
A Catalogue of Thresholds for Object-Oriented Software Metrics

Tarcísio G. S. Filó and Mariza A. S. Bigonha

Department of Computer Science (DCC)
Federal University of Minas Gerais (UFMG)

Belo Horizonte, Minas Gerais, Brazil
e-mail: {tfilo,mariza}@dcc.ufmg.br

Kecia A. M. Ferreira

Department of Computing (DECOM)
Federal Center for Technological Education (CEFET-MG)

Belo Horizonte, Minas Gerais, Brazil
e-mail: kecia@decom.cefetmg.br

Abstract—Thresholds for the majority of software metrics are
still not known. This might be the reason why a measurement
method that should be part of a software quality assessment
process is not yet present in object-oriented software industry.
In this work, we applied an empirical method to 111 system
dataset, identifying thresholds for 17 object-oriented software
metrics. Furthermore, we propose some improvements in this
employed method. Differently from previous work, we have
developed a catalogue of thresholds that gathers a greater amount
of object-oriented software metrics, allowing the assessment of
methods, classes and packages. Our approach suggests three
ranges in the thresholds: Good/Common, Regular/Casual and
Bad/Uncommon. Although they do not necessarily express the
best practices in Software Engineering, they reflect a quality
standard followed by most of the evaluated software. To evaluate
our catalogue, we present a case study which shows its application
in the evaluation of a proprietary software, in contrast with the
developers consensus about its internal quality. Results show that
our thresholds are capable of indicating the real panorama of the
evaluated software.

Keywords–Software Engineering; Object-oriented program-
ming; Quality analysis and evaluation; Metrics/Measurement.

I. INTRODUCTION

Measurement is considered a fundamental part of any
engineering discipline, and Software Engineering disciplines
are not exceptions. In this context, software metrics refer to
measurements that can be applied to check the indicators of
processes, projects and software products. Evaluating software
quality through measurements allows to define quantitatively
the success or failure of a particular attribute, identifying the
need of improvement. Managing software quality may allow
to achieve a low number of defects and reliable standards of
maintainability, reliability, and portability [1].

Despite the importance of metrics in object-oriented soft-
ware quality management, they have not been effectively used
in software industry [2][3]. One possible reason is the fact
that for the majority of metrics, thresholds are not defined.
Knowing these values is essential because they may allow
the metrics to be used to the assessment of software quality.
Moreover, without the knowledge of these thresholds, we
cannot answer simple questions like “Which classes in the
system have a large number of methods?” or “Which methods
in the system have a large number of parameters?”.

In the current scenario of Software Engineering, the in-
ternal quality of software is usually evaluated by means of
qualitative inspections, which takes time and generates high
costs. The use of metrics in conjunction with a catalogue

of thresholds empirically derived may provide an efficient
approach to assess the software quality in an automated way.

Our major contribution is a catalogue of thresholds for
17 object-oriented software metrics, which covers a larger
amount of metrics, providing the assessment of methods,
classes and packages. Even though previous researches have
proposed different techniques to derive thresholds for software
metrics, most of them cover only few metrics [3]–[6]. In
such a scenario, we do not aim to propose a new method to
derive thresholds. Instead, we employed the empirical method
proposed by Ferreira et al. [3], which is based on the analysis
of the statistical distribution of the measures found in practice.
Moreover, we introduce some improvements in this method.
When we compare the contributions of this paper with the
results presented by Ferreira et al. [3] and other previous
studies, we can spot three majors differences. (1) We provide
thresholds for a large number of software metrics. (2) The
proposed thresholds aim to provide a benchmark for the quan-
titative evaluation of the internal quality of software systems,
considering not only classes, but also methods and packages.
(3) Differently from previous work, we evaluate our catalogue
of thresholds in a proprietary software, of considerable size,
supported by the qualitative definitions about the aspects of
its internal quality reported by the developers themselves,
extending the thresholds evaluation to outside of the open-
source universe.

The remaining of this paper is organized as follows: Section
II presents the data collection, a set of systems, as well
as the preparation of this data to be used in the proposed
thresholds. Section III describes the employed method to
extract thresholds, followed by illustrative examples presented
in Section IV. Section V presents the results of this research,
showing a catalogue of the identified thresholds. Section 6
relates a case study conduct in a proprietary software to verify
the effectiveness of applying our catalogue in software quality
management. In Section VII, we discuss how our work is
related with existing efforts in the literature. Section VIII
discusses threats to validity. Section IX presents possible future
directions of this research and makes final remarks.

II. DATA COLLECTION

This section describes Qualitas.class Corpus [7], which is
the set of systems used in this research, as well as the data
preparation and the generation of statistical data on metrics
necessary to the development of this work. Qualitas.class
Corpus [7] provides compiled Eclipse Java projects for the 111
systems included in Qualitas Corpus, provided by Tempero et

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

al. [8]. Qualitas.class Corpus relied on Metrics 1.3.8 [9], which
contains implementation details about the metrics, to compute
their values, providing XML files with values of 17 metrics:

Basic Metrics: no. of classes (NOC), no. of methods (NOM),
no. of fields (NOF), no. of overriden methods (NORM), no.
of parameters (PAR), no. of static methods (NSM) and no. of
static fields (NSF).

Complexity metrics: method lines of code (MLOC), special-
ization index (SIX), McCabe cyclomatic complexity (VG) and
nested block depth (NBD).

CK metrics: weighted methods per class (WMC), depth of
inheritance tree (DIT), no. of children (NSC) and lack of
cohesion in methods (LCOM).

Coupling metrics: afferent/efferent coupling (CA/CE).

To read the available XML files at Qualitas.class Corpus,
it was developed a tool that generates text files containing all
the measurements for each metric. We relied on R [10], a tool
for statistical computing, to generate the cumulative relative
frequency graph, which gives the summary of the frequency
below a given level, as well as on the histogram in logarithmic
scale, which plots the histogram in double logarithm scale. We
also used this tool to generate an statistical dataset on object-
oriented software metrics [11], intending to help researchers
in their work on software metrics.

III. METHOD TO IDENTIFY THRESHOLDS

An important problem in statistics is how to obtain infor-
mation about the form of the population from which a sample
is drawn. For this purpose, it is used EasyFit [12] to perform
the selection of the appropriate distribution that has a best fit
for a dataset. Besides that, EasyFit plots the pdf (probability
density function) graph which describes the probability of a
variable assuming a value x: f(x) = p(X = x). The purpose
of this step is to set the appropriate distribution for each
software metric studied. Exploring the distributions of software
metric values is crucial to improve the understanding of the
internal structures of software [13]. From the distribution, it
is possible to understand its characteristics, for example, if
its average value is representative for the analysis or if the
distribution is heavy-tailed or skewed-right [3][14].

Given the graphical views and the knowledge of the charac-
teristics of the probability distributions which are best fitted to
the measures, it is possible to derive thresholds for the metrics.
In the approach of Ferreira et al. [3], when the metric has a
distribution with a representative average value, like the Pois-
son distribution, this value is taken as typical for this metric,
otherwise, the authors worked with three ranges for the metric
values: Good, Regular and Bad. The good range corresponds
to values with high frequency. The authors argue this is the
most common values of the metric in practice, and nevertheless
these values do not necessarily express the best practices in
Software Engineering, they expose the pattern of most software
systems. The bad range corresponds to values with quite low
frequency, and the regular range corresponds to values that
are not too frequent neither have very low frequency. The
visual analysis of the graphical views allows establishing the
thresholds. It is important to notice that Ferreira et al. applied
this method to all set of software systems, and also group
them by application domain, size and type, but they did not

Figure 1. Flow diagram to the thresholds identification.

find relevant differences in the suggest thresholds among these
approaches. So, in accordance with these results, we applied
the method to the entire set of systems, expecting that the
suggested thresholds are useful for all systems, regardless of
the of application domain, size and type.

This paper also presents the proposed improvements to
the original method of Ferreira et al. [3]. First, we modify
the ranges names to: Good/Common, Regular/Casual and
Bad/Uncommon, which we believe will express better the
importance of frequency concept in the suggested thresholds.
Secondly, we established, rather than the values directly,
two percentiles, based on a visual analysis of the graphical
views and on the frequency concept in the thresholds. These
percentiles are capable to separate the dataset in the three
ranges of values mentioned. Although the visual analysis is not
dispensed, the use of predefined percentiles brings a relevant
improvement to the method, it allows to obtain the values
directly from the dataset, making the application of the method
more reproducible. Figure 1 summarizes the method to identify
thresholds in a flow diagram.

IV. ILLUSTRATIVE EXAMPLES

This section describes the data analysis of Number of
Methods (NOM) and Depth of Inheritance Tree (DIT).

A. Number of Methods
The Cumulative Relative Frequency Graph showed in

Figure 2a suggests a heavy-tail distribution, because the ap-
proximation of 100% of cumulative relative frequency along
the x axis (metric values) occurs in a drastically faster way,
i.e., there is a nearly instantaneous approximation of 100%
of the measures. This means that the systems under analysis
possess several classes with few methods and a small number
of classes with many methods. Figure 2b shows that the dataset
of NOM is best fitted to Weibull distribution, with parameters

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

(a) (b) (c)
Figure 2. NOM: (a) Cumulative Relative Frequency Graph (b) pdf fitted to the Weibull (c) Histogram log-log scale.

α = 0, 852 and β = 5, 879. As the shape parameter α is
less than one, Weibull is a heavy-tailed distribution. If this
is the case, the sample mean and variance cannot be used as
estimators of the population because the central limit theorem
does not apply, which would mean that basing any conclusions
on sample means without fully understanding the distribution
would be questionable at best [13]. So, the mean value is not
representative. Figure 2c exhibits the dataset in log-log scale.
In this graph, it is noticed a straight leaning to the left, a
power law feature [3][13]. This pattern enhances the features
already mentioned, the majority of classes has few methods
and the mean is not representative. As this metric does not
have a value which may be taken as typical, we identified
the values representing the 70 ◦ and 90 ◦ percentiles of the
dataset, which correspond to the values 6 and 14. The 70 ◦

and 90 ◦ percentiles were chosen by a visual analysis of the
Cumulative Relative Frequency Graph showed in Figure 2a.
The points marked with green color/square shape and red
color/diamond shape represent the regions identified in this
analysis. Furthermore, the choice of these percentiles is also
based on the concepts of Good/Common, Regular/Casual and
Bad/Uncommon ranges. Thus: (1) based on visual analysis, (2)
the established concept for the ranges, and (3) inspired by the
work of Alves et al. [5] — who used percentiles to statistically
part quality metric profiles in thresholds identification — we
tried to apply the 70 ◦ and 90 ◦ percentiles in most of the
metrics in order to identify the measures able to separate
the three suggested ranges. We found up there are variations
that go in accordance with the distribution curve features,
when they are taller or flattened, or depending on a higher
or lower metric value (x axis) to reach a greater cumulative
frequency, in which the 70 ◦ and 90 ◦ percentiles do not have
significance. In such cases, we relied mainly on the visual
analysis and distribution features to identify the regions that
are able to separate the three suggested ranges. The values
6 and 14 allow us to separate number of methods metric in
three ranges: Good/Common (NOM ≤ 6), Regular/Casual
(6 < NOM ≤ 14) and Bad/Uncommon (NOM > 14).

B. Depth of Inheritance Tree
The data of DIT do not suggest a heavy-tailed distribution,

but a right-skewed one, as showed by the Cumulative Relative

Frequency Graph in Figure 3a. According to Figure 3b, the
dataset is best fitted to the Gumbel Max distribution, with
parameters α = 2.170 and β = 1, 469. By the adjustment
line of the data to the distribution, it is possible to identify the
right-skewed feature. In this kind of distribution, the mean
value is not representative. Figure 3c shows the dataset in
a log-log scale. In this graph, it is not noticed a straight
leaning to the left, which does not suggest a power law. We
have identified the values that represent the 70 ◦ and 90 ◦

percentiles of the dataset, which correspond to the values 2
and 4. The 70 ◦ and 90 ◦ percentiles were identified by a visual
analysis of the Cumulative Relative Frequency Graph showed
in Figure 3a. So, the identified threshold for this metric is:
Good/Common (DIT ≤ 2), Regular/Casual (2 < DIT ≤ 4)
and Bad/Uncommon (DIT > 4).

V. RESULTS

Table I presents the identified thresholds for each metric
analysed. Table II shows the best fitted distributions for each
metric, with their parameters. Our catalogue of thresholds
reflects a pattern followed by most of the software systems in
Qualitas.class Corpus, which may be useful in some scenarios
of Software Engineering.

TABLE I. IDENTIFIED THRESHOLDS.
Metric Good/Common Regular/Casual Bad/Uncommon
CA m ≤ 7 7 < m ≤ 39 m > 39
CE m ≤ 6 6 < m ≤ 16 m > 16
DIT m ≤ 2 2 < m ≤ 4 m > 4
LCOM m ≤ 0, 167 0, 167 < m ≤ 0, 725 m > 0, 725
MLOC m ≤ 10 10 < m ≤ 30 m > 30
NBD m ≤ 1 1 < m ≤ 3 m > 3
NOC m ≤ 11 11 < m ≤ 28 m > 28
NOF m ≤ 3 3 < m ≤ 8 m > 8
NOM m ≤ 6 6 < m ≤ 14 m > 14
NORM m ≤ 2 2 < m ≤ 4 m > 4
NSC m ≤ 1 1 < m ≤ 3 m > 3
NSF m ≤ 1 1 < m ≤ 5 m > 5
NSM m ≤ 1 1 < m ≤ 3 m > 3
PAR m ≤ 2 2 < m ≤ 4 m > 4
SIX m ≤ 0, 019 0, 019 < m ≤ 1, 333 m > 1, 333
VG m ≤ 2 2 < m ≤ 4 m > 4
WMC m ≤ 11 11 < m ≤ 34 m > 34

The identification of anomalous measurements is seen as a
part of the measurement process that may be part of a software

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

(a) (b) (c)
Figure 3. DIT: (a) Cumulative Relative Frequency Graph (b) pdf fitted to the Gumbel Max (c) Histogram log-log scale.

TABLE II. BEST FITTED DISTRIBUTIONS FOR THE METRICS.
Metric Distributition Parameters
CA Gen. Extreme Value k = 0.797, σ = 4.303, µ = 1.775
CE Gen. Extreme Value k = 0.527, σ = 2.834, µ = 2.397
DIT Log-Logistic α = 2.170, β = 1, 469
LCOM Beta α1 = 0.043, α2 = 6.777, b = 8.290
MLOC Pareto 2 α = 1.226, β = 3.051
NBD Gumbel Max σ = 0.858, µ = 0.931
NOC Log-Logistic α = 1.452, β = 5.520
NOF Beta α1 = 0.059, α2 = 64.580, b = 2026.446
NOM Weibull α = 0.852, β = 5.879
NORM Power Function α = 0.006, a = 0, b = 235.200
NSC Beta α1 = 0.001, α2 = 9.467, b = 25465.529
NSF Beta α1 = 0.018, α2 = 18.284, b = 4130.615
NSM Beta α1 = 0.017, α2 = 27.961, b = 1646.287
PAR Gumbel Max σ = 0.973, µ = 0.399
SIX Power Function α = 0.031, a = 0, b = 24.578
VG Chi-Squared ν = 1.000, γ = 1.000
WMC Log-Logistic α = 1.142, β = 4.687, γ = 0.000

quality assessment. After the measurements have been made,
developers should compare them with previous ones, looking
for unusually high values [1]. The identified thresholds may
be useful in this identification, as they provide a way to do
this comparison with the quality that is common in software
development. But, an anomalous measure does not necessarily
mean a problem, it suggests that there might be problems. Once
the artifacts are quantitatively identified, one must inspect them
to decide if the anomalous metric measures mean that the
software quality is compromised [1]. Other scenario is the
application of the thresholds in a filtering mechanism to reduce
the dataset in a bad smell detection strategy [15].

VI. EVALUATION

For the evaluation of our catalogue, we conducted a case
study which evaluated a proprietary software from a public
organization with a deteriorated internal quality, in order to
verify the ability of the proposed thresholds in indicating this
panorama. For privacy reasons, we call it XYZ. This study
was divided into 3 parts, aiming to evaluate, respectively, the
metrics of methods and classes, and the correlation of bad
smells occurrence with our thresholds evaluation. At the end
of this section, we present a qualitative analysis of the utility
of the identified thresholds for the metrics which were not
applied in the evaluation of XYZ.

XYZ is considered a successful software by its users and
stakeholders. However, there is consensus on the team that led
its development and now leads the maintenance and evolution
that, actually, it has a bad internal quality. XYZ has 54,297
TLOC, 2,532 methods, 603 classes and 139 packages.

From its deployment in 2009, there was no execution of
preventive maintenance, neither refactorings to improve its
internal quality. During the last years, XYZ has been suffering
constant maintenance, such as: fixing runtime errors or system
requirements, adding new features or modifying the existing
ones, improving the processing speed of its functionalities and
adjusting the code to changes in the environment.

As XYZ is constantly changing, it is natural that their inter-
nal structures become more complex [16]. Aiming to compare
the information about the aspects involving the maintenance
and evolution of XYZ with the view of the programmers, we
collected opinions of four members of the development team
about its internal quality and the reasons why they think the
software is in this situation. There were no forms or specific
directions, we chose to let opinions to flow naturally in order
to characterize the software quality from their qualitative view.
Analysing the reports, we noticed a consensus that XYZ has
a deteriorated internal quality. The factors cited as the root
of this problem are: the lack of adoption of methodologies
to systematize maintenance, lack of a software architect and
ineffective requirements.

A. Part 1 - Evaluation of Methods
The purpose of Part 1 is to check if XYZ has relatively

more methods classified as Bad/Uncommon and less methods
classified as Good/Common than most existing software of the
sample, Qualitas.class Corpus, what would be in conformance
to the qualitative consensus of its low quality.

To do that, we measured the percentage of methods clas-
sified as Good/Common, Regular/Casual and Bad/Uncommon
by the metrics of methods of 111 system of Qualitas.class
Corpus, i.e., one of the software in the dataset, hsqldb, has
73.55% of its methods classified as Good/Common, 17.69%
as Regular/Casual and 8.76% as Bad/Uncommon by MLOC
metric. Subsequently, the systems were ordered as follows: in
ascending order by the percentage of methods classified as

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Bad/Uncommon and in descending order by the percentage
of methods classified as Good/Common. Then, we got the
positions of XYZ in the obtained rankings. A low position
at the first ranking means that, relatively, XYZ shows a higher
proportion of methods classified as Bad/Uncommon than most
of the analysed software. A low position at the second ranking
suggests that few methods of XYZ are well evaluated by the
suggested thresholds than other software in the sample. As
the software has poor quality, this would suggest a correct
evaluation, i.e., the software is notoriously bad and its methods
were evaluated as Bad/Uncommon. The evaluated metrics
were:

Method Lines of Code (MLOC): in the first proposed
ranking, XYZ was at 100 ◦ position. So, it was no worse than
12 of the 111 systems dataset. By the second one, XYZ was
at 104 ◦ position, not being worse than 8 other systems.

Nested Block Depth (NBD): in the first ranking, XYZ was at
92 ◦ position. In the second one at 101 ◦ position.

Number of Parameters (PAR): in the first one, XYZ was at
107 ◦ position. In the second one, at 105 ◦ position.

McCabe cyclomatic complexity (VG): in both rankings, XYZ
was at 103 ◦, not worse than just 9 other systems.

1) Conclusion: The data show that XYZ has, relatively,
fewer methods evaluated as Good/Common than the vast ma-
jority of the systems present in the Qualitas.class Corpus. This
is in agreement with the established qualitative scenario about
the low quality of this system, i.e., the proposed thresholds for
method metrics were able to reflect, quantitatively, the scenario
of low quality of this system. In contrast, XYZ has, relatively,
a high number of methods evaluated as Bad/Uncommon than
other software in the dataset. This result suggests that the
proposed thresholds to metrics that evaluate methods will not
show quality where there are problems.

B. Part 2 - Evaluation of Classes
In this part of the case study, we evaluated a sample

of low quality classes defined by the development team of
XYZ with respect to the obtained classifications with the
identified thresholds for metrics of classes. Table III presents
the sample of classes, with fictitious names, and the obtained
classifications, where +1 means Good/Common, −1 means
Bad/Uncommon and 0 means Regular/Casual. Next we analyze
the results of each metric.

TABLE III. SAMPLE OF LOW QUALITY CLASSES OF XYZ.
NOF DIT WMC NSC NORM LCOM NOM SIX

LSI +1 +1 -1 +1 +1 -1 -1 +1
NSI +1 +1 -1 +1 +1 -1 -1 +1
RSI +1 +1 -1 +1 +1 -1 -1 +1
NB -1 0 -1 +1 -1 -1 -1 -1

NTB -1 +1 -1 +1 +1 -1 -1 +1
RB -1 +1 -1 +1 +1 -1 -1 +1
ND +1 0 -1 +1 +1 +1 -1 +1
LD +1 0 -1 +1 +1 +1 -1 +1

Number of Fields (NOF): the NOF column of Table III
shows that 5 classes were well evaluated and 3 classes were
poorly evaluated by the threshold of NOF. As these classes are
defined qualitatively as problematic, they were inspected in or-
der to identify their features across to the received quantitative
evaluation. LSI, NSI and RSI are service classes (fictitious

class names). According to Fowler [17], an anemic domain
model occurs when the business logic is not put in the domain
objects. Instead, there are a number of service objects that
capture this logic. When pulling behaviors into services, they
become Transaction Scripts, which organize the business logic
by procedures that treat requests from the view layer. These
services are at the top of the domain model and use the model
as a data repository. Then, the domain objects become “bags of
getters and setters”, not encapsulating the logic for the data.
The services are a grouping of procedural functions related
to domain data. Thus, anemic objects do not have behaviors
and services are grouping of procedural functions. Therefore,
these classes were classified as Good/Common by the identified
threshold for NOF, not because they have a reasonable amount
of fields, but for not having fields at all. Therefore, by using
only NOF, these classes would be well evaluated, despite being
problematic within the project, providing potential errors in the
quantitative evaluation. NDAO and LDAO are objects of type
DAO (Data Access Object), which encapsulate all data access
logic within an application. These are classes that, by their goal
within the system architecture, have few attributes, without
characterizing an architectural violation or a bad programming
practice, as occurs with the anemic domain model. These
classes are problematic because of their size and complexity,
and not by their number of fields. Thus, the classes were
correctly well evaluated in relation to the NOF threshold.
NB, NTB and RB are objects of type managed bean, which
were poorly evaluated by the identified threshold for NOF.
This type of class is typical in JavaServer Faces applications,
where each managed bean should be associated to one or
more components of a web-page [18]. These classes are large
and complex because they are not being componentized in
managed beans more cohesive, which meet a specific purpose
within the web-page. So, the qualitative assessment of these
classes match the result of applying the identified threshold
for NOF, both suggesting that the classes show poor quality.

Depth of Inheritance in Tree (DIT): the DIT column
of Table III shows that three classes were evaluated as
Regular/Casual and the rest of them were evaluated as
Good/Common. Inheritance is a resource rarely used in this
system, mainly because of the anemic domain model. Thus,
the vast majority of classes do not use this resource and,
consequently, do not have a deep inheritance tree. Therefore,
they were evaluated as Good/Common by the DIT threshold.
In fact, there are no problems in these classes related to the
depth of inheritance tree. So, these cases are not considered
incorrect evaluations, on the contrary, the identified threshold
of DIT correctly evaluated these classes as Good/Common. It is
necessary to understand correctly what is being evaluated with
the metric to perform a correct interpretation of the obtained
results. We must remember that a positive rating by the DIT
threshold in most classes of the system does not mean that the
design is making an appropriate use of inheritance, because
inheritance can not even being used. The classes that were
evaluated as Regular/Casual, ND and LD have an inheritance
hierarchy imposed by the used persistence framework. In a
qualitative evaluation, it was concluded that the DIT threshold
evaluated these classes correctly, as they are not impossible to
be understood neither are of easy understanding.

Weighted Methods per Class (WMC): by WMC column
of Table III, we observe that all classes were evaluated as

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Bad/Uncommon by the identified threshold. WMC is a measure
of the class complexity and taking into account the character-
istics of XYZ and its evolutionary process, our threshold is
capable of showing the natural increase of complexity related
by Lehman [16] in a quantitative way. These classes are really
complex and they assumed many responsibilities throughout
the software evolution, becoming hard to understand and
maintain.

Number of Children (NSC): the NSC column of Table III
shows that all classes were evaluated as Good/Common by
the NSC threshold. Indeed, these are classes that do not have
children, not showing problems related to the evaluated aspects
of this metric.

Number of Overriden Methods (NORM): the NORM
column of Table III shows that all classes were well evaluated
by the identified threshold, except for NB class. Indeed, by
the low utilization of inheritance resource shown by the results
of DIT and the qualitative analysis of the software, this result
was expected, after all, the classes have no problems related to
excessive overwriting of methods and, therefore, were correctly
evaluated well. For the NB class, which is poorly evaluated,
we can see that this class was one of the three classes that were
classified as Regular/Casual by the DIT threshold, indicating
a depth of inheritance tree outside the ideal and the next to be
considered inappropriate. NB overwrites 7 methods, an amount
considered high by the threshold. The major problem of this
quantity of overwritten methods is that the class becomes diffi-
cult to understand. This problem is aggravated when combined
with an improper inheritance hierarchy, because the class may
override many methods due the fact that the parent class is not
appropriate. So, the negative evaluation is consistent with the
qualitative evaluation, as well as the positive evaluations were
considered correct.

Lack of Cohesion in Methods (LCOM): the LCOM column
of Table III shows that 6 of the 8 classes have low cohesion.
Classes of service type do not have cohesion between their
methods since they have no fields. Therefore, the inspected ser-
vices classes have a consistent poorly evaluation by the LCOM
threshold. As the managed beans are poorly componentized,
they have low cohesion. If they were better componentized,
cohesion would increase naturally, after all, the methods would
have higher similarity. On the other hand, DAO objects have
cohesion by the fact that their methods use fields inherited
from the parent classes related to the framework, performing
correlated operations in the database. Therefore, the positive
evaluations were correct.

Number of Methods (NOM): the NOM column shows that
all classes were poorly evaluated by NOM threshold, which is
in accordance with the assessments made by WMC threshold.
According to Lehman [16], the functionalities offered by a
system must be continuously incremented in order to maintain
user satisfaction. If this growth is done in an uncontrolled way,
classes will grow more and more by adding methods and fields
that meet the growing expectations of the user. Failure to do
this growing in a designed way will deteriorate the software
quality, since the classes become large and complex, as in the
case of the classes analysed.

Specialization Index (SIX): the SIX column of Table III
shows that 7 classes were well evaluated and the remaining one

was poorly evaluated by the SIX threshold. This metric aims
to assess how much a particular class overrides the behavior
of its superclasses. As expected, due the relation of SIX with
NORM and DIT, NB was poorly evaluated by SIX, as was
poorly evaluated by NORM and not well evaluated by DIT.
The other classes do not exceed normal levels of specialization
index suggested by SIX threshold and, in fact, they do no
overwrite the behavior of their superclasses in an excessive
way.

1) Conclusion: For this part of the study case, it was
established with the programmers of XYZ a set of 8 poor-
quality classes, with the aim of study the evaluations obtained
by applying the proposed thresholds. All classes had at least 3
classifications out of range Good/Common. This suggests that
if our catalogue of thresholds were applied in the management
of internal quality of software systems, all the classes of
the sample would be defined as objects of inspection in a
measurement process, for presenting unusually high values.
However, we also concluded that a single metric of our
catalogue should not be used to define the quality of a class.
For example, if only NOF was used to evaluate the 8 classes,
only two would be considered as poor-quality. This conclusion
is consistent with the work of Rosenberg et al. [4], which
suggests that a single metric should not be used to evaluate a
class. So, the results suggest that our catalogue is an efficient
way to evaluate the classes effectively.

C. Part 3 - Bad Smells Correlation
We applied JDeodorant [19], a plugin for Eclipse that

identifies bad smells, in order to identify long methods and
god classes in XYZ. After that, we evaluated all the methods
and classes of this system with some metrics of our catalogue
related to these bad smells concepts. With these data available,
we crossed the information of two qualitative variables: the
presence or absence of the bad smell and the classification or
no classification as Good/Common by the threshold. So, we
obtained the number of methods or classes that have or not
the bad smell against the amount of classified and unclassi-
fied methods or classes as Good/Common by the thresholds.
This type of information is called contingency table of two
qualitative variables. Furthermore, we raised the following null
hypothesis about the bad smell occurrence and the evaluation
obtained by the method or class with m threshold, Hnull

m : the
bad smell occurrence is independent of the method or class
not be classified by the metric m in Good/Common range.

To evaluate this hypothesis, we used a statistical test that
evaluates the dependency between the qualitative variables,
called Chi-Square Test for Independence, which determines
whether there is a significant association between the two
established variables. The input of this test is the 2 × 2
contingency table, and the output is the p-value, which is
the probability of obtaining an statistic test equal or more
extreme than the one observed in the sample about. If the p-
value is greater than 5%, we do not reject the null hypothesis.
Otherwise, we can reject it, which would suggests that there
is a relationship between the presence of the bad smells and
the method or class not be classified as Good/Common by
the threshold. The test was applied using the R tool [20]
for the WMC, NOM, NOF and LCOM thresholds with the
identified god classes and the evaluation obtained by the
MLOC, NBD and VG with the identified long methods. For

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

all of these tests, we obtained p-values less than 1%, rejecting
the null hypothesis at 99% of confidence level. Therefore, it
was possible to check that there is a statistical dependency
between: (1) the class be evaluated as Good/Common by the
thresholds of WMC, NOM, LCOM and NOF and do not have
the bad smell god class and (2) the method be evaluated as
Good/Common by the thresholds of MLOC, NBD and VG and
do not have the bad smell long method. These situations testify
in favour of the correctness of the evaluations performed by
our thresholds.

D. Other Metrics

Number of Classes (NOC): a package is a collection of
related types providing access protection and name space
management [21]. As much as classes are added to a given
package, group of classes tend to be less interrelated, sug-
gesting a possible re-division into smaller packages to create
new groups which reflect a better defined domain. The NOC
threshold may be used to identify packages with a large
number of classes, in order to evaluate possible adjustments.

Afferent Coupling (CA): CA measures the number of external
classes to a specific package that depend on their inner classes
[22]. The higher the CA value, the greater the responsibility of
that package and the higher its relevance within the software.
A package with many external dependencies becomes a risk
artifact, knowing that a change on it may impact directly
and indirectly in many classes. In this sense, the identified
thresholds are useful in order to say what is a high CA
value, based on the standards of software quality that has been
developed. Therefore, knowing what is a high value of CA may
aid to identify the need for re-distribution of responsibilities of
a too influential package in a set of packages more cohesive.

Efferent Coupling (CE): CE is the number of internal classes
in a package that depend on external classes of this package
[22]. A high value of CE means that the package strongly
depends on other classes of other packages, making it a more
unstable artifact, given the high degree of dependent classes.
Keeping a low degree of CE means getting a package with
greater independence. The identified thresholds show that most
packages in OO software have been developed with up to 6
dependent classes, occasionally they have 7 to 16 dependent
classes and rarely more than 16.

Number of Static Methods (NSM): a static method belongs
to the class, rather than to an instance of the class [21]. Despite
this mechanism breaks the object-oriented programming con-
cept, it has practical utility in the context of object-oriented
software development in the Java Platform [23]. However,
they make the software less flexible because they cannot be
overridden. Therefore, the NSM threshold allows to identify
high values of static methods.

Number of Static Fields (NSF): a static field creates an
attribute that belongs to the class rather than being associated
with an instance of that class [21]. All class instances share
the static field, which is in a fixed location in memory. Any
change in an static field value will reflect in all instances
of the class. Static fields are extremely useful in the object-
oriented software developed in Java platform [23]. An example
is the implementation of the design pattern Singleton, which
guarantees the existence of only one instance of a particular

class, providing global access to that object. However, classes
that excessively use this feature and also static methods
have acquired a bad reputation because it prevents developers
to think in terms of objects [23]. The identified thresholds
indicate what is a high value for NSF, allowing the system
developer to identify classes in the design that are using this
feature excessively.

VII. RELATED WORK

In this section, we discuss related work that has been done
in order to identify thresholds for object-oriented software
related metrics. Rosenberg et al. [4] identified thresholds of
metrics with the goal of applying these metrics to assess
the reliability of software systems at NASA. The research
was conducted in more than 20,000 classes distributed over
15 projects. The goal was to identify thresholds capable of
discriminating weak code from solid code by statistical studies.
This study presents thresholds for six software metrics at class
level. As the analysis was done in the context of software
development at NASA, the results not necessarily can be
applied to other application domains. Moreover, as the dataset
is not open and the method is not described in details, the
results of the research are not reproducible.

Shatnawi et al. [24] presented a study of the relationship
between object-oriented metrics and error-severity categories,
identifying thresholds values that separate no-error classes
from classes that had high-impact errors. This study presents
thresholds for five metrics at class level. Moreover, the method
was applied in a limited size and domain sample, being a threat
to use these thresholds for software in general.

Alves et al. [5] designed a method that determines metric
thresholds empirically from a statistical analysis of a bench-
mark of software systems, which are derived by choosing the
70%, 80% and 90% percentiles from these data. The authors
focus on the method description, presenting thresholds for 3
metrics at method level and 2 metrics at class level. Besides
that, fixed percentiles not necessarily work for all metrics. Due
to this limitation, in the present work we carried out the data
analysis by understanding the distribution curve of the values
to establish these percentiles.

Oliveira et al. [6] proposed the concept of relative thresh-
olds for evaluating metrics data that follow a heavy-tailed
distribution. The thresholds are called relative because they
assume that metric thresholds should be followed by most
sources code entities, but that is also natural to have a number
of entities in the “long-tail” that do not follow the defined
limits. So, absolute thresholds should be complemented by the
percentage of entities that the upper limit should be applied
to. This work has focused on the method description, deriving
thresholds for seven metrics at class level.

Our work presents 17 object-oriented software metrics de-
rived by the same method, that is a large amount of thresholds
compared with previous studies. Besides that, our catalogue
does not cover only metrics at class level, but also metrics
at method and package level. The used approach is easily
reproducible and does not bring much statistical complexity.
Moreover, the proposed thresholds are based on analysis of
a large amount of software, of various sizes and domains,
making the results more reliable in terms of representativeness
of software generally.

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

VIII. THREATS TO VALIDITY

Software metric tools can measure different values for the
same metric. The identified thresholds may classify artifacts as
worse than they in fact are. So, like Qualitas.class Corpus [7]
relied on Metrics Plugin for Eclipse to collect the measures, we
cannot assure that the identified thresholds will be applicable
when using tools that collect metrics with an implementation
different from Metrics. The sample of applications used in
this research may also be a threat to the validity of this
study, because of its size and representativeness for software
in general. However, Qualitas.class Corpus has at least equal
software samples than other analysed studies and is composed
of various types and domains of software systems. Another
threat to validity is that this approach assumes that the metrics
are unidirectional in the sense of having a clear good and bad
orientation. So, if all classes show, for example, DIT = 0,
they would be classified as Good/Common by the suggested
thresholds, although the design is suboptimal, it does not
use inheritance. However, none of our suggested thresholds
contemplate the evaluation of the global quality of the software
systems and DIT = 0 is the most frequent value found in
practice. This triggers an alarm about the misuse of our cat-
alogue and misinterpretation of its results, being fundamental
to evaluate the scenario in which it will be applied.

IX. CONCLUSION AND FUTURE WORK

The knowledge of the thresholds is of fundamental impor-
tance in the promotion of the effective use of software metrics
regarding the management of internal quality of software
systems. In this research, we employed the method proposed
by Ferreira et al. [3] to propose a catalogue of 17 thresholds
for object-oriented software metrics, covering the quantitative
evaluation of methods, classes and packages. The method
is based on the analysis of the statistical distributions of
measures found in practice. It was observed that the metrics
fit a heavy-tailed or a skewed-right distribution. So, three
ranges of values were taken as the metric thresholds. The
range names were modified to Good/Common, Regular/Casual
and Bad/Uncommon, which express better the importance of
frequency concept in the thresholds. Although they do not
necessarily express the best design principles established for
Software Engineering, they reflect a quality standard followed
by most of the software evaluated.

The evaluation of the proposed thresholds in a proprietary
software showed the effectiveness of our catalogue of the
thresholds in indicating the real panorama of the internal
quality of software systems, that is, the evaluation do not show
quality where there is not. For metrics that do not participate
in the evaluation conducted in a proprietary software, we
presented a qualitative analysis which describes their appliance
in the identification of possible problems in object-oriented
software systems. So, we presented at least one analysis for
each one of our suggested thresholds. With our catalogue of
thresholds, we presented a contribution in the promotion of
software metrics as an effective instrument to manage the
internal quality of software systems.

As future work, we intend to continue evaluating the
identified thresholds through more case studies, aiming to
continue the investigation if the range in which the metric falls
reflects the real situation of the assessed artifact. Furthermore,
we intend to conduct the development of a tool that performs

a strategy composition of metrics to identify software entities
to be refactored, by applying metric thresholds.

REFERENCES
[1] I. Sommerville, Software Engineering, 9th ed. Harlow, England:

Addison-Wesley, 2010.
[2] M. Riaz, E. Mendes, and E. D. Tempero, “A systematic review of

software maintainability prediction and metrics,” in ESEM, 2009, pp.
367–377.

[3] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C.
Almeida, “Identifying thresholds for object-oriented software metrics,”
Journal of Systems and Software, vol. 85, no. 2, Feb. 2012, pp. 244–
257.

[4] L. Rosenberg, S. Ruth, and A. Gallo, “Risk-based Object Oriented
Testing,” in Proceedings of the 24 th annual S.E. Workshop, NASA,
S.E.Lab, 1999, pp. 1–6.

[5] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from
benchmark data.” in ICSM. IEEE Computer Society, 2010, pp. 1–10.

[6] P. Oliveira, M. T. Valente, and F. P. Lima, “Extracting relative thresholds
for source code metrics,” in CSMR-WCRE, Software Evolution Week
- IEEE Conference on, Feb 2014, pp. 254–263.

[7] R. Terra, L. F. Miranda, M. T. Valente, and R. S. Bigonha, “Qual-
itas.class Corpus: A compiled version of the Qualitas Corpus,” Sof.
Eng. Notes, vol. 38, no. 5, 2013, pp. 1–4.

[8] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas corpus: A curated collection of java code for
empirical studies,” in APSEC2010, Dec. 2010, pp. 336–345.

[9] “Eclipse metrics plugin 1.3.8,” 2014, URL: http://metrics2.sourceforge.
net [accessed: 2014-12-30].

[10] R, “R project for statistical computing,” 2014, URL: http://www.
r-project.org/ [accessed: 2014-12-30].

[11] T. G. Filó, M. A. Bigonha, and K. A. Ferreira, “Statistical dataset on
software metrics in object- oriented systems,” Sof. Eng. Notes, vol. 39,
no. 5, 2014, pp. 1–6.

[12] “Easyfit,” 2014, URL: http://www.mathwave.com/products/easyfit.html
[accessed: 2014-12-30].

[13] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. Tempero, “Understanding the shape of java software,”
in OOPSLA, New York, NY, USA, 2006, pp. 397–412.

[14] L. Doane, David & Seward, “Measuring Skewness: A Forgotten Statis-
tic?” J. of Statistics Education, 2011, pp. 1–18.

[15] M. Lanza, S. Ducasse, and R. Marinescu, Object-Oriented Metrics
in Practice: Using Software Metrics to Characterize, Evaluate, and
Improve the Design of Object-Oriented Systems. Springer, 2007.

[16] M. M. Lehman, “Programs, cities, students, limits to growth?” Pro-
gramming Methodology, 1978, pp. 42–62, inaugural Lecture.

[17] M. Fowler, “Anemic domain model,” 2014, URL: http://www.
martinfowler.com/bliki/AnemicDomainModel.html [accessed: 2014-12-
30].

[18] Oracle, “The java ee 6 tutorial,” http://docs.oracle.com/javaee/6/tutorial/
doc/bnaqm.html, 2014.

[19] “Jdeodorant,” 2014, URL: http://www.jdeodorant.com/ [accessed: 2014-
12-30].

[20] “Chi-squared Test of Independence,” 2014, URL: http://www.r-tutor.
com/elementary-statistics/goodness-fit/chi-squared-test-independence
[accessed: 2014-12-30].

[21] Oracle, “Java se technical documentation,” 2014, URL: http://docs.
oracle.com/javase/ [accessed: 2014-12-30].

[22] R. Martin, “OO design quality metrics - an analysis of dependencies,”
in Workshop Pragmatic and Theoretical Directions in O.O. Software
Metrics. OOPSLA, 1994, pp. 1–6.

[23] J. Bloch, Effective Java, 2nd Edition, The Java Series. NJ, USA:
Prentice Hall PTR, 2008.

[24] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software
metrics threshold values using ROC curves,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 22, no. 1, 2010,
pp. 1–16.

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

