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Abstract—We present an original framework for automatic data
preparation, applicable in most Knowledge Discovery and Data
Mining systems. It is based on the study of some statistical
features of the target database samples. For each attribute of the
database used, we automatically propose an optimized approach
allowing to (i) detect and eliminate outliers, and (ii) to identify the
most appropriate discretization method. Concerning the former,
we show that the detection of an outlier depends on if data
distribution is normal or not. When attempting to discern the
appropriated discretization method, what is important is the
shape followed by the density function of its distribution law.
For this reason, we propose an automatic choice for finding
the optimized discretization method, based on a multi-criteria
(Entropy, Variance, Stability) evaluation. Most of the associated
processings are performed in parallel, using the capabilities
of multicore computers. Conducted experiments validate our
approach, both on rule detection and on time series prediction. In
particulary, we show that the same discretization method is not
the best when applied to all the attributes of a specific database.

Keywords–Data Mining; Data Preparation; Outliers detection
and cleaning; Discretization Methods, Task parallelization.

I. INTRODUCTION AND MOTIVATION

Data preparation in most of Knowledge and Discovery in
Databases (KDD) systems has not been greatly developed in
the literature. The single mining step is more often emphasized.
And, when discussed, data preparation focuses most of the
times on a single parameter (outlier detection and elimination,
null values management, discretization method, etc.). Specific
associated proposals only highlight on their advantages com-
paring themselves to others. There is no global nor automatic
approach taking advantage of all of them. But the better data
are prepared, the better results will be, and the faster mining
algorithms will work.

In [1], we presented a global view of the whole data
preparation process. Moreover, we proposed an automatization
of most of the different steps of that process, based on the
study of some statistical characteristics of the analysed
database samples. This work was itself a continuation of
the one exposed in [2]. In this latter, we proposed a simple
but efficient approach to transform input data into a set of
intervals (also called bins, clusters, classes, etc.). In a further
step, we apply specific mining algorithms (correlation rules,
etc.) on this set of bins. The very main difference with the
former paper is that no automatization is performed. The
parameters having an impact on data preparation have to be
specified by the end-user before the data preparation process
launches.

This paper in an extended version of [1]. Main improve-
ments concern:

• A simplification and a better structuration of the
presented concepts and processes;

• The use of parallelism in order to choose, when
applicable, the most appropriate preparation method
among different available methods;

• An expansion of our previous experiments. The ones
concerning rule detection have been extended, and
experimentations in order to forecast time series have
been added.

The paper is organized as follows: Section II presents
general aspects of data preparation. Section III and Section
IV are dedicated to outlier detection and to discretization
methods respectively. Each section is composed of two parts:
(i) related work, and (ii) our approach. Section V discusses
task parallelization possibilities. Here again, after introducing
multicore programming, we present associated implementation
issues concerning our work. In Section VI, we show the
results of expanded experiments. Last section summarizes our
contribution, and outlines some research perspectives.

II. DATA PREPARATION

Raw input data must be prepared in any KDD system
previous to the mining step. This is for two main reasons:

• If each value of each column is considered as a single
item, there will be a combinatorial explosion of the
search space, and thus very large response times;

• We cannot expect this task to be performed by hand
because manual cleaning of data is time consuming
and subject to many errors.

This step can be performed according to different
method(ologie)s [3]. Nevertheless, it is generally divided into
two tasks: (i) Preprocessing, and (ii) Transformation(s). When
detailing hereafter these two tasks, focus is set on associated
important parameters.

A. Preprocessing
Preprocessing consists in reducing the data structure by

eliminating columns and rows of low significance [4].
a) Basic Column Elimination: Elimination of a column

can be the result of, for example in the microelectronic indus-
try, a sensor dysfunction, or the occurrence of a maintenance
step; this implies that the sensor cannot transmit its values to
the database. As a consequence, the associated column will
contain many null/default values and must then be deleted
from the input file. Elimination should be performed by using
the Maximum Null Values (MaxNV ) threshold. Furthermore,
sometimes several sensors measure the same information, what
produces identical columns in the database. In such a case, only
a single column should be kept.
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b) Elimination of Concentrated Data and Outliers: We
first turn our attention to inconsistent values, such as “outliers”
in noisy columns. Detection should be performed through
another threshold (a convenient value of p when using the
standardization method, see Section III-A). Found outliers are
eliminated by forcing their values to Null. Another technique
is to eliminate the columns that have a small standard deviation
(threshold MinStd). Since their values are almost the same,
we can assume that they do not have a significant impact on
results; but their presence pollutes the search space and reduces
response times. Similarly, the number of Distinct Values in
each column should be bounded by the minimum (MinDV )
and the maximum (MaxDV ) values allowed.

B. Transformation

a) Data Normalization: This step is optional. It trans-
lates numeric values into a set of values comprised between 0
and 1. Standardizing data simplifies their classification.

b) Discretization: Discrete values deal with intervals
of values, which are more concise to represent knowledge,
so that they are easier to use and also more comprehensive
than continuous values. Many discretization algorithms (see
Section IV-A) have been proposed over the years for this. The
number of used intervals (NbBins) as well as the selected
discretization method among those available are here again
parameters of the current step.

c) Pruning step: When the occurrence frequency of
an interval is less than a given threshold (MinSup), then it is
removed from the set of bins. If no bin remains in a column,
then that column is entirely removed.

The presented thresholds/parameters are the ones we use
for data preparation. In previous works, their values were fixed
inside of a configuration file read by our software at setup. The
main objective of this work is to automatically determine most
of these variables without information loss. Focus is set in the
two next sections on outlier and discretization management.

III. DETECTING OUTLIERS

An outlier is an atypical or erroneous value corresponding
to a false measurement, an unwritten input, etc. Outlier
detection is an uncontrolled problem because of values that
deviate too greatly in comparison with the other data. In
other words, they are associated with a significant deviation
from the other observations [5]. In this section, we present
some outlier detection methods associated to our approach
using uni-variate data as input. We manage only uni-variate
data because of the nature of our experimental data sets (cf.
Section VI).

The following notations are used to describe outliers: X is
a numeric attribute of a database relation, and is increasingly
ordered. x is an arbitrary value, Xi is the ith value, N is the
number of values for X , σ its standard deviation, µ its mean,
and s a central tendency parameter (variance, inter-quartile
range, . . . ). X1 and XN are respectively the minimum and the
maximum values of X . p is a probability, and k a parameter
specified by the user, or computed by the system.

A. Related Work
We discuss hereafter four of the main uni-variate outlier

detection methods.

Elimination after Standardizing the Distribution: This is
the most conventional cleaning method [5]. It consists in taking
into account σ and µ to determine the limits beyond which
aberrant values are eliminated. For an arbitrary distribution,
the inequality of Bienaymé-Tchebyshev indicates that the
probability that the absolute deviation between a variable and
its average is greater than k is less than or equal to 1

k2 :

P (

∣∣∣∣x− µσ
∣∣∣∣ ≥ k) ≤ 1

k2
(1)

The idea is that we can set a threshold probability as a function
of σ and µ above which we accept values as non-outliers.
For example, with k = 4.47, the risk of considering that x,
satisfying

∣∣∣x−µσ ∣∣∣ ≥ k, is an outlier, is bounded by 1
k2 = 0.05.

Algebraic Method: This method, presented in [6], uses the
relative distance of a point to the “center” of the distribution,
defined by: di =

|Xi−µ|
σ . Outliers are detected outside of the

interval [µ− k ×Q1, µ+ k ×Q3], where k is generally fixed
to 1.5, 2 or 3. Q1 and Q3 are the first and the third quartiles
respectively.
Box Plot: This method, attributed to Tukey [7], is based on
the difference between quartiles Q1 and Q3. It distinguishes
two categories of extreme values determined outside the lower
bound (LB) and the upper bound (UB):{

LB = Q1 − k × (Q3 −Q1)

UB = Q3 + k × (Q3 −Q1)
(2)

Grubbs’ Test: Grubbs’ method, presented in [8], is a statistical
test for lower or higher abnormal data. It uses the difference
between the average and the extreme values of the sample. The
test is based on the assumption that the data have a normal
distribution. The statistic used is: T = max(XN−µ

σ , µ−X1

σ ).
The assumption that the tested value (X1 or XN ) is not an
outlier is rejected at significance level α if:

T >
N − 1√

n

√
β

n− 2β
(3)

where β = tα/(2n),n−2 is the quartile of order α/(2n) of the
Student distribution with n− 2 degrees of freedom.

B. An Original Method for Outlier Detection
Most of the existing outlier detection methods assume

that the distribution is normal. However, in reality, many
samples have asymmetric and multimodal distributions, and
the use of these methods can have a significant influence at
the data mining step. In such a case, each “distribution” has
to be processed using an appropriated method. The considered
approach consists in eliminating outliers in each column based
on the normality of data, in order to minimize the risk of
eliminating normal values.

Many tests have been proposed in the literature to evaluate
the normality of a distribution: Kolmogorov-Smirnov [9],
Shapiro-Wilks, Anderson-Darling, Jarque-Bera [10], etc. If the
Kolmogorov-Smirnov test gives the best results whatever the
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distribution of the analysed data may be, it is nevertheless
much more time consuming to compute then the others. This is
why we have chosen the Jarque-Bera test (noted JB hereafter),
much more simpler to implement as the others, as shown
below:

JB =
n

6
(γ3

2 +
γ22
4
) (4)

This test follows a law of χ2 with two degrees of freedom,
and uses the Skewness γ3 and the Kurtosis γ2 statistics, defined
respectively as follows:

γ3 = E[(
x− µ
σ

)3] (5)

γ2 = E[(
x− µ
σ

)4]− 3 (6)

If the JB normality test is not significant (the variable
is normally distributed), then the Grubbs’ test is used at a
significance level of systematically 5%, otherwise the Box Plot
method is used with parameter k automatically set to 3 in order
to not to be too exhaustive toward outlier detection.

Figure 1 summarizes the process we chose to detect and
eliminate outliers.

JB Normality Test

Normality?

Grubbs’ TestBox Plot

YesNo

Figure 1: The outlier detection process.

Finally, the computation of γ3 and γ2 to evaluate the value
of JB, so as other statistics needed by the Grubb’s test and the
Box Plot calculus, are performed in parallel in the manner
shown in Listing 1 (cf. Section V). This in order to fasten
the response times. Other statistics used in the next section
are simultaneously collected here. Because the corresponding
algorithm is very simple (the computation of each statistic is
considered as a single task), we do not present it.

IV. DISCRETIZATION METHODS

Discretization of an attribute consists in finding NbBins
pairwise disjoint intervals that will further represent it in an
efficient way. The final objective of discretization methods is
to ensure that the mining part of the KDD process generates
substantial results. In our approach, we only employ direct
discretization methods in which NbBins must be known in
advance (and be the same for every column of the input data).
NbBins was in previous works a parameter fixed by the end-
user. The literature proposes several formulas as an alternative
(Rooks-Carruthers, Huntsberger, Scott, etc.) for computing
such a number. Therefore, we switched to the Huntsberger
formula, the most fitting from a theoretical point of view [11],
and given by: 1 + 3.3× log10(N).

A. Related Work
In this section, we only highlight the final discretization

methods kept for this work. This is because the other tested
methods have not revealed themselves to be as efficient as
expected (such as Embedded Means Discretization), or are not
a worthy alternative (such as Quantiles based Discretization) to
the ones presented. In other words, the approach that we chose
and which is discussed in the next sections, barely selected
none of these alternative methods. Thus the methods we use
are: Equal Width Discretization (EWD), Equal Frequency-
Jenks Discretization (EFD-Jenks), AVerage and STandard devi-
ation based discretization (AVST), and K-Means (KMEANS).
These methods, which are unsupervised [12] and static [13],
have been widely discussed in the literature: see for example
[14] for EWD and AVST, [15] for EFD-Jenks, or [16] and [17]
for KMEANS. For these reasons, we only summarize their
main characteristics and their field of applicability in Table I.

TABLE I: SUMMARY OF THE DISCRETIZATION METH-
ODS USED.

Method Principle Applicability

EWD This simple to implement
method creates intervals of
equal width.

The approach cannot be ap-
plied to asymmetric or multi-
modal distributions.

EFD-Jenks Jenks’ method provides
classes with, if possible, the
same number of values, while
minimizing internal variance
of intervals.

The method is effective from
all statistical points of view
but presents some complexity
in the generation of the bins.

AVST Bins are symmetrically cen-
tered around the mean and
have a width equal to the stan-
dard deviation.

Intended only for normally
distributed datasets.

KMEANS Based on the Euclidean dis-
tance, this method determines
a partition minimizing the
quadratic error between the
mean and the points of each
interval.

Running time linear in
O(N × NbBins × k),
where k in the number of
iterations [?]. It is applicable
to each form of distribution.

Let us underline that the upper limit fixed by the Hunts-
berger formula to the number of intervals to use is not always
reached. It depends on the applied discretization method. Thus,
EFD-Jenks and KMEANS methods generate most of the times
less than NbBins bins. This implies that other methods, which
generate the NbBins value differently for example through
iteration steps, may apply if NbBins can be upper bounded.

Example 1: Let us consider the numeric attribute SX =
{4.04, 5.13, 5.93, 6.81, 7.42, 9.26, 15.34, 17.89, 19.42, 24.40,
25.46, 26.37}. SX contains 12 values, so by applying the
Huntsberger’s formula, if we aim to discretize this set, we
have to use 4 bins.

Table II shows the bins obtained by applying all the
discretization methods proposed in Table I. Figure 2 shows
the number of values of SX belonging to each bin associated
to every discretization method.

As it is easy to understand, we cannot find two dis-
cretization methods producing the same set of bins. As a
consequence, the distribution of the values of SX is different
depending on the method used.

B. Discretization Methods and Statistical Characteristics
When attempting to find the most appropriate discretization

method for a column, what is important is not the law followed
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TABLE II: SET OF BINS ASSOCIATED TO SAMPLE SX .

Method Bin1 Bin2 Bin3 Bin4

EWD [4.04, 9.62[ [9.62, 15.21[ [15.21, 20.79[ [20.79, 26.37]
EFD-Jenks [4.04; 5.94] ]5.94, 9.26] ]9.26, 19.42] ]19.42, 26.37]
AVST [4.04; 5.53[ [5.53, 13.65[ [13.65, 21.78[ [21.78, 26.37]
KMEANS [4.04; 6.37[ [6.37, 12.3[ [12.3, 22.95[ [22.95, 26.37]

Bin1 Bin2 Bin3 Bin4
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KMEANS

Figure 2: Population of each bin of sample SX .

by its distribution, but the shape of its density function. This is
why we first perform a descriptive analysis of the data in order
to characterize, and finally to classify, each column according
to normal, uniform, symmetric, antisymmetric or multimodal
distributions. This is done in order to determine what dis-
cretization method(s) may apply. Concretely, we perform the
following tests, which have to be carried out in the presented
order:

1) We use the Kernel method introduced in [18] to
characterize multimodal distributions. The method
is based on estimating the density function of the
sample by building a continuous function, and then
calculating the number of peaks using its second
derivative. This function allows us to approximate
automatically the shape of the distribution. The mul-
timodal distributions are those having a number of
peaks strictly greater than 1.

2) To characterize antisymmetric and symmetric dis-
tributions in a next step, we use the skewness γ3
(see formula (5)). The distribution is symmetric if
γ3 = 0. Practically, this rule is too exhaustive, so we
relaxed it by imposing limits around 0 to set a fairly
tolerant rule, which allows us to decide whether a
distribution is considered antisymmetric or not. The
associated method is based on a statistical test. The
null hypothesis is that the distribution is symmetric.
Consider the statistic: TSkew = N

6 (γ
2
3). Under the

null hypothesis, TSkew follows a law of χ2 with one
degree of freedom. In this case, the distribution is
antisymmetric with α = 5% if TSkew > 3.8415.

3) We use then the normalized Kurtosis, noted γ2 (see
formula (6)), to measure the peakedness of the distri-

bution or the grouping of probability densities around
the average, compared with the normal distribution.
When γ2 is close to zero, the distribution has a
normalized peakedness.
A statistical test is used again to automatically decide
whether the distribution has normalized peakedness
or not. The null hypothesis is that the distribution
has a normalized peakedness, and thus is uniform.
Consider the statistic: TKurto = N

6 (
γ2
2

4 ). Under the
null hypothesis, TKurto follows a law of χ2 with one
degree of freedom. The null hypothesis is rejected at
level of significance α = 0.05 if TKurto > 6.6349.

4) To characterize normal distributions, we use the
Jarque-Bera test (see equation (4) and relevant com-
ments).

These four successive tests allow us to characterize the
shape of the (density function of the) distribution of every
column. Combined with the main characteristics of the dis-
cretization methods presented in the last section, we get Table
III. This summarizes what discretization method(s) can be
invoked depending on specific column statistics.

TABLE III: APPLICABILITY OF DISCRETIZATION
METHODS DEPENDING ON THE DISTRIBUTION’S
SHAPE.

Normal Uniform Symm- Antisym- Multimodal
etric metric

EWD * * *
EFD-Jenks * * * * *
AVST *
KMEANS * * * * *

Example 2: Continuing Example 1, the Kernel Density
Estimation method [18] is used to build the density function
of sample SX (cf. Figure 3).
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Figure 3: Density function of sample SX using Kernel Density
Estimation.

As we can see, the density function has two modes, is
almost symmetric and normal. Since the density function is
multimodal, we should stop at this point. But as shown in
Table III, only EFD-Jenks and KMEANS produce interesting
results according to our proposal. For the need of the example,
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let us perform the other tests. Since γ3 = −0.05, the distri-
bution is almost symmetric. As mentioned in (2), it depends
on the threshold fixed if we consider that the distribution
is symmetric or not. The distribution is not antisymmetric
because TSkew = 0.005. The distribution is not uniform since
γ2 = −1.9. As a consequence, TKurto = 1.805, and we have
to reject the uniformity test. The Jarque-Berra test gives a
p-value of 0.5191, which means that the sample is normal
whatever the value set for α.

C. Multi-criteria Approach for Finding the Most Appropriate
Discretization Method

Discretization must keep the initial statistical characteris-
tics so as the homogeneity of the intervals, and reduce the size
of the final data produced. Consequently, the discretization ob-
jectives are many and contradictory. For this reason, we chose
a multi-criteria analysis to evaluate the available applicable
methods of discretization. We use three criteria:

• The entropy H measures the uniformity of intervals.
The higher the entropy, the more the discretization
is adequate from the viewpoint of the number of
elements in each interval:

H = −
NbBins∑
i=1

pi log2(pi) (7)

where pi is the number of points of interval i divided
by the total number of points (N ), and NbBins is the
number of intervals. The maximum of H is computed
by discretizing the attribute into NbBins intervals
with the same number of elements. In this case, H
reduces to log2(NbBins).

• The index of variance J , introduced in [19], measures
the interclass variances proportionally to the total
variance. The closer the index is to 1, the more
homogeneous the discretization is:

J = 1− Intra-intervals variance
Total variance

• Finally, the stability S corresponds to the maximum
distance between the distribution functions before and
after discretization. Let F1 and F2 be the attribute
distribution functions before and after discretization
respectively:

S = supx(
∣∣F1(x)− F2(x)

∣∣) (8)

The goal is to find solutions that present a compromise
between the various performance measures. The evaluation of
these methods should be done automatically, so we are in the
category of a priori approaches, where the decision-maker
intervenes just before the evaluation process step.

Aggregation methods are among the most widely used
methods in multi-criteria analysis. The principle is to reduce
to a unique criterion problem. In this category, the weighted
sum method involves building a unique criterion function by
associating a weight to each criterion [20], [21]. This method
is limited by the choice of the weight, and requires comparable
criteria. The method of inequality constraints is to maximize a
single criterion by adding constraints to the values of the other

Algorithm 1: MAD (Multi-criteria Analysis for Dis-
cretization)

Input: X set of numeric values to discretize, DM set
of discretization methods applicable

Output: best discretization method for X
1 foreach method D ∈ DM do
2 Compute VD;
3 end
4 return argmin(V );

criteria [22]. The disadvantage of this method is the choice of
the thresholds of the added constraints.

In our case, the alternatives are the 4 methods of
discretization, and we discretize automatically columns
separately, so the implementation facility is important in our
approach. Hence the interest in using the aggregation method
by reducing it to a unique criterion problem, by choosing the
method that minimizes the Euclidean distance from the target
point (H = log2(NbBins), J = 1, S = 0).

Definition 1: Let D be an arbitrary discretization method.
We can define VD a measure of segmentation quality using the
proposed multi-criteria analysis as follows:

VD =
√
(HD − log2(NbBins))2 + (JD − 1)2 + S2

D (9)

The following proposition is the main result of this article:
It indicates how we chose the most appropriate discretization
method among all the available ones.

Proposition 1: Let DM be a set of discretization methods;
the set, noted D, that minimizes VD (see equation(9)), ∀D ∈
{DM}, contains the best discretization methods.

Corollary 1: The set of most appropriate discretization
methods D can be obtained as follows:

D = argmin({VD,∀D ∈ DM}) (10)

Let us underline that if |D| > 1, then we have to choose
one method among all. As a result of corollary 1, we pro-
pose the MAD (Multi-criteria Analysis for finding the best
Discretization method) algorithm, see Algorithm 1.

Example 3: Continuing Example 1, Table IV shows the
evaluation results for all the discretization methods at disposal.
Let us underline that for the need of our example, all the values
are computed for every discretization method, and not only for
the ones that should have been selected after the step proposed
in Section IV-B (cf. Table III).

TABLE IV: EVALUATION OF DISCRETIZATION METH-
ODS.

H J S VDM

EWD 1.5 0.972 0.25 0.559
EFD-Jenks 2 0.985 0.167 0.167
AVST 1.92 0.741 0.167 0.318
KMEANS 1.95 0.972 0.167 0.176

The results show that EFD-Jenks and KMEANS are the
two methods that obtain the lowest values for VD. The values
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got by the EWD and AVST methods are the worst: This is
consistent with our optimization proposed in Table III, since
the sample distribution is multimodal.

V. PARALLELIZING DATA PREPARATION

Parallel architectures have become a standard today. As
a result, applications can be distributed on several cores.
Consequently, multicore applications run faster given that they
require less process time to be executed, even if they may
need on the other hand more memory for their data. But this
latter inconvenient is minor when compared to the induced
performances. We present in this section first some novel
programming techniques, which allow to run easily different
tasks in parallel. We show in a second step how we adapt these
techniques to our work.

A. New Features in Multicore Encoding
Multicore processing is not a new concept, however only

in the mid 2000s has the technology become mainstream
with Intel and AMD. Moreover, since then, novel software
environments that are able to take advantage simultaneously of
the different existing processors have been designed (Cilk++,
Open MP, TBB, etc.). They are based on the fact that looping
functions are the key area where splitting parts of a loop
across all available hardware resources increase application
performance.

We focus hereafter on the relevant versions of the Microsoft
.NET framework for C++ proposed since 2010. These enhance
support for parallel programming by several utilities, among
which the Task Parallel Library. This component entirely hides
the multi-threading activity on the cores. The job of spawning
and terminating threads, as well as scaling the number of
threads according to the number of available cores, is done
by the library itself.

The Parallel Patterns Library (PPL) is the corresponding
available tool in the Visual C++ environment. The PPL
operates on small units of work called Tasks. Each of them
is defined by a λ calculus expression (see below). The PPL
defines three kinds of facilities for parallel processing, where
only templates for algorithms for parallel operations are of
interest for this presentation.

Among the algorithms defined as templates for initiating
parallel execution on multiple cores, we focus on the paral-
lel invoke algorithm used in the presented work (see end of
Sections III-B and IV-C). It executes a set of two or more
independent Tasks in parallel.

Another novelty introduced by the PPL is the use of λ
expressions, now included in the C++11 language norm. These
remove all need for scaffolding code, allowing a “function”
to be defined in-line in another statement, as in the example
provided by Listing 1. The λ element in the square brackets is
called the capture specification. It relays to the compiler that
a λ function is being created and that each local variable is
being captured by reference (in our example). The final part
is the function body.
/ / R e t u r n s t h e r e s u l t o f add ing a v a l u e t o i t s e l f
t empla te <typename T> T t w i c e ( c o n s t T& t ) {

re turn t + t ;
}
i n t n = 5 4 ; double d = 5 . 6 ; s t r i n g s = ” H e l l o ” ;

/ / C a l l t h e f u n c t i o n on each v a l u e c o n c u r r e n t l y
p a r a l l e l i n v o k e (

[&n ] { n = t w i c e ( n ) ; } ,
[&d ] { d = t w i c e ( d ) ; } ,
[& s ] { s = t w i c e ( s ) ; }

) ;

Listing 1: Parallel execution of 3 simple tasks

Listing 1 also shows the limits of parallelism. It is widely
agreed that applications that may benefit from using more
than one processor necessitate: (i) Operations that require a
substantial amount of processor time, measured in seconds
rather than milliseconds, and (ii), Operations that can be
divided into significant units of calculation, which can be
executed independently of one another. So the chosen example
does not fit parallelization, but is used to illustrate the new
features introduced by multicore programming techniques.

More details about parallel algorithms and the λ calculus
can be found in [23], [24].

B. Application to data preparation
As a result of Table IV and of Proposition 1, we define

the POP (Parallel Optimized Preparation of data) method, see
Algorithm 2.

For each attribute, after constructing Table III, each appli-
cable discretization method is invoked and evaluated in order
to keep finally the most appropriate. The content of these
two tasks (three when involving the statistics computations)
are executed in parallel using the parallel invoke template (cf.
previous section).
We discuss the advantages of this approach so as the got
response times in the next section.

Algorithm 2: POP (Parallel Optimized Preparation of
Data)

Input: X set of numeric values to discretize, DM set
of discretization methods applicable

Output: Best set of bins for X
1 Parallel Invoke For each method D ∈ DM do
2 Compute γ2, γ3 and perform Jarque-Bera test;
3 end
4 Parallel Invoke For each method D ∈ DM do
5 Remove D from DM if it does not satisfy the

criteria given in Table III;
6 end
7 Parallel Invoke For each method D ∈ DM do
8 Discretize X according to D;
9 VD =√

(HD − log2(NbBins))2 + (JD − 1)2 + S2
D;

10 end
11 D = argmin({VD,∀D ∈ DM});
12 return set of bins obtained in line 8 according to D;

VI. EXPERIMENTAL ANALYSIS

The goal of this section is to validate experimentally
our approach according to two point of views: (i) firstly,
we apply our methodology to the extraction of correlation
and of association rules; (ii) secondly, we use it to forecast
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time series. These two application fields correspond to the
two mainstream approaches in data mining, which consist
in defining and using descriptive or predictive models. What
means that the presented work can help to solve a great variety
of associated problems.

A. Experimentation on rules detection
In this section, we present some experimental results by

evaluating five samples. We decided to implement it using
the MineCor KDD Software [2], but it could have been
with another one (R Project, Tanagra, etc.). Sample1 and
Sample2 correspond to real data, representing parameter (in
the sense of attribute) measurements provided by microelec-
tronics manufacturers after completion of the manufacturing
process. The ultimate goal was here to detect correlations
between one particular parameter (the yield) and the other
attributes. Sample3 is a randomly generated file that contains
heterogeneous values. Sample4 and Sample5 are common data
taken from the UCI Machine Learning Repository website
[25]. Table V sums up the characteristics of the samples.

TABLE V: CHARACTERISTICS OF THE DATABASES
USED.

Sample Number of columns Number of rows Type

Sample1 (amtel.csv) 8 727 real
Sample2 (stm.csv) 1281 296 real
Sample3 (generated.csv) 11 201 generated
Sample4 (abalone.csv) 9 4177 real
Sample5 (auto mpg.csv) 8 398 real

Experiments were performed on a 4 core computer (a
DELL Workstation with a 2.8 GHz processor and 12 Gb
RAM working under the Windows 7 64 bits OS). First,
let us underline that we shall not focus in this section on
performance issues. Of course, we have chosen to parallelize
the underdone tasks in order to improve response times. As it
is easy to understand, each of the parallel invoke loops has
a computational time closed to the most consuming calculus
inside of each loop. Parallelism allows us to compute and
then to evaluate different “possibilities” in order especially
to chose the most efficient one for our purpose. This is
done without waste of time, when comparing to a single
“possibility” processing. Moreover, we can easily add other
tasks to each parallelized loop (statistics computations,
discretization methods, evaluation criteria). Some physical
limits exist (currently): No more then seven tasks can be
launched simultaneously within the 2010 C++ Microsoft
.NET / PPL environment. But each individual described task
does not require more than a few seconds to execute, even on
the Sample2 database.

Concerning outlier management, we recall that in the
previous versions of our software (see [2]), we used the single
standardization method with p set by the user (cf. Section
III-A). With the new approach presented in Section III-B, we
notice an improvement in the detection of true positive or
false negative outliers by a factor of 2%.

Figures 4 summarize the evaluation of the methods used
on each of our samples, except on Sample2: we have chosen
to only show the results for the 10 first columns.
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(a) Results for sample 1.
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(e) Results for sample 5.

Figure 4: Discretization experimentations on the five samples.
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For Sample1 and Sample2 attributes, which have symmetric
and normal distributions, the evaluation on Figure 4a and 4b
shows that the EFD-Jenks method provides generally the best
results. The KMEANS method is unstable for these kinds of
distributions, but sometimes provides the best discretization.

For the Sample3 evaluation shown graphically in Figure 4c,
the studied columns have relatively dispersed, asymmetric and
multimodal distributions. “Best” discretizations are provided
by EFD-Jenks and KMEANS methods. We note also that
the EWD method is fast, and sometimes demonstrates good
performances in comparison with the EFD-Jenks or KMEANS
methods.

For Sample4 and Sample5 attributes, which distributions
have a single mode and most of them are symmetric, the
evaluation on Figures 4d and 4e shows that the KMEANS
method provides generally the best results. The results given
by EFD-Jenks method are closed to the ones obtained using
KMEANS.

Finally, Figure 5 summarizes our approach. We have tested
it over each column of each dataset. Any of the available
methods is selected at least once in the dataset of the three first
proposed samples (cf. Table V), which enforces our approach.
As expected, EFD-Jenks is the method that is the most often
kept by our software (' 42%). AVST and KMEANS are
selected approximately a bit less than 30% each. EWD is only
selected a very few times (less than 2%).

EWD

EFD-Jenks

AVST

KMEANS

Figure 5: Global Distribution of DMs in our samples.

We focus hereafter on experiments performed in order to
compare the different available discretization methods still on
the three first samples. Figures 6a, 7a and 8a reference various
experiments when mining Association Rules. Figures 6b, 7b
and 8b correspond to experiments when mining Correlation
Rules. When searching for Association Rules, the minimum
confidence (MinConf ) threshold has been arbitrarily set to
0.5. The different figures provide the number of Association
or of Correlation Rules respectively, while the minimum sup-
port (MinSup) threshold varies. Each figure is composed of
five curves. One for each of the four discretization methods
presented in Table III, and one for our global method (POP).
Each method is individually applied on each column of the
considered database/dataset.
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Figure 6: Execution on Sample1.
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Figure 7: Execution on Sample2.

Analyzing the Association Rules detection process, exper-
iments show that POP gives the best results (few number of
rules), and EWD is the worst. Using real data, the number of
rules is reduced by a factor comprised between 5% and 20%.
This reduction factor is even better using synthetic (generated)
data and a low MinSup threshold. When mining Correlation
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Figure 8: Execution on Sample3.

Rules on synthetic data, the method that gives the best results
with high thresholds is KMEANS, while it is POP when the
support is low. This can be explained by the fact that the
generated data are sparse and multimodal. When examining the
results on real databases, POP gives good results. However, let
us underline that the EFD-Jenks method produces unexpected
results: Either we have few rules (Figures 6a and 6b), or we
have a lot (Figures 7a and 7b) with a low threshold. We
suppose that the high number of used bins is at the basis of
this result.

B. Experimentation on time series forecasting
In this section, we present an another practical application

of the proposed method. It deals with the prediction of time se-
ries on financial data. Often, in time series prediction, interest
is put on significant changes, instead of small fluctuations of
the evolution of the data. Beside, in the machine learning field,
the learning process for real data takes a substantial amount
of time in the whole prediction process. For this reason, time
series segmentation is used to make data more understandable
by the prediction models, and to speed up the learning process.
In light of that, the proposed method can be applied in order
to help in the choice of the segmentation method.

For these experiments, we use a fixed prediction model
(VAR-NN [26]), and multiple time series. We study hereafter
the impact of the proposed methodology on the predictions.

1) The prediction model used: The prediction model
used is first briefly described. The VAR-NN (Vector Auto-
Regressive Neural Network) model, presented in [26], is a
prediction model derived from the classical VAR (Vector Auto-
Regressive) model [27], which is expressed as follows:

Let us consider a k-dimensional set of time series yt, each
one containing exactly T observations. The VAR(p) system

expresses each variable of yt as a linear function of the p
previous values of itself and the p previous values of the other
variables, plus an error term with a mean of zero.

yt = α0 +

p∑
i=1

Aiyt−i + εt (11)

εt is a white noise with a mean of zero, and A1, . . . , Ap
are (k × k) matrices parameters of the model. The general
expression of the non linear VAR model is different from the
classical model in the way that the parameters of the model
values are not linear.

yt = Ft(yt−1, yt−2, ...., yt−p + xt−1, xt−2, ...., xt−p) (12)

We use in this experiment the VAR-NN (Vector Auto-
Regressive Neural Network) model [28], with multi-layer
perceptron structure, and based on the back-propagation
algorithm. An example of two time series as an input of the
network, with one hidden layer, is given in Figure 9.

yt−1

yt−2

xt−1

xt−2

yt

Figure 9: Illustration of a bivariate VAR-NN model with a lag
parameter p = 2 and with one hidden layer.

2) Time series used: We use the following financial time
series:

• ts1: Financial french time series expressing the prices
of 9 articles containing (Oil, Propane, Gold, euros/dol-
lars, Butane, Cac40) and others, from what prices have
been extracted between 2013/03/12 and 2016/03/01.

• ts2 (w.tb3n6ms): weekly 3 and 6 months US Treasury
Bill interest rates from 1958/12/12 until 2004/08/06,
extracted from the R package FinTS [29].

• ts3 (m.fac.9003): object of 168 observations giving
simple excess returns of 13 stocks and the Standard
and Poors 500 index over the monthly series of three-
months Treasury Bill rates of the secondary market
as the risk-free rate from January 1990 to December
2003, extracted from the R package FinTS.

3) Experimentations: Let p be the lag parameter of the
VAR-NN model, setted in our case according to the length
of the series (see Table VI), and NbV ar the number of the
variables of the multivariate time series to predict. We use
a neural network with (i) 10000 as maximum of iterations,
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TABLE VI: CHARACTERISTICS OF THE TIME SERIES USED.

Time series Number of attributes Number of rows Number of predictions Lag parameter Type

ts1 9 1090 100 20 real
ts2 2 2383 200 40 real
ts3 14 168 20 9 real

TABLE VII: Detection of the best methods for both, the discretization quality and the prediction precision

Time series Attributs
Forecasting score (1000.MSE) Discretization evaluation (Vd)

best discretization best forecaster
ewd efd avst kmeans ewd efd avst kmeans

ts1

col1 0.9 0.4 10.5 0.6 0.42 0.22 0.52 1.07 efd efd
col2 0.6 0.1 3.1 0.2 0.60 0.18 0.86 0.53 efd efd
col3 4 2.9 5.7 3 0.28 0.10 0.40 0.26 efd efd
col4 4.1 3 5.8 3.4 0.29 0.10 0.40 0.25 efd efd
col5 2.1 1.1 1.8 0.9 0.63 0.29 0.56 0.28 kmeans kmeans
col6 2.2 1.1 6.5 1.8 0.52 0.21 0.58 0.25 efd efd
col7 1.1 0.3 2.6 0.6 0.36 0.18 0.47 0.53 efd efd
col8 0.9 0.5 3 0.5 0.65 0.24 000.61 0.59 efd,kmeans efd
col9 3.2 2.4 11.6 2.6 0.23 0.12 000.62 0.11 efd kmeans

ts2
col1 1.5 1.7 6.5 2.8 0.48 0.16 0.61 0.30 efd ewd
col2 1.4 1.5 6.1 1.8 0.47 0.29 0.62 0.22 kmeans ewd

ts3

col1 104.5 108.4 89.9 67 0.53 0.23 0.52 000.13 kmeans kmeans
col2 57.7 65.5 75.1 44.8 0.61 0.35 0.76 000.22 kmeans kmeans
col3 93.4 67.7 83 76.5 0.46 0.13 0.57 000.16 efd efd
col4 127.7 120.6 131 91.1 0.28 0.20 0.51 000.10 kmeans kmeans
col5 91.7 80.6 78.9 96.6 0.33 0.28 0.52 000.18 kmeans efd
col6 113.6 122.7 85.8 97.2 0.48 0.26 0.58 000.17 kmeans avst
col7 105.8 92.3 102.6 110.2 0.53 0.22 0.56 000.11 kmeans efd
col8 84.6 64.1 73.8 79.5 0.58 0.23 0.60 000.22 kmeans,efd efd
col9 66.9 78.8 90.5 92.4 0.65 0.38 0.92 000.33 kmeans efd
col10 41.3 56 55.6 48.6 0.61 0.28 0.74 000.15 kmeans ewd
col11 35.9 47.6 39.1 36.1 0.69 0.27 0.81 000.34 efd ewd
col12 72.3 50.4 59.6 42.5 0.65 0.29 0.74 000.21 kmeans kmeans
col13 98.7 120 102.8 107 0.43 0.16 0.50 000.15 kmeans ewd
col14 58.5 68.4 94 105.8 0.56 0.25 0.76 000.14 kmeans ewd

(ii) 4 hidden layers of size (2/3, 1/4, 1/4, 1/4) × k, where
k = p×NbV ar, is the number of inputs of the model (since
we use the p previous values of NbV ar variables).

First, we apply the discretization methods (EWD, EFD-
Jenks, AVST, KMEANS) on the time series, in order to find
the best one according to formula (9). Then we select the best
method for each attribute in terms of the predictions precision.
And finally, we compare the results for both discretization
and prediction. The learning step of the prediction model
is performed on the time series without a fixed number of
last values (for which we make predictions). These are setted
depending on the length of the series as shown in Table
VI. Experiments are made in forecasting the last values as
a sliding window. Each time we make a prediction, we learn
from the real one, and so on. Finally, after obtaining all the
predictions, we calculate the MSE (Mean Squared Error) of
the predictions. The results of finding the best methods for
both, the discretization quality using the proposed multicriteria
approach, and the precision of the prediction, are summarized
in Table VII. We show in Figure 10 the real, discretization and
predictions of one target variable among 25 possibilities. The
results of the evaluations of all the attributes are summarized
in Table VII.

4) Interpretation: The evaluations illustrated in Table VII
show that there is a rightness of 56% between best methods
of discretization and predictions. Even if the best method
of discretization is not always the best predictor, it shows a
good score of prediction compared with the best one. What

means that the multi-criteria evaluation of the discretization
methods can predict at 56% the methods that will give the best
predictions, and this just basing on the statistical characteristics
of the discretized series. Consequently, we demonstrate that
there is an impact justified by the evaluation made on financial
time series with different lengths and different variables.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach for automatic
data preparation implementable in most of KDD systems.
This step is generally split into two sub-steps: (i) detecting
and eliminating the outliers, and (ii) applying a discretization
method in order to transform any column into a set of clusters.
In this article, we show that the detection of outliers depends
on the knowledge of the data distribution (normal or not). As
a consequence, we do not have to apply the same pruning
method (Box plot vs. Grubb’s test). Moreover, when trying
to find the most appropriate discretization method, what is
important is not the law followed by the column, but the shape
of its density function. This is why we propose an automatic
choice for finding the most appropriate discretization method
based on a multi-criteria approach, according to several
criteria (Entropy, Variance, Stability). Experiments tasks are
performed using multicore programming. What allows us to
explore different solutions, to evaluate them, and to keep the
most appropriated one for the studied data set without waste
of time. As main result, experimental evaluations done both
on real and synthetic data, and for different mining objectives,
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(a) Results of EWD method.
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(b) Results of EFD-Jenks method.
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(c) Results of AVST method.
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(d) Results of KMEANS method.

Figure 10: Predictions, discretized and real values for the target attribut Col2/ts2.

validate our work, showing that it is not always the very same
discretization method that is the best: Each method has its
strengths and drawbacks. Moreover, experiments performed,
on one hand when mining correlation rules, show a significant
reduction of the number of produced rules, and, on the
other hand when forecasting times series, show a significant
improvement of the predictions obtained. We can conclude
that our methodology produces better result in most cases.

For future works, we aim to experimentally validate the re-
lationship between the distribution shape and the applicability
of used methods, to add other discretization methods (Khiops,
Chimerge, Entropy Minimization Discretization, etc.) to our
system, and to understand why our methodology does not give
always the best result in order to improve it.
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