKING UP USE CASES AND THE

TRANSFORMATION PROCEDURE

Mason and Supsrisupachai [20] work served as an
inspiration for this proposal. As was previously mentioned,
the use of markups in Use Cases is an efficient approach for
partial automatic generation of Sequence Diagrams with
analysis classes.

Some important differences in this work compared to the
Mason and Supsrisupachai [20] work are:

This work proposes the updating of Domain Model with
the operations identified during the method execution. It uses
stereotypes to represent the types of classes according to
their layers (boundary, control and entity). They also present
a transformation procedure from Use Cases into Analysis
Model and, finally, they define markups for actor, interface
and guard condition. The set of markups was defined to
allow, following the method, the generation of sequence
diagrams considering stereotypes, actors (primary and
secondary) and messages with condition guards. Even
though this automatic generation is not enough for the
analyst to start lower level design or code, it can be useful to

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

the analyst since he does not need to start the modeling from
scratch, thus reducing the duration of this phase. The mark-
up process is considered to be made, by the analyst, against
the Domain Model and trying to use, as much as possible, all
the markups. For example, if in a specified step, the interface
is not specified, and considering that there is a markup for
interfaces, the professional must verify the possibility to
explicit an interface in this step.

A. Marking up Rules

Table I below presents a set of markups proposed in this
paper.

TABLE I. USE CASE MARKUPS

Markup Markup target Markup format

sdr Sender object [sdr Sender]

rcv Receiver object
[rcv Receiver] or
[rcv Receiver: name on
Domain Model]

msg Message
[msg Message] or
[msg Message: label]

act
Internal action of the object
(recursive message)

[act Message]

a1 Main actor [a1 Actor]

a2 Secondary actor [a2 Actor]

ifc
Human–machine or machine-
machine interface

[ifc Interface]

grd Guard condition [grd condition]

The ‘msg’ markup allows an optional format with the use

of a second argument (an optional label) which denotes that
the label should be used on the diagram in the place of first
argument (the event).

In the same way, “rcv” markup permits an optional
format to specify the name of the receiver object when the
name used in the step does not reflect the name in the
Domain Model.

B. Transformation Process

According to Rosenberg and Stephens [2], Use Cases
must be written in the context of the Domain Model,
referencing the domain classes and boundary classes by their
names. They recommend yet that the steps should be written
with the structure: object – verb – object. Sequence
Diagrams are behavioral models that illustrate how the
objects interact with each other. These interactions are
considered, initially (on the partial Sequence Diagram), a
representation of the verbs specified on the Use Cases.

As mentioned above, the proposed procedure considers
the types of object (boundary, control and entity), the actors
and the messages between them with optional condition
guard, in order to produce a partial Analysis Model. The
following premises are considered in order to identify these
elements in the Use Case text:

1. A Use Case step should contain only one message.
2. A step should be in one of the following

configurations:

2.1. “Xxx [a1 name] xxx [msg name] xxx [ifc name]
xxx.”

2.2. “Xxx [sdr System] xxx [msg name] xxx [ifc
name] xxx.”

2.3. “Xxx [sdr System] xxx [act name] xxx.”
2.4. “Xxx [sdr System] xxx [msg name] xxx [a2

name].”
2.5. “Xxx [sdr System] xxx [msg name] xxx [rcv

name] xxx.”
Where ‘xxx’ represents free and non-obligatory texts and

‘name’ represents the name of an actor, object or message. A
guard condition is optional and may occur in any of the
above configurations.

Below is presented the procedure for transforming Use
Cases into Sequence Diagrams and for updating the Domain
Model with operations.

1. For each Use Case document:
1.1. Is created a Sequence Diagram with the same

name as the Use Case.
1.2. Is added, into the diagram, the main actor, the

«boundary» classes from ‘ifc’ markups without
repetition, a «control» class with the same name
as the Use Case, «entity» classes in the same
sequence which they occur in the Use Case
without repetition, and the secondary actors.
«entity» classes are the other objects in Use
Case which are neither actors, nor interface nor
System.

1.3. For each step in one expected configuration, the
specific rules for messages creation must be
observed. In any expected configuration, there
may be a guard condition.

1.3.1. “Xxx [a1 name] xxx [msg name] xxx [ifc
name] xxx.”:

1.3.1.1. One message is created from the
main actor to the interface specified
in the step.

1.3.1.2. The focus is placed at the interface
specified in the step in manner that
the next message originates from it.

1.3.2. “Xxx [sdr System] xxx [msg name] xxx
[ifc name] xxx.”:

1.3.2.1. If the control object has the focus:
1.3.2.1.1. One message is created from the

control object to the interface
specified in the step.

1.3.2.1.2. The focus is placed at the
interface specified in the step in
a way that the next message
originates from it, unless there is
a guard condition, because in
this case, the guard condition
may not occur, so the control
object continues originating
messages.

1.3.2.2. If an interface has the focus:
1.3.2.2.1. One message is created from the

interface that has the focus to
the interface specified in the

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

step. This represents a hyperlink
from the first interface to the
second, and such type of
operation does not need to pass
through the control object.

1.3.2.2.2. The focus is placed at the
interface specified in the step in
a manner that the next message
originates from it, unless there is
a guard condition, because in
this case, the guard condition
may not occur, so the first
interface continues originating
messages.

1.3.3. “Xxx [sdr System] xxx [act name] xxx.”:
1.3.3.1. If the control object has the focus:

1.3.3.1.1. One recursive message is created
in the control object.

1.3.3.1.2. The focus remains at the control
object.

1.3.3.2. If an interface has the focus:
1.3.3.2.1. One message is created from the

interface that has the focus to
the control object.

1.3.3.2.2. One recursive message is created
in the control object.

1.3.3.2.3. The focus is placed at the control
object.

1.3.4. “Xxx [sdr System] xxx [msg name] xxx
[a2 name] xxx.”:

1.3.4.1. If the control object has the focus:
1.3.4.1.1. One message is created from the

control object to the secondary
actor.

1.3.4.1.2. The focus remains on the control
object because it is not expected
that a secondary actor can
originate a message on the next
step (secondary actors only
supports the system and any
activity that it can do is outside
of the functionality scope).

1.3.4.2. If an interface has the focus:
1.3.4.2.1. One message is created from the

interface that has the focus to
the control object.

1.3.4.2.2. Other message is created from
the control object to the
secondary actor.

1.3.4.2.3. The focus is placed at the control
object because it is not expected
that a secondary actor can
originate a message on the next
step (secondary actors only
support the system and any
activity that it can do is outside
of the functionality scope) and
the control object originated the
last message.

1.3.5. “Xxx [sdr System] xxx [msg name] xxx
[rcv name] xxx.”:

1.3.5.1. If the control object has the focus:
1.3.5.1.1. One message is created from the

control object to the receiver
object.

1.3.5.1.2. The focus remains on the control
object because it is not expected
that a receiver object (an entity
by exclusion) can originates a
message on the next step (Use
Case do not explain the internal
behavior of the functionality).

1.3.5.2. If an interface has the focus:
1.3.5.2.1. One message is created from the

interface that has the focus to
the control object.

1.3.5.2.2. Other message is created from
the control object to the receiver
object.

1.3.5.2.3. The focus is placed on the
control object because it is not
expected that a receiver object
(an entity by exclusion) can
originate a message on the next
step (Use Case do not explain
the internal behavior of the
functionality) and the control
object originated the last
message.

2. The Domain Model is updated with operations
identified in «entity» objects.

C. Limitations

The set of marking-up rules and the transformation
procedure has the following limitations:

• Only main scenarios of Use Cases are considered;
• There is not treatment for inclusion and extension

relationships at Use Cases;
• Only synchronous messages are considered;
• Message parameters are not considered;
• Loops and parallelism (concurrent processes) are not

considered;
• Only Concrete Use Case is considered.

These limitations imply needs for adjustments and
complements at the Analysis Model generated by the tool
that implements the procedure, in order for the model to be
useful for the next phases of the project (design phase and
coding).

IV. TOOL AND EXPERIMENTS

Below, we present the tool that implements the proposed
procedure and two experiments.

A. Tool

A tool that automates the proposed procedure was
developed using Java language and the Netbeans Integrated
Development Environment (IDE). The tool is executed as a

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Netbeans plug-in and it is presented as a tab on it, where the
path to the Use Cases and Domain Model to be processed
should be informed. Furthermore in this paper, file formats
expected by the tool are presented. Figure 2 shows an
overview of the transformation process.

Figure 2. Transformation process overview.

Figure 3 presents an example of a marked-up part Use
Case. For each generated diagram by the tool, a new tab is
opened in the Netbeans IDE, containing the image of the
diagram, as shown in Figures 4 and 5.

Figure 3. Example of a marked-up part Use Case.

Figure 4. Class Diagram tab (partial view).

Figure 5. Sequence Diagram tab (partial view).

B. PlantUML component and configurations

The tool uses a pre-existing component known as
PlantUML that permits generation of diagrams from stored
commands in text formats. The tool creates PlantUML
command files for each Sequence Diagrams to be generated
from marked-up Use Cases and update with operations the
PlantUML file related to the Domain Model. For this, the
tool handles files with the following extensions:

• Files with “ucs” extension: File to be read and that
contains a marked-up Use Case.

• File with “domm” extension: File to be read and
updated and that contains PlantUML commands for
Domain Model diagram generation.

• File with “seqm” extension: File to be created and
that contains PlantUML commands for Sequence
Diagram generation corresponding to Use Case
with the same file name.

As soon as one file with PlantUML commands is
generated or updated by the tool, immediately, the
PlantUML component is activated for creating the respective
diagram in the “png” format.

The tool, when in execution, alerts the analyst on cases of
unidentified classes in the Domain Model, which however do
not hinder generation of diagrams. The tool also alerts
identified operations in Use Cases that already exists in the
Domain Model. In this case, the tool does not include the
operation in the Domain Model again.

The tool also transforms the names of objects in a
manner by which words that compose it have their initials
unified and transformed into capital letters. This pattern is
known as “Camel Case”.

C. Experiments

The experiments were designed to verify if the
application of the markups, associated with an automated
method, could generate sequence diagrams with a reasonable
margin of correctness, so that the adjustments to be made on

Use Case: Rent a Car.

Description: This Use Case describes the steps to make a car
reservation on the Vehicle Rental web page.

Main Actor: [a1 Client]

Main Scenario:
1)The [a1 Client] [msg request a reservation: doReservation] at the
[ifc VehicleRentalPage].
2)The [sdr System] [msg request identification number] at the [ifc
VehicleRentalPage].
3)The [a1 Client] [msg inform the identification number :
inputIdentificationNumber] at the [ifc VehicleRentalPage].
...

90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

the model, after its generation, would not cost more than it
would if the Analysis Model was made from scratch.

For the experiments, one looked for materials containing
Use Cases with the respective Sequence Diagram and Class
Diagram or Domain Models. The first material is a tutorial
[21] about analysis with Use Cases. The second material is a
training example [22] about Analysis Model.

One problem found during the experiments is that the
Use Cases of both materials did not explicitly specify the
interfaces, and this would lead to a poor initial Analysis
Model. To try and solve this problem, we define the
interfaces in the steps during the markup process.

The evaluation of the results was done by looking for
missing messages and objects in the diagrams generated by
the tool/method (generated diagrams) compared to the
diagrams presented in the materials (original diagrams).
During the evaluation, other types of differences are
detected, and they are listed in the Table II with their
respective quantity of occurrences. One important difference
that occurs in both experiments is that an operation, in the
control object, gets an inadequate name when the focus is on
an interface and a system realizes two or more subsequent
steps. In this case, the name given to the operation, in the
control object, is the name related to the first step of
subsequent steps, and then, it does not reflect the meaning of
all messages involved. This type of problem should be
corrected after the diagram is generated, because the
method/tool does not possess the mechanism to label, in an
adequate manner and in this situation, control object
operations.

One threat to external validity is about the skill of the
analysts to specify the Use Cases considering the markups.
This job must be done in a manner that the Use Cases
represent, as complete as possible, all important objects and
interfaces that must be present in the partial Sequence
Diagrams. If this does not occur, the generated diagrams will
be poor. We consider that it is an important concern and it
can be mitigated by training the analysts on the markups
elements orienting them to try to use the markups as much as
possible on the Use Cases. A future research could evaluate
this supposition accordingly.

Other threat to external validity is about the lack of
Domain Model during the Use Cases specification, possibly
leading to ambiguous objects while writing Use Cases and
precluding part of the method (the update of the Domain
Model with operations). We consider that the method need to
have their use restricted to cases where de Domain Model is
available during the requirements specification. One future
research could evaluate the impact of the absence of the
Domain Model during the Use Case specification using this
method.

TABLE II. TYPES OF DIFFERENCES BETWEEN ORIGINAL DIAGRAMS
AND GENERATED DIAGRAMS BY THE TOOL AND QUANTITY OF

OCCURRENCES IN EXPERIMENTS

Type Description of difference Exp.#1 Exp.#2

1

The behavior allocation (the object
where an operation is placed) in the
original diagram is different from what
was explicited in the step, and so, is
different from the alocation in the
generated diagram. This difference
configures a modeling decision of the
analyst and cannot be inferred by the
tool, so needs to be adjusted in the
generated diagram after generation.

3 0

2

There are behavior details in original
diagrams that does not appear in the
generated diagram. This difference is
acceptable because is part of an
analysis work to go beyond the
interaction between the actor and the
System and the generated diagram is
only partial.

3 1

3

Non-utilization, in original diagrams, of
the boundary-control-entity pattern.
This difference is acceptable because
the tool applies this flow pattern and
the difference does not necessarily
configure mistake.

1 1

4

Message omission in original diagrams.
This difference is not a problem but a
omission of the analyst in the original
diagram.

0 1

5

Inadequate name of an operation in
crontrol object. This occurs when the
focus is on an interface and the System
perform two or more operations. In this
case, the first message will give the
name of the operation in the control
object, but it will not reflect the
meaning of the operation that does
more things than the first message
suggest.

1 1

Considering only the types of differences that deserve

adjustments (types 1 and 5), we have 5 differences in both
generated diagrams compared to the original diagrams.
Considering yet that the two generated diagrams have 30
messages, there is 83 percent of similarities between original
and generated diagrams. Therefore, generated Analysis
Model should be revised by the analyst after generation for
behavior allocations and for operation’s name on the control
object. Beyond this, the generated Analysis Model should be
complemented, given that the generation is only partial and
because of the limitations of the method, cited above.

V. CONCLUSION

This paper presented a set of markups for Use Cases and

a transformation procedure for automatic partial generation
of an Analysis Model. The Mason and Supsrisupachai [20]
work was the basis for this work once it defined some
markups for primitives in a Use Case in order to originate a
Sequence Diagram. This work defines some more markups
(markups for guard-condition, actors and interface) and
defines a procedure to create a partial Sequence Diagram

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

with Analysis Classes, as well as complementing the Domain
Model with the operations identified during the method
execution.

The generated Analysis Model is composed of a partial
Class Diagram and partial Sequence Diagrams (one per Use
Case). The Class Diagram is the pre-existing Domain Model
updated with the operations identified during the Sequence
diagrams generation.

A tool was constructed based on the set of markups and
the procedure in order to automate the generation of a partial
Analysis Model.

The realized experiment demonstrated that the
method/tool generates partial models with 83% of
correctness, excluding differences that are not worth of
adjustment. Considering this percentage, we believe that the
implemented method could be used as a starting point for the
Analysis Model since some improvements of the proposal
can be made, as suggested below.

As a proposal to improve the tool, the model could be
generated in XMI format, in a way that could be opened in a
UML tool.

Another proposal to improve the tool is the creation of a
tab for writing the marked-up Use Cases with an option for
presenting texts with or without the markups, facilitating
reading Use Cases when markups are hidden.

As a suggestion for future research, the procedure and the
set of markups could consider alternative scenarios which
will be transformed into fragments in the Sequence
Diagrams. Extensions and Inclusions of Use Cases could
also be considered.

Also, as a suggestion for future research, the
transformation procedure and the set of markups could be
extended to consider business rules written in Use Cases. A
rule could be incorporated as an operation description when
associated to a specific step or be incorporated as a note in
the generated diagram when associated with Use Case as a
whole.

REFERENCES

[1] J. T. Grose, G. D. Doney, and A. A. Brodsky, “Model Driven

Architecture (MDA) and XMI,” in Mastering XMI. [S.l]:
John Wiley & Sons, 2002, p. 329.

[2] D. Rosenberg and M. Stephens, “Introduction to ICONIX
Process,” in Use Case Driven Object Modeling with UML:
Theory and Practice. [S.l.]: Apress, 2007.

[3] I. Sommerville, Software Engineering, 9th ed.. [S.l.]:
Addison-Wesley, 2011, p. 108.

[4] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J.
Conallen and K. A. Houston, Object-Oriented Analysis and
Design with Applications, 3th ed.. Boston, MA: Addison-
Wesley, 2007, p.274.

[5] R. Pressman, “Requirements Engineering (RE) Tasks,” in
Software Engineering: A Practitioner’s Approach, 6th ed..
[S.l.]: McGraw-Hill, 2004, p. 118.

[6] C. Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Iterative
Development, 3th ed.. Upper Saddle River, NJ: Addison-
Wesley, 2004, p. 145-146.

[7] IEEE. “Software Design,” in Guide to the Software
Engineering Body of Knowledge. Los Alamitos, CA: [S.n.],
2004, p. 53.

[8] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven
Approach, 1st ed.. Edimburgh, UK: Addison-Wesley, 1992.

[9] B. Bruegge and A. H. Dutoit, “Analysis,” in Object-Oriented
Software Engineering Using UML, Patterns and Java. Upper
Saddle River, NJ: Pearson Prentice Hall, 2004, p. 177.

[10] G. Heineman and J. Denham, “Entity, Boudary, Control as
Modularity Force Multiplier,” in Proc. 3rd Workshop on
Assessment of Contemporary Modularization Techniques
(ACoM.09), Orlando, FL, 2009, p. 42-47.

[11] L. Favre, Model Driven Architecture for Reverse Engineering
Technologies: Strategic Directions and System Evolution, 1st
ed.. Hershey, PA: IGI Global, 2010.

[12] D. Milicev, Model-Driven Development with Executable
UML, 1st ed.. Indianapolis, IN: Wiley Publishing, 2009.

[13] N. Debnath, M. C. Leonard, M. V. Mauco, G. Montejano and
D. Riesco, “Improving Model Driven Architecture with
Requirements Models,” in Proc. 5th International Conference
on Information Technology: New Generations (ITNG 2008),
Las Vegas, NV, 2008, p. 21-26.

[14] T. Yue, L. C. Briand and Y. Labiche, “A Use Case Modeling
Approache to Facilitate the Transition Towards Analysis
Model: Concepts and Empirical Evaluation,” in Proc. Model
Driven Engineering Languages and Systems (MoDELS
2009), Denver, CO, 2009, p. 484-498.

[15] T. Yue, L. C. Briand and Y. Labiche, “Automatically
Deriving a UML Analysis Model from a Use Case Model,”
Simula Research Laboratory, Oslo, Norway, Tech. Rep. 2010-
15, Oct. 2010.

[16] L. Liwu, “A Semi-Automatic Approach to Translating Use
Cases to Sequence Diagrams,” in Proc. Technology of Object-
Oriented Languages and Systems (TOOLS’99), Nancy,
France, 1999, p. 184-193.

[17] L. Liwu, “Translating Use Cases to Sequence Diagrams,” in
Proc. 15th IEEE Int. Conf. on Automated Software
Engineering (ASE’00), Grenoble, France, 2000, p. 293-296.

[18] L. Mendez, R. Romero and Y. P. Herrara, “UML Sequence
Diagram Generator System from Use Case Description Using
Natural Language,” in Proc. 4th Electronics, Robotics and
Automotive Mechanics Conf. (CERMA’07), Cuernavaca,
Mexico, 2007, p. 360-363.

[19] J. S. Thakur, A. Gupta, “Automatic Generation of Sequence
Diagram from Use Case Specification,” in Proc. 7th India
Software Engineering Conference (ISEC '14), 2014, Chennai,
India.

[20] P. A. J. Mason and S. Supsrisupachai, “Paraphrasing use case
descriptions and Sequence Diagrams: An approach with tool
support,” in Proc. 6th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON 2009), 2009, Pataya,
Thailand, p. 722-725.

[21] G. Evans. “Getting from use cases to code, Part-1: Use Case
Analysis.” Internet:
http://www.ibm.com/developerworks/rational/library/content/
RationalEdge/jul04/TheRationalEdge_July2004.pdf, Jul. 13,
2004 [Feb. 22, 2015].

[22] J. White. “The Forgotten Step – Use Case Realization.”
Internet: http://www.intertech.com/Blog/post/The-Forgotten-
Step-Use-Case-Realization.aspx, Jan. 25, 2010 [Feb. 22,
2015].

[23] F. C. Souza. “Geração Automática de Diagramas de
Sequência e Atualização do Modelo de Domínio a partir de
Casos de Uso.” M.S. thesis, Institute for Technological
Research, São Paulo, Brazil, 2011.

92Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

